PET/MR sammenlignet med PET/CT fordeler og ulemper

- PET/MRI compared to PET/CT advantages and disadvantages

FORFATTERE:
Jane Marion Haugsrud
Linn Bergh Mikalsen
Celine Hestvik Olsen

Høgskolen i Gjøvik, avdeling for helse, omsorg og sykepleie, seksjon for radiografi og helseteknologi.
Våren 2014
Ord: 9079

Dato: 14.05.2014
Sammendrag

<table>
<thead>
<tr>
<th>Tittel:</th>
<th>PET/MR sammenlignet med PET/CT</th>
<th>Dato:</th>
<th>14/05-14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fordeler og ulemper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deltaker(e)/</th>
<th>Jane Marion Haugsrud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linn Bergh Mikalsen</td>
</tr>
<tr>
<td></td>
<td>Celine Hestvik Olsen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veileder(e):</th>
<th>Bengt Erik Johansson</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Evt. oppdragsgiver:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stikkord</th>
<th>PET/MR, PET/CT, barn, kreftdiagnostikk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3-5 stk)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antall sider/ord:</th>
<th>Antall vedlegg: 1</th>
<th>Publiseringavtale inngått: nei</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kort beskrivelse av bacheloroppgaven:

Problemstilling: Hva er dokumentert av fordeler og ulemper ved PET/MR sammenlignet med PET/CT, og kan PET/MR benyttes ved kreftdiagnostikk av barn og unge?

Hensikt: Er på sammenligne PET/MR med PET/CT, og om PET/MR kan brukes på barn ved kreftutredning.

Metode: Kvalitativt litteraturstudie med analyse av artikler.

Resultat: De tekniske utfordringene ved PET/MR er hovedsakelig attenuasjonskorreksjon og kompatibilitet mellom komponentene. En av hovedgrunnene til at PET/MR kan være bedre enn PET/CT er den gode bløtvevskontrasten og den reduserte stråledosen til eksempelvis barn. Det er teknisk mulig å utføre en PET/MR undersøkelse på barn, men det er fortsatt noen utfordringer.

Konklusjon: Vi fant flest positive sider ved PET/MR, men også sider der PET/CT står sterkest. Begge har hver sine begrensninger, PET/CT på bløtvev, og PET/MR på det tekniske, tid og økonomi. Det trengs mer forskning for å konkludere om en PET/MR kan ha en fremtidig plass ved diagnostikk hos barn, og om den generelt har verdi i samfunnet.
Abstract

Title: PET/MR compared to PET/CT
Date: 14/05-14
Advantages and disadvantages

Participants/	Jane Marion Haugsrud
Linn Bergh Mikalsen	
Celine Hestvik Olsen	

| Supervisor(s) | Bengt Erik Johansson |

| Employer: | |

| Keywords | PET/MRI, PET/CT, children, cancer diagnostics. |

Number of pages/words:	Number of appendix: 1

| Availability: | confidential |

Short description of the bachelor thesis:

Issue: What is documented of the advantages and disadvantages of PET/MRI compared with PET/CT, and may PET/MRI be used for cancer diagnostics in children and adolescents?

Purpose: To compare PET/MRI with PET/CT and if PET/MRI can be used on children in cancer studies.

Method: Qualitative study of literature with analysis of articles.

Result: The technical challenges of PET/MRI is mainly attenuation correction and compatibility between components. One of the main reasons why PET/MRI may be superior to PET/CT is the good soft-tissue contrast and reduced radiation dose to for example children. It is technically possible to perform a PET/MRI examination on children, but there are still some challenges.

Conclusion: We found that there are most positive aspects of PET/MRI, but also sides where PET/CT is strongest. Both have their limitations, PET/CT in soft tissue, and PET/MRI concerning the technical, time and finances. It is technically possible to perform a PET/MRI examination in children. Further research is needed to conclude whether a PET/MRI may have a future seat at diagnostics in children, and if it generally has value in the society.
Forord

Dette er vår avsluttende bacheloroppgave i radiografi ved Høgskolen i Gjøvik, våren 2014. Arbeidet med denne oppgaven har vært veldig interessant, tidskrevende og ikke minst lærerikt. Problemstillingen ble valgt på bakgrunn av nytt og spennende tema og iveren etter å finne ut mer basert på nyere forskning. Vi mener at denne oppgaven kan være relevant for radiografer, bioingeinører og andre yrkesgrupper innen fagfeltet.

Vi vil vie en spesiell takk til veileder Bengt Erik Johansson for utmerket veiledning og kommentarer underveis, og Bjørn Hofmann for innspill.
Innholdsfortegnelse

Sammendrag .. 2
Abstract ... 3
Forord ... 4
1.0 Innledning .. 7
 1.1 Bakgrunnen for valg av problemstilling og avgrensnings ... 9
 1.2 Radiografaglig relevans ... 9
 1.3 Begreper og forkortelser ... 10
2.0 Teori ... 11
 2.1 Utredning av kreft hos barn ... 11
 2.1.1 PET/CT som undersøkelsesmetode .. 11
 2.1.2 MR som undersøkelsesmetode ... 12
 2.1.3 PET/MR som potensiell undersøkelsesmetode .. 12
 2.2 Radiofarmaka til bruk ved PET/CT og PET/MR .. 13
 2.3 Hva kjennetegner PET/MR? .. 14
 2.3.1 PET-detektor ved fullt integrert PET/MR .. 14
 2.3.2 Typer PET/MR .. 15
 2.3.3 Ulike designløsninger på fullt integrert PET/MR ... 16
3.0 Metode ... 19
 3.1 Databasesøk .. 19
 3.1.1 Begrunnelse av søkeord .. 20
 3.1.2 Inklusjons- og eksklusjonskriterier ... 20
 3.2 Kvalitetssikring av artikler .. 21
 3.3 Andre kilder .. 22
 3.4 Analyse av artikler ... 22
4.0 Resultater ... 23
 4.1 Generelle fordeler ved PET/MR .. 23
 4.1.1 PET/MR indikasjoner ... 23
 4.1.2 Tekniske aspekter ved PET/MR ... 24
 4.1.3 Stråledose ... 25
 4.2 Generelle ulemper ved PET/MR ... 25
 4.2.1 Attenuasjonskorreksjon ... 26
 4.2.2 Bildetydning av PET/MR-bilder ... 26
 4.2.3 Samfunnsøkonomiske aspekter .. 27
 4.2.4 Tidsmessige aspekter .. 27
 4.2.5 PET-detektor på PET/MR .. 28
 4.2.6 Andre utfordringer ved PET/MR ... 28
 4.3 PET/CT .. 29
4.3.1 Fordeler ved PET/CT ... 29
4.3.2 Ulemper ved PET/CT .. 30
4.4 Barn ved PET/MR ... 31
4.4.1 Barn og stråling ... 31
4.4.2 Ulemper ved bruk av PET/MR til kreftutredning av barn 32
4.5 Generell kreftutredning ved PET/MR .. 32
4.5.1 Generelle indikasjoner .. 32
4.5.2 Spesifikke indikasjoner .. 33
4.5.3 TNM og PET/MR .. 34
5.0 Drøfting .. 35
5.1 Drøfting rundt det tekniske og bløtvevskontrasten. 35
 5.1.1 Attenuasjonskorreksjon ... 35
 5.1.2 Samregistrering av data ... 35
 5.1.3 PET-detektor ... 36
 5.1.4 Bløtvevskontrast ... 36
5.2 Fordeler ved PET/MR som modalitet ved kreftutredning av barn til sammenligning med PET/CT? 37
5.3 Stråledose til barn ved PET/CT og PET/MR ... 38
5.4 Pasientvelferd ved barn ... 39
5.5 Samfunnsøkonomiske aspekter .. 40
5.6 Metodekritikk ... 41
 5.6.1 Validitet ... 41
 5.6.2 Reliabilitet ... 42
6.0 Konklusjon ... 43
Litteraturhenvisning ... 44
Vedlegg 1 ... 49
Vedlegg 2 ... 50
1.0 Innledning

Hovedtemaet for oppgaven er diagnostikkmetoden PET/MR (Positron Emisjons Tomografi/Magnetisk Resonans), og hva dette kan bety innen kreftdiagnostikk av barn, til sammenligning med diagnostikkmetoden PET/CT (Positron Emisjons Tomografi/Computed Tomografi).

Hovedgrunnen til å gjøre en PET-undersøkelse i dag er ved bruk av fullkroppsskan til onkologiske sykdommer, som nå til dags gjøres nesten eksklusivt med en kombinert PET/CT (Herzog 2012). I dag brukes PET/CT på kreftutredning, også av barn (Kjaer m.fl. 2013). PET/CT har hatt stor suksess innen klinisk bruk, men det viste seg også at det er behov for videre utvikling av hybridmetodene. Dermed ble PET/MR til, for å overkome begrensningene til PET/CT (Partovi m.fl. 2014).

Hvert år blir 150 barn kreftsyke i Norge, og på verdensbasis er det 250 000. Fire av fem blir kurert, men det betyr også at en av fem ikke overlever. Kreft er den vanligste dødsårsaken hos barn i den vestlige verden og det er et stort behov for forskning på området. Et barn har mesteparten av livet å leve i etterkant av kreftsykdommen, noe som gjør det veldig viktig å forskе på seneffekter til de kurerte (Barnekreftforeningen 2014). Ifølge IAEA (2013) er barn mer strålefølsomme enn voksne, og all stråling har en teoretisk risiko for kreftutvikling. Med tanke på dette vil vi undersøke om barn kan ha nytte av en PET/MR ved kreftutredning i forhold til en PET/CT, siden PET/MR ikke benytter seg av ioniserende stråling.
Formålet med denne oppgaven er å gi en oversikt over noen av de positive og negative sidene som er dokumentert ved PET/MR sammenlignet med PET/CT, og videre om hvordan dette kan brukes ved kreftutredning av barn. Ut ifra formålet har vi formulert problemstillingen: “Hva er dokumentert av fordeler og ulemper ved PET/MR sammenlignet med PET/CT, og kan PET/MR benyttes ved kreftdiagnostikk av barn og unge?”

Vi har laget forskningsspørsmål som en del av oppgaven. Vi valgte denne metoden for å være sikre at vi inkluderer tilstrekkelig informasjon i oppgaven for å besvare problemstillingen.

- Hvordan gjennomføres en kreftdiagnostisk undersøkelse av barn og unge på PET/CT i dag? Vi legger frem det grunnleggende ved dette for å ha en oversikt, med tanke på å vite likheter og ulikheter med PET/MR og PET/CT undersøkelser. Dette forskningsspørsmålet blir også besvart i teorikapittelet.

- Hvilke utfordringer må håndteres, rundt de tekniske aspektene, for at PET/MR kan bli et klinisk alternativ ved nuklearmedisin? Siden PET/MR ikke finnes tilgjengelig for pasienter i dag synes vi det kan være interessant å vite akkurat hvorfor. Punktet vil bli besvart i konklusjonen.
1.1 Bakgrunnen for valg av problemstilling og avgrensninger

På skolen har vi lært om PET/CT og syntes det var interessant at man kunne kombinere to modaliteter og resultatet som kom av det. Vi så gjennom radiograffaglige tidsskrifter på internett etter et tema til oppgaven innen nye diagnostiske bildeteknikker. PET/MR dukket opp og fenget oss fra første øyeblikk.

1.2 Radiograffaglig relevans

Vi mener at dette temaet er radiograffaglig relevant da radiografer innen nukleærmedisin er en økende trend. På nukleærmedisinsk avdeling finner man PET/CT, hvor kanskje også PET/MR hadde blitt tatt i bruk om den skulle bli klinisk relevant innen bildediagnostikk.

Det er viktig å holde seg oppdatert på fagområdet innen radiologisk bildeteknologi, og det er interessant for oss fremtidige radiografer å følge med på nye undersøkelsesmetoder.

Det å slå sammen to modaliteter til en undersøkelse blir mer vanlig, og kanskje PET/MR blir en ny maskin som radiografer kan jobbe med i fremtiden?
1.3 Begreper og forkortelser

Vi har laget en tabell med oversikt over begreper og forkortelser som blir brukt i oppgaven.

<table>
<thead>
<tr>
<th>Forkortelse/Begrep</th>
<th>Forklaring</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁸F-FDG</td>
<td>Fluordeoksylglucose. Radiofarmaka - sukker bundet til et radioaktivt isotop. Brukes ved undersøkelsene PET, PET/CT og PET/MR.</td>
<td>Kristiansen 2013</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion Weighted Imaging, er en MR teknikk som avbilder den tilfeldige bevegelsen til vannprotonene.</td>
<td>Chavhan 2011</td>
</tr>
<tr>
<td>SUV</td>
<td>Standardized Uptake Value. Et brukt som en kalkulering på konsentrasjonen av radioaktiviteten i vevet ved PET.</td>
<td>Olkonen 2014</td>
</tr>
<tr>
<td>AC</td>
<td>Attenuasjonskorreksjon, er en korreksjon av fotoner som ikke når frem til detektor fra vevet.</td>
<td>Skretting 2009</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication Systems. Digitalt system ved radiologiske avdelinger hvor man kan se på og sende bilder mellom radiograf og radiolog.</td>
<td>Dreyer mfl. 2006</td>
</tr>
<tr>
<td>Gating</td>
<td>Det er en teknikk som konverterer pustingen til et elektronisk signal, slik at man får data av utpustingen.</td>
<td>mediLexicon 2006</td>
</tr>
<tr>
<td>keV</td>
<td>Kilo Elektron Volt. Elektronvolt er energien et elektron får når den blir sendt gjennom et potensiale med én volt.</td>
<td>National Aeronautics And Space Administration 2001</td>
</tr>
</tbody>
</table>

2.0 Teori

Aktuell teori blir presentert som grunnlag for oppgaven. Vi vil forklare kort om de ulike modalitetene, kort om fysikk og preparat ved PET/CT og PET/MR.

2.1 Utredning av kreft hos barn

Her vil vi ta for oss de modalitetene som er aktuelle for oppgaven, både grunnleggende teknisk, og hvordan en undersøkelse på barn ved kreftutredning foregår.

2.1.1 PET/CT som undersøkelsesmetode

Før en undersøkelse med PET/CT bør barn faste i fire til seks timer, men skal drikke vann. Pasientene blir rådet til å ikke gjennomføre hard trening dagen før undersøkelsen med tanke på å unngå forhøyet opptak av FDG i musklene (Stauss m.fl. 2008). Dette radioaktive stoffet injisereres i kroppen til pasienten en time i forkant av undersøkelsen. \(^{18}\)F-FDG blir tatt opp og fordeler seg rundt i kroppen, og dette tar cirka 45 minutter (Helse Bergen 2010). Noen sykehus vil vente i opptil to timer etter injeksjonen. Under bildetakningen kan bli pasienten bli immobilisert for å unngå bevegelse, og sedering kan bli brukt (Stauss m.fl. 2008). Legene som studerer bildene fra PET/CT kan identifisere om det er unormal aktivitet i kroppen og dermed kan de forbedre diagnostiseringen til kreftpasienter (Helse Bergen 2010).
2.1.2 MR som undersøkelsesmetode

2.1.3 PET/MR som potensiell undersøkelsesmetode

Pasientforberedelsene ved en PET/MR er hovedsakelig de same som for PET eller PET/CT, men de vil ta lengre tid. Ved bruk av 18F-FDG inkluderer dette fasting, glukosekontroll, hydriering og at pasientene skal hvile mellom injisering av FDG og bildetakning for å minske opptak i muskler. I tilfeller med klaustrofobiske pasienter kan det være aktuelt med mild sedering, noe man ser oftere ved PET/MR enn ved PET/CT på grunn av at trommelen har mindre diameter på MR. Mindre gantrystørrelse og mulig nærvær av MR-spoler gir begrenset med rom (Kjaer m.fl. 2013). Man må også ta hensyn til potensielle kontraindikasjoner som ved en MR undersøkelse, for eksempel ved ikke MR-kompatibel pacemaker, kunstige hjerteklaffer og graviditet (Martinez-Moller m.fl. 2012). En sammenligning viser at kreftpasienter er generelt plassert med armene opp i PET/CT, mens de holder armene ned under en PET/MR. Dette gir lengre undersøkelsetid. (Kjaer m.fl. 2013).
2.2 Radiofarmaka til bruk ved PET/CT og PET/MR

Det finnes en rekke indikasjoner innen onkologi der ulike radiofarmaka foretrekkes, men vi har kun tatt for oss 18F-FDG.

95% av undersøkelsene ved PET/CT bruker 18F-FDG (Fanti m.fl. 2010). 18F-FDG settes i kroppen for å se hvordan sukkeret fordeles. Stoffet inneholder sukker, og kreftceller har høyere sukkerforbrenning enn normalt vev. På grunn av at 18F-FDG er radioaktiv vil stråling emitteres fra pasienten og detekteres ved hjelp av PET i form av bilder (Kristiansen 2013).

18F-FDG PET gir en stråledose på 7-15 milliSievert (mSv), avhengig av injeksjonsdose (von Schulthess og Schlemmer 2009). Det finnes ingen bivirkninger knyttet til 18F-FDG (Norsk legemiddelhåndtering 2013). Figur 1 under illustrerer hvordan 18F-FDG fungerer.
2.3 Hva kjennetegner PET/MR?

Her går vi gjennom PET-detektors oppbygning ved PET/MR. Ulike designløsninger på PET/MR maskinen er også beskrevet.

2.3.1 PET-detektor ved fullt integrert PET/MR

En PET-detektor har funksjonen med å plukke opp det radioaktive stoffet som blir sendt fra pasienten og å lage bilder av informasjonen som detekteres. Ved en PET eller PET/CT undersøkelse vil denne detektoren være bygd opp av blant annet scintillasjonskrystaller. (Fatemi-Ardekani m.fl. 2009)

Hovedforskjellen mellom en vanlig PET-detektor og en PET/MR-detektor er at den sistnevnte er MR kompatibel. Den benytter seg av silikon fotomultiplikatorer (SiPM) bygd opp av avalanche fotodioder (APD), mens en vanlig PET-detektor ikke er MR kompatibel (Rakheja 2014). Nedenfor viser figur 2 hvordan en PET-detektor ved PET/CT er bygd opp og funskjonen til detektoren beskrives.
2.3.2 Typer PET/MR

Hittil er det tre produsenter som har laget PET/MR-maskiner, og de har løst det på tre ulike måter. Den ene løsningen går ut på å ha to separate maskinsystemer som kan brukes separat for PET eller MR. Dette fører til at pasienten først skal gjennom den ene maskinen for så å bli flyttet til den neste (Jadvar 2014).

Sekvensiell PET/MR

![Sekvensiell PET/MR](image)

Figur 3: Sekvensiell PET/MR. Laget av Olsen C.H. 2014

Den siste produsenten har designet en fullt integrert maskin hvor PET og MR har blitt én maskin. PET detektoren er da plassert inne i hovedmagneten. På denne måten kan dataene sammels inn samtidig. Bildene blir gode på den strukturelle og funksjonelle måten (Jadvar 2014). Eksempler på design med fullt integrerte PET/MR maskiner er vist i kapittel 2.3.3.

2.3.3 Ulike designløsninger på fullt integrert PET/MR

Side ved side:

PET side ved side

![PET side ved side](image)

Figur 4: PET side ved side. Laget av Olsen C.H. 2014

PET satt inn i MR:
PET-komponenten er plassert nedenfor og inntil magneten. Her er field of view (FOV) lik for PET og MR og de kan dermed registrere data samtidig. PET-delen er portabel og kan tas ut om ønskelig. Denne versjonen gir mindre plass til pasienten.

Innsetting av PET i MR

![Innsetting av PET i MR](image)

Figur 5: Innsetting av PET i MR. Laget av Olsen C.H. 2014
Fullt integrert skanner:

Figur 6: Fullt integrert PET/MR. Laget av Olsen C.H. 2014
3.0 Metode

Vi har valgt å gjøre et kvalitativt litteraturstudie i bacheloroppgaven vår. Dette er en metode som kan egne seg godt, da vi mener intervjus, spørreundersøkelse eller kvantifisering ikke ville besvart oppgaven i samme grad. Dette er på grunn av at det er begrenset med kunnskap på dette temaet fra før (De nasjonale forskningsetiske komiteene 2013). PET/MR er en relativt ny teknikk og vi har verken tilgang på en slik maskin eller personell som har erfaring med den. Dette var også et grunnlag for valg av litteraturstudie som metode. Samt med vår begrensede kompetanse som studenter tilsier at vi ikke kunne gjort egen forskning på dette området.

For å finne informasjon om PET/MR av egen erfaring, reiste vi til ECR i Østerrike og deltok på flere forelesninger om temaet. I ettertid har vi forsøkt å finne publikasjoner av foreleserne og kontaktet de for å få data, men dette lot seg ikke gjøre. Vi får derfor ikke inkludert noe av de vi lærte på ECR i oppgaven. PET/MR bilder var også vanskelig å få med på grunn av opphavsrettigheter.

3.1 Databasesøk

Artiklene som er brukt i oppgaven ble hentet fra ulike databaser. Vi begynte med å søke gjennom alle databasene på hig.no merket med “helse”, og gjennomførte eksploratoriske søk innen PET/MR. Dette gjorde vi fordi PET/MR er en ny teknikk, og vi tok dermed utgangspunkt i at det ikke ville være enkelt å finne artikler som var spesifikke for vår problemstilling. De databasene uten vellykkede søk ble lukket ut. Resten ble med i neste runde for strukturerede søk etter de søkeordene vi hadde valgt ut. Gjennom hele oppgaveprosessen ble det kjørt kontinuerlige søk etter eventuelle nye artikler innen området. Dette var for å få med den nyeste av forskningen innen PET/MR.
3.1.1 Begrunnelse av søkeord

3.1.2 Inklusjons- og eksklusjonskriterier

Vi har valgt å begrense søket til innenfor de siste fem årene for å mest mulig ny forskning på et nytt fagområde. Der det var mulig begrenset vi til “abstract, title, keywords” for å få mer eksakte søk, og valgte “alle typer forskning” for å få med mest mulig informasjon. Vi brukte kvalitative studier fordi vi mener disse ga mest relevant informasjon til oppgaven vår. Figur 6 under viser fremgangsmåten ved utvelgelse av artikler.
3.2 Kvalitetssikring av artikler

For å kontrollere innholdet på de utvalgte artiklene ble de kvalitetsikret ved hjelp av en sjekkliste fra nasjonalt kunnskapscenter for helsetjenesten (2006). Her ble det blant annet vektlagt om formålet ved studien kom godt frem, om den hadde relevanse for vår oppgave og om utvalget og datainnsamlingen var godt beskrevet. Noen av kildene til forfatterene av artiklene ble også kontrollert for å sikre kvaliteten (Kunnskapscenteret 2014).
3.3 Andre kilder

Bøkene vi har valgt å bruke i teoridelen til denne oppgaven er hentet fra biblioteket ved Høgskolen i Gjøvik og er ment for helsepersonell. Internettsidene vi har brukt er hovedsaklig fra større organisasjoner som for eksempel barnekreftforeningen. På grunnlag av dette mener vi litteraturen brukt i oppgaven er hentet fra pålitelige og seriøse kilder.

3.4 Analyse av artikler

Det er lagt mest vekt på fordeler og ulemper, og vi har brukt kun disse to fargekodene under merkingen av artiklene. Resultatene blir tatt ut og fordelt i fire hovedkategorier; PET/MR generelt, PET/CT, barn og unge ved PET/MR og det som sto generelt om kreftutredning ved PET/MR. Hver av disse igjen har underkategoriene fordeler og ulemper. På denne måten blir det lettere å få oversikt. Vi fant fellesnevnere for flere av resultatene og kunne kategorisere de sammen slik at det ga mening i et mer helhetlig perspektiv.
4.0 Resultater

Her legger vi frem hovedfunnene fra artiklene. Vi har valgt å dele inn hovedpunktene i fordeler og ulemper.

4.1 Generelle fordeler ved PET/MR

I dette kapittelet tar vi for oss funn som talte positivt for PET/MR.

4.1.1 PET/MR indikasjoner

Antall installerte PET/MR-systemer er raskt økende. PET/MR kombinerer to bildemodaliteter sammen med isotoper og avansert anatomisk og funksjonell avbildning. Denne unike kombinasjonen er egnet til å bedre vevskarakterisering, diagnostisering, staging og skreddersy behandling. Det er også å anta at responsovervåking i kreft kan øke dramatisk ved hjelp av funksjonell informasjon fra både PET og MR (Kjaer m.fl. 2013).

En fullt integrert PET/MR vil ha noen fordeler over PET/CT, ved at MR har bedre bløtvevskontrast og er bedre ved visualisering av bløtvevsstrukturer og beinmarg enn på CT (von Schulthess og Schlemmer 2009). Herzog m.fl. (2010) mener også at sammenlignet med PET/CT er det forventet at MR bildene vil gi bedre bløtvevskontrast og arbeidsflyt vil bli sterkt forbedret når man sammenligner en PET/CT med etterfølgende MR (Herzog m.fl. 2010). Den diagnostiske nøyaktigheten til PET/MR er 93%, mens PET/CT ligger på 88,4% (Yankeelov m.fl. 2012). Martinez-Moller m.fl. (2012) mener at det i dag er det helt ukjent om PET/MR vil gi diagnostisk nøyaktighet, hvilken påvirkning det vil ha for bruken generelt og hvilket utfall dette vil ha på pasienter sammenlignet med PET/CT (Martinez-Moller m.fl. 2012).

4.1.2 Tekniske aspekter ved PET/MR

En hybrid PET/MR maskin muliggjør innsamling av bildedata samtidig, noe som optimaliserer sammensetting av anatomiske og fysiologiske data ved bruk av MR attenuasjons korraksjon (MRAC) (Rakheja m.fl. 2014). Dataen på PET/CT blir ikke samlet inn samtidig, og dette kan føre til feil i det standarliserte opptaket (SUV). PET/MR reduserer dette problemet da dataene blir samlet inn samtidig (Yankeelov m.fl. 2012). MRAC er ikke optimalisert på enkelte områder i kroppen, spesielt på bein og lunge, og blir her underestimert eller forstyrret (Partovi m.fl. 2014).
PET komponenten hos PET/MR oppfører seg på samme måte som i en PET/CT. Det har ikke vist seg noen signifikante forstyrrelser ved PET på magnetfeltet eller RF (Herzog 2012). Muligheten for bevegelsesartefakter øker ved gjennomføring av to undersøkelser, noe som igjen tar lengre tid da man må ta bilder opp igjen. Bevegelsen av pasientbordet og PET-detektoren kan skape artefakter på PET/CT. PET/MR løser dette problemet på grunn av at bildeinformasjonen samles inn samtidig (Yankeelov m.fl. 2012).

4.1.3 Stråledose

Den effektive dosen av en PET/MR skan er bare rundt 20% av det en PET/CT undersøkelse vil gi. Det er dermed sannsynlig at stråledosen fra PET/MR skannen er redusert med 80% i forhold til en PET/CT. Den effektive dosen på PET/MR er på 4.6 mSv og tilsvarer to år med naturlig bakgrunnsstråling (Hirsch m.fl. 2013).

4.2 Generelle ulemper ved PET/MR

Lanseringen av en hybrid PET/MR maskin er svært nylig. På grunn av dette er det inntil videre begrensede data på kliniske indikasjoner for denne modaliteten (Kjaer m.fl. 2013). Videre i dette kapittelet vil vi ta for oss ulike utfordringer, blant annet tekniske, samfunnsøkonomiske og tidsmessige aspekter ved en PET/MR.
4.2.1 Attenuasjonskorreksjon

En av de største utfordringene ved PET/MR er den pågående utviklingen av AC ved bildene, for å få til nøyaktig rekonstruksjon av bilder og kalkuleringen av SUV (Yankeelov 2012). Ved skan av hjerne kan AC løse gjerne tilstrekkelig nok, men er ikke godt nok egnet til helkropp (Herzog 2012).

CT kan lett korrigere pasientattenuasjon med PET. MR gir ikke noen fotonattenuasjon, men er basert på voxelplusservering av MR-signalets intensiteter med verdier for fotonattenuasjon (von Schulthess og Schlemmer 2009).

De typiske begrensningene som finnes ved bruk av MR finnes også ved bruk av PET/MR. Eksempelvis kan signalets inhomogenitet fremkomme i overlappede regioner på MR. (Hirsch 2013). En utfordring med AC i en PET/MR er å kompensere for RF, som har vist seg å påvirke den nøyaktigheten til den PET emitterte dataen (Yankeelov 2012).

MRAC av anatomiske områder i eller inntil bein blir undervurdert. Feil i segmentering av lungen kan forekomme, som igjen blir resultert i uriktig plassering av AC (Partovi m.fl. 2014). FOV av MR er mindre enn PET, noe som fører til avkorting av armene i bildene. Dette er en faktor man må ta hensyn til ved MRAC (Herzog 2012).

Med tanke på å erstatte PET/CT med PET/MR er PET/CT godt etablert i både onkologisk diagnostikk og i stråleterapiplanlegging. Disse indikasjonene kan bli noe utfordrende i forhold til MRAC, spesielt ved stråleterapiplanlegging, da faren er stor for miskalkuleringer (Herzog 2012).

4.2.2 Bildetydning av PET/MR-bilder

Både på PET/CT må man på PET/MR ha spesialister til å tolke bildene på de ulike områdene. Eksempler på dette er nevrologi og pediatrisk radiologi ved noen indikasjoner (Martinez-Moller m.fl. 2012). Bildene laget av denne maskinen burde bli tolket av leger med erfaring fra PET/CT og MR bilder. Dette kan bli gjennomført ved å samle til dikteringssesjoner mellom
erfarne PET/CT nukleærmedisinere og radiologer sammen med spesialister av MR bildetolkning. Det kan allikevel være mulig å gjennomføre dikteringen med én enkelt person til å se på bildene dersom vedkommende har erfaring med både PET/CT og MR (Rakheja m.fl. 2014).

Økende grad av multimodaliteter vil gi en økende forespørsel på spesialister som kan tolke bildene. På mange steder i dag vil en spesialist innen nukleærmedisin og en radiolog tolke hver sin del av bildene og leser de av separat uten å diskutere sammen (von Schulthess og Schlemmer 2009).

4.2.3 Samfunnsøkonomiske aspekter

4.2.4 Tidsmessige aspekter

Hvis man sammenligner tidsmessige begrensinger ved PET/CT og PET/MR, så er det klart at en fullkroppundersøkelse ved PET/MR vil ta lengre tid (Herzog 2012). Hirsch m.fl. (2013) støtter opp under denne påstanden, og legger til at dette er hovedbegrensingen for PET/MR.

4.2.5 PET-detektor på PET/MR

Generelt sett er det utfordringer ved å sette sammen et PET/MR system. For det første er det vanskeligheter med å optimalisere størrelsen til PET-detektorene slik at de får plass i en MR maskin (Fatemi-Ardekani m.fl. 2009). En annen faktor er når MR og PET-komponentene er kommer nærmere, så kan de forstyrre hverandre (Herzog m.fl. 2010).

En grunn til å ikke bytte ut CT komponenten med en MR er at PET-komponenten ikke er MR-kompatibel i utgangspunktet. Hovedproblemet her er PM-røret, da den har klassisk scintillasjonsdetektor som er sensitiv for blant annet magnetfelt (Herzog 2012). Designet på detektorene må da være laget på en måte som gjør at de ikke blir påvirket av magnetfeltet, og at detektoren i seg selv ikke forstyrer magnetfeltet og RF-signalet. For å realisere en fullt integrert PET/MR er det å anta at også noe av bildeoppløsningen må ofres (Fatemi-Ardekani m.fl. 2009).

Detektordesignet må forbedres for videre utvikling av PET/MR maskinen hevder Herzog m.fl. (2010). Selv om PET/MR har tekniske utfordringer med kompatibilitet mellom PET-komponenter og magnetfeltet, er flere systemer av ulik utforming kommersielt tilgjengelig i dag (Partovi m.fl. 2014).

4.2.6 Andre utfordringer ved PET/MR

4.3 PET/CT

Her legger vi frem funnene som omhandlet fordeler og ulemper ved PET/CT

4.3.1 Fordeler ved PET/CT

Suxessen i å kombinere en PET og en CT har vist seg å ha en klinisk verdi i multimodalitets bildeteknologi, som gir både anatomisk og molekylær informasjon i én undersøkelse (Martinez-Moller m.fl. 2012). PET/CT er god på de fleste indikasjoner. De mest viktige kliniske applikasjonene dekker områder hvor MR ikke har erstattet CT. Et eksempel på dette er onkologiske undersøkelser (von Schulthess og Schlemmer 2009).

I krefutredning hos voksne foregår det en overgang fra PET til PET/CT der PET/CT ser ut til å bli den aksepterte internasjonale standarden, også i pediatrisk onkologi (Stauss m.fl. 2008). Det finnes mye data og klinisk erfaring med både PET og CT. PET/CT er en rask undersøkelse, og CT-AC gir grunnlag for PET dataen (von Schulthess og Schlemmer 2009). En FDG-PET/CT undersøkelse av kreftpasienter kan gi en undersøkelsesstedid på bare 15-30min. Dette er kost-effektivt med tanke på at isotopet har en halveringstid på cirka to timer, som gjør at man kan bruke mindre av stoffet (Herzog 2012).

Eksempelvis vil en Lunge-CT i nærmeste fremtid beholde sin plass som supplementsundersøkelse. CT lunger er en standardprotokoll ved de fleste paediatriske kreftpasienter. Kun klare bevis fra PET/MR vil kunne føre til protokollendring i dette tilfellet (Hirsch m.fl. 2013). En diagnostisk CT vil være mer sensitiv på lesjoner i lungene enn MR og PET, både hver for seg og sammen (Stauss m.fl. 2008).
4.3.2 Ulemper ved PET/CT

Antall PET/CT maskiner er økende. Med tanke på dette, har den ekstra stråledosen for barn på grunn av CT, blitt et bekymringsverdig problem. Generelt er det et valg mellom bildekvalitet på CT og stråledose, derfor vil ønsket kvalitet på bildene bestemme stråledosen. Som en konsekvens av dette må det bli bestemt for hver enkelt institusjon og individuelt for hver pasient, hvilken protokoll som skal kjøres (Stauss m.fl. 2008).

En ulempe ved CT er begrenset bløtvevskontrast og den betydelige stråledosen pasienten utsettes for (Fatemi-Ardekani m.fl. 2009). Svilster med behov for repeterende oppfølgingsundersøkelser ved bruk av PET/CT kan føre til en betydelig strålebelastning. En nylig publisert studie i 2014 av pediatriske pasienter viser en trippel risiko for leukemi etter en absorbert CT dose på 50 milligray (mGy). Risikoen øker også trippelt for hjernesvulster etter en absorbert CT dose på 60 mGy. Denne studien understreket behovet for å redusere stråledosen i denne sårbare befolkningen til lavest mulig, og for å etablere alternative diagnostiske prosedyrer uten ioniserende stråling (Partovi m.fl. 2014). PET/CT er ikke foretrukket fremfor PET på grunn av tilleggsdosen. En diagnostisk CT skal ikke generelt bli valgt som standardundersøkelse, men blir brukt hvis det er indikasjoner for det. Selv bruk av lavdose CT må også bli brukt minst mulig på yngre pasienter (Stauss m.fl. 2008).

For å optimalisere posisjonen til et barn på PET/CT og for å unngå artefakter, vil alle barn bli immobilisert. Bruk av sedering må bli valgt ut ifra individet og en erfaren lege, ideelt en pediatric anesthesiologe. For barn under to år kan sedering unngås i mange tilfeller hvis bildetakningen blir gjort i barnets normale sovertyme (Stauss m.fl. 2008).

En annen ulempe ved PET/CT er at når dataene ikke blir samlet inn samtidig kan det bli en misregistrering av PET og CT data, og artefakter som følge av pasientbevegelse mellom de to maskinene. Det kan også komme som følge av pustebevegelse i forbindelse med den CT-baserte AC. Så mye som 10% feil har blitt rapportert i SUV (Yankeelov m.fl. 2012). Det kunne vært mulig å samlet inn data samtidig fra PET og CT, men dette er ekstremt vanskelig på grunn av detektor-teknologien som kreves. Teknologien krever datainnsamling av både høy og lav energi røntgenstråling fra CT og annihilasjons gammastråling fra PET (Herzog m.fl. 2010).
4.4 Barn ved PET/MR

Kjaer m.fl. (2013) har gjennomført sammenligninger av PET/CT og PET/MR i pediatriske kreftpasienter ved deres institusjon, og mener at det ennå er for tidlig å konkludere på den diagnostiske verdien av PET/MR. Modaliteten virker veldig lovende, og vil absolutt bli en integrert del av pediatrisk diagnostikk. Dersom PET/MR viser seg å prestere så vel som PET/CT i pediatriske pasienter er det ingen tvil om at det er kliniske indikasjoner for at PET/MR vil bli en mulig metode i fremtiden for å øke livskvaliteten for overlevende barn med kreft (Kjaer m.fl. 2013).

Den kliniske fordelen for bruk av PET/MR hos barn med onkologiske sykdommer er at verdien av MR komponenten er bedre i forhold til en konvensjonell CT. MR identifiserer anatomien, perfusjonen og diffusjonen av en tumor. Bløtvevskontrastens oppløsning på MR er klart bedre enn CT. Disse fordelene viser at barn med krebssykdommer kombinert med PET/MR inkludert helkropps diffusjonsvektning, demonstrerer en ny kvalitet i bilde og funksjonsdiagnostikk (Hirsch m.fl. 2013).

4.4.1 Barn og stråling

Det har blitt mer fokus på deteministiske skader som følge av eksponering med ioniserende stråling. Ved medisinske bildeteknikker prøver man så godt man kan å holde dosen lavest mulig. En PET/CT vil gi cirka 25mSv i stråledose, hvor CT komponenten står for vel halve dosen. Den lave dosen som kommer fra PET/MR er en avgjørende fordel i den fremtidige utviklingen i onkologisk og nevrologisk bruk, spesielt hos pediatriske pasienter (Rakheja m.fl. 2014).

4.4.2 Ulemper ved bruk av PET/MR til kreftutredning av barn

Det er ikke godt dokumentert om PET/MR er bedre enn PET/CT ved staging og restaging av barn, ved bruk av samme isotop (Kjaer et al. 2013). Et kjent problem er at angst øker 18F-FDG-opptaket i brunt fett, og blir forbundet med falske-positive svar på ca. 2-4%. Falske-negative svar hvor det er opptak i det brune fettet fører til at lesjonene kan bli skjult bak fetten. Dette problemet gjelder spesielt ved barn da de lettere blir stressed, strammer musklene, og gråter mer. Disse faktorene øker FDG opptaket i musklene (Yankeelov et al. 2012). Hirsch (2013) har skrevet i sine studier at barn under seks år trenger anestesi ved denne undersøkelsen. Mer forskning er nødvendig før PET/MR kan brukes i rutine for pediatrisk onkologi (Kjaer et al. 2013).

4.5 Generell kreftutredning ved PET/MR

I dette kapittelet gjennomgår vi indikasjoner for kreftutredning ved en PET/MR

4.5.1 Generelle indikasjoner

Den potensielle bruken av å kombinere PET og MR i én maskin åpner for spennende muligheter når det gjelder overvåkning av terapirespons og skreddersydde terapi ved strålebehandling. Mange kreftformer er av interesse å undersøke ved vurdering av behandlingsrespons med PET/MR. Kjaer et al. (2013) tror også at responsovervåking i kreft
kan øke dramatisk ved hjelp av funksjonell informasjon fra både PET og MR. PET/MR kan være et effektivt verktøy for prekirurgisk terapiplanlegging og svulst avgrensing ved bruk av 18F-FDG, og kan i tillegg være en god metode for å screene etter metastaser (Partovi m.fl. 2014).

4.5.2 Spesifikke indikasjoner

Hirch m.fl. (2013) hevder at barn med systemiske maligniteter kan ha nytte av en PET/MR. Rakheja m.fl. (2014) har en hypotese om at PET/MR kan være sterk på områder der PET/CT har begrensninger på grunn av at den anatomiske oppløsningen ikke er optimal. Eksempler på dette er som nevnt hode og nakkekret, men også tyreoidakret, lungekret med brystvegg invasjon, leverlesjoner, gynekologiske maligniteter og anorektal kret. Tidlig forskning viser også at PET/MR kan være til fordel ved lungekret staging og at modaliteten tilbyr overlegen bløtvevskarakterisering av svulster i abdomen og pelvis (Rakheja m.fl. 2014).

Basert på erfaringen til Partovi m.fl. (2014) kan også endetarmskret bli en indikasjon på PET/MR. Et annet fremtidig bruksområde av PET/MR kan bli funnet i evalueringen av behandlingsrespons i bløtvevssarkomer. MR har vist god sensitivitet for deteksjon av leverlesjoner, spesielt når de er mindre enn én centimeter i størrelse. PET/MR kan bidra i den omfattende stagingen og gi en bedre vurdering av leveren. PET/MR har allerede vist seg å være nyttig i enkelte tilfeller ved etterbehandling av bukspyttkjertelkret, når betydelige forandringer er til stede etter kirurgi, og det er mistanke om residiv (Partovi m.fl. 2014).
4.5.3 TNM og PET/MR

På grunn av overlegen bløtvevs- og kontrastoppløsning er MR bedre enn CT med T-oppsetningen ved TNM-klassifisering. MR har sine begrensninger med N-klassifiseringen. Men en PET/MRI kan ytterligere øke metabolsk informasjon på grunn av PET-komponentens nøyaktigheten av n-klassifiseringen. Ved hyppige fjernmetastaser i kroppen, har en tilnærming av hybrid bildeteknologi en betydelig fordel ved staging av m-oppsetningen (Partovi m.fl. 2014).
5.0 Drøfting

I dette kapittelet diskuterer vi rundt de funnene vi fant i resultatene.

5.1 Drøfting rundt det tekniske og bløtvevskontrasten.

Her diskuterer vi de tekniske komponentene som er mest relevant for PET/MR og PET/CT, samt deres egenskaper rundt bløtvevskontrasten.

5.1.1 Attenuasjonskorreksjon

Som tidligere nevnt er AC en av de største utfordringene ved PET/MR, og er nødvendig for å få til en nøyaktig rekonstruksjon av bilder, og riktig kalkulering av SUV (Yankeelov m.fl. 2012). Det er mye omdiskutert i artiklene om AC enda er en utfordring eller ikke. Noen mener at problemene med AC er løst, mens andre mener det fremdeles er et stort problem. Utviklingen er rask med forbedringen av PET/MR-komponentene og for alt vi vet kan problemet være løst i skrivende stund.

5.1.2 Samregistrering av data

Dataene på PET/MR blir samlet inn samtidig (Yankeelov m.fl. 2012). Rakheja m.fl. (2014) skriver at PET/MR optimaliserer en sammenslåing av anatomiske og fysiologiske bildedata ved bruk av MRAC, noe som muligjør samregisteringen. Yankeelov m.fl. (2012) skriver at dataen på PET/CT ikke blir samlet inn samtidig, og dette kan også føre til feil i SUV. På bakgrunn av dette mener vi at PET/MR muligens kan tilby en løsning som matcher dataene bedre enn på PET/CT, og at dette kan resultere i mer nøyaktige bilder (Yankeelov m.fl. 2012).

Når bildedata blir hentet inn samtidig får man mer nøyaktig anatomisk og metabolsk informasjon. Dette gir mindre muligheter for bevegelsesartefakter, på grunn av fravær av bordbevegelsen man finner hos PET/CT (Rakheja mfl. 2014). Bevegelsesartefakter kan gi nok forstyrrelser i bildene til at de ikke kan brukes til diagnostikk. Vi mener at artefakter burde
minimeres der det er mulig. På grunn av samregistreringen til PET/MR kan denne metoden være et verktøy for å gi bedre resultat enn ved PET/CT når det gjelder minimering av artefakter.

5.1.3 PET-detektor

Fatemi-Ardekani m.fl. (2009) mener det er vanskelig å få plass til en PET i en MR i utgangspunktet. Vi ser oss enige i at det er utfordrende å plassere et komponent i en maskin der det er relativt liten plass fra før. Vi mener at designet må forbedres, men vi ser derimot ut fra artiklene at dette er noe som jobbes mye med. Patrovi m.fl (2014) skriver at flere PET/MR systemer i dag er kommersielt tilgjengelig, til tross for de tekniske utfordringene. Vi mener at dette viser at PET-komponentet har kommet så langt frem i utviklingen at en PET/MR maskin kan tas i bruk, men at det fremdeles er rom for forbedringer.

5.1.4 Bløtvevskontrast

Herzog m.fl. (2010) mener det er forventet at MR bildene vil gi en bedre bløtvevskontrast. På grunn av den gode bløtvevskontrasten er det bedre visualisering av bløtvevstrukturer og beinmarg enn ved CT (Von Schulthess og Slemmer 2009). Vi ser på dette som en sterk fordel med PET/MR, der det er indikasjoner for undersøkelser hvor det er nødvendig med en god
bløtvevskontrast. Vi mener at PET/CT fremdeles kan være bedre til enkelte indikasjoner hvor høy bløtvevskontrast ikke er nødvendig. PET/MR og PET/CT vil ha hver sine områder de er best på, men den overlegne bløtvevskontrasten på PET/MR vil kanskje i fremtiden ta over flere indikasjoner som i dag er på PET/CT.

5.2 Fordeler ved PET/MR som modalitet ved kreftutredning av barn til sammenligning med PET/CT?

Gjennom analysering av artiklene fant vi ut at PET/CT kan være god på de fleste indikasjoner, også ved onkologiske tilfeller. Det finnes også mye data og klinisk forskning ved både PET og CT (von Schulthess og Schlemmer 2009), som vi mener gjør PET/CT til en forutsigbar bildediagnostisk teknikk. Dette kan være en av grunnene til at PET/CT ser ut til å bli den aksepterte standarden for onkologiske undersøkelser ved barn (Stauss m.fl. 2008).

PET/MR kombinert med DWI, deriblant ved barn med kreftsykdommer, viser en ny kvalitet i bilde og funksjonsdiagnostikk. Dette er på grunn av at DWI får frem biologisk informasjon og grad av tumor (Hirsch m.fl. 2013). PET/MR har gitt lovende resultater for staging og restaging av barn med kreft (Partovi m.fl. 2014). Kjaer m.fl. (2013) mener derimot at det ikke godt dokumentert om PET/MR er bedre enn PET/CT på dette området. På grunn av uenighetene i artiklene kan vi ikke si med sikkerhet om PET/MR er god på dette området i forhold til PET/CT.

Indikasjoner for PET/MR er foreslått å være blant annet ved kreft i hode og nakke (Rakheja m.fl. 2014). Kjaer m.fl. (2013) mener at hjernetumor kan være en av de mest åpenbare

Det har blitt gjennomført sammenligninger av PET/CT og PET/MR for bruk i pediatrisk onkologi. Det ble gjort av Kjaer m.fl. (2013) som kom frem til at PET/MR virker veldig lovende, og at det i fremtiden kommer til å være en del av kretfagnostikken hos barn. Likevel mener de at det er for tidlig å konkludere på den diagnostiske verdien da det finnes begrenset med data på denne nye modaliteten (Kjaer m.fl. 2013). PET/CT var en gang nytt i den bildediagnostiske verden, og måtte gjennom mye forskning og utprøvning før den ble pålitelig nok til å bruke som klinisk standardundersøkelse. Det viste seg at PET/CT ga et bredere pasienttilbud innen kretfagnostikken, og vi mener PET/MR også kan vise seg å være en undersøkelsesteknikk av lik eller større verdi.

5.3 Stråledose til barn ved PET/CT og PET/MR

stråling enn nødvendig, derfor støtter vi bruken av PET/MR på barn fremfor PET/CT når det gjelder stråledosen.

Den effektive do森 på en PET/MR undersøkelse er på circa 4.6mSv og tilsvarer omtrentlig 2år med naturlig bakgrunnsstråling. PET/CT vil gi en dose på 25mSv (Hirsch m.fl. 2013). Dette viser klart at stråledosen er større ved PET/CT enn ved PET/MR. Ved undersøkelse av barn, på grunn av strålefølsomheten, mener vi de vil kunne ha nytte strålereduksjonen ved PET/MR. Hvis denne modaliteten gir gode diagnostiske bilder vil det ikke være noe i veien for å bruke denne metoden der det er indisert, ved pasientgrupper som er mer strålefølsomme. ALARA-prinsippet blir på denne måten overholdt.

5.4 Pasientvelferd ved barn

Ved undersøkelse som PET/CT og PET/MR av barn er det ofte nødvendig med sederer. En standar MR-undersøkelse vil ta lengre tid ved bruk av sederer (Nasjonal kompetansetjeneste for funksjonell MR 2013). Vi mener fordelene ved sederer er å minske bevegelser, og kan i enkelte tilfeller bedre pasientopplevelsen.

Så mye som 37% av pasienter på MR får angstrelaterte reaksjoner. 14% av disse vil kreve sederer (Yankeelov m.fl. 2012). Angstreaksjoner tror vi også vil være aktuelt ved PET/MR, da gantryet vil være på cirka samme størrelse som på MR. Yankeelov m.fl. (2012) formidler videre at dersom et barn får en angstrelatert reaksjon av undersøkelsen kan dette øke FDG-opptaket i brunt fett, som kan føre til falske-positive og falske-negative svar. Vi mener sederer kan være et godt supplement i slike tilfeller, for å minske opptaket i brunt fett.

En PET/CT undersøkelse av kreftpasienter kan ta 15-30 minutter (Herzog 2012). Rakheja
m.fl. 2014) sin protokoll for fullkroppsundersøkelse ved PET/MR tar fra 45 og opptil 70 minutter. En PET/MR undersøkelse av barn som er gjennomført innen 60 minutter vil gi all relevant informasjon for pediatriske kirurger og onkologer (Hirsch m.fl. 2012). Vi mener at hvis et yngre barn skal kunne ligge stille i lengre tid, er det stor mulighet for at sedering vil bli brukt på PET/MR. På PET/CT vil behovet for sedering være mindre på grunn av tidsbruken. For å posisjonere barn riktig og for å unngå artefakter på PET/CT kan barn bli immobilisert (Stauss m.fl. 2008). Dette mener vi er til for at barnet skal ligge helt rolig slik at bildekvaliteten blir best mulig.

Et aspekt vi mener er viktig å diskutere, er om barnet skal bli sedert før injiseringen av 18F-FDG. Dette vil spille en stor rolle når det gjelder dose til personalet. Ingen av artiklene har nevnt noe om denne faktoren. Om barnet må sederes før 18F-FDG injiseringen vil dette være en større risiko for barnet siden det må være sedert over lengre tid. Blir barnet sedert etter 18F-FDG, vil det kunne gi en større stråledose til personalet, da barnet vil være strålekilden ved denne undersøkelsen. Sedering ved vanlig MR av barn vil kreve tilstedeværelse av anestesipersonell med tilhørende utstyr (Nasjonal kompetansetjeneste for funksjonell MR 2013). Dette vil sannsynligvis også gjelde PET/MR. Vi ser på denne faktoren som både en tidskrevende og økonomisk belastning i forhold til tilfeller som ikke krever sedering.

5.5 Samfunnsøkonomiske aspekter

Spesialister må til for å kunne tolke bilder ved noen indikasjoner på PET/CT, noe som også vil gjelde PET/MR (Martinez-Moller m.fl. 2012). Rakheja m.fl. (2014) mener bildene på PET/MR burde bli tolket av leger med erfaring innen både PET/CT og MR. Dette kan løses ved et samarbeid mellom PET/CT nukleærmedisinere, radiologer og spesialister på tolkning
av MR-bilder. Det skal også være mulig at én enkelt person tolker bildene hvis personen har erfaring innen både PET/CT og MR. Vi mener det kan være en økonomisk faktor når det gjelder opplæring til å tyde bildene, siden det krever mer kompetanse av legene.

5.6 Metodekritikk

Det kan være at de ulike artiklene brukt i oppgaven har gått frem på forskjellige måter for å få resultater sine, noe som kan ha ført til bias. (De nasjonale forskningsetiske komiteene 2010). På grunn av dette synes vi det var det vanskelig å få til en direkte sammenligning mellom maskinene. Da kan man få resultater som ikke samsvarer med virkeligheten (De nasjonale forskningsetiske komiteene 2010).

Bruk av litteraturstudie gjør det begrenset hvilke data vi har tilgjengelig. Det kan være data som ikke finnes (Holme og Solvang 1993), spesielt i vårt tilfelle på grunn av at dette er ny forskning. Det kan også være tilgjengelig data vi ikke finner ved våre begrensede søk.

5.6.1 Validitet

I vår oppgave var formålet å kartlegge det som er dokumentert av fordeler og ulemper ved PET/MR sammenlignet med PET/CT, og om PET/MR kan brukes i kreftdiagnostikk av barn og unge. Vi mener vi har gitt en kort oversikt over noen av fordelene og ulempe, men vi har ikke dekket alt om temaet. For å få mer konkret svar på oppgaven kunne vi ha skrenket inn problemstillingen. Det var også vanskelig å finne informasjon om PET/MR ved undersøkelser på barn. Derfor mener vi at oppgaven ikke er så spesifik som den kunne vært. Det var allikevel spennende å se på denne målgruppen ved en såpass ny bildeteknikk. Validiteten er dermed ikke helt sikker.
5.6.2 Reliabilitet

Man skal så langt det er mulig bruke primærkilder for å unngå feilfortolkninger (Farmen 2013). Vi har brukt en del sekundærkilder, og de fleste av artiklene er av denne type kilde. Feil kan ha blitt gjort på bakgrunn av dette, og vi burde ha funnet mer av primærkildene til forskningen.

Det engelske språket, spesielt på det tekniske i artiklene kan ha blitt tolket og oversatt feil av oss. Det var utfordringer ved å legge frem ny kunnskap da det kan være en fare for å gjenprodusere den feil. I forkant av denne oppgaven hadde vi allerede et positivt syn på PET/MR, det kan ha hatt en påvirkning.
6.0 Konklusjon

Et av forskningsspørsmålene gikk ut på å finne ut av hvilke tekniske utfordringer som hindrer PET/MR i å være et klinisk alternativ ved nukleærmedisin. Det viste seg at det var nødvendig å finne en ny metode for å korrigerer dampningsen, hvor løsningen ble MRAC. I resultatene fant vi ut at hovedproblemen rundt de tekniske aspektene er å optimalisere MRAC og kompatibiliteten mellom komponentene PET og MR. Utviklingen er underveis, men forbedringer trengs før PET/MR kan tas i klinisk bruk som alternativ ved nukleærmedisin.

Etter det vi har funnet ut fra artiklene er det mulig å gjennomføre PET/MR undersøkelser på barn med kreftdiagnoser. Resultatene ble gode på grunn av bløevskontratsen fra MR og muligheten til å kombinere DWI og funksjonsbilder med samregistrerte data. Det er å anta at noe av bildeoppløsningen må ofres for å optimalisere en velfungerende PET/MR. Denne modaliteten kan også være foretrukket fremfor PET/CT med tanke på stråledose på barn. Det er likevel noen utfordringer man må ta hensyn til, som omhandler blant annet tidsbruk og sederings. Det finnes områder der PET/CT vil være bedre enn PET/MR. Det trengs mer forskning på PET/MR, både generelt og ved bruk på barn. Det er for lite data for å kunne konkludere om denne diagnostikkmodellen kan bli like klinisk aktuell som en PET/CT. Likevel har vi en hypotese om at PET/MR vil kunne bli like aktuell som PET/CT, men at de vil være gode på hver sine indikasjoner, også på barn.
Litteraturhenvisning

Brustugun O. T. (2014) *Stadier ved lungekreft.* [online]. URL: http://www.oncolex.no/no/Lunge/Bakgrunn/Stadier (06.05.2014)

De nasjonale forskningsetiske komiteene (2010) *Bias.* [online]. URL: https://www.etikkom.no/FBIB/Temaer/Spesielle-problemomrader/Bias/ (06.05.2014)

Helsedirektoratet (2014) 2.4 Stråling ved radiologiske undersøkelser. [online]. URL: http://www.helsebiblioteket.no/retningslinjer/bildediagnostikk/generelt-om-bildediagnostikk/str%C3%A5ling (06.05.2014)

Kunnskapssenteret (2004) Sjekkliste for vurdering av artikler [online]. URL: http://www.kunnskapssenteret.no/verkt%C3%B8y/sjekklister-for-vurdering-av-forskningsartikler (02.05.2014)

Kristiansen H. (2013) Radioaktive atomer gir nye muligheter i kreftdiagnostikk. [online]. URL: http://blogg.uio.no/mn/kjemi/kjernekjemi/content/radioaktive-atomer-gir-nye-muligheter-i-kreftdiagnostikk (06.05.2014)

Norsk legemiddelhåndbok (2013) Positronemisjonstomografi (PET) [online]. URL: http://legemiddelhandboka.no/Terapi/27704?expand=1 (05.05.2014)

Skretting A. (2009) *Tekniske grunnlag for PET/CT, fysiske prinsipper, teknologi, bilde dannelse og molekyler avbildning*. [online]. URL: http://folk.uio.no/hjsmith/Modalitetskurs/Teknisk%20PET-CT%20Skretting%202009.pdf (06.05.2014)

Vedlegg 1

Søkedokumentasjon

<table>
<thead>
<tr>
<th>Søkeord</th>
<th>Database</th>
<th>Kombinasjoner</th>
<th>Antall treff</th>
<th>Utvalgt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PET/MRI</td>
<td>ScienceDirect</td>
<td>1 AND 2</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>2. Value</td>
<td></td>
<td>1 AND 2 AND 3</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>3. Benefits</td>
<td></td>
<td>1 AND 2 AND 3 AND 4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>4. Oncology</td>
<td></td>
<td>1 AND 2 AND 3 AND 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Solution</td>
<td></td>
<td>AND 5</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>6. MR/PET</td>
<td></td>
<td>6 AND 7</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>7. Development</td>
<td></td>
<td>6 AND 7 AND 8</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>8. Technique</td>
<td></td>
<td>6 AND 7 AND 8 AND 9</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>9. Oncology</td>
<td></td>
<td>6 AND 7 AND 8 AND 9 AND 10</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>10. Role</td>
<td></td>
<td>6 AND 7 AND 8 AND 9 AND 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Advantage</td>
<td></td>
<td>AND 10 AND 11</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>12. Comparison</td>
<td>PubMed</td>
<td>1 AND 13</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>13. PET/CT</td>
<td></td>
<td>1 AND 12 AND 13</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>14. Method</td>
<td></td>
<td>1 AND 14</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>15. Children</td>
<td></td>
<td>1 AND 14 AND 8</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>17. Radiation dosis</td>
<td></td>
<td>15 AND 16 AND 17 AND 18 AND 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. PET</td>
<td>Science Direct</td>
<td>15 AND 13</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>19. Tumor</td>
<td></td>
<td>15 AND 13 AND 19</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>21. Lymphoma</td>
<td></td>
<td>15 AND 13 AND 19 AND 20</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>22. MR</td>
<td></td>
<td>15 AND 13 AND 19 AND 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 2014</td>
<td>PubMed</td>
<td>1 AND 23</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>24. CT</td>
<td></td>
<td>1 AND 21</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>25. Features</td>
<td></td>
<td>22 AND 21 AND 24 AND 25</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>26. Diagnostic</td>
<td></td>
<td>22 AND 21 AND 24 AND 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Paediatric</td>
<td></td>
<td>22 AND 21 AND 24 AND 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Staging</td>
<td></td>
<td>15 AND 25</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>29. Restaging</td>
<td></td>
<td>1 AND 26 AND 2 AND 27</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>30. Integrated scanner</td>
<td>Proquest</td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>31. Hybrid</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Anatomically</td>
<td></td>
<td>AND 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Whole-body</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>34. Potential</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>35. Simultaneous</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Blended-modality</td>
<td></td>
<td>AND 4 AND 28 AND 29</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>37. Patients</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>38. Experiences</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>39. Clinical</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Applications</td>
<td></td>
<td>AND 34 AND 35</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>41. Oncologic</td>
<td></td>
<td>1 AND 26 AND 2 AND 27 AND 4</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 AND 34 AND 35 AND 33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 2

E-post 213 av 214

Fra: "Johansson, Bengt Erik" Ny kontakt
Til: Celine Hestvik Olsen
Tittel: SV: Hel!
Dato: 2014-05-14 08:08

Celine, Jane, Linn,

Jeg bekrefter at vi kan bruke bilder og figurer fra forelesningene til vår bacheloroppgave.

Hilsen
Bengt Erik

Fra: Celine Hestvik Olsen [mailto:celine.olsen@hih.no]
Sendt: 13. mai 2014 19:44
Til: Johansson, Bengt Erik
Eieren: Hel!

Vi lurer på om vi kunne få en bekreftelse fra deg at det er greit at vi bruker bilder fra forelesning din (positron emissions tomografi) i vår bacheloroppgave.

mvh
Celine, Jane og Linn