First records, rediscovery and compilation of deep-sea echinoderms in the middle and lower continental slope of the Mediterranean Sea

Ariadna Mecho 1, David S.M. Billett 2, Eva Ramírez-Llodra 3, Jacopo Aguzzi 1, Paul A. Tyler 4, Joan B. Company 1

1 Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain. E-mail: mecho@icm.csic.es
2 National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK.
3 Research Centre for Coast and Ocean, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
4 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK.

Summary: This study provides a compilation of all available information on deep-sea echinoderms from the middle and lower slopes of the Mediterranean Sea, with the aim of providing a unified source of information on the taxonomy of this group. Previous records of species are updated with new data obtained from 223 trawl hauls conducted in 11 cruises within the northwestern Mediterranean Sea between 800 m and 2845 m depth. Valid names, bathymetric ranges and geographic distributions are given for all species. The new data report, for the first time, the presence of the Atlantic echinoid Gracilechinus elegans (Düben and Koren, 1844) in the Mediterranean Sea. We also report the presence of the endemic holothurians Hedingia mediterranea (Bartolini Baldelli, 1914), dredged only once previously in 1914 in the Tyrrhenian Sea, and Penilpidia ludwigi (von Marenzeller, 1893), known previously only from three samples, two in the Aegean Sea and one in the Balearic Sea. Additionally, the deeper limits of the bathymetric distribution of four species have been expanded: the asteroid Ceramaster grenadensis (Perrier, 1881) to 2845 m; the echinoid Brissopsis lyrifera (Forbes, 1841) to 2250 m; and the holothurians Hedingia mediterranea and Holothuria (Panningothuria) forskali Delle Chiaje, 1823, to 1500 m and 850 m, respectively.

Keywords: deep-sea echinoderms; Mediterranean Sea; Gracilechinus elegans; submarine canyons; taxonomy; bathymetric range.

Resumen: Este estudio presenta una recopilación de toda la información disponible sobre los equinodermos de profundidad en el talud continental medio e inferior del mar Mediterráneo, con el fin de proporcionar una fuente de información unificada sobre la taxonomía de este grupo. Se han actualizado los registros anteriores mediante nuevos datos provenientes de 223 pescas de arrastre de 11 campañas oceanográficas realizadas en el noroeste Mediterráneo entre 800 y 2845 m de profundidad. Se ha actualizado el nombre de las especies, sus rangos batimétricos y sus distribuciones geográficas. Los nuevos datos presentan, por primera vez, la presencia del equinoide Atlántico Gracilechinus elegans (Düben and Koren, 1844) en el mar Mediterráneo. También se cita la presencia en el noroeste Mediterráneo de dos especies de holoturias endémicas del Mediterráneo, Hedingia mediterranea (Bartolini Baldelli, 1914), muestreada una única vez en 1914 en el mar Tirreno, y Penilpidia ludwigi (von Marenzeller, 1893), muestreada tres veces, dos en el mar Egeo y una en el mar Balear. Además se expanden los límites de distribución batimétrica para cuatro especies: elasteroid Ceramaster grenadensis (Perrier, 1881) hasta 2845 m; el equinoide Brissopsis lyrifera (Forbes, 1841) hasta los 2250 m; y las holoturias Hedingia mediterranea y Holothuria (Panningothuria) forskali Delle Chiaje, 1823, hasta los 1500 m y 850 m respectivamente.

Palabras clave: equinodermos de profundidad; mar Mediterráneo; Gracilechinus elegans; cañones submarinos; taxonomía; rango batimétrico.
INTRODUCTION

The deep Mediterranean Sea has a wide variety of geological and ecological settings. Their faunal composition and local biodiversity are largely unknown (Danovaro et al. 2010). The western Mediterranean deep basin is no exception. It has a complex assemblage of markedly different habitats (Sarda et al. 2004), including sedimentary slopes, submarine canyons and seamounts (Company et al. 2012). The specific geographical and bathymetrical distribution of bathyal and abyssal species (Carpine 1970, Parenzan 1970, Reyss 1971, Fredj 1974). However, most of this deep-sea fauna occurring deeper than 800 m in the Mediterranean started in the 19th century. Cruises carried out by the RN Washington (1881-1882) and SMS Pola (1890-1898) provided the first extensive descriptions of benthal and abyssal Mediterranean fauna (Marenzeller 1893, Bartolini Baldelli 1914), including many new species of non-crustacean invertebrates. From the late 1920s to the 1960s the number of deep-sea Mediterranean research cruises decreased, resulting in limited new information (Péres and Picard 1956a, Fredj 1974, Galil and Goren 1995, Danovaro et al. 2010, Tecchio et al. 2011a,b). The shallow Mediterranean marine fauna inhabiting the shelf and upper slope areas have been studied since ancient times. Consequently, they are relatively well known at many levels (taxonomic, ecological, and biological) (Riedl 1986, Bolam et al. 2002, Danovaro and Pusceddu 2007, Coll et al. 2010). Nevertheless, because of the difficulties in sampling the deep sea, the bathyal and abyssal fauna of the Mediterranean Sea remains poorly studied (Péres and Picard 1956a, Fredj 1974, Galil and Goren 1995, Danovaro et al. 2010, Tecchio et al. 2011a,b). The description of the benthic fauna occurring deeper than 800 m in the Mediterranean started in the 19th century. Cruises carried out by the RN Washington (1881-1882) and SMS Pola (1890-1898) provided the first extensive descriptions of benthal and abyssal Mediterranean fauna (Marenzeller 1893, Bartolini Baldelli 1914), including many new species of non-crustacean invertebrates. From the late 1920s to the 1960s the number of deep-sea Mediterranean research cruises decreased, resulting in limited new information (Péres and Picard 1956a,b, Péres 1958). Since the late 1970s improvements in sampling methods and equipment have allowed a second period of deep-sea scientific exploration and investigation below 1000 m depth, conducted by ships such as the Bambu, Mango, and Ruth Ann in Italian waters, the RV Jean Charcot in the Alboran Sea, and the RV Garcia del Cid in the Balearic Sea. Specimens collected by these expeditions have stimulated a number of publications and new records of species (Carpine 1970, Parenzan 1970, Reyss 1971, Fredj 1974). However, most of this deep-sea literature focuses on the dominant groups such as fishes and crustaceans, the commercial use of Mediterranean marine resources, and the management of these resources (Sarda et al. 1994, 2004, Moranta et al. 1998, Company et al. 2004, Aguzzi et al. 2009, Bahamon et al. 2009). Thus, both fish and crustaceans are well known taxonomically in comparison with other megafaunal groups, such as ascidians, sponges, echinoderms, sipunculans and echiurans (Monniot and Monniot 1975, Alvà 1987a, Uriz and Rosell 1990, Villanueva 1992, Pancucci-Papadopoulou et al. 1999, Quetglas et al. 2000).

In this context, Mediterranean Echinodermata from middle and lower slopes have been poorly studied, particularly in comparison with the Atlantic Ocean, where echinoderms are important in terms of abundance, biomass and ecosystem function (Billett 1991). The large number of investigations conducted in the Atlantic Ocean have resulted in a good taxonomic knowledge of the echinoderms (Mortensen 1903, 1927, 1943, Koehler 1921, 1927, Hérouraud 1923, Hyman 1955, Sibuet 1979, Borrozo Perez et al. 2003, among others). In contrast, there have only been a few studies on the taxonomy of Mediterranean deep-sea echinoderms (Marenzeller 1893, Bartolini Baldelli 1914, Tortoneese 1954, 1965, Sibuet 1974, Alvà 1987b). Most reports provide only species lists; morphological descriptions are of secondary importance (Cherbonnier and Guille 1967, Alvà 1987a, 1991, Koukouras et al. 2007) or totally absent (Tortoneese 1958, 1972, 1979, Pérez-Ruzafa and López-Ibort 1988, Rinelli 1998, Coll et al. 2010).

It is in this context of dispersed and relatively scarce information that we have undertaken a study of all bathyal echinoderms, including samples collected in the last five years in the northwestern Mediterranean in the framework of four different projects. New records of species and their bathymetrical distributions have been added to provide a thorough review of existing data and an updated account of the taxonomy, geographical and bathymetrical distribution of bathyal echinoderms in the Mediterranean Sea.

MATERIALS AND METHODS

New echinoderm samples

Ten oceanographic cruises were conducted between October 2008 and April 2013 to sample the deep seafloor of the western Mediterranean Sea. The sampling areas included the Blanes Canyon and its adjacent open slope, the Palamós Canyon (also named La Fonera) and the Cap de Creus Canyon (Fig. 1). These cruises took place in the framework of three Spanish research projects (PROMETEO, DOSMARES, and PROMARES) sampling at depths between 850 and 2845 m. Additionally, a trans-Mediterranean cruise took place in the context of the European project BIFOFUN (EurODeep Eurocores, European Science Foundation) in July 2009. This cruise sampled the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. In addition, a 4000-m depth station was sampled in the central basin. However, because of the low number of echinoderms collected in the central and eastern basins (n=2), only the western Mediterranean samples were used in the present study (Fig. 1).

A total of 223 deployments were completed (Table 1), resulting in a total swept area of 10.3 km². Of these
hauls, 119 samples were obtained by a single-warp otter-trawl Maireta system (OTMS, Sardà et al. 1998) with a net length of 25 m and a cod-end mesh size of 40 mm. A SCANMAR system was used to estimate the width of the net mouth. An average horizontal opening of 12.7±1.4 m was calculated. As the SCANMAR system can only operate down to 1200 m depth, the same value for the net mouth width was used also for deployments deeper than 1200 m. The height of the trawl mouth was estimated to be 1.4 m (Sardà et al. 1998). In addition, 49 hauls were conducted with an Agassiz dredge made of a square steel frame with a mouth width of 2.5 m and a mouth height of 1.2 m, and fitted with a 12-mm mesh net. Further, 55 samples were obtained with an epibenthic sledge, which consisted of a rectangular steel frame with three nets attached at different heights (10-50 cm, 55-95 cm and 100-140 cm above the bottom) with a mesh size of 300 µm (only one epibenthic sledge sample contained echinoderms).

Faunal samples were also obtained from 15 bottles in five different sediment traps deployed in the Blanes Canyon axis from November 2008 to February 2009, four of them at 1200 m and one at 1500 m depth. All were deployed at 22 m above the bottom.

Table 1. Number of benthic trawls and dredges used in the present study by depth and geomorphological area. Canyon area (including La Fonera, Cap de Creus and Blanes canyons). A.C, Agassiz trawl sampled on Canyon area; OTMS.C, otter-trawl Maireta system sampled on Canyon area; ES.C, epibenthic sledge sampled on Canyon area; A.O.S, Agassiz trawl sampled on open slope; OTMS.O.S, otter-trawl Maireta system sampled on open slope; ES.O.S, epibenthic sledge sampled on open slope.

<table>
<thead>
<tr>
<th>Depth</th>
<th>A.C</th>
<th>OTMS.C</th>
<th>ES.C</th>
<th>A.O.S</th>
<th>OTMS.O.S</th>
<th>ES.O.S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>900</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>18</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>1050</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>21</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>1350</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>1500</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>18</td>
<td>11</td>
<td>51</td>
</tr>
<tr>
<td>1750</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2250</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2850</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>35</td>
<td>107</td>
<td>46</td>
<td>223</td>
</tr>
</tbody>
</table>
Finally, video-observations were made during the PROMARES cruise using the remotely operated vehicle (ROV) *Liropus 2000*. Thirty six video transects were conducted along the axes of the Blanes, Palamós and Cap de Creus canyons between depths of 300 and 1800 m.

A total of 1503 individuals belonging to 11 species were sampled (Table 2). Of these, 196 were asteroids, 494 echinoids and 813 holothurians. The classes Crinoidea and Ophiuroidea were absent from all samples.

Specimen identification

The echinoderms were sorted, weighed, counted and fixed with 40% formalin diluted with seawater and neutralized with borax on board ship. After 30 days, the samples were transferred to 70% alcohol in the laboratory for further examination. Some specimens were fixed in absolute ethanol on board to allow for molecular analyses (not included in this study). All specimens are stored in the Biological Reference Collection of the Institute of Marine Science, Barcelona (Spain).

In the laboratory, all specimens were classified to species level. For microscopic examination of holothurian spicules, small pieces of soft tissue (i.e. skin, tentacles and gonads) were dissolved in bleach solution and mounted on glass slides for identification. The taxonomic results were compared with previous taxonomic studies. The nomenclature was checked against the World Register of Marine Species (WoRMS). The identification of the echinoid *Gracilechinus elegans* (Düben and Koren, 1844) was based on taxonomic descriptions from the Atlantic Ocean (Mortensen 1903, 1927, 1943, Koehler 1927, Minin 2012). This species has not been cited previously in the Mediterranean Sea. Its geographic distribution was compared with data in the Atlantic Ocean and other echinoid records from the Mediterranean Sea.

Synthesis of taxonomic information on deep-sea Mediterranean echinoderms

A comprehensive table was created of all the echinoderms present in the Mediterranean Sea and cited in the literature as having a maximum depth of occurrence below 800 m (see Table 3). This table was constructed based on Tortonese (1965) and Koukouras (2007). New data acquired during the PROMETEO, DOSMARES and PROMARES cruises was added (see above).

RESULTS

Class ASTEROIOIDEA de Blainville, 1830

Two species of Asteroidea were collected in our study: *Ceramaster grenadensis* (Perrier, 1881) (n=149)
and Hymenodiscus coronata (G.O. Sars, 1872) (n=47).
Both are bathyal species. Ceramaster grenadensis sampled in the present study has a wide bathymetric range (850 to 2845 m, Fig. 2). The second species, Hymenodiscus coronata shows a narrower bathymetric range (1500 to 2250 m; Fig. 2).

Order VALVATIDA Perrier, 1884
Family GONIASTERIDAE Forbes, 1841
Genus Ceramaster Verrill, 1899
Ceramaster grenadensis (Perrier, 1881) (Fig. 3)

Pentagonaster deplasi Perrier, 1885: 34.
Pentagonaster gossei Perrier, 1885: 35.
Pentagonaster haesitans Perrier, 1885: 36.

Material: 149 specimens collected during the PROMETEO 01-02-03-04-05, BIOFUN and DOSMARES 01-02-03-04 cruises. Depth of occurrence: from 850 to 2845 m. Zones: western Mediterranean Sea open slope, Blanes Canyon, Cap de Creus Canyon (Table 2).

Description: Shape pentagonal to stellate, very variable (Fig. 3A, B). Body flattened dorso-ventrally. Oral and aboral surface composed by more or less tabulate hexagonal plates covered by little granules. Marginal plates thick and massive, from 18 to 22; sampling methods could remove them. R=6 to 45 mm. r=3 to 25 mm. R/r=1.54 to 2.53. Colour variable, from cream, pale-yellow to pale pink. Polygonal madreporite, well defined, larger than surrounding plates. Adambulacral plate with 4 to 6 furrow spines, outside these a series of usually four club-shaped spines and outer spines similar to internal ones. Pedicellariae valvate, scarce on aboral side, larger and more numerous on oral side near ambulacral furrow. One of the specimens collected in the present study had six arms (Fig. 3C).

New depth range: 200-2845 m (present study). The previous reported maximum depth of distribution for this species was 2500 m in the Atlantic Ocean (Clark and Downey 1992). The previous Mediterranean Sea bathymetric range was 600-2400 m (Tortonese 1972).

Remarks: Similarities were observed between the genus Litonotaster described by Halpern (1969, 1970). However, owing to 1) the absence of the characteristic flat and thin abactinial plates of the genus Litonotaster, and 2) the presence of tabulate abactinial plates covered by granules, the marginal plate disposition, and in agreement with available literature, we consider our specimens to be Ceramaster grenadensis. Litonotaster has not been reported in the Mediterranean Sea. Great intraspecific morphological variations have been signalled for Ceramaster grenadensis in the Mediterranean (Halpern 1970, Tortonese 1972, Sibuet 1974, Alvà 1987a). It is likely that a revision of the genus Ceramaster is needed.

Order BRISINGIDA Fisher, 1928
Family BRISINGIDAE G.O. Sars, 1875
Genus Hymenodiscus Perrier, 1884
Hymenodiscus coronata (G.O. Sars, 1872) (Fig. 4)

Brisinga coronata Sars, 1873: 102
Brissingella coronata Tortonese, 1965: 194-196, Fig. 93.

Material: 47 specimens collected during cruises PROMETEO 05, BIOFUN and DOSMARES 01-02. Depth of occurrence: from 1500 to 2250 m. Zones: western Mediterranean Sea open slope and Blanes Canyon (Table 2).

New depth range: 200-2845 m (present study). The previous reported maximum depth of distribution for this species was 2500 m in the Atlantic Ocean (Clark and Downey 1992). The previous Mediterranean Sea bathymetric range was 600-2400 m (Tortonese 1972).
Description: Diameter of disc 11 mm; from 9 to 13 long and slender arms. Colour orange to reddish. Very difficult to collect intact, usually the disc and the arms are broken and separate (Fig. 4). Madreporite large, channelled. Gonadal region slightly to highly inflated. Abaxial arm plates rod-like. Two to four tiny, acicular furrow spines and one to two moderately long subaxial ones.

Distribution: North Atlantic and Mediterranean Sea (Alvà 1987a).

Depth range: 100-2904 m (Bartolini Baldelli 1914).

Remarks: Description taken from (Clark and Downey 1992).

Class ECHINOIDEA Leske, 1778

Only two sea urchin species were sampled: the regular echinoid Gracilechinus elegans (Düben and Koren, 1844) (n=7) and the irregular echinoid Brissopsis lyrifera (Forbes, 1841) (n=487). Gracilechinus elegans, known in the Atlantic, has been reported for the first time in the Mediterranean Sea in the present study. It was sampled in the Blanes Canyon at 1500 m depth (Fig. 2). Other specimens were observed and collected with the ROV during the PROMARES cruise (Mecho, pers. obs.) in the lower Palamós Canyon and Blanes Canyon areas (1500 m). Brissopsis lyrifera was found over a wide bathymetric range in the present study (from 900 to 2250 m; Fig. 2). It was abundant in some canyons between 900 and 1500 m (Table 2). In contrast, only five small specimens of B. lyrifera were collected on the open slope at depths between 1750 and 2250 m (Table 2).

Order CAMARODONTA Jackson, 1912
Family ECHINIDAE Gray, 1825
Genus Gracilechinus Fell and Pawson, in Moore, 1966
Gracilechinus elegans (Düben and Koren, 1844) (Fig. 5)

Echinus elegans Düben and Koren, 1844: 272. Koehler, 1927: 51-53, pl. XII, Fig. 12 a-g; pl. XVII, Fig. 5

Material: 7 specimens from cruises PROMETEO 04, PROMARES and DOSMARES 04. Depth of occurrence: 1500 m. Zones: Blanes Canyon and Palamós Canyon (Table 2).

Description: Diameter test 38.5 to 48.3 mm; h=25.6 to 34.7 mm. Test low, from conical and flattened above to slightly flattened on both sides, usually the height of the test is more than half the diameter (Fig. 5A). Colour whitish pink to pink, sometimes a few green (Fig. 5B, C). Long primary spines usually flat at the end. One primary tubercle present on each plate, forming a very regular series from oral to aboral side; usually secondary ones form a short longitudinal series from the middle to the oral side. A small tubercle is present between the pores and the primary tubercle, but not between the pores and the end of the plate. Some miliary tubercles are present, giving a rough appearance to the test. Three pairs of pores very clear and disposed in a sharp angle. The boundary between the areas was more straight than sinusuous. Periproct (Fig. 5D) covered by large irregular plates, one of them with a spine. The plates surrounding the anus are irregularly club-shaped and smaller than the other plates. Ocular plates not in contact with the periproct. No spines on the buccal plates, where pedicellariae were present and abundant. Trideterminate pedicellariae have the valves flat, narrow and mesh-worked, with the edge sinuate (500 to 650 µm long). In some cases small individuals had flatter valves than larger individuals (Fig. 5E). These valves have a narrow area near the base (Fig. 5F). Globiferous pedicellariae (500 to 550 µm) usually have 1 or 2 lateral teeth on either side of the blade and a more or less rounded to rectangular shape (Fig. 5G-I). Ophicephalus pedicellariae, broad, sinuate and with small teeth in the edge, and an intricate mesh-work.

Distribution: North Atlantic (OBIS). First record in the Mediterranean Sea.

Depth range: 50-1710 m. (Mortensen 1943, Minin 2012). Only reported at 1500 m depth in the Mediterranean Sea (present study).

Remarks: Mortensen (1903) reported this species from the Mediterranean, but he later discarded this identification (Mortensen 1943). Alvà (1987b) described another species, Gracilechinus alexandri, in the Mediterranean Sea. Both G. elegans and G. alexandri have many similar characteristics, making their true identification difficult (Mortensen 1903, Ramírez-Llodra and Tyler 2006, Minin 2012). Furthermore, juvenile G. alexandri have characteristics that might be confused with G. elegans. It is possible that the specimen of G. alexandri reported by Alvà (1987b) was a juvenile and was a misidentification of G. elegans. The specimen is no longer available for comparison. In our specimens, the presence of one or two teeth on the globiferous pedicellariae, their narrow base and their mesh-work are similar to those described in the literature (Mortensen 1903, Minin 2012). The tubercular pattern, the periproct, the shape of the ocular and genital plates and their disposition allowed us to classify these specimens as G. elegans. Mortensen (in 1903, p. 144, pl. XX, Fig. 9) found a small form for G. elegans with trideterminate pedicellariae that had more flattened and truncate blades without mesh-work. This characteristic and the overlapping range in the number of teeth in the globiferous pedicellariae (1 to 4 in G. elegans and 2 to 5 in G. alexandri) could lead to a misidentification if only one individual was available, as appears to be the case in Alvà (1987b).

Order SPATANGOIDA Agassiz, 1840a
Family BRISSIDAE Gray, 1855
Genus Brissopsis Agassiz, 1847
Brissopsis lyrifera (Forbes, 1841) (Fig. 6)
Brissus lyrifer Forbes, 1841: 187
Brissopsis lyrifera Tortonese 1965: 372-374

Material: 487 specimens from cruises PROMETEO 02-04-05, PROMARES and DOSMARES 01-03. Depth of occurrence: 900 to 2250 m. Zones: western Mediterranean Sea open slope, Blanes Canyon, Cap de Creus Canyon and Palamós Canyon (Table 2).

Description: Body oval, arched, sloping anteriorly. Colour from yellow to red-brown with a narrow band of ciliated dark spines which rings all five ambulacra petals on the upper surface (Fig. 6A, B). Anterior ambulacral zone slightly depressed. Periproct terminal, near aboral zone. Posterior petals shorter than the anterior ones, diverging and well separated. Globiferous pedicellariae short, ending in two long teeth. Tridentate pedicellariae of various forms, with three more or less leaf-shaped blades. Rostrate pedicellariae blade slender.

Distribution: Atlantic and Mediterranean Sea (OBIS).

Remarks: Differences from *Brissopsis atlantica mediterranea* (Mortensen 1913) are evident in the posterior Fig. 5. – *Gracilechinus elegans*. A, test; B, oral view; C, aboral view; D, periproct structure; E, F, tridentate pedicellariae; G, H, globiferous pedicellariae; I, globiferous pedicellariae, detail of teeth.

New depth range: 200-2845 m (present study). The previous reported maximum depth of distribution for this species was 1650 m in the Atlantic Ocean (OBIS). Previous Mediterranean maximum depth was 1500 m (Tortonese 1965).

Fig. 6. – *Brissopsis lyrifera* A, oral view; B, ventral view (Photo from A. Bozzano).
petals: diverging and well separated in B. lyrifera and confluent on the base, as opposed to nearly parallel in B. atlantica mediterranea (Lacour and Néraudeau 2000).

Class HOLOTHUROIDEA de Blainville, 1834

The Holothuroidea was the most abundant echinoderm class sampled in this study, with a total of 813 specimens and 7 species (Table 2). Three species belonging to the order Aspidochirotida were collected: *Mesothuria* (Allantis) *intestinalis*, (Ascanius, 1805) Östergren, 1896 (n=56), *Pseudostichopus occultatus*, Marenzeller 1893 (n=474) and *Holothuria* (Punningothuria) *forskali*, Delle Chiaje, 1823 (n=1).

In the present study, *Mesothuria intestinalis* had a bathymetric range between 900 and 1750 m depth (Fig. 2). In contrast *Pseudostichopus occultatus* had a very narrow depth range (2000 to 2250 m; Fig. 2). This species was sampled only in open slope areas. Although one individual was collected at 2250 m depth in the Blanes Canyon, we consider this as a residual sample, based on the high number of specimens collected in the previous catch, the bad condition of the specimen and the absence of this species in other trawls conducted at this depth in the canyon. This species was sampled in great numbers at 2250 m (maximum of 145 individuals) (Fig. 2). Only one individual of *H. forskali* was sampled (850 m in the Blanes Canyon).

The order Molpadida was represented by two species: *Molpadia musculus*, Risso, 1826 (n=25) and *Hedingia mediterranea* (Bartolini Baldelli, 1914) Tortoneese, 1965 (n=11). *Molpadia musculus* had a bathymetric range between 900 and 1050 m depth (Fig. 2) and was sampled only on the open slope. *Hedingia mediterranea* had a bathymetric range between 900 and 1500 m (Fig. 2) and was sampled mainly in canyon areas.

The order Elasipodida was represented by one species *Penilpidia ludwigi* (von Marenzeller, 1893) (n=219). The bathymetric distribution of this species ranged from 900 to 1500 m. Most of the individuals (n=200; Table 2) were sampled by the epibenthic sled at a single open slope site in the western Mediterranean Sea at 900 m depth. A few individuals (n=19) were reported from sediment trap samples located in the Blanes Canyon at 1200 and 1500 m depth (Fig. 2).

The order Dactylochirotida was represented by a single species: *Ypsilothuria bitentaculata* (Ludwig, 1893) (n=27). This species was distributed in the present study between 900 and 1350 m depth (Fig. 2) and was sampled only in an open slope area (Table 2).

Order ASPIDOCHIROTIDA
Family Synallactidae Ludwig, 1894
Genus *Mesothuria* Ludwig, 1894
Subgenus *Allantis* Heding, 1942

Mesothuria (Allantis) *intestinalis* (Ascanius, 1805)
Östergren, 1896
(Fig. 7)

Holothuria intestinalis Ascanius 1805: 5, pl. 45
Mesothuria intestinalis Gebruk 2012: 291-391, Fig. 1-9C, D

Fig. 7. – *Mesothuria* (Allantis) *intestinalis* characteristic. A, general view; B, ossicle crown with several thorns; C, ossicle plates with four rods and central spire.

Material: 56 specimens were collected during cruises PROMETEO 02-03-04-05, BIFOFUN and PROMARES. Depth of occurrence: 900 to 1750 m. Zones: western Mediterranean Sea open slope, Blanes Canyon and Cap de Creus Canyon (Table 2).

Distribution: Mediterranean Sea, North Atlantic and West Indian seas (Gebruk et al. 2012).

Depth range: 18-2000 m (Gebruk et al. 2012). Mediterranean depth range 20 to 1927 m (Cartes et al. 2009).

Remarks: The presence of a second *Mesothuria* species of the genus in the Mediterranean Sea, *Mesothuria verrilli* (Théel, 1886), was discarded by Gebruk et al. (2012).

Genus *Pseudostichopus* Ludwig, 1894

Pseudostichopus occultatus Marenzeller 1893
(Fig. 8)

Pseudostichopus occultatus Marenzeller, 1893a: 15-17, pl. 4, Fig. 9.
Material: 474 specimens collected from cruises DOSMARES 01-02-04. Depth of occurrence: 2000 and 2250 m. Zone: western Mediterranean Sea open slope (Table 2).

Description: Specimens smaller than 40 mm long; usually with pteropods and sand encrusted in the skin giving an external vitreous structure, colour dusty brown (Fig. 8A). Body dorsally convex, flat ventrally. The specimens sampled in this study do not have the pygal furrow which is generally characteristic of the group; some authors also note the absence of a pygal furrow in some specimens. Mouth subventral surrounded by 16-20 orange peltate tentacles, anus terminal. When the encrusted material is discarded the dermis is thin. The dorsolateral tube feet are sometimes difficult to see (Fig. 8B). Muscular bands cylindrical and subdivided, visible by transparency. Calcareous ring solid, radial plates with two central and lateral projections providing a ribbon-like shape to each plate (Fig. 8C). Two respiratory trees long and slim clustering along a central strap. Usually dredged in great numbers. Osicles present in tentacles, tube feet, respiratory trees and near anus; absent in skin and gonads. Spiny rods (150 to 350 µm) (Fig. 8D) and scarce irregular, mesh-like perforate plates. Gonads in one tuft, with long unbranched tubules arising separately along gonoduct; one dissected specimen had little tufts full of eggs free in the coelom.

Distribution: Mediterranean Sea, North Atlantic (O’Loughlin and Ahearn 2005)

Depth range: 360-4400 m (Koehler 1927). Mediterranean depth range 415 to 3624 m (Bartolini Baldelli 1914).

Remarks: O’Loughlin (2002) reconsidered the genus Pseudostichopus and classified P. occultatus as Meseres occultatus. Later, (O’Loughlin and Ahearn 2005) returned this species to the genus Pseudostichopus. The colour of tentacles and internal structures shows great variability between individuals and is not suitable as a diagnostic character.
Family HOLOTHURIIDAE Ludwig, 1894
Genus Holothuria Linnaeus, 1767
Subgenus Panningothuria Rowe, 1969
Holothuria (Panningothuria) forskali
Delle Chiaje, 1823

Material: 1 specimen from cruise PROMETEO 05. Depth of occurrence: 850 m. Zone: Blanes Canyon (Table 2).

Description: 60 mm long. Cylindrical body flattened ventrally (Fig. 9A). Numerous tube feet in three or four rows. Conical papillae on its dorsal surface. Subventral mouth with about 20 stumpy, branched tentacles. Calcareous deposits scarce, as small discs in skin (Fig. 9B) and branched and curved rods in tube feet and tentacles. Colour, usually black with white spots, sometimes brown with a yellow ventral side. Cuverian tubules are present.

Distribution: Mediterranean Sea and northeast Atlantic Ocean (Pérez Ruzafa et al. 1987).

New depth range: 20-850 m depth (present study). The previous maximum depth reported for this species in the Atlantic Ocean was 348 m (Pérez Ruzafa et al. 1987). The previous Mediterranean Sea maximum depth was 193 m (Pérez Ruzafa et al. 1987).

Remarks: The one small specimen collected had a pale grey-pinkish colour. Some authors (Koehler 1921, 1927, Tortone 1965) described deeper specimens of H. forskali as pale in colour and smaller in body length compared with shallower individuals. O’Loughlin and Paulay (2007) describe a related species to H. forskali, living at greater depths (800 m) in Australian waters.

Order MOLPADIIDAE
Family MOLPADIIDAE Mülller, 1850
Genus Molpadia (Cuvier, 1817) Risso, 1826
Molpadia musculus Risso, 1826
(Fig. 10)

Material: 25 specimens collected during cruises PROMETEO 01-02-03-04-05, PROMARES and DOSMARES 04. Depth of occurrence: 900 and 1050 m. Zones: only present on western Mediterranean Sea open slope (Table 2).

Description: Up to 50 mm long. Sausage-shaped, with a small tail (Fig. 10A). Terminal, mouth surrounded by 15 pink digitate tentacles with two small prolongations (Fig. 10B). Skin rough and thick, coloured from grey to dark purple due to phosphatic deposits (Fig. 10A, B). Ossicle tables have few perforations and a small solid spine (500 to 700 µm). Rosette and racquet-shape plates and anchors present (Fig. 10C). Fusiform rods (±1000 µm) always present in tail, usually also on body wall (Fig. 10D). Calcareous ring with posterior bifurcate projections on radial plates. Two long and slender respiratory trees. Ossicles and body shape could vary, but fusiform rods of the tail are diagnostic. Colour varies with the age and growth of the animal. In the early stages they are grey-white and, when grown to the adult size, the colour turns darker from the accumulation of phosphatic deposits.

Distribution: Cosmopolitan (Pawson et al. 2001).

Depth range: 35-5205 m (Pawson et al. 2001). Mediterranean Sea depth range 50 to 2500 m (Parenzan 1970).

Remarks: In the Mediterranean Sea, the maximum depth of distribution for this species was 1050 m (Tortonese 1965, Sibuet 1974, Cartes et al. 2009, Ramírez-Llodra et al. 2010, present study). However, Parenzan (1970, pp. 10 and 33) sampled ten M. musculus between 2300 and 2500 m, with the RV Ruth Ann in 1969 while dredging the Ionian Sea (central Mediterranean Sea).
Trochostoma mediterraneum Bartolini Baldelli, 1914: 105-107, pl. 6 Figs. 9-10.
Hedingia mediterranea Tortonese 1965: 100-101, Fig. 43.

Material: 11 specimens collected from cruises PROMETEO 02-05 and PROMARES. Depth of occurrence: 900 to 1500 m. Zones: western Mediterranean Sea open slope and Blanes Canyon (Table 2).

Description: Fresh specimens pale violet or white, acquiring a yellowish white colouring when conserved (Fig. 11A, B). Body divided into two regions, an elongated body and a long caudal appendage (more than half the length of the body). Body oval, without podia. Rough skin due to calcareous plates. Anterior region wrinkled and cylindrical, with a terminal mouth. Skin without phosphatic deposits. Fifteen tentacles without digitations. Anus situated at the end of the caudal appendage. Five subdivided muscular bands visible by transparency. Ossicles very similar to H. albicans; tables (from 150 to nearly 250 µm) present all over the skin with very irregular holes and a central spine with three spiny columns (Fig. 11C - E). Smooth plates on anal papillae (Fig. 11F, G). Two respiratory trees (right and left), low-ramified and attached along the mesentry. Gonads long and unbranched tubules extending to the posterior end of the body, disposed in two tuffs attached to the mesentery on the upper part and free for the rest of their length in the coelom (Fig. 11H). Calcareous ring with five radial pieces, each with two posterior bifurcated projections and five interradial pieces (Fig. 11I, J). Tentacular ampullae long and digitate.

Distribution: Endemic from Mediterranean Sea, reported once on Tyrrhenian Sea. First citation in the western Mediterranean Sea.

Depth range: 800-1500 m (present study). The previous Mediterranean Sea depth range was 800 to 1000 m (Bartolini Baldelli 1914).

Remarks: Only one specimen has been reported previously in the Mediterranean Sea, dredged by RN Washington (1881-1882) in the Tyrrhenian Sea at 800-1000 m depth and described as Trochostoma mediterraneum by Bartolini Baldelli (1914). Later, Koehler (1927) classified the specimen as Trochostoma articum. Tortonese (1965) classified it definitively as Hedingia mediterranea. Pawson (2001) considered the specimen to be Hedingia albicans (Théel, 1886) Deichmann, 1938, and cited it in the Mediterranean. Molecular data are required for Hedingia species in order to resolve their taxonomic status.
Order ELASIPODIDA Théel, 1882
Family ELPIDIIDAE Théel, 1879
Genus Penilpidia Gebruk, 1988
Penilpidia ludwigi (von Marenzeller, 1893)

Kolga ludwigi Marenzeller, 1893: 20-23, pl. III Fig. 7, pl. IV Fig. 8.
Penilpidia ludwigi Gebruk, 2013: 1030-1032, Fig. 1.

Fig. 11. – Hedingia mediterranea characteristics. A, B, external colour diversity; C, D, skin ossicles; E, detail of ossicles central spine; F, anal calcareous plates; G, anal papillae; H, gonadal tuffs and Polian vesicle; I, J, calcareous ring and detached pieces of calcareous ring.

(Fig. 12A-G)
Material: 219 specimens from cruise PROMETEO 01 and sediment traps of PROMETEO project. Depth of occurrence: from 900 to 1500 m. Zone: western Mediterranean Sea open slope and Blanes Canyon (Table 2).

Description: Small species of 5-20 mm in length. Fragile animals with skin usually broken. Digestive tract visible by transparency (Fig. 12A). Body elongated ovoid, with ventral side flattened. Six pairs of

Figure 12. – Penilpida ludwigi characteristic. A, general view; B, oral region detail; C, tentacle ossicles; D, interlinked pieces of the calcareous ring; E, F, pieces of the calcareous ring G, wheel from skin.
tube feet on the posterior half of the flattened ventral sole. Three pairs of papillae are present on the dorsal side, two pairs on the anterior part of the body and one pair on the posterior part. Ten tentacles surrounding the mouth (Fig. 12B), each divided into six to eight marginal lobes. Tentacles spicules curved rods with spines (130-300 µm) at their ends and in the middle on the external side of the curve (Fig. 12C). Calcareous ring with five interlinked pieces, usually visible by transparency. Each piece has four pair of arms radiating from the centre (Fig. 12D). Arched rods with one or two spines and four spiny leg ossicles (Fig. 12E, F). Papillae spicules smooth rods (Fig. 12G). Marenzeller (1893) reports males and females, describing gonads as one tuft slender and ramified for males and short and less ramified for females.

Distribution: Endemic to the Mediterranean Sea (Pagés et al. 2007, Gebruk et al. 2013).

Depth range: 755-4766 m (Fiege and Liao 1996).

Remarks: *Penilpidia ludwigi* has been reported twice in the eastern Mediterranean Sea basin (Marenzeller 1893, Fiege and Liao 1996) at depths of 755 to 4766 m. Its presence was reported in the northwestern Mediterranean Sea from sediment traps at 22 m above the bottom at depths between 1200 and 1700 m in the Palamós Canyon (Pagés et al. 2007). Although a specimen has been reported from a depth of only 48 m on the southwestern coast of Portugal (Cunha de Jesus and Cancela da Fonseca 1999), there is some doubt about this identification owing to depth (very shallow) and substrate (i.e. rocky area), as well as the poor condition of the specimen. Gebruk et al. (2008, 2013) described a related species in the North Atlantic and included a re-description of the genus and its species.

Order DACTYLOCHIROTIDA

Pawson and Fell (1965)

Family YPSILOTHURIIDAE Heding, 1942

Genus *Ypsilothuria* E. Perrier, 1886

Ypsilothuria bitentaculata (Ludwig, 1893) (Fig. 13)

Material: 27 specimens collected during cruises PROMETEO 01 to 05, PROMARES and DOSMARES 01. Depth of occurrence: 900 m to 1350 m. Zone: western Mediterranean Sea open slope (Table 2).

Description: Typically U-shaped (Fig. 13A). Two opposite siphons, oral and anal. Body wall thorny due to the presence of intricate scales, also visible with naked eye. Eight digitiform tentacles, of very unequal size, one on each side, being larger than the others. Calcareous plates visible with naked eye (Fig. 13B).

Fig. 13. – *Ypsilothuria bitentaculata* characteristics. A, general view; B, plates from skin; C, calcareous plate detail with central spine; D, E, calcareous ring detail of bifurcated projections.
Plates subcircular. Strong short spire placed near the edge of the plate (Fig. 13C). The plates are perforated by many small holes giving an irregular shape. Calcareous deposits in tentacles. Calcareous ring with eight plates. Lateral interradial plates with anterior bifurcated projections (Fig. 13D, E). The projections are often asymmetric.

Distribution: Cosmopolitan (Cherbonnier and Féral 1978).

Depth range: 225-4440 m (Cherbonnier and Féral 1978). Mediterranean Sea depth range 900 to 1560 m (Alvà 1991).

Remarks: Differs from *Y. talismani* in the bifurcated projections of the calcareous ring and the size of the plates (Gage et al. 1985, Alvà 1991).

Taxonomic information on deep-sea Mediterranean echinoderms

Fifty species of echinoderms present in the Mediterranean Sea and cited in the literature as presenting maximum depth of occurrence below 800 m were grouped in a table (Table 3). After carefully analysing all published data, we observed that from the initial 50 species shown in Table 3 only 29 were signalled at depths below 800 m depth in the Mediterranean Sea. Geographically, five of the studied species in Table 3 were endemic to the Mediterranean. Three were cosmopolitan and one had a broad Indo-Pacific and Mediterranean distribution (while all the other species had an Atlanto-Mediterranean distribution). Of the 50 species, 11 were sampled in our study. One of them was a first record for the Mediterranean. Four of the sampled species increased their maximum depth of distribution, and one increased the maximum depth of distribution in the Mediterranean Sea.

DISCUSSION

General remarks

This study provides a thorough review of all citations and distribution information of deep-sea echinoderms in the Mediterranean Sea. The literature review showed that for some species only very limited biological/ecological data were available, and in many cases only species lists were provided (Tortonese 1979, Pérez-Ruzafa and López-Íbor 1988). This paper provides new information of specimens collected in the last few years, including new records and extensions of geographic and bathymetric distributions. Our new data include information from areas with complex topography such as canyons, which previously have been sampled inadequately. We have collected together information of echinoderms living deeper than 800 m.

Our results report, for the first time, the presence of the echinoid *Gracilechinus elegans* (Düben and Koren, 1844) in the Mediterranean Sea. In addition, there are new records of two species considered previously as “rare” in the Mediterranean Sea. At present, there is no consensus regarding what determines a “rare species” (Cunningham and Lindenmayer 2005). In our study, taking into account all published information, we considered “rare” those species that have been reported less than five times in the whole basin. Based on this, two “rare” holothurians endemic to the Mediterranean Sea, *Hedingia mediterranea* (Bartolini Baldelli, 1914) Tortonese, 1965 and *Penipedia ludwigi* (von Marenzeller, 1893), were identified. Additionally, we note greater bathymetric ranges for four species. The depth range of the asteroid *Ceramaster grenadensis* (Perrier, 1881), previously dredged in the Mediterranean Sea down to 2400 m (Carpine 1970, Tortonese 1979, Alvà 1987a), was extended to 2845 m. The echinoid *Brissopsis lyrifera* (Forbes, 1841), previously dredged around 1500 m (Sibuet 1974, Tortonese 1979, Cartes et al. 2009), was extended to 2250 m. Parezan (1970) reported the presence of *B. lyrifera* at 2500 m depth in the Ionian Sea. However, the specimen reported by Parezan (1970) was the test of a dead animal. Consequently later studies have not reported the presence of *B. lyrifera* at depths greater than 1500 m. The holothurian *Hedingia mediterranea* had been dredged previously only around 1000 m (Bartolini Baldelli 1914). Our data extend its bathymetric distribution range to 1500 m. Finally, the depth range of *Holothuria (Panningothuria) forskali* Delle Chiaie, 1823, which had been dredged previously down to 348 m in the Atlantic Ocean and around 193 m in the Mediterranean Sea, (Pérez Ruzafa et al. 1987), is extended to 850 m in the Mediterranean Sea.

Below, we discuss the results by class. At the beginning of each section, if appropriate, we discuss first any new records and those of rare species. We then compare our results with the published literature, as detailed in Table 3.

Class Asteroidea

Our results for the class Asteroidea were based on two typical bathyal species, *Hymenodiscus coronata* (G.O. Sars, 1872) and *Ceramaster grenadensis* (Perrier, 1881). The depth range of *C. grenadensis* has been expanded to 2845 m. Where their depth ranges overlapped (1500 to 2250 m) the two species co-occurred, perhaps facilitated by their contrasting diets: *H. coronata* is a suspension feeder and *C. grenadensis* a secondary consumer (Carlier et al. 2009).

Other deep-sea asteroids reported previously from the Mediterranean at depths greater than 800 m (Table 3), such as *Astropecten irregularis irregularis* (Pennant, 1777), *Luidia sarsi sarsi* Düben and Koren, in Düben, 1845, *Odontaster mediterraneus* (Marenzeller, 1893), *Henricia cylindrella* (Sladen, 1883) and *Plutonaster bifrons* (W. Thompson, 1873), were not sampled in the recent work. *Plutonaster bifrons* was reported by Tortonese (1979) at 2715 m. However, this depth distribution was not supported by the specific data or citations in Tortonese’s publication. Thus, we consider the *Plutonaster bifrons* sample of the “Pola” (Marenzeller 1893) to be the deepest known record of
Table 3. - Echinoderms cited as present in the deep Mediterranean Sea. Atl. Depth, Maximum depth of distribution in the Atlantic Ocean; Med. Depth, Maximum depth of distribution in the Mediterranean Sea; Pre. Stu, Maximum depth sampled in the present study; Distribution, Atl-Med, Atlanto-Mediterranean distribution.

<table>
<thead>
<tr>
<th>Echinoderm</th>
<th>Atl. Depth</th>
<th>Literature</th>
<th>Media Depth</th>
<th>Literature</th>
<th>Pre. Stu</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrophyton irregularis pentacanthus (Delle Chiaje, 1827)</td>
<td>x</td>
<td>x</td>
<td>200 m</td>
<td>Clark and Downey 1992</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Astropecten longipes (Retzius, 1805)</td>
<td>1140 m</td>
<td>Clark and Downey 1992</td>
<td>100 m</td>
<td>Mortensen 1927</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Henricia cylindrella (Sladen, 1883)</td>
<td>1383 m</td>
<td>Clark and Downey 1992</td>
<td>960 m</td>
<td>Sibuet 1974</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hymenocidus coronata (Sars G.O., 1872)</td>
<td>2600 m</td>
<td>Clark and Downey 1992</td>
<td>2904 m</td>
<td>Bartolini Baldelli 1914</td>
<td>2250 m</td>
<td>North Atl-Med</td>
</tr>
<tr>
<td>Luidia sarsi (Gasco, 1876)</td>
<td>1140 m</td>
<td>Clark and Downey 1992</td>
<td>100 m</td>
<td>Tortonese 1958</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Marginiporus capreensis (Gasco, 1876)</td>
<td>1140 m</td>
<td>Clark and Downey 1992</td>
<td>100 m</td>
<td>Tortonese 1958</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Echinoidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptometra celtica (Barrett and McAndrew, 1858)</td>
<td>1279 m</td>
<td>Mortensen 1927</td>
<td>538 m</td>
<td>Sibuet 1974</td>
<td>x</td>
<td>Atl-Med</td>
</tr>
<tr>
<td>Neocomatella europaea Ahl Clark, 1913</td>
<td>1700 m</td>
<td>Sibuet 1974</td>
<td>337 m</td>
<td>Sibuet 1974</td>
<td>x</td>
<td>Atl-Med</td>
</tr>
<tr>
<td>Leptometra phalangium (J. Müller, 1841)</td>
<td>x</td>
<td>x</td>
<td>1300 m</td>
<td>Mortensen 1927</td>
<td>x</td>
<td>Mediterranean</td>
</tr>
<tr>
<td>Neocomatella europaea Ahl Clark, 1913</td>
<td>1700 m</td>
<td>Sibuet 1974</td>
<td>337 m</td>
<td>Sibuet 1974</td>
<td>x</td>
<td>Atl-Med</td>
</tr>
</tbody>
</table>

SCI. MAR., 78(2), June 2014, 281-302. ISSN-L 0214-8358 doi: http://dx.doi.org/10.3989/scimar.03983.30C

• A. Mecho et al.

SCI. MAR., 78(2), June 2014, 281-302. ISSN-L 0214-8358 doi: http://dx.doi.org/10.3989/scimar.03983.30C

• A. Mecho et al.
P. bifrons (2525 m), in agreement with other authors (Alvá 1987a, Koukouras et al. 2007). Two other asteroid species, Marginaster capreensis (Gasco, 1876) and Astrotepecten irregularis pentacanthus (Delle Chiaje, 1827), have been considered to be Atlantic-Mediterranean species. Both species were reviewed by Clark and Downey (1992), who considered them to be endemic to the Mediterranean Sea. Astrotepecten irregularis pentacanthus (Delle Chiaje, 1827) was cited by Tortone (1958, 1965) at 932 m depth from the “Pola” cruise. Two other species with a maximum depth of distribution at 1000-1500 m in the Atlantic Ocean, Chaetaster longipes (Retzius, 1805) and Tetthyaster subimerris (Philippi, 1837), occurred considerably shallower (100 and 320 m, respectively) in the Mediterranean Sea. Finally, Nymphaster arenatus (Perrier, 1881), with a maximum depth at 3000 m in the Atlantic Ocean, has been cited from the Mediterranean Sea by Pérez-Ruzafa and López-Ibor (1988) and Koukouras (2007), but no depth data were given.

Class Echinoidae

This study reports for the first time the presence of Gracilechinus elegans (Düben and Koren, 1844) in the Mediterranean Sea. While Mortensen (1903) reported this species from the Mediterranean, he discarded the record in a later publication (Mortensen 1943). The lack of observations of G. elegans in the Mediterranean Sea could be caused by misidentification of congeneric species. For instance, adults of G. elegans are similar to juveniles of G. alexandri (see G. elegans description above). The only specimen of G. alexandri reported from the Mediterranean Sea (Alva 1987b) was not available for comparison. Another species that could lead to misidentification in the Mediterranean Sea is Gracilechinus acutus var. norvegicus (Düben and Koren, 1844). The possibility of hybridization between species should be taken into account. Hybridization has been described for other species of the same genus in the Atlantic (Shearer et al. 1911). Hybrids themselves may be responsible for some failures in identification. Molecular studies of Mediterranean Sea and Atlantic Ocean specimens may be able to determine the species more clearly in the future, including hybridization and phylogenetic differences.

Brisopsis lyrifera was present in canyon muddy sediments below 900 m, as suggested originally by Carpine (1970). Large and dense aggregations of dead and live Brisopsis were observed by ROV in canyons. The gregarious behaviour of this species has been reported in previous studies (Laubier and Emig 1993, Ramírez-Llodra et al. 2008). Many echinoid tracks were visible on the sediment, suggesting a “herd” in movement, similar to what has been observed for other bathyal echinoids (Salazar 1970, Gage and Tyler 1991). Although the number of collected specimens was too low to conduct population structure analyses, we observed that smaller specimens appeared to occur at greater depths. This contrasts with the results of Ferrand et al. (1988), who proposed the recruitment of smaller individuals at shallower depths. Our results are in agreement with Harvey et al. (1988), who suggested a possible ‘dwarfism’ for this species at greater depths. Brisopsis lyrifera is usually reported from the upper slope (250-400 m depth) on the Mediterranean continental margin (Tortonese 1965, Carpine 1970, Ferrand et al. 1988, Koukouras et al. 2007, Ramírez-Llodra et al. 2008, Cartes et al. 2009). The abundance of this species has decreased greatly in recent years on the upper and middle continental slopes at depths down to 1000 m (Mecho, pers. obs.), which may be related to intensive commercial trawling activity down to depths of 900 m (Ramírez-Llodra et al. 2010, Puig et al. 2012). Local fishermen have noted a large decrease in B. lyrifera in their by-catch in the last decade.

No specimens of the closely related species Brisopsis atlantica var. mediterranea Mortensen, 1913 were found.

Eight other species of echinoids have been reported from the Mediterranean Sea at depths below 800 m (Table 3). Two of these species, Styllocidaris affinis (Philippi, 1845) and Cidaris cidaris (Linnaeus, 1758), are common in the deep sea and have been sampled frequently below 800 m in the Mediterranean Sea (Alvá 1987a, Cartes et al. 2009). However, these two species were absent from our samples. Other species that occur mainly at shallower depths, such as Spatangus purpureus O.F. Müller, 1776 and Gracilechinus acutus Lamarck, 1816, were also not sampled in the recent cruises, even though they have been reported previously at depths greater than 800 m.

Two deep “rare echinoid species” are reported in the literature from the Mediterranean Sea: Hemiaster expurgitus Lovén, 1874, sampled only three times (Cherbonnier 1958, Tortonese 1972, Koukouras et al. 2007) and Asterechinus elegans Mortensen, 1942, an Indo-Pacific species recently found in the eastern Mediterranean in association with sunken wood (Bienhold et al. 2013). These two species were not sampled in the present study. Three other species, Echinocyamus pusillus (O. F. Müller, 1776), Echinus melo Olivi, 1792, and Neolampas rostellata A. Agassiz, 1869, have maximum depths of distribution at 1100 m in the Atlantic Ocean. Their maximum depths of distributions are shallower (not exceeding 700 m depth) in the Mediterranean Sea.

Class Holothuroidea

The holothurian Hedingia mediterranea was first described by Bartolini Baldeili (1914) in the Tyrrhenian Sea. Its presence has not been reported since in the Mediterranean. It is possible that specimens reported as H. mediterranea have been misclassified as sipunculids because of the similar body shape of the two groups. Some studies have cited H. mediterranea as endemic to the Mediterranean Sea (Koehler 1921, 1927, Tortonese 1963, 1965, Parenzan 1970, Fredj 1974, Koukouras et al. 2007, Matarrese 2010), but only by referring to the original record of the type specimen. Accordingly, we consider the individuals sampled in this study as a truly ‘rediscovered’ species and extending both its geographic range to the northwestern Mediterranean.
Sea and its bathymetrical distribution. One sample collected in the Blanes Canyon at 1200 m included four individuals and another at 1500 m in the same area included five individuals, suggesting a greater presence of this species in canyons. Pawson et al. (2001) considered the Bartolini Baldelli specimen as *Hedingia albicans* (Théel, 1886) Deichmann, 1938. This species is known from several locations in the North Atlantic. However, no explanation was provided for the synonymy of *H. albicans* and *H. mediterranea*. The information available does not allow us to clarify whether the Mediterranean specimens (classified as *Hedingia mediterranea*) are the same species as or distinct from the Atlantic species (classified as *Hedingia albicans*).

In the present study we continue to classify the species as *H. mediterranea* following Tortone (1963, 65). A molecular comparison between species of *Hedingia* would help to resolve the taxonomic discrepancies.

The only species of Elpidiidae present in the Mediterranean Sea is *Penilpidea ludwigi*. This is also considered to be a “rare” species, because it has been reported only three times previously, twice from the eastern Mediterranean Sea (Marenzeller 1893, Fiege and Liao 1996) and once from the deep western Mediterranean Sea (Pagés et al. 2007). However, when it does occur it may be found in abundance. Pagés et al. (2007) collected 150 individuals. More than 200 individuals were collected in one epibenthic sledge sample, suggesting that the species may occur in dense aggregations (Fiege and Liao 1996, Pagés et al. 2007) similar to those reported for other Elpidiidae in the Atlantic Ocean (Billett and Hansen 1982, Billett et al. 2001, 2010, Gebruk et al. 2003, Ruhl and Smith 2004). The presence of *P. ludwigi* in the Blanes Canyon sediment traps adds new faunistic records for this area. Pagés et al. (2007) collected *P. ludwigi* in the Palamós Canyon also with sediment traps moored at 22 m above the bottom. Our sediment traps sampled greater numbers in autumn and winter, coinciding with a stormy period in the northwestern Mediterranean (Sanchez-Vidal et al. 2012). This may have resulted in greater resuspension of bottom sediments and associated small fauna, such as *P. ludwigi*. Another factor that can cause resuspension of sediments, and thus the collection of small holothurians in sediment traps, are deep currents (Gebruk et al. 2013).

In addition, swimming behaviour has been described in other Elpidiidae (Ohta 1985, Pawson and Foell 1986, Miller and Pawson 1990) and has also been proposed for *P. ludwigi* (Pagés et al. 2007). Swimming cannot be discarded as an explanation of the presence of this species in sediment traps. Pagés (2007) suggested that aggregations of *P. ludwigi* might occur during periods coincident with phytoplankton spring blooms and the flux of new organic matter to the seafloor. Although our sediment traps sampled greater numbers of specimens in autumn (similarly to the epibenthic sledge sample) and winter, these seasonal peaks of abundance may also indicate periodic recruitment of opportunistic species, as reported for other small species of Elpidiidae (Billett and Hansen 1982, Ohta 1985, Billett 1991, Billett et al. 2001, 2010).

The class Holothuroidea was the most speciose and most abundant of all the groups collected in our samples, as in the North Atlantic deep sea (Billett 1991, Gage and Tyler 1991). The order Aspidochirodita had the greatest number of species. Unlike in other studies, we did not observe dense aggregations of *Mesothuria (Allantis) intestinalis* (Ascanius, 1805) Östergren, 1896, as reported by Cartes et al. (2009) from 1600 m in the same region. Another species of the same genus, *Mesothuria verrilli* (Théel, 1886), has been reported from the Mediterranean Sea (Koukouras et al. 2007), but the presence of this species in the Mediterranean Sea was reviewed and discarded by Gebruk et al. (2012). *Pseudostichopus occultatus* Marenzeller 1893, a cosmopolitan aspidochirodian species, showed a restricted geographic and bathymetric distribution in our samples, occurring only between 2000 and 2200 m on the open slope, but in very high abundances.

The presence of large aggregations of individuals near the canyon axis could be related to food inputs (Morgan and Neal 2012). Submarine canyons act as conduits of organic matter from the shelf to bathyal abyssal depths (Company et al. 2012). The aggregations of *P. occultatus* may be due to the periodic changes in food availability originating from canyon refluxes, as proposed for *Mesothuria*. To the best of our knowledge, the presence of *Holothuria (Panningothuria) forskali* Delle Chiaie 1823 at mid-bathyal depths has not been reported previously. The deepest records were at 345 m off the Canary Islands (Pérez Ruzafa et al. 1987, Hernández et al. 2013). The specimen sampled in the present study came from the Blanes Canyon at 850 m depth.

Two species of the order Molpadiida were collected. *Molpadia musculus* Risso, 1826 was present only in open slope areas. *Hedingia mediterranea* occurred mainly in canyon areas. Both species are deposit feeders and live infaunally. *Molpadia musculus* was reported as a typical canyon species in the Atlantic Ocean (Amaro et al. 2009) and in other Mediterranean Sea areas (Ramírez-Llodra et al. 2008, Cartes et al. 2009). However, no specimens of *M. musculus* were found in our canyon samples. The high presence of *H. mediterranea* inside canyons suggests habitat specialization, but further sampling inside canyons is necessary to confirm this hypothesis.

The order Dactylochirotida was represented by a single species, *Ypsilothuria bitentaculata* (Ludwig, 1893). The presence of this species only at middle slope depths is commonly reported (Pawson 1965, Gage et al. 1985). This species was reported from the Mediterranean Sea only in the early 1990s (Alvà 1991). Subsequently, *Ypsilothuria bitentaculata* has been cited by other authors (Massin 1996, Cartes et al. 2009) and also as *Y. talismani* by Ramírez-Llodra et al. (2008). Little information is available for *Ypsilothuria* in the Mediterranean Sea. A detailed discussion on its taxonomy must await further sampling.

Of the holothurians species reported previously from the deep (occurrence below 800 m) Mediterranean Sea, only two species did not occur in our study (Table 3). First, *Leptosynapta inhaerens* (O.F. Müller, 1776) occurs at shallower depths of around 500 m. A record of this species by Ramírez-Llodra et al. (2008)
from 1200 m on the Catalan margin off Barcelona is uncertain and may have been misidentified (Company, pers. com). Second, Oestergrenia digitata (Montagu, 1815) var. profundicola (Kemp, 1905) has been reported at 900 m (Marenzeller 1893, Tortonese 1958). One species typical of shallower Mediterranean waters, Parasichopos regalis (Cuvier, 1817), has been cited at 834 m depth by Marenzeller (1893), but no other reports are known for these depths. Finally, there are three other species, Panningia hydrommni (W. Thompson, 1840), Pseudothyone raphanus (Düben and Koren, 1846) and Thyone gadeanae Perrier R., 1898, which have maximum depth ranges extending to around 1000 m in the Atlantic Ocean but occur no deeper than 300 m in the Mediterranean Sea.

Class Crinoidea

Crinoids were totally absent from our samples. Three species of crinoids have been cited from the bathyal Mediterranean seafloor (Table 3). Only one of them, the endemic crinoid Leptometra phalangium (J. Müller, 1841), has a maximum depth of distribution greater than 800 m. Stalked crinoids were not reported in the Mediterranean Sea (David et al. 2006).

There are some records of high abundances of Leptometra phalangium in upper slope areas (100 to 400 m depth) (Perès and Picard 1956a, Mifsud et al. 2009), as observed for the same genus in other areas (Fonseca et al. 2013). The deepest record for this species is 1292 m (Marenzeller 1893). However, despite these deeper records, not a single crinoid was collected in any of our hauls or observed during the ROV dives. Their occurrence at predominantly shallower depths (Hellal et al. 2013) may explain the absence of these crinoids in our samples.

Class Ophiuroidea

Ophiuroids were also totally absent from our samples. Nine species of ophiuroids have been cited previously from the Mediterranean Sea at depths between 300 and 1219 m (Table 3), with only two species, Ophiura (Dictenophiura) carnea Lütken, 1858 ex M. Sars, and Ophiostreta valenciennesi (Lyman, 1879), cited below 800 m (Tortonese 1979, Mifsud et al. 2009). All nine species have been reported from depths greater than 800 m in the Atlantic Ocean, but their maximum depth of distribution in the Mediterranean Sea is shallower. This may explain the lack of ophiuroids in our study.

Endemicity in echinoderms from the Mediterranean

There has been considerable debate as to whether the deep-sea fauna of the Mediterranean is truly endemic or is a sub-population of Atlantic species (Bouchet and Taviani 1992, Tyler 2003). The shallow Gibraltar Sill may be a significant barrier for the influx of larvae of echinoderms from the Atlantic and may act as an isolating mechanism once populations are established in the Mediterranean. The higher temperatures of deep water in the Mediterranean may mitigate the immigration of species from the deep Atlantic. However, an increased sampling effort and molecular analyses are required before this aspect is fully resolved. Our samples increase the availability of genetic data necessary for future comparative studies between populations.

ACKNOWLEDGEMENTS

The authors would like to thank the Officers and Crews of the R/V García del Cid and R/V Sarmiento de Gamboa and the scientific parties of the BIOFUN, PROMETEO and DOSMARES cruises for their contributions at sea. We would like to thank Dr. Daniel Martin and Mrs. Marta Segura (CEAB-CSIC) for the sediment trap samples and Dr. Craig Young for his help in the classification of G. elegans. The authors acknowledge the Biodiversity Heritage Library (http://www.biodiversitylibrary.org/) for making ancient biodiversity literature openly available. This study was funded by the PROMETEO project (CTM2007-66316-C02/MAR, CICYT), the BIOFUN project (CTM2007-28739-E, European Science Foundation and national funding agencies) and the DOSMARES project (CTM2010-21810-C03-03). ERLL was funded by a JAE-DOC postdoctoral grant (CSIC, Spain) with co-funding from the European Social Fund. J.A is a fellow of the Ramón y Cajal Programme (MICINN).

REFERENCES

Billett D.S.M., Bett B.J., Reid W.D.K. et al. 2010. Long-term...

A. Mecho et al.

The American Echinoderm. A. Mecho et al.

References

