Statistisk inferens i Hubbert-Deffeyes Peak Oil-modell

En kritisk analyse av en kontroversiell teori

Asbjørn Dyrnes Ræder

Veiledere: Linda Nøstbakken / Rögnvaldur Hannesson

Selvstendig arbeid i fordypningsområdet Finansiell Økonomi

NORGES HANDELSHØYSKOLE

Dette selvstendige arbeidet er gjennomført som ledd i masterstudiet i økonomi- og administrasjon ved Norges Handelshøyskole og godkjent som sådan. Godkjenningen innebærer ikke at Høyskolen eller sensorer innstår for de metoder som er anvendt, resultater som er fremkommet eller konklusjoner som er trukket i arbeidet.
SAMMENDRAG

John R. Boyce, professor ved University of Calgary, Canada, mener HDPO-modellen hverken gir statistisk tilfredsstillende resulter for amerikanske eller internasjonale aggregerte og disaggregerte oljeproduksjons- og funndata (Boyce, 2013). Denne utredningen bekrefter langt på vei Boyces påstander ved inferens av HDPO-modellen anvendt på norske og britiske produksjonsdata for olje og gass.

Resultatene indikerer at modellen ikke evner å gi statistisk tilfredsstillende resultater dersom alle tilgjengelige observasjoner legges til grunn. Modellen gis heller ikke støtte dersom anvendt på eldre produksjonshistorikk, altså analyseperioder hvor nyere observasjoner ekskluderes i modelleringen. Dette tolkes som et mål på at modellen, basert på fortidens tilgjengelige produksjonstill, ikke evner å gi prediksjoner i tråd med dagens, observerte størrelser. Dette er et sentralt moment.

Utredningen konkluderer således at HDPO-modellen, for gjeldende datagrunnlag, i svært liten grad evner å si noe om hverken 1) størrelses på endelig utvinnbare olje- og gassreserver, eller 2) når disse ressursenes produksjonskurver i tid vil passere sine maksimumsverdier, såkalt «peak». En antatt viktig årsak til dette er modellens manglende hensyn til markedspriser og teknologisk utvikling og andre faktorer.
INNHOLD

FORORD ... 8

1 INTRODUKSJON ... 9
 1.1 BAKGRUNN .. 9
 1.2 PROBLEMSTILLING ... 16
 1.3 STRUKTUR OG ANALYSETILNÆRMING ... 16

2 HUBBERT-DEFFEYES PEAK OIL-MODELL .. 18
 2.1 HUBBERT, DEFFEYES OG TEORIEN OM «PEAK OIL» ... 18
 2.2 MATHEMATISK KONKRETISERING AV HDPO-MODELLEN ... 20
 2.3 HDPO-MODELLENS ESTIMERING AV K ... 23
 2.4 HUBBERT-DEFFEYES PEAK OIL-GRAFER FOR NORSK OG BRITISK OLJE OG GASS 24
 2.5 KRITIKK AV HDPO-MODELLEN OG ANDRE SYNSPUNKTER .. 30

3 METODISK TILNÆRMING TIL HDPO-MODELLEN .. 37
 3.1 LINEÆRE OG KVADRATISKE REGRESJONER ... 37

4 HYPOTESETESTER .. 39
 4.1 UTVIDKING AV HYPOTESER .. 39
 4.1.1 Hypotese 1 .. 39
 4.1.2 Hypotese 2 .. 40
 4.1.3 Hypotese 3 .. 42
 4.1.4 Oppsummering av hypoteser .. 43
 4.1.5 Andre mulige hypotesetester .. 44

5 ANALYSE AV HDPO-MODELLEN PÅ PRODUKSJONSDATA ... 45
 5.1 STATISTISK METODE OG DATAGRUNNLAG .. 45
 5.2 NORSK OLJEPRODUKSJON .. 49
 5.2.1 Tolkning av resultater .. 52
 5.3 NORSK GASSPRODUKSJON ... 54
 5.3.1 Tolkning av resultater .. 57
 5.4 BRITISK OLJEPRODUKSJON .. 58
 5.4.1 Tolkning av resultater .. 61
 5.5 BRITISK GASSPRODUKSJON ... 62
 5.5.1 Tolkning av resultater .. 65
 5.6 EKSLUDERING AV NYERE OBSERVAJSJONER .. 66
 5.6.1 Tolkning av resultater .. 69

6 OPPSUMMERING OG KONKLUSJON ... 71
 6.1 OPPSUMMERING AV RESULTATER .. 71
 6.2 KONKLUSJON .. 72
 6.3 DISKUSJON .. 75

REFERANSGRUNDLAG ... 79
FIGUROVERSIKT

FIGUR 1 - VERDENS SAMLEDE OLJEPRODUKSJON 1965 - 2011 (BP, 2013; OD, 2014) ... 10
FIGUR 3 - FORDELING UTVINNBARE BESRURSER OG USIKKERHET I ESTIMATENE PER 31.12.12 (OD, 2014A) 13
FIGUR 4 - BRITISKE OLJERESERVER OG -PRODUKSJON FRA 1973 – 2012 (UK DECC, 2014) 14
FIGUR 5 - BRITISKE GASSRESERVER OG -PRODUKSJON FRA 1973 – 2012 (UK DECC, 2014) 14
FIGUR 6 - HUBBERTS (1956) FREMSTILLING AV USAS OLJE-PEAK .. 21
FIGUR 7 - GAUSSISK VERSUS LOGISTISK VEKST, LITEN FIGUR VISER NORMALFORDELT PRODUKSJONSKURVE 23
FIGUR 8 - HUBBERT-DEFFEYRES PEAK OIL-GRAF: NORSK OLJEPRODUKSJON 1972-2013 28
FIGUR 10 - HUBBERT-DEFFEYRES PEAK OIL GRAF: BRITISK OLJEPRODUKSJON 1966-2012 29
FIGUR 11 - HUBBERT-DEFFEYRES PEAK OIL GRAF: BRITISK GASSPRODUKSJON 1971-2012 29
FIGUR 12 - MATEMATISK TILNÆRMING TIL HUBBERT-KURVEN: NORSK OLJEPRODUKSJON 31
FIGUR 13 - EUROPEISK BRENT SPOTTPRIS FOB (EIA, 2014B) ... 34
FIGUR 14 - GRAFISK ILLUSTRASJON AV HYPOTESE 1 (VENSTRE: LINEÆR, HØYRE: KVADRATISK) 40
FIGUR 16 - OLJEDIREKTORATETS ESTIMERTETE PETROLEUMSRESSURSER 2014 - 2030 (OD, 2014) 76
FIGUR 17 - ÅRLIG OLJEPRODUKSJON USA 1900 – 2013 (EIA, 2014f) .. 77
TABELLOVERSIKT

TABELL 1 - Oljedirektorates ressursregnskap per 31.12.13 (OD, 2014b) ... 12
TABELL 2 - Liste over ulike prediksjoner for Peak-tidspunkt ... 35
TABELL 3 - Oppsummering av hypoteser ... 43
TABELL 4 - Terminologi for hypotestesting og potensielle feilkilder .. 43
TABELL 5 - Lineære regressjonsresultater Q_t/X_t, norsk oljeproduksjon, 1971 - 2005 49
TABELL 6 - Lineære regressjonsresultater, norsk oljeproduksjon ... 51
TABELL 7 - Kvadratiske regressjonsresultater, norsk oljeproduksjon ... 51
TABELL 8 - Oppsummering av hypoteetestester norsk oljeproduksjon ... 54
TABELL 9 - Lineære regressjonsresultater Q_t/X_t, norsk gassproduksjon, 1977 - 2005 55
TABELL 10 - Lineære regressjonsresultater, norsk gassproduksjon .. 56
TABELL 11 - Kvadratiske regressjonsresultater, norsk gassproduksjon ... 56
TABELL 12 - Oppsummering av hypoteetestester norsk gassproduksjon ... 58
TABELL 13 - Lineære regressjonsresultater Q_t/X_t, britiske oljeproduksjon, 1965 - 2005 59
TABELL 14 - Lineære regressjonsresultater, britisk oljeproduksjon .. 60
TABELL 15 - Kvadratiske regressjonsresultater, britisk oljeproduksjon ... 60
TABELL 16 - Oppsummering av hypoteesteder britisk oljeproduksjon ... 62
TABELL 17 - Lineære regressjonsresultater Q_t/X_t, britisk gassproduksjon, 1965 - 2005 63
TABELL 18 - Lineære regressjonsresultater, britisk gassproduksjon .. 63
TABELL 19 - Kvadratiske regressjonsresultater, britisk gassproduksjon .. 64
TABELL 20 - Oppsummering av hypoteesteder britisk gassproduksjon ... 65
TABELL 21 - Lineære regressjonsresultater, ekskludering av nyere observasjoner 68
TABELL 22 - Kvadratiske regressjonsresultater, ekskludering av nyere observasjoner 68
TABELL 23 - Oppsummering av resultater, ekskludering nyere observasjoner .. 69
ORDFORKLARINGER OG DEFINISJONER

<table>
<thead>
<tr>
<th>Ressurser</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betingede ressurser</td>
<td>Utvinnbare petroleumsmengder som er påvist, men som det ennå ikke er tatt beslutning om og gitt tillatelse til å utvinne.</td>
</tr>
<tr>
<td>BP</td>
<td>Tidligere Britisk Petroleum, ett av verdens største oljeselskaper.</td>
</tr>
<tr>
<td>BPD</td>
<td>Oljeproduksjon angitt ved antall fat per dag (barrels per day).</td>
</tr>
<tr>
<td>DECC</td>
<td>United Kingdom Department of Energy & Climate Change.</td>
</tr>
<tr>
<td>HDPO-modell</td>
<td>Hubber Deffeyes Peak Oil-modell.</td>
</tr>
<tr>
<td>LNG</td>
<td>Flytende tørrgass (Liquefied Natural Gas).</td>
</tr>
<tr>
<td>MBBL</td>
<td>Millioner fat olje. Ett fat olje tilsvarer 159 liter, eller 0,159 standard kubikkmeter (Sm3).</td>
</tr>
<tr>
<td>MBOE</td>
<td>Millioner fat oljeekvivalenter (o.e.).</td>
</tr>
<tr>
<td>NGL</td>
<td>Våtgass som består av tre ulike gasser: Etan, propan, og butan, samt små mengder tyngre hydrokarboner (Natural Gas Liquids).</td>
</tr>
<tr>
<td>OD</td>
<td>Oljedirektoratet. Norsk statlig forvaltningsorgan og kildebank.</td>
</tr>
<tr>
<td>Olje</td>
<td>Samlebetegnelse for råolje og andre flytende petroleumsmaterialer.</td>
</tr>
<tr>
<td>Oljeekvivalent</td>
<td>Måleenhet som uttrykker den energimengden som blir frigjort ved forbrenning av de ulike petroleumstypene, eller til salgsverdiene av disse, slik at alt kan sammenlignes med olje. En angivelse som brukes når olje, gass og NGL skal summeres.</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Samlebetegnelse for alle flytende og gassformige hydrokarboner.</td>
</tr>
<tr>
<td>Reserver</td>
<td>Gjenværende, utvinnbare, salgbare petroleumsmengder som rettighetshaverne har besluttet å utvinne, og som myndigheten har gitt tillatelse til å utvinne.</td>
</tr>
<tr>
<td>Sm3</td>
<td>Standard kubikkmeter ved referansetilstand 15 °C og 1,01325 bar.</td>
</tr>
<tr>
<td></td>
<td>- 1000 Sm3 gass tilsvarer 1 Sm3 o.e.</td>
</tr>
<tr>
<td></td>
<td>- 1 Sm3 o.e. tilsvarer 6, 28981 fat o.e.</td>
</tr>
<tr>
<td>Uoppdagede ressurser</td>
<td>Utvinnbare petroleumsmengder som det er anslått at kan bli påvist ved videre leting.</td>
</tr>
</tbody>
</table>
FORORD

Denne masteroppgaven er skrevet som en del av NHHs masterstudie innen hovedprofilen Finansiell Økonomi. Utredningens tema er et resultat av mine brede faglige og personlige interesser innen temaer som spenner finansiell økonomi, energiøkonomi og økonometri. Arbeidet markerer både slutten på en minnerik periode ved Norges Handelshøyskole, og starten på arbeidslivet.

Utredningen tar for seg et politisk aktuelt tema som særlig angår Norge og vårt lands produksjon av olje og gass samt tilhøre økonomiske forhold.

Jeg ønsker først og fremst å takke min opprinnelige veileder, Professor Rögnvaldur Hannesson, for hans bidrag til spissing av tema og gode, faglige diskusjoner. Da Hannesson trådte over i pensjonisttilværelsen i løpet av mitt arbeid med utredningen, overtok Førsteamanuensis Linda Nøstbakken som veileder. Nøstbakken satte seg raskt inn i tematikken, og har gjennom hele prosessen vist oppriktig interesse for arbeidet med utredningen. Tidsriktige, konstruktive og ærlige tilbakemeldinger, strukturelle kommentarer og gode faglige vurderinger har vært betydningsfullt for mitt arbeid fra begge veiledere.

Oslo, juni 2014,

Asbjørn Dyrnes Ræder
1 INTRODUKSJON

Dette kapittelet tjener som en introduksjon til utredningen, med hensikt å sette leseren inn i problematikken som skal studeres og fagfeltene denne bygger på. Det vil innledningsvis bli gitt en rask, kontekstuell presentasjon av bakgrunnen for utredningen. Til slutt introduseres problemstillingen som søkes belyst, samt trekk ved og begrunnelser for utredningens strukturelle oppbygning.

1.1 BAKGRUNN

Mens produksjonsnivåene i Afrika og særlig Midtøsten har vokst betydelig de siste tiårene, har amerikansk, britisk og norsk oljevirksomhet bidratt negativt til verdens samlede vekst. Hvis den nylige økningen innen skifergass og oljesand ses bort fra, har USA opplevd en jevn nedgang i produksjonsnivå siden så tidlig som 1970, se Figur 1 (Oljedirektoratet [OD], 2014a; British Petroleum [BP], 2013).

Innen år 2000 var norsk oljeproduksjon på hele 1140 millioner fat, eller 180 millioner standard kubikkmeter (Sm3) årlig, mens tallet for 2012 var redusert til under halvparten av rekordåret – nå bare 560 millioner fat, eller 90 millioner Sm3 (Oljedirektoratet, 2014a). Mens norsk oljeproduksjon altså etter alt å dømme

FIGUR 1 - VERDENS SAMLEDE OLJEPRODUKSJON 1965 - 2011 (BP, 2013; OD, 2014)

For Norge sin del estimerer Oljedirektoratet (2014b) gjenværende olje- og gassressurser til henholdsvis 3,3 og 4150 milliarder Sm3. Dette er nesten like mye som det allerede har blitt solgt og levert totalt i perioden 1971 – 2013 for olje, og dobbelt så mye for gass. Dette er riktignok inklusive flere usikkerhetsmomenter både om eksisterende felt og funn (ressurskategorier 4-7), samt antatte ressursmengder i prospekter, prospektmligheter og ikke-kartlagte ressurser (ressurskategorier 8 og 9), se Tabell 1. Stor usikkerhet til tross sier disse estimatene likevel mye om norske myndigheters forventninger til totale utvinnbare ressurser.
Dette gjelder også andre estimater for internasjonal olje og gass, estimatene i seg selv er usikre, og tilsvarende usikkerhet rundt fremtidens teknologiske utvikling gjør det vanskelig å sette nøyaktig tall på hvor mye petroleumssressurser en kan hente opp fra bakken, til hvilken tid.

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ressurskategori</th>
<th>Olje, mill. Sm3</th>
<th>Gass, Mrd. Sm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solgt og levert</td>
<td>0 Solgt og levert</td>
<td>3897</td>
<td>1874</td>
</tr>
<tr>
<td>Reserver</td>
<td>1 I produksjon</td>
<td>599</td>
<td>1437</td>
</tr>
<tr>
<td></td>
<td>2 Godkjent og besluttet utbygd</td>
<td>224</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>3 Besluttet av rettighetshaverne</td>
<td>12</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Sum reserver</td>
<td>834</td>
<td>2049</td>
</tr>
<tr>
<td>Betingede ressurser</td>
<td>4 I planleggingsfasen</td>
<td>135</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>5 Utvinning sannsynlig, men uavklart</td>
<td>188</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>7F Ikke evaluerte funn knyttet til felt</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7A Mulige framtidige tiltak for økt utvinning</td>
<td>155</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Sum betingede ressurser i felt</td>
<td>492</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Funn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 I planleggingsfasen</td>
<td>511</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>5 Utvinning sannsynlig, men uavklart</td>
<td>59</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>7F Nye funn, ikke evaluert</td>
<td>109</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Sum betingede ressurser i funn</td>
<td>679</td>
<td>330</td>
</tr>
<tr>
<td>Uoppdagede ressurser</td>
<td>8 og 9 Ressurser i prospekter, prospektmulighet og ikke kartlagte ressurser</td>
<td>1330</td>
<td>1490</td>
</tr>
<tr>
<td></td>
<td>Sum totale ressurser</td>
<td>7232</td>
<td>6018</td>
</tr>
<tr>
<td></td>
<td>Sum gjenværende ressurser</td>
<td>3336</td>
<td>4144</td>
</tr>
</tbody>
</table>

De nærmeste ti årene er det, for Norges del, forventet at produksjonen forholder seg relativt stabil, muligvis litt økende. Årsaken til dette er blant annet at store felt som Johan Sverdrup og Johan Castberg snart kommer i produksjon. Forholdet mellom produksjon av gass og olje, inklusive NGL og kondensat, er også forventet å være nokså stabilt i de nærmeste årene. På lengre sikt er antall og størrelsen på nye funn avgjørende for produksjonsnivået (Olje- og energidepartementet, 2014a).
Figuren under illustrerer hvordan norske både produserte, beviste og uoppdagede reserver fordeles, og gir som sådan et geologisk, faglig fundamentert bilde på hva som allerede er produsert, og hva som forventes å kunne produseres i fremtiden av både flytende og gassformige hydrokarboner.

FIGUR 3 - FORDELING UTVINNBARE RESSURSER OG USIKKERHET I ESTIMATENE PER 31.12.12 (OD, 2014A)

Figu 4 og Figur 5 under er hentet fra det britiske Department of Energy & Climate Change (2014a), og viser hvordan forventningene til britiske oljereserver over tid har endret seg, og hvordan akkumulert produksjon de siste årene har flatet ut. Grafene illustrerer at det i 2012 er mindre både beviste, sannsynlige og mulige reserver enn i industriens tidlige alder, og at produksjonskurven virker å ha flatet noe ut representert ved lavere produksjon nå enn før.
Nye funn og ny teknologi er med på å forlenge oljealderen, men olje og andre petrolerumsrelaterte ressurser er altså per definisjon ikke-fornybare, og må ta slutt før eller senere. Slutten på oljealderen kan komme nettopp som en konsekvens av at olje og gass er ikke-fornybare, men også av at hydrokarbonene som ressurs taper i kampen mot andre (fornybare) energiressurser. British Petroleums årlige framtidsutsikter antar per januar 2014 at verden samlet sett i 2035 fremdeles vil basere 28 % av sitt energibehov på olje, 27 % på kull, 26 % på gass og bare 7 % på

Det er likevel økende og bred konsensus både i fagmiljøer, politikk og samfunnet for øvrig at dagens produksjon- og konsumnivå av petroleumsressurser ikke hverken kan eller vil være evigvarende. Både politikere og næringen, særlig i oljeproducerende nasjoner, vil måtte forberede seg på omstillingen som en gradvis, fremtidig nedbygging av oljeindustrien vil føre med seg (Ekeseth, 2013).

Spørsmålet det ofte strides om er derfor nettopp nøyaktig når og hvordan den mye omtalte «slutten» vil inntreffe – og enda viktigere, om vendepunktet faktisk er mulig å predikere.

Denne utredningen vies til å undersøke og utfordre en omstridt metode hvis hensikt er å tidfeste olje- og gassproduksjonens vendepunkt basert på ressursens iboende ikke-fornybarhet: Hubbert-Deffeyes Peak Oil-modell. Det vil senere også trekkes inn at særlig Deffeyes argumenterer for dramatiske konsekvenser av et fremtidig produksjonsfall, både for verdensøkonomien og særlig oljeproducerende stater.
1.2 PROBLEMSTILLING
Problemstillingen for utredningen tar utgangspunkt i tematikken stipulert ovenfor, og søker å avdekke hvorvidt Hubbert-Deffeyes Peak Oil-modell (HDPO-modellen) evner å gi et empirisk robust og troverdig estimat for

1) størrelsene på endelig utvinnbare olje- og gassreserver
2) når olje- og gassutvinningens toppunkt vil forekomme – eller har forekommet

For å etterprøve HDPO-modellens evne til fullt ut å forklare norsk og britisk empiri, ser jeg på alle de fire datasettene innenfor ulike tidsperioder. Hensikten med dette er å utfordre modellen og undersøke hvorvidt den fungerer tilfredsstillende for produksjonstallenes fulle historikk, eller om det er nødvendig å gå til det skritt å benytte utsnitt av datagrunnlaget for å oppnå ønsket resultat. I så fall må det drøftes om dette er innenfor allment aksepterte vitenskapelige normer å gjøre.

Som en naturlig begrensning av oppgavens omfang, og for å opprettholde et tilstrekkelig detaljfokus på det som faktisk analyseres, vil HDPO-modellen i denne utredningen bare vurderes for produksjonstall, ikke funntall, for norsk og britisk olje og gass.

1.3 STRUKTUR OG ANALYSETILNÆRERING
Utredningens struktur avspeiler prinsipielt følgende fem sentrale elementer: Introduksjon, teori, metode, resultater og diskusjon, i tillegg til et oppsummerende sammendrag i begynnelsen av oppgaven. Det benyttes en stegvis tilnærming til selve analysen, hvor det første steget innebærer innsamling og av data, og det andre innebærer analyse av data og etterprøving av formulerte hypoteser.
I kapittel 1.1 er det gitt en kort, deskriptiv gjennomgang av den del av petroleumsindustrien som oppgaven omhandler. Dette etterfølges av en teoretisk gjennomgang av Peak Oil-teorien og HDPO-modellen i kapittel 2, som i tillegg vil belyse noe av den retorikk og det fremtidssyn som teorien og modellen ofte bringer med seg. Videre vil det i kapittel 2.5 presenteres relevant forskningsbasert og øvrig kritikk av modellen, både knyttet til det metodiske og modellens samfunnsmessige implikasjoner. Etter dette gis det en metodisk redegjørelse for HDPO-modellen samt utvikling av de hypoteser modellen og dens resultater skal etterprøves i henhold til. Dette vil danne grunnlag for den statistiske inferensen.

For bedre å kunne etterprøve Hubbert og Deffeyes’ påstander, vil det både modelleres og analyseres tilfeller som sammenfaller med deres forutsetninger, og tilfeller som ikke gjør dette. Se kapittel 2 for både forklaring og kritikk av modellens forutsetninger. På grunn av disse vier utredningen et relativt stort fokus nettopp til hvilke resultater modellen gir ved ulike analyseperioder basert på samme datagrunnlag. Dette for å forsøke å isolere og undersøke effekten det faktisk har å ekskludere enkelte observasjoner, herunder både eldre og nyere datapunkter.

Avslutningsvis oppsummeres dette med et diskusjons- og konklusjonskapittel knyttet til konteksten forklart innledningsvis i kapittel 1.1. Hensikten er å oppsummere og diskutere hvorvidt HDPO-modellen sier noe fornuftig om tallmaterialet lagt til grunn, særlig med tanke på problemstillingen definert i kapittel 0.

Referanselisten viser de referanser som det er referert til i løpet av teksten.
2 HUBBERT-DEFFEYES PEAK OIL-MODELL

Dette kapittelet vil presentere relevant teoretisk bakgrunn for utredningen, herunder en innledende beskrivelse av tankene bak Peak Oil samt en matematisk konkretisering av HDPO-modellen og dens elementer. Avslutningsvis ses dette i delkapittel 2.5 i sammenheng med empiriske fakta og relevant forskningsbasert kritikk av både teori og modell. Kapittel 2.5 gir også tilsvar til forsvarere av Peak Oil.

2.1 HUBBERT, DEFFEYES OG TEORIEN OM «PEAK OIL»

Marion King Hubbert (1903 – 1989) var en amerikansk geofysiker og fremragende forsker ved Shells forskningslab i Houston fra 1943 – 1964. Han underviste på sine eldre dager ved Stanford University, hvor han var kjent blant studentene som en meget autoritær skikkelse (Deffeyes, 2001, s. 2, 134).

Det empiriske faktum at amerikansk oljeproduksjon nådde sitt toppunkt rundt 1970, at norsk og britisk oljeproduksjon senere har fulgt tilsvarende mønstre, og at også britisk kullproduksjon gjorde det samme allerede i 1913 (Mitchell, 1988, s. 248-249),
tyder på at logikken om en slik produksjonstopp for denne type ressurser i utgangspunktet virker rimelig. Hubbert uttalte dog i 1974 til vitenskapsmagasinet National Geographic at verdens samlede oljeproduksjon ville nå sin topp allerede i 1995 (Grove, 1974). Denne gangen traff han ikke like bra, all den tid det i 2014 produseres mer olje enn noensinne på verdensbasis. Selve tidspunktet for disse toppunktene virker med andre ord vanskelig å forutsi.

En av teoriens mest prominente forkjempere er Kenneth S. Deffeyes (2003; 2005; 2010), Professor Emeritus ved Princeton University og tidligere kollega av Hubbert. Deffeyes har i en årrekke forfektet Peak Oil-teorien, og har selv i lengre tid driftet en netside dedikert til Peak Oil-teorien hvor han 11. februar 2006 skrev følgende innlegg (Deffeyes, 2006):

Join us as we watch the crisis unfolding. In the January 2004 Current Events on this web site, I predicted that world oil production would peak on Thanksgiving Day, November 24, 2005. In hindsight, that prediction was in error by three weeks. An update using the 2005 data shows that we passed the peak on December 16, 2005.

[…]

By 2025, we're going to be back in the Stone Age.

Deffeyes mente da å kunne vise til at global oljeproduksjon allerede har passert sitt absolutte toppunkt, og at alternative energikilder ikke vil være tilstrekkelig til å møte verdens energibehov ved en fallinge oljeproduksjon. Han avslutter sitt innlegg med følgende utsagn:

That's it. I can now refer to the world oil peak in the past tense. My career as a prophet is over. I'm now an historian (sic).

Deffeyes argumenterer, som Hubbert, for katastrofale konsekvenser av en rask, umiddelbar nedgang i produksjon som han mener vil komme på andre siden av toppunktet. Denne raske nedgangen spås som et resultat av verdens stadig økende etterspørsel etter fossile brensel, som Deffeyes argumenterer for ikke kan reverseres i tide idet produksjonen først har begynt å falle (Deffeyes 2001, s. 10). For
kort å imøtekomme Deffeyes og Peak Oil-teoriens prediksjoner her, poengteres det at verdens samlede produksjon var 29 707 MBOE i 2005, 30 505 i 2011, og forventes å stige videre i årene som kommer (IEA, 2013). Særlig har de teknologiske nyvinningene innen skifergass og -olje de siste årene satt en stopper for disse prediksjonene, da det som nevnt i kapittel 1.1 forventes at skiferolje inne 2035 vil kunne utgjøre omtrent 12 % av verdens samlede oljeproduksjon (PWC, 2013).

2.2 MATEMATISK KONKRETSERING AV HDPO-MODELLEN
Hubbert og Deffeyes’ utgangspunkt er svært interessant. De forsøker å estimere endelig utvinnbare reserver, for så å si at ressursens utvinningstopp vil inntreffe når man har utvunnet nøyaktig halvparten av totalt utvinnbart volum. Dette fører til to grunnleggende antakelser om datamaterialet (Deffeyes, 2001, s. 139):

1) Produksjonshistorikken er klokkeformet, med rund topp og haler på hver side
2) Nedgangen på høyre side av kurven er et speilbilde av venstresidens økning

Deffyes på sin side argumenterer for at en Gauss-kurve passer bedre til å estimere produksjonskurvene på grunn av sine tynnere haler, men at Hubberts modell likevel kan benyttes da fordelingenes egenskaper er sammenliknbare (Deffeyes 2001, 153).

Hubbert antok følgende lineære sammenheng mellom produksjonsnivå Q_t og kumulativ produksjon til periode t, $X_t = \sum_{s=1}^{t} Q_s$ (1982, likning 27, s. 46):

\[
\frac{Q_t}{X_t} = r_q \left(1 - \frac{X_t}{K} \right) \quad (1)
\]

Likning (1) er en logistisk vekstfunksjon. Denne funksjonen gir en utvikling over tid der X_t følger en S-formet tidsutvikling, hvor den først er økende i tid med en økende rate, for så å øke med en fallende rate, og der Q_t følger en klokkeformet kurve (Boyce, 2013, s.95). K i denne likningen er et estimat for endelig utvinnbare reserver, altså den akkumulerte mengde som kan produseres mellom tid 0 og evigheten.
Parameteren r svarer til det predikerte nivået på det initielle forholdet mellom produksjon og kumulativ produksjon, med andre ord der den lineære approksimasjonen i Figur 7 krysser den vertikale aksen (Deffeyes, 2005, s.38). Deffeyes (2005, s. 37) kaller r en slagsrente, eller et uttrykk for årlig produksjon som andel av akkumulert produksjon, som så angir det negative stigningstallet på linjen ved r_q/K.

Ved å multiplisere begge sider med X_t, kan man utlede en kvadratisk sammenheng for Q_t av (1) (Boyce, 2013, s. 95):

$$Q_t = r_q X_t \left(1 - \frac{X_t}{K}\right) \quad (2)$$

Dette er utgangspunktet for den klokkeformede kurven som ofte vises i forbindelse med fremstillinger av akkumulert produksjon som andel av endelig utvinnbare reserver, se Figur 6 under (Hubbert, 1956, s. 22, Figure 21).

![Figure 21 - Ultimate United States crude-oil production based on assumed initial reserves of 150 and 200 billion barrels.](image)

FIGUR 6 - HUBBERTS (1956) FREMSTILLING AV USAS OLJE-PEAK

På samme måte som for produksjon, antok Hubbert tilsvarende sammenhenger for oljefunn (Hubbert 1982, s. 60):

$$\frac{D_t}{C_t} = r_q \left(1 - \frac{C_t}{K}\right) \quad (3)$$
D_t representerer her størrelsen på totale funn (engelsk: discoveries) i periode t, mens C_t representerer akkumulerte funn frem til tidspunkt t, $C_t = \sum_{s=0}^{t-1} D_s \cdot r_d$ i linking (3) følger samme logikk som r_q i (1).

Tilsvarende som for produksjonssammenhengene kan likning (3) omformuleres ved kryssmultiplikasjon til et kvadratisk uttrykk for D_t:

$$D_t = r_d C_t \left(1 - \frac{C_t}{K}\right) \quad (4)$$

K er lik både i produksjons- og funnlikningene. Av dette følger at når $C = K$ kan det ikke finnes mer olje. Dette impliserer at akkumulert produksjon er lik akkumulerte funn, $X_{T_Q} = C_{T_Q}$, i det øyeblikk all olje er produsert. Da må også $T_D \leq T_Q$. Det følger av at all oppdaget olje til enhver tid vil være lik samlet produksjon pluss beviste reserver, $C_t = X_t + R_t$. Når $t \to \infty$ vil beviste reserver $R_{\infty} \to 0$, og $C_{\infty} = X_{\infty} = K$ (Hubbert, 1982, s. 60).

Merk at dette impliserer en forutsetning om at all olje som finnes faktisk er økonomisk lønnsom å produsere. Dette er ikke nødvendigvis tilfellet, og avhenger i stor grad av hvor høy markedsprisen på olje eller petroleum faktisk er i øyeblikket det vurderes hvorvidt feltet skal utvinnes eller ikke.

Dersom dette ses bort fra, vises det under at når all olje er produsert, og $X_t = K$, er høyresiden av likning (1) lik null. Av dette følger, som nevnt ovenfor, at modellens «peak» vil inntreffe når $X_t = K/2$ (Boyce, 2013, s. 96). Dette kan vises eksplicit ved å derivere (2) for X_t (Hubbert, 1982, s. 46):

$$\frac{dQ_t}{dX_t} = r_q - \frac{2X_t r_q}{K} = 0 \quad (5)$$

Som videre gir maksimum for Q_t uttrykt ved X_t og K:

$$r_q = \frac{2X_t r_q}{K} \iff X_t = \frac{K}{2} \quad (6)$$

Basert på denne sammenhengen forsøker blant annet Deffeyes (2003; 2005) å gi et tidsestimat for når verdens samlede oljeproduksjon vil oppnå sitt maksimum. Han viser til sine estimater for endelig utvinnbare reserver K, og påpeker at siden
datidens akkumulerte produksjonstall \((X_t \text{ for } t = \text{ tidspunkt prediksjonen gjøres})\) nærmer seg hans estimat for \(K/2\), må vi snart være ved vendepunktet. Dette understreker viktigheten av \(K\) og dens tolkning i vurderingen av selve HDPO-modellen, da ulike estimerer for \(K\) i stor grad vil kunne endre tidspunktet for når oljeproduksjonen antas å nå sitt toppunkt og deretter falle i volum over tid.

Til tross for at Hubbert (1982, s. 45) selv sier at modellen ovenfor er en svært forenklet modell av virkeligheten, er det disse formuleringene som danner grunnlaget for både Hubberts og Deffeyes' faktiske kalkuleringer for når toppen forventes å nås.

2.3 HDPO-MODELLENS ESTIMERING AV \(K\)

Et viktig moment i HDPO-modellen er nettopp hvordan parameteren \(K\) estimeres. Deffeyes estimerer \(K\) ved å se på det approksimerte, lineære forholdet mellom akkumulert produksjon og ratioen gitt ved årlig produksjon som andel av akkumulert produksjon, \(X_t\) og \(Q_t/X_t\), som gitt av (1) og (3) (Deffeyes 2001, s. 153). Dette illustreres i Figur 7, som viser en normalfordelt, symmetrisk Gauss-kurve med gjennomsnitt lik 15 og standardavvik lik 6 (liten figur).

FIGUR 7 - GAUSSISK VERSUS LOGISTISK VEKST, LITEN FIGUR VISER NORMALFORDELT PRODUKSJONSKURVE
Figuren viser også et tilhørende sirkelplokt som sammenlikner veksten i Gauss-kurven (sirkelplokt stor figur) med en lineær approksimasjon til veksten gitt av en logistisk fordeling (heltrukket linje stor figur) (Deffeyes 2001, s. 153). Arealet under Gauss-kurven er i dette tilfellet lik 8, hvilket sammenfaller med hvor både Gaussveksten og den lineære approksimasjonen krysser x-aksen.

Det er denne logikken som ligger bak Deffeyes’ antakelser, med det unntak at produksjonstallene i realiteten ikke har kommet langt nok til å gi en hel kurve, jamfør Figur 6 i kapittel 2.2. Hvis det likevel stemmer at olje- og gassproduksjonen kan sies å være tilnærmet lik en symmetrisk Gauss-kurve, vil endelig utvinnbar mengde olje og gass, K, kunne finnes ved å predikere hvor den fallende vekstkurven krysser x-aksen.

Dette er, i følge Deffeyes, den eneste antakelsen Hubberts teori bygger på. Denne linjen er Hubberts Peak Oil-teori, og det er ikke nødvendig med flere antakelser eller gjetninger Deffeyes (2005, s. 38). Linjen kalkuleres fra det tidspunkt hvor punktene i Figur 7 etter øyemål «roer seg ned til en ganske god rett linje» (Deffeyes, 2005, s. 36, egen oversettelse). Resten av analysen som følger av HDPO-modellen er simpelthen implikasjoner av denne lineære linjen, og er i seg selv ikke kontroversielle. Dette momentet vil drøftes videre både i kapittel 2.4 og 2.5, hvor sistnevnte oppsummerer relevant kritikk av modellen, og også trekkes inn i det konkluderende kapittel 6.

Hubbert uttalte i sin tid at produksjonstall for ulike amerikanske delstater i seg selv ikke nødvendigvis er pent normalfordelte, men antok at de ville være det bare man aggregerte tall for nok felt, land og regioner (Hubbert 1956, Figure 11-13). Denne antakelsen om aggregert normalfordeling av produktjonsdata er en grunnleggende idé bak HDPO-modellen og dens anvendelse på større datasett.

2.4 Hubbert-Deffeyes Peak Oil-grafefer for norsk og britisk olje og gass

Figur 8 og Figur 9 viser logikken nevnt i Figur 7 ved årlige størrelser for Q_t/X_t i norsk olje- og gassproduksjon, mens Figur 10 og Figur 11 viser tilsvarende forhold for britisk olje- og gassproduksjon. Y-aksen angir forholdstallet Q_t/X_t, mens X-aksen angir akkumulert produksjon X_t. Figurene demonstrerer flere viktige aspekter ved HDPO-modellen og hvordan dens antakelser passer med empiriske størrelser. For det første viser den hvordan forholdet Q_t/X_t minker over tid. Dette indikerer at
veksten i Q_t er lavere enn veksten i X_t, en naturlig antakelse om dagens oljeproduksjon, og implisitt i dette en fallinge vekst i Q_t. Skulle man eksempelvis over tid opprettholdt et Q_t/X_t-nivå på 0,1, måtte man hatt 10 % årlig vekst i produksjonen. Dette samsvarer med HDPO-modellens forutsetninger.

Grafene viser imidlertid også hvordan to ulike lineære regresjonslinjer gir vidt forskjellige estimator for K, definert av hvor de krysser x-aksen. Nettopp dette høster Hubbert og Deffeyes mye kritikk for. I sin opprinnelige artikkel om emnet, da Hubbert (1956, s. 24) predikerte at USAs oljeproduksjon ville nå sin topp enten i 1965 eller i verste fall 1970, utelot han alle produksjonstall forut for 1930 uten faktisk å oppgi dette (Boyce 2013, s. 101). Det samme gjør Deffeyes i sine utregninger. Han begrenser seg til bare å inkludere data fra 1983 og senere hva gjelder verdens produksjonstall, og 1958 og senere for USA, med følgende begrunnelse (Boyce 2013, s. 100):

Many of the points before 1958 line are above the trend – not because production was too high, but because it happened too early (Deffeyes 2005, s. 37).

Det er noe påfallende at Deffeyes utelukker tall også fra 1930 – 1958, tall selv Hubbert i sin opprinnelige fulltreffer for USAs produksjonstall inkluderte i sine beregninger. Hubbert estimerte endelig utvinnbare reserver, K, på 150 til maksimalt 200 milliarder fat. Dette var i seg selv ikke like treffsikkert som selve tiden for vendepunktet, da USAs akkumulerte oljeproduksjon per 30.06.2013 var på 208 milliarder fat, i tillegg til en årlig produksjon i 2011 på 2.8 milliarder fat (U.S. Energy Information Administration [EIA], 2012; 2014a; 2014c; 2014d; 2014f; BP, 2013). Deffeyes har selv predikert en K på 228 milliarder fat for USA (Deffeyes 2005, s. 36).

De stippled regresjonslinjene i figurene under representerer en lineær approksimasjon for hele datamaterialet. De heltrukne regresjonslinjene er imidlertid kalkulert med utgangspunkt i samme logikk som Deffeyes (2005) – altså basert på når datapunktene virker å danne en rolig, rett linje. Dette tankeeksperimentet er gjort for å illustrere usikkerheten forbundet ved slike subjektive vurderinger av når datamaterialet passer til modellen, og for å vise implikasjonene dette eventuelt har for modellens estimering av K.

25

Grafene viser hvordan både norske og britiske olje- og gassproduksjonstall viser tendenser til å kunne passe inn i det rammeverk HDPO-modellen predikerer. Det begynner imidlertid også å bli tydelig at dette ikke synes å gjelde for hele historikken,
men at man må ekskludere data fra de lineære approksimasjonene for å få modellens forutsetninger til å stemme med underlaget. De stiplede trendlinjenes krysningspunkter med x-aksene viser tydelig at HDPO-modellen gir estimater for K som er lavere enn akkumulert produksjon dersom alle observasjoner tas hensyn til.

Grunnen til denne spredningen i datapunktene er industriens sterke, initielle vekst. Etter første år vil produksjonsnivået i en industri i vekst naturlig nok være minst like stort i år to som år en. Dette gir en $Q_t/X_t > 1$, siden X_t da bare omfatter produksjonen fra år 1, og $Q_2 > Q_1$. I påfølgende år kan dette fremdeles være tilfellet, før akkumulert produksjon blir så stort at neste års produksjon ikke overstiger denne. For alle datagrunnlag er $Q_t/X_t > 1$ de første 1-3 årene, deretter faller ratioen gradvis. Det tar likevel en del år før akkumulert produksjon blir såpass høy at forholdstallet begynner å følge den tenden som Deffeyes omtaler (Deffeyes, 2005, s. 36). Figurene under følger med andre ord ikke nøyaktig den form som stipuleres i Figur 7, hvilket også vil bli diskutert avslutningsvis i kapittel 6.

Én utfordring er derfor hvilke år man faktisk skal ta med i de lineære approksimasjonene for å få et realistisk estimat for K, en annen er om dette overhodet er en akseptabel måte å drive statistikk på. Dette tidspunktet vil bli undersøkt og drøftet nærmere i påfølgende metodiske kapitler, og vil blant annet være noe av grunnlaget for de analyseperioder som vurderes nærmere i kapittel 5.

Merk at det eksisterer og er tatt høyde for datapunkter utenfor de synlige grafene både i norske og britiske figurer som grunnet sin størrelse ikke vises i figurene.
Hubbert-Deffeyes Peak Oil-graf: Norsk oljeproduksjon 1972 - 2013

FIGUR 8 - HUBBERT-DEFFEYES PEAK OIL-GRAF: NORSK OLJEPRODUKSJON 1972-2013

Hubbert-Deffeyes Peak Oil-graf: Norsk gassproduksjon 1978 - 2013

FIGUR 9 - HUBBERT-DEFFEYES PEAK OIL-GRAF: NORSK GASSPRODUKSJON 1978-2013
FIGUR 10 - HUBBERT-DEFFEYES PEAK OIL GRAF: BRITISK OLJEPRODUKSJON 1966-2012

FIGUR 11 - HUBBERT-DEFFEYES PEAK OIL GRAF: BRITISK GASSPRODUKSJON 1971-2012
2.5 Kritikk av HDPO-modellen og andre synspunkter

Boyce kritiserer flere aspekter ved Hubbert og Deffeyes’ forskning. Han peker på både tvilsomme statistiske slutninger og kreative, utilbørlige tilpasninger av datamaterialet (Boyce, 2011, 2013). Han mener de ikke vil kunnet oppnå de resultater det vises til uten enten å ekskludere tidlige observasjoner fra regresjonen, eller ved å forkaste validiteten til historiske data om funn og beviste reserver for å forklare en lavere K enn geologiske beregninger skulle tilsi (Boyce 2013, s. 101).

Boyce utfordrer videre HDPO-modellen og dens resultaters empiriske robusthet, og mener å kunne bevise ved statistisk inferens at modellen, både for amerikanske og internasjonale data, ikke evner å produsere troverdige estimater for endelig utvinnbare reserver. Han mener videre at både Hubbert og Deffeyes’ tidligere tilsynelatende gode resultater er oppnådd gjennom å utelukke relevante data fra beregningene, og at deres lineære antakelser om forholdet mellom produksjon og kumulativ produksjon, Q/X, ikke er korrekte (Boyce 2013, s. 141-142). Boyce holder ikke tilbake i sin omtale av metoden:

While the Normal scientific method is to refine a theory to explain the data, Hubbert and Deffeyes refine the data to fit their theory (Boyce 2013, s. 101).

\[X_t = \frac{(a/b)e^{at+k}}{1 + e^{at+k}} = \frac{(a/b)e^k}{e^{-at} + e^k} \quad (7) \]

Figur 12 viser en typisk fremstilling av Hubbert-kurven representert ved en logistisk funksjon, som vist matematisk i likning (7). Parametrene a og b er funnet ved lineær regresjon på produksjonsdata i MS Excel, og de tre øvrige graflinjene er kalkulert på bakgrunn av ulike referanseår, basert på at $e^k = \frac{Q_t}{(a/b) - Q_t}$. Normalt ville en satt

![FIGUR 12 - MATEMATISK TILNÆRMING TIL HUBBERT-KURVEN: NORSK OLEJEPRODUKSJON](image)

Bere (2010, s. 32) påpekene dog en stor svakhett ved en slik matematisk tilnærming. Utregningen har en tendens til konsekvent å predikere «peak» i nær fremtid, så fremst dette ikke enda har inntruffet. Han mener produksjonskurvene virker å følge en Hubbert-kurve som skissert, men at modellen bare gir rimelige resultater når toppunktet allerede er vel passert, og at dens predikative egenskaper før «peak» har inntruffet er svært upålitelige (Bere, 2010, s. 64). Når tilsvarende fremgangsmåte anvendes på samme datagrunnlag, dog med 10 og 20 år færre datapunkter tilgjengelig, viser Bere at modellen fullstendig feilberger fremtidig produksjonsbane (Bere, 2010, s. 30).

Her peker også både Bere (2010, 24) og Hannesson & Aakvik (2008) på en viktig forutsetning i Hubberts vurderinger, nemlig at ressurstitgangen i det området som
analyseres antas å være gitt over tid. Funn av nye oljeprovinser og ukonvensjonelle reserver gjør det derfor vanskelig å anvende en tilsvarende analyse på verdensbasis.

Hver enkelt av slike felt eller provinser kan godt ha sin egen Hubbert-kurve, men legges det stadig til nye funn, blir toppen høyere og forflytter seg i tid. Dette kan gjerne skje med den norske Hubbert-kurven hvis vi åpner opp nye områder for leting og utvinning, eksempelvis de angivelig lovende områdene utenfor Lofoten og Vesterålen, samt en del blokker i kystnære områder (Hannesson & Aakvik, 2008).

Peak Oil-teoriens forkjempere argumenterer sterkt for at oljeproduksjonen er i ferd med å gå inn i en markant nedgang, men like sentralt er påstandene om hvilke katastrofale konsekvenser dette vil føre med seg. Deffeyes (2005) understreker flere ganger at han ikke er utdannet økonom, og at hans prediksjoner for verdens oljeøkonomi ikke kan anses som kvalifisert vitenskap. Han går likevel langt i å anklage dagens myndigheter for ikke å gjøre nok for å sikre at verdensøkonomien overlever den predikerte nedgangen i produksjonsnivå. Han sier at markedets psykologiske realisasjon av at nedgangen er et faktum, vil være like destruktiv som nedgangen i seg selv. Problemet vi står overfor, mener han, er å overkomme verdens sterke avhengighet av olje før det er for sent (Deffeyes, 2005, kapittel 10 og 11). Skeptikere, som Boyce, argumenterer gjerne med at Peak Oil-litteratur baseres på å finne modeller og teorier som støtter opp under en allerede etablert oppfatning av
hva som kommer til å skje, og hvilke konsekvenser dette vil medføre. Dette kan være en uheldig måte å drive forskning på (Boyce, 2013, s. 141).

Toppsjef i italienske Eni og forsker ved Harvard Kennedy School, Leonardo Maugeri, sier på sin side at tilbudet av olje i dag vokser så enestående raskt at det i nær fremtid faktisk står i fare for å overgå etterspørselen (Maugeri, 2012). Maugeris resultater tyder på at global oljeproduksjonskapasitet innen 2020 faktisk kan øke med 49 millioner fat per dag, som er mer enn 50 % av dagens nivå på 84.5 (EIA, 2012). Ved å risikojustere disse tallene og ta høyde for uttømming av eksisterende felt, samt økninger i eksisterende feltestimat som følger av teknologiske forbedringer, mener han verdens oljeproduksjon mer realistisk kan forventes å øke.
med 17.6 millioner fat per dag innen 2020 (Maugeri, 2012, Figure 1). Hvorvidt dette er et mer realistisk estimat enn noe annet er vanskelig å si, men flere har i kjølvannet av Maugeris publikasjon, dog noe motvillig, uttalt at de tok feil i å forfekte Peak Oil-teorien (Monbiot, 2012).

Modellen ser i stedet utelukkende på rene tidsserier med produksjonsdata og en observert negativ korrelasjon mellom akkumulert produksjon og ratioen mellom dagens produksjon-til-akkumulert produksjon (Boyce, 2013, s. 93).

Spottprisen på olje har eksempelvis økt fra rundt 15 USD på 1980-tallet til 30 USD i 2000, og over 100 USD i dag, jamfør Figur 13 (EIA, 2014b). Dette er noe som rimelig
nok kan antas å påvirke oljeselskapenes investeringsstrategier, men som ikke fawnes av HDPO-modellen på noen måte.

Den amerikanske forskeren og 2009-vinneren av M. King Hubbert-prisen, utdelt av pro Peak Oil-organisasjonen ASPO-USA (Assosiation for the Study of Peak Oil & Gas USA), Robert L. Hirsch, har i en rapport for det amerikanske energidepartementet sammenfattet en rekke fremtredende forskere, institusjoner og oljefindstripersonligheters oppfatninger av når verdens samlede oljeproduksjon forventes å nå sitt toppunkt (Hirsch et al., 2005, Table II-1, s. 19; Hirsch, 2007, Table II-VII, s. 10-15).

TABELL 2 - LISTE OVER ULIKE PREDIKSJONER FOR PEAK-TIDSPUNKT

<table>
<thead>
<tr>
<th>Tidspunkt for Peak</th>
<th>Kilde</th>
<th>Bakgrunn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Kenneth Deffeyes</td>
<td>Tidl. Princeton-professor</td>
</tr>
<tr>
<td>Mulig peak rundt 2011</td>
<td>Leif Magne Meling</td>
<td>Geolog i Statoil</td>
</tr>
<tr>
<td>Rundt 2015</td>
<td>Merril Lynch</td>
<td>Meglerhus</td>
</tr>
<tr>
<td>2015-2020</td>
<td>West, J.R. PCF Energy</td>
<td>Konsulentselskap, energi</td>
</tr>
<tr>
<td>Rundt 2020</td>
<td>Wood Mackenzie</td>
<td>Konsulentselskap, energi</td>
</tr>
<tr>
<td>Rundt 2020</td>
<td>Total</td>
<td>Fransk oljeselskap</td>
</tr>
<tr>
<td>Midt / slutt av 2020-tallet</td>
<td>UBS</td>
<td>Meglerhus</td>
</tr>
<tr>
<td>2025 eller senere</td>
<td>Shell</td>
<td>Oljeselskap</td>
</tr>
<tr>
<td>Etter 2030</td>
<td>EIA* og IEA*</td>
<td></td>
</tr>
<tr>
<td>Godt etter 2030</td>
<td>CERA*</td>
<td>Konsulentselskap, energi</td>
</tr>
<tr>
<td>Ingen tegn til peak</td>
<td>Exxon</td>
<td>Oljeselskap</td>
</tr>
<tr>
<td>Umulig å predikere</td>
<td>John Browne</td>
<td>Tidligere BP CEO</td>
</tr>
<tr>
<td>Nekter for peak oil-teori</td>
<td>OPEC</td>
<td>Handelsorganisasjon</td>
</tr>
</tbody>
</table>

Denne listen er sist oppdatert i 2007, men er likevel relevant da den illustrerer hvor usikre verdens ledende autoriteter på olje og energi har vært, og fremdeles er på når eller hvorvidt en slik produksjonstopp vil inntreffe. Listen gir et inntrykk av at både

Hva angår norsk sokkel uttalte, for en tid tilbake, Det Norske-sjef Erik Haugane til Finansavisen at han mener «Peak Oil er bare tøv». Han mener norsk oljeindustri fremdeles er i sin ungdom, og har den beste tiden foran seg (Parr, 2012):

Steinalderen tok ikke slutt på grunn av for lite stein. Sånn er det med olje også. Verden forbruker i dag fortsatt olje som ble funnet på 50-, ja til og med 40-tallet. Og funnene på 80-tallet representerer veksten i oljeforbruket i dag.

På tilsvarende kritikk svarer Dr. Jeremy Leggett, en fremtredende britisk geolog og fornybar energientreprenør følgende om skiferolje (Ahmed, 2014):

"It’s true that the short burst of shale gas and shale oil has taken a lot of ‘peakists’, myself included, somewhat by surprise, and that the oil peak has been pushed out in time a little by tight oil. What hasn’t changed is the basic issue: most of the incumbency says the ‘all-liquids’ oil production peak is many years hence, the minority doubting the narrative says it is much nearer, within this decade. And let’s not forget: conventional crude oil has already peaked, as even the IEA admits."

I tillegg argumenterer Ian Chapman (2014) ved University of Cumbria, Storbritannia, for at Peak Oil-kritikere selv baserer sin argumentasjon på overoptimistiske reserveestimater, og en naiv tiltro til både markedet og fremtidens teknologiske løsninger. Han påpekter likevel at det viktigste, uavhengig av kritikk eller forsvar av ulike Peak Oil-argumenter, er at Peak Oil som fenomen må anerkjennes. Dette betyr, sier han, at tiden med billig energi og energibasert økonomisk vekst er forbi, noe som må håndteres på best mulig måte (Chapman, 2014, s. 100).
3 METODISK TILNÆRMING TIL HDPO-MODELLEN

Dette kapittelet presenterer metoden for den statistiske analysen og har til hensikt å sette leseren inn i HDPO-modellens og regresjonsanalysens mer tekniske elementer. Det er disse regresjonslikningene som legges til grunn for den videre analysen i kapittel 5 samt diskusjonen i kapittel 6.

3.1 LINEÆRE OG KVADRATISKE REGRESJONER

Likning (1) kan estimeres som følger (Boyce, 2013, s. 106):

\[
\frac{Q_t}{X_t} = \beta_0 + \beta_X X_t + \varepsilon_t
\]

Her representerer parameteren \(\beta_0 = r_a \), og \(\beta_X = r_a / K \) som presentert i likning (1). Leddet \(\varepsilon_t \) betegner modellens uforklarte residualer med antatt gjennomsnitt lik null.

Det er viktig å påpeke at likning (8) over kan være en problematisk spesifikasjon, siden variablen \(X \) inngår på begge sider av den estimerte likningen. Leddene \(Q_t/X_t \) og \(\beta_X X_t \) vil være negativt korrelerte i \(X_t \); økende \(X_t \) gir redusert \(Q_t/X_t \) og økt \(\beta_X X_t \). I dette tilfellet er det likevel hensiktsmessig å spesifisere likningen slik, fordi man ønsker å finne en \(\beta_0 \) og \(\beta_X \) som over tid forklarer utviklingen i \(Q_t/X_t \), og videre om dette samsvarer med HDPO-modellens antakelser om bevegelsesmønstrene til \(Q_t/X_t \) og \(Q_t \). Det vil ved estimeringen gjøres statistiske tester for å påvise eventuelle problemer som kan lede til ineffisiente estimater, eksempelvis representert ved autokorrelasjon og / eller heteroskedastisitet.

Likningen (8) og påfølgende henvisninger til likning (1) gir estimat for \(K \) lik:

\[
\hat{K}_{Q/X} = -\frac{\hat{\beta}_0}{\hat{\beta}_X}
\]

Hvor \(\hat{\beta}_0 \) og \(\hat{\beta}_X \) er estimerte verdier for parametrene i likning (8). Deffeyes bruker disse lineære sammenhengene i sine bøker både fra 2003 og 2005, men jeg vil i tillegg til dette også estimere den kvadratiske produksjonsspesifikasjonen som presentert i likning (2) gitt ved følgende (Boyce, 2013, s. 106):
\[Q_t = \gamma_0 + \gamma_X X_t + \gamma_{X^2}(X_t)^2 + \nu_t \] (10)

Dette tolkes slik at \(\gamma_X = \beta_0 = r_q \), \(\gamma_{X^2} = \beta_X = r_q/K \). Merk at HDPO-modellen, jamfør likning (2), forutsetter at \(\gamma_0 \) er null i de kvadratiske formuleringene. Denne antakelsen vil drøftes nærmere i kapittel 4 i tilknytning til utredningens hypoteser.

\(K \) estimeres slik for den kvadratiske formuleringen:

\[\hat{K}_Q = \frac{-\hat{\gamma}_X}{2\hat{\gamma}_{X^2}} \pm \frac{1}{2\hat{\gamma}_{X^2}} \sqrt{(\gamma_X)^2 - 4\hat{\gamma}_0 \hat{\gamma}_{X^2}} \] (11)

Et problem med uttrykket over er at estimatet for \(\hat{K}_Q \) kan resultere i imaginære tall på grunn av rotuttrykket (Boyce, 2013, s. 107). Dette vil imidlertid kun skje hvis \(\gamma_0 \) er positiv, noe den nettopp ikke skal være i den logistiske spesifikasjonen i henhold til HDPO-modellens antakelser.
4 HYPOTESETESTER

Dette kapittelet presenterer fundamentet for den statistiske inferensen formulert ved tre hypoteser. Hypotesene er basert på den kontekstuelle og teoretiske gjennomgangen i kapittel 1 og 2 med særlig vekt på de elementer av modellen som er gjenstand for diskusjon. Hensikten med hypotesetestene er å vurdere modellens robusthet på datamaterialet, og følger av Boyce (2011, 2013).

4.1 UTvikling av hypoteser

For hver test rapporteres det et tosidet signifikansnivå for hypotesetestens tilhørende testobservator. Én asterisk («*») indikerer et signifikansnivå på fem prosent, to asterisker («**») indikerer et signifikansnivå på én prosent, og tre asterisker («***») indikerer et signifikansnivå på 0,1 %. Kapittel 4.1.4 gir en kort oppsummering av hvordan hypotesene testes i praksis.

4.1.1 Hypotese 1

Den første hypotesetesten skal avdekke hvorvidt

(i) de lineære produksjonsmodellene har positive skjæringspunkter, \(\beta_0 \), og negative stigningstall, \(\beta_X \)

(ii) de kvadratiske produksjonsmodellene har skjæringspunkter \(\gamma_0 \) lik null, positive stigningstallparametre \(\gamma_X \), og negative stigningstallparametre \(\gamma_X^2 \).

For parameteren \(\gamma_0 \) forkastes hypotesen dersom koeffisientene er signifikant forskjellig fra null. Dette fordi denne parameteren indikerer startpunktet for produksjonen, som per definisjon må være null ved produksjonens begynnelse. For de øvrige parametrene forkastes hypotesene enten hvis fortegnet er forskjellig fra det postulert av HDPO-modellen og forklart ovenfor, eller hvis koeffisientene er av riktig fortegn men ikke signifikant forskjellig fra null.

For at Hypotese 1 skal holde må altså forholdet mellom produksjon og total produksjon, \(Q/X \), i henhold til HDPO-modellen falle over tid (jamfør Figur 7), representert ved:
Med andre ord må veksten i produksjon være lavere enn veksten i kumulativ produksjon for å tilfredsstille modellens forutsetninger, eller at endringstakten i Q, \(\dot{Q}/Q \), må være mindre enn endringstakten i X, \(\dot{X}/X = Q/X \rightarrow \dot{Q}/Q < Q/X \). Denne hypotesen antas å høste god støtte for ulike variasjoner av datamaterialet bortsett fra i perioder preget av uvanlig høy produksjonsvekst, eksempelvis i begynnelsen av et lands oljeproduksjon hvor årlig vekst naturlig nok er stor relativt til foregående.

Dette kan oppsummeres i følgende, svært forenklede illustrasjon, som viser grafisk hvilke krav Hypotese 1 stiller til henholdsvis den lineære og kvadratiske spesifikasjonens egenskaper. Grafene demonstrerer også de forutsetninger presentert i kapittel 2.3 og 2.4, særlig hva angår estimering av K og produksjonskurvens antatte egenskaper ved maksimal produksjon for lineær og kvadratisk spesifikasjon.

\[
\frac{d(Q/X)}{dt} = Q \left[\frac{\dot{Q} - Q}{\dot{X} - X} \right] < 0 \tag{12}
\]

FIGUR 14 - GRAFISK ILLUSTRASJON AV HYPOTESE 1 (VENSTRE: LINEÆR, HØYRE: KVADRATISK)

4.1.2 Hypotese 2

Videre må estimatene for endelig utvinnbare reserver, K, være minst like store som faktiske, akkumulerte produksjonstill X:

\[
K_{Q/X} \geq X_T \text{ og } K_Q \geq X_T \tag{13}
\]
Dette vises i analysedelen som et forhold mellom K og X. Dersom $\hat{R}_{Q/X}/X_T$ eller R_{Q}/X_T er mindre enn og signifikant ulik 1, impliserer dette at modellen predikerer en mengde endelig utvinnbare ressurser som ikke er forenelig med faktiske tall for solgte og leverte mengder.

Det bemerkes at ikke-lineære hypotesetester utført i programvaren Stata ved hjelp av kommandoen -testnl-, i motsetning til lineære tester som -test -, er sensitive for skaleringen av datamaterialet (Baum, 2006, s. 99). Dette fordi p-verdien baseres på deltametoden, en approksimeringsmetode passende for store datasett (StataCorp, 2014). For å oppnå så korrekte p-verdier som mulig benyttes det derfor lineære omformuleringer av estimatet for $\hat{R}_{Q/X}$ som gitt i (9) for de lineære regresjonene:

$$\frac{\hat{R}_{Q/X}}{X_T} = 1 \iff \frac{-\hat{\beta}_0}{\hat{\beta}_X} = 1 \iff -\hat{\beta}_0 - \hat{\beta}_X X_T = 0 \quad (14)$$

For de kvadratiske modellene kunne det blitt benyttet ikke-lineære hypotesetester som direkte tester forholdet stipulert i (13) ved K uttrykt av (11), da disse opprinnelig er komplekse ikke-lineære uttrykk. Her kommer imidlertid problemene ved Statas ikke-lineære tester til uttrykk. Programmet evner ikke å produsere konsistente, troverdige resultater for et datagrannlag av så liten størrelse som her er tilfellet. Dette er undersøkt i detalj ved å utføre sammenliknbare lineære og ikke-lineære tester av flere elementære, identiske lineære uttrykk. Disse burde i henhold til Statas brukermanual bli vurdert likt både av de lineære og ikke-lineære testene, hvilket her ikke er tilfellet (StataCorp, 2013). Det konkluderes således at det ville vært problematisk å benytte slike ikke-lineære tester i denne sammenheng.

I henhold til HDPO-modellen er det likevel slik at $\gamma_X = \beta_0 = r_q$ og $\gamma_{X^2} = \beta_X = r_q/K$.

Dette tolkes videre dithen at $K_Q = \frac{\gamma_X}{\gamma_{X^2}} = X_T$ siden man har $K_{Q/X} = \frac{\beta_0}{\beta_X} = X_T$ for de lineære spesifikasjoner. Dette gir følgende uttrykk for \hat{R}_Q som grunnlag for testing:

$$\frac{\hat{R}_Q}{X_T} = 1 \iff \frac{-\hat{\gamma}_X}{\hat{\gamma}_{X^2}} = 1 \iff -\hat{\gamma}_X - \hat{\gamma}_{X^2} X_T = 0 \quad (15)$$
Dette gir tilnærmet lik K_Q som ved opprinnelig, ikke-lineær spesifikasjon gitt av likning (11), og er en mer hensiktsmessig fremgangsmåte for statistisk testing for gjeldende datagrunnlag gitt benyttet programvare.

Videre kan det hende at de kvadratiske modellene ikke evner å produsere en reell K, da denne kalkuleres fra et uttrykk av andre grad, jamfør likning (10), og således kan resultere i et imaginært tall (Boyce 2013, s. 108). Slike mislykkede estimat for R_Q vil imidlertid bare inntreffe dersom γ_0 er positiv, noe den ikke skal være i den logistiske modellen. I den lineære approksimasjonen forklart ovenfor kommer dette til uttrykk ved at $K_Q < 0$.

Slike resultater tas som bevis nok til forkastning av Hypotese 2.

4.1.3 Hypotese 3

Den tredje hypotestesten evaluerer HDPO-modellens påstand om at de lineære forholdene i likning (1) og / eller de kvadratiske forholdene i likning (2) er tilstrekkelig for å forklare bevegelsene i datamaterialet. For å bekrefte eller avkrefte dette, er det nødvendig å teste statistisk hvorvidt å inkludere høyere potenser av X øker modellens forklaringsgrad.

For de lineære regresjonene tester jeg nullhypotesen $\beta_{X^2} = 0$ i den utvidede, lineære produksjonsmodellen

$$\frac{Q_t}{X_t} = \beta_0 + \beta_X X_t + \beta_{X^2}(X_t)^2 + \varepsilon_t$$

(16)

Tilsvarende gjøres for de kvadratiske modellene, her testes nullhypotesen $\gamma_{X^3} = 0$ i den utvidede, kvadratiske produksjonsmodellen

$$Q_t = \gamma_0 + \gamma_X X_t + \gamma_{X^2}(X_t)^2 + \gamma_{X^3}(X_t)^3 + \nu_t$$

(17)

Disse testene avkrefte ikke at det kan eksistere parametre av enda høyere grad som utfyller modellen bedre enn dette igjen, men en forkastning av nullhypotesene beskrevet ovenfor tas som bevis nok på at HDPO-modellen i sin opprinnelige form ikke er tilstrekkelig kompleks til å fange opp variasjonene i datamaterialet. Dersom
hypoteseutestene bekrøfter at β_{X^2} og γ_{X^3} signifikant forskjellig fra null, forkastes.

Hypotese 3 for henholdsvis lineær og kvadratisk spesifikasjon.

4.1.4 OPPSUMMERING AV HYPOTESER

De overnevnte kapitler oppsummeres matematisk i følgende hypoteser, som HDPO-modellen videre i utredningen skal utfordres med hensyn på:

<table>
<thead>
<tr>
<th>Hypotese</th>
<th>Lineær spesifikasjon</th>
<th>Kvadratisk spesifikasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotese 1</td>
<td>$\beta_0 \geq 0$ og $\beta_X \leq 0$</td>
<td>$\gamma_0 = 0$ og $\gamma_X \geq 0$ og $\gamma_{X^2} \leq 0$</td>
</tr>
<tr>
<td>Hypotese 2</td>
<td>$K_{Q/X} \geq X_T$</td>
<td>$K_Q \geq X_T$</td>
</tr>
<tr>
<td>Hypotese 3</td>
<td>$\beta_{X^2} = 0$</td>
<td>$\gamma_{X^3} = 0$</td>
</tr>
</tbody>
</table>

Overnevnte hypoteser testes og valideres, som nevnt i kapittel 4.1, på bakgrunn av signifikansnivåer α på fem prosent, én prosent og 0,1 %. Disse nivåene representerer testenes signifikansnivå representert ved sannsynligheten for å forkaste en nullhypotese selv om den er sann, såkalt «type 1»-feil. Motsatt kan man på bakgrunn av rapporterte resultater også unnlate å forkaste en nullhypotese selv om den er feil. Dette kalles «type 2»-feil, hvor sannsynligheten for dette er β. Forholdet mellom α og β er omvendt relatert, slik at ethvert forsøk på å redusere den ene vi øke den andre (Keller, 2008, s. 345). Tabellen under oppsummerer disse potensielle feilkildene:

<table>
<thead>
<tr>
<th>Beslutning</th>
<th>H_0 er sann</th>
<th>H_0 er ikke sann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forkast H_0</td>
<td>Type 1-feil [P(type 1 - feil) = \alpha]</td>
<td>Korrekt beslutning</td>
</tr>
<tr>
<td>Ikke forkast H_0</td>
<td>Korrekt beslutning</td>
<td>Type 2-feil [P(type 1 - feil) = \beta]</td>
</tr>
</tbody>
</table>
4.1.5 **Andre mulige hypotesetestere**

I en etterprøving av HDPO-modellen slik denne utredningen tilstreber, eksisterer det noen momenter som her er valgt ikke å være gjenstand for hypotesetesting. Av disse kan det særlig nevnes en hypotese benyttet i Boyce (2013, s. 109) som er utelatt fra denne utredningen. Begrunnelsen for dette er utfordringer i benyttet statistisk programvare til på en tilfredsstillende, tillitsfull måte å gi fornuftige resultater som kan sies å tilføre utredningen ytterligere verdi i form av tydelige konklusjoner.

Boyce (2013) utfører noen krysslikningstester mellom de lineære og kvadratiske spesifikasjonene, som søker å avdekke:

(i) hvorvidt de lineære og kvadratiske regresjonsparameterene er like, altså om $\beta_0 = \gamma_x$ og $\beta_x = \gamma_x^2$

(ii) hvorvidt de lineære og kvadratiske modellenes estimat for endelig utvinnbare reserver er like, altså om $K_{Q/X} = K_Q$

Hensikten med disse øvelsene er å teste likheten i resultatene fra de lineære og kvadratiske spesifikasjonene. I følge kapittel 2.2 og kapittel 3 er de kvadratiske modellene bare enkle omformuleringer av de lineære, hvilket betyr at de burde gi samme resultater. Dette kan være interessant knyttet til estimering av K.

Krysslikningshypoteser kan testes ved å bruke tilsynelatende urelatert regresjonsmetodologi ved Stata-kommandoen -sureg-. Denne estimerer de lineære og kvadratiske spesifikasjonene på en slik måte at det skal være mulig å gjennomføre tester for likhet mellom koeffisienter på tvers av spesifikasjonene. På grunn av en begrensning i Statas sureg-funksjon, er ikke disse resultatene korrigert for autokorrelasjon eller heteroskedastisitet, som det blir gjort i Newey-West estimatene brukt andre steder. Dette medfører at testobservatorene er basert på ineffissiente estimatorer for standardavvik (Boyce, 2013, s. 109). Dette kan aksepteres, slik det er gjort i Boyce (2013), men Stata – eventuelt i kombinasjon med datagrunnlaget benyttet her – gir i denne sammenheng ikke fornuftige resultater som det finnes relevant å inkludere i analysekapittelet. Hypotesetesten tas derfor ikke med, da den ikke anses å tilføre tilstrekkelig stor verdi til å kunne rettferdiggjøre resultater uten nødvendig metodisk tillitt.
5 Analyse av HDPO-modellen på produksjonsdata

Dette kapittelet omfatter både en kort introduksjon av datagrunnlaget for utredningens videre analyse, samt videre metode for den statistiske analysen av dette. Viktige presiseringer av forutsetninger eller relevante karakteristikker ved datamaterialet som er sentrale for tolkningen fremsettes. Hver delanalyses resultat er oppsummeres kort i hvert delkapittel, mens en samlet vurdering samt diskusjon og konklusjon omhandles i kapittel 6.1 og 6.2.

5.1 Statistisk metode og datagrunnlag

I de påfølgende delkapitlene estimeres HDPO-modellen for ulike analyseperioder av norsk og britisk olje- og gassproduksjonsdata. Hvert datagrunnlag undersøkes innledningsvis med en rekke enkle, lineære regresjoner for på bakgrunn av dette å kunne vurdere hvilke analyseperioder som skal undersøkes i nærmere detalj. Det rapporteres her av plasshensyn ikke resultater for hvert eneste år i datagrunnlagene, men heller et utvalg av analyseperioder med ulike år for starttidspunkt, altså ulik ekskludering av data. De årene som ikke rapporteres i tabellene er dog sammenfallende i egenskaper og resultater som de som rapporteres, slik at inkludering av disse ikke ville endret noen konklusjoner som senere fattes på bakgrunn av rapporterte resultater.

Analyseperiodene som så gjøres gjenstand for mer detaljerte undersøkelser, har sitt utspring i følgende vurderinger:

a) En visuell observasjon av når forholdstallet \(\frac{Q_t}{X_t} \) flater ut og «roer seg ned til en ganske god rett linje» (Deffeyes, 2005, s. 36, egen oversettelse).

b) År som i henhold til innledende lineære regresjoner representerer ulike kronologiske deler av datamaterialet.

Moment a) dekker nettopp måten Hubbert og Deffeyes selv argumenterer for sine forutsetninger, jamfør kapittel 2.4, og eksemplifiserer et poeng ved HDPO-modellen som blant annet Boyce (2013) anser som svært tvilsomt. Moment b) er ment å skulle undersøke hva som skjer ved ulike tolkninger av når moment a) er tilfellet. Det er et
relevant spørsmål akkurat når, i tid, Deffeyes’ mye omtalte rette linje er «rett nok», og hvorvidt ulike vurderinger av dette resulterer i ulik K.

Det modelleres følgelig fire analyseperioder per datagrunnlag både ved lineær og kvadratisk spesifikasjon. Tre av disse analyseperiodene ekskluderer data i henhold til kriteriene a) og b) som nevnt ovenfor. Det tas med andre ord et utvalg med rimelig spredning i tid for best å kunne utfordre modellen på ulik grad av ekskludering av data. Dette er et sentralt poeng i modellens underbyggende teori som må vies oppmerksomhet, altså hvor stor betydning ekskludering av færre eller flere år har for modellens rapporterte resultater.

I tillegg til dette modelleres én analyseperiode med alle tilgjengelige observasjoner. Dette for å etablere et sammenlikningstilfelle uten tilpasning av datamaterialet.

Analysen utvides så i kapittel 5.6, hvor samtlige datagrunnlag modelleres også for tilfeller hvor nyere observasjoner – i stedet for eldre – ekskluderes fra modellen. Dette for å undersøke om, og i så tilfellene hvordan, modellen gir ulike resultater særleg fra tilfellene som omfatter alle observasjonene. Dersom dette er tilfellet vil det være vanskelig å forsvare modellens predikerende evner, selv om foregående resultater skulle vise seg fornuftige.

Resultatene oppsummeres i tabeller for hver analyseperiode, fordelt på lineære og kvadratiske spesifikasjoner av modellen. Dette for tydelig å kunne belyse hva Hubberts og Deffeyes ekskludering av observasjoner eventuelt kan ha å si for modellens forklaringsgrad og empiriske robusthet, og hvordan dette i så fall varierer med hvilke år som ekskluderes. Deres valg av årstall for når datamaterialet egner seg til å brukes i HDPO-modellen begrunnes, som nevnt i kapittel 2.3, med når (i tid) forholdstallet Q/X rent visuelt begynner å flate ut og likne en rett linje. Dette gir stort spillerom for hvilke data som legges til grunn for analysen, og kan gi vidt forskjellige estimater for alle modellens parametere – og da særlig K.

Alle produksjonstall er oppgitt per 31. desember år \(t \), mens akkumulert produksjon oppgis per 1. januar år \(t \), altså all produksjon til og med 31. desember år \(t – 1 \). Norske tall er oppgitt i standard kubikkmeter (Sm\(^3\)), slik Oljedirektoratet opererer, mens britiske tall oppgis i antall fat o.e. (olje) og standard kubikkmeter (gass).

Autokorrelasjon, altså at feiløsdele \(\varepsilon_{qt} \) er korrelerte over tid, medfører brudd på OLS-betingelsene og følgelig at de estimerte standardavvikene ikke er effisiente (Keller, 2008, s. 656). Heteroskedastisitet betegner brudd på OLS-antakelsen om homoskedastisitet – konstant varians – og gir tilsvarende ikke-effisiente estimater (Keller, 2008, s. 655). Dersom heteroskedastisitet påvises, korrigerer Newey-West-metoden for dette på lik linje med White-robuste metoder (Newey & West, 1987).

1 Standard kubikkmeter ved referansetilstand 15 °C og 1,01325 bar 1000 Sm\(^3\) gass tilsvarer 1 Sm\(^3\) oljeekvivalenter
- 1 Sm\(^3\) oljeekvivalenter tilsvarer 6, 28981 fat oljeekvivalenter

I tilfeller hvor det indikeres enten autokorrelasjon eller heteroskedastisitet, markeres dette i statistikkutskriften med «Ja», men asterisker for tilhørende signifikansnivå. En «p-verdi» under henholdsvis 0,05 («*»), 0,01 («**») og 0,001 («***») indikerer at variansen i datamaterialet ikke er konstant under henholdsvis fem prosent, én prosent og 0,1 % signifikansnivå, og tolkes i dette henseendet som tilstrekkelig bevis for heteroskedastisitet. Tilsvarende notasjon gjelder for påvist autokorrelasjon. I slike tilfeller benyttes Newey-West-metoden som forklart ovenfor.

Alle hypotesetester er utført som lineære Wald-tester i programvaren Stata ved kommandoen -test-, jamfør kapittel 4.1.2. Testobservatorene til testene $K_{Q/X} \geq X_T, \beta_{X^2} = 0, K_Q \geq X_T$ og $\gamma_{X^2} = 0$ er F-fordelte med F(1, N-k).

Alle påfølgende kapitler oppsummeres i tabeller som konkluderer hvilke hypotesetester HDPO-modellen på gjelden datagrunnlag og for ulike analyseperioder har eller ikke har bestått. Dette merkes med henholdsvis «Ja» og «Nei». Ved testing av Hypotese 1 for kvadratiske spesifikasjoner, er γ_0 i noen tilfeller svært nær null, men likevel signifikant forskjellig fra null, og bryter da likevel hypotesen. Metodisk behandles dette sammenfallende med at hypotesen ikke godkjennes, og markeres også med «Nei» i oppsummerende tabeller.

Analysedelen omfatter, i tillegg til innledende enkle, lineære regresjoner, fire ganger to enkeltanalyser for hvert av de fire datagrunnlagene, samt ytterligere fire ganger to for ekskludering av eldre observasjoner. Totalt utgjør dette 40 enkeltanalyser.
5.2 NORSK OLJEPRODUKSJON

Innledningsvis er det relevant å undersøke i hvor stor grad valg av år for starttidspunkt påvirker estimatet for \(\hat{R}_{Q/X} \) i den lineære spesifikasjonen gitt av likning (8). Dette er som tidligere nevnt et kontroversielt moment i HDPO-modellen som hele resten av dens logikk og retorikk baseres på (Deffeyes, 2005, s. 38).

Tabell 5 under viser at estimatet for endelig utvinnbare ressurer varierer sterkt med hvilket år HDPO-modellen estimeres med hensyn på. Dersom hele datamaterialet legges til grunn estimeres endelig utvinnbare ressurer til 2,95 milliarder kubikkmeter (Sm3), eller bare 76 % av dagens allerede solgte og leverte volum på 3,9 milliarder Sm3. Ved første øyekast virker dette for lavt til at modellen på nåværende tidspunkt kan påstås å være fornuftig.

<table>
<thead>
<tr>
<th>Starttidspunkt (År)</th>
<th>(\beta_0)</th>
<th>(\beta_x)</th>
<th>(\hat{R}_{Q/X})</th>
<th>(\hat{R}{Q/X}/X{2014})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>0,614</td>
<td>-0,208</td>
<td>2,95</td>
<td>76 %</td>
</tr>
<tr>
<td>1972</td>
<td>0,644</td>
<td>-0,220</td>
<td>2,93</td>
<td>75 %</td>
</tr>
<tr>
<td>1975</td>
<td>0,371</td>
<td>-0,115</td>
<td>3,22</td>
<td>83 %</td>
</tr>
<tr>
<td>1976</td>
<td>0,285</td>
<td>-0,083</td>
<td>3,45</td>
<td>89 %</td>
</tr>
<tr>
<td>1977</td>
<td>0,243</td>
<td>-0,067</td>
<td>3,65</td>
<td>94 %</td>
</tr>
<tr>
<td>1978</td>
<td>0,226</td>
<td>-0,060</td>
<td>3,76</td>
<td>96 %</td>
</tr>
<tr>
<td>1979</td>
<td>0,212</td>
<td>-0,055</td>
<td>3,86</td>
<td>99 %</td>
</tr>
<tr>
<td>1980</td>
<td>0,203</td>
<td>-0,052</td>
<td>3,94</td>
<td>101 %</td>
</tr>
<tr>
<td>1981</td>
<td>0,195</td>
<td>-0,048</td>
<td>4,02</td>
<td>103 %</td>
</tr>
<tr>
<td>1982</td>
<td>0,191</td>
<td>-0,047</td>
<td>4,05</td>
<td>104 %</td>
</tr>
<tr>
<td>1983</td>
<td>0,191</td>
<td>-0,047</td>
<td>4,06</td>
<td>104 %</td>
</tr>
<tr>
<td>1984</td>
<td>0,189</td>
<td>-0,046</td>
<td>4,08</td>
<td>105 %</td>
</tr>
<tr>
<td>1985</td>
<td>0,187</td>
<td>-0,046</td>
<td>4,10</td>
<td>105 %</td>
</tr>
<tr>
<td>1990</td>
<td>0,189</td>
<td>-0,046</td>
<td>4,08</td>
<td>105 %</td>
</tr>
<tr>
<td>1995</td>
<td>0,178</td>
<td>-0,043</td>
<td>4,18</td>
<td>107 %</td>
</tr>
<tr>
<td>2000</td>
<td>0,163</td>
<td>-0,038</td>
<td>4,30</td>
<td>110 %</td>
</tr>
<tr>
<td>2005</td>
<td>0,139</td>
<td>-0,031</td>
<td>4,50</td>
<td>116 %</td>
</tr>
</tbody>
</table>
For kortere perioder av datamaterialet virker imidlertid modellen å kunne gi tall som i større grad an anses som rimelige. Tabellen viser i tillegg en tydelig tendens til at dess flere tidlige datapunkter som ekskluderes fra modellen, dess flattere blir det negative stigningstallet β_X, og dess høyere blir estimatet for K. Dette sier noe om hvor forsiktig man skal være med å velge bort observasjoner, og hvor vanskelig det er å forsvare et slikt valg kun med utgangspunkt i en observert utflating i forholdet Q_t/X_t. Dette er en interessant observasjon, og en begynner umiddelbart å lure på hva årsaken til dette kan være. Rent intuitivt er det på nåværende tidspunkt vanskelig å konstatere om det skyldes at færre observasjoner inkluderes i analysen, eller om de ekskluderte datapunktene skiller seg sterkt fra de senere data. Dette fenomenet og dets bakenforliggende årsak vil diskuteres nærmere i det oppsummerende og konkluderende kapittel 6.

TABELL 6 – LINEÆRE REGRESJONSRESULTATER, NORSK OLJEPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>-0.208</td>
<td>-0.115</td>
<td>-0.048</td>
<td>-0.046</td>
</tr>
<tr>
<td></td>
<td>(0.095)*</td>
<td>(0.051)*</td>
<td>(0.002)**</td>
<td>(0.002)**</td>
</tr>
<tr>
<td>β_0</td>
<td>0.614</td>
<td>0.371</td>
<td>0.195</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td>(0.175)**</td>
<td>(0.135)**</td>
<td>(0.005)**</td>
<td>(0.005)**</td>
</tr>
<tr>
<td>R^2</td>
<td>0.11</td>
<td>0.24</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>39</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>$K_{Q/X}$</td>
<td>2.95</td>
<td>3.22</td>
<td>4.02</td>
<td>4.08</td>
</tr>
<tr>
<td>$K_{Q/X,T,F}(1)$</td>
<td>0.76</td>
<td>0.83</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>$\beta_{x^2} = 0, F(1)$</td>
<td>p: 0.129</td>
<td>p: 0.121</td>
<td>p: 0.002**</td>
<td>p: 0.000***</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Nei</td>
<td>Ja**</td>
<td>Ja*</td>
<td>Ja***</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja*</td>
<td>Nei</td>
</tr>
</tbody>
</table>

* $p<0.05$; ** $p<0.01$; *** $p<0.001$

TABELL 7 – KVADRATISKE REGRESJONSRESULTATER, NORSK OLJEPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{x}</td>
<td>0.164</td>
<td>0.161</td>
<td>0.161</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>(0.004)***</td>
<td>(0.006)***</td>
<td>(0.008)***</td>
<td>(0.007)***</td>
</tr>
<tr>
<td>γ_{x^2}</td>
<td>-0.039</td>
<td>-0.038</td>
<td>-0.038</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.002)***</td>
<td>(0.002)***</td>
<td>(0.002)***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0.009</td>
<td>0.012</td>
<td>0.012</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>(0.002)***</td>
<td>(0.002)***</td>
<td>(0.005)**</td>
<td>(0.007)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>39</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>K_Q</td>
<td>4.21</td>
<td>4.24</td>
<td>4.24</td>
<td>4.03</td>
</tr>
<tr>
<td>$K_{Q/X,T,F}(1)$</td>
<td>1.08***</td>
<td>1.09***</td>
<td>1.09***</td>
<td>1.03</td>
</tr>
<tr>
<td>$\gamma_{x^3} = 0, F(1)$</td>
<td>p: 0.000***</td>
<td>p: 0.000***</td>
<td>p: 0.000***</td>
<td>p: 0.000***</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja**</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Ja*</td>
<td>Ja*</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

* $p<0.05$; ** $p<0.01$; *** $p<0.001$

Standardavvik i parentes, signifikansnivå oppgitt ved * til ***, alle testresultater F-for delt med fordeling F(Z), Newey-West-metode ved angitt N.
5.2.1 Tolkning av resultater

HDPO-modellen i sin lineære spesifikasjon tilfredsstiller kravene til Hypotese 1 om positive skjæringspunkt β_0 som også er signifikant forskjellig fra null. Stigningstallene β_x er negative og signifikant forskjellig fra null i alle tilfeller, også for perioden som omfatter hele datamaterialet fra 1971 til 2013. De kvadratiske spesifikasjonene oppgir utelukkende positive skjæringspunkter γ_0 signifikant forskjellig fra null, hvilket forkaster Hypotese 1 i alle tilfeller på dette området. Stigningstallene γ_x og γ_{x^2} oppgis derimot som henholdsvis positive og negative, samtlige signifikant forskjellig fra null, godt i tråd med Hypotese 1.

De lineære spesifikasjononene tilfredsstiller ikke Hypotese 2 om estimering av $\tilde{R}_{Q/X}$ i noen av perioden. I alle tilfeller estimeres $\tilde{R}_{Q/X}$ enten til lavere enn allerede akkumulert produksjon, eller som i tilfellet 1981 – 2013 og 1990 – 2013, hvor det ikke kan påvises at $\tilde{R}_{Q/X}$ er større enn X_T. Dette tyder på at modellen ikke evner å produsere troverdige estimer for endelig utvinnbar ressursmengde, heller ikke dersom man aktivt tilpasser datamaterialet i tråd med Hubberts og Deffeyes antakelse om hvilke datapunkter som «inntreffer for tidlig» til å være relevant for modellen (Deffeyes, 2005, s. 37).

De kvadratiske spesifikasjononene gir tilfredsstillende resultater for \tilde{R}_Q i alle tilfeller bortsett fra 1990 – 2013; både \tilde{R}_Q større enn X_T og forhold signifikant forskjellig fra 1. Disse varierer fra 8 % til 9 % større enn akkumulert produksjon 31.12.13.

Når det testes for hvorvidt inkludering av høyere potenser av X_t forbedrer modellens forklaringsgrad (Hypotese 3), oppgis verdier for β_{x^2} og γ_{x^3} samt asterisker som indikerer p-verdi for forkastning av nullhypotesene $\beta_{x^2} = 0$ og $\gamma_{x^3} = 0$. I de lineære tilfellene tilfredsstiller ikke periodene 1981 – 2012 og 1990 – 2012 Hypotese 3. Dette gjelder også for de kvadratiske spesifikasjonene, hvor γ_{x^3} antas å ha effekt i alle 4 datasett. Dette tolkes dithen at HDPO-modellen i sin opprinnelige form ikke er tilstrekkelig kompleks til å fange opp variasjonen i datamaterialet. Disse testene utelukker ikke at det kan eksistere ytterligere sammensetninger som kan forklare datamaterialet enda bedre, men gir indikasjoner
på at man ved å inkludere høyere potenser av allerede benyttede variabler faktisk kan øke modellens forklaringsgrad.

Et interessant moment med HDPO-modellens lineære spesifikasjon, er dens estimat for K, $\widehat{R}_{Q/X}$. Tabell 5 viser hvordan modellen når anvendt på årene forut for 1981, gir en $\widehat{R}_{Q/X}$ som er betydelig mindre enn det man allerede har produsert av olje på norsk sokkel, $X_{2014}=3,9$ milliarder Sm3 (Oljedirektoratet, 2014b). Dette illustrerer hvordan modellen møter på betydelige vanskeligheter dersom den anvendes på hele datamaterialet.

På den annen side, dersom en utelukker tall fra perioden 1971 – 1980 og lar modellen estimere $\widehat{R}_{Q/X}$ basert på perioden 1981 – 2013, gis det et estimat for K på 4,02 milliarder Sm3, som rent teoretisk ikke er helt urimelig. Det er imidlertid marginalt større enn $X_{2014}=3,9$ milliarder Sm3, og med en årlig produksjon i 2013 på 85 milliarder Sm3 vil dette nivå nås innen få år selv med fallende produksjon i årene som kommer. Ingen av analyseperiodene resulterer i en K på 4,8 milliarder Sm3, som rent teoretisk ville vært en naturlig topp, jamfør kapittel 5.2, og slett ikke Oljedirektoratets (2014b) estimat på 7,2 milliarder Sm3.

Tabellen under oppsummerer resultatene fra hypotesetestene både for lineære og kvadratiske spesifikasjoner av modellen på hver av de fire, ulike analyseperiodene:
Oppsummering hypotesetester

<table>
<thead>
<tr>
<th>Oppsummering hypotesetester</th>
<th>Hypotese 1</th>
<th>Hypotese 2</th>
<th>Hypotese 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineær modell 1971 – 2013</td>
<td>Ja</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1975 – 2013</td>
<td>Ja</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1981 – 2013</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell 1990 – 2013</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1971 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1975 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1981 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1990 – 2013</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

5.3 NORSK GASSPRODUKSJON

For norsk oljeproduksjon er det enkelt å sammenlikne estimatene med det vi allerede vet er nivå og tidspunkt for «peak». Det samme gjelder ikke for norsk gassproduksjon, fordi markedet enda ikke har opplevd et tydelig toppunkt. Resultatene kan likevel sees i lys av Oljedirektoratets (2014b) estimater, jamfør Tabell 1, som dersom korrekt antyder en $\hat{\mu}$ på 6000 milliarder Sm3. Dette skulle i så fall tyde på en $\hat{R}_{Q/X}$ på opp mot over 320 % av akkumulert per 31.12.13.

Tabell 9 viser som for oljeproduksjon hvordan estimatet for $\hat{R}_{Q/X}$ varierer med hvilket år man tar utgangspunkt i gitt den lineære spesifikasjonen (8), fra 63 % av X_{2014} i 1977 til rekordhøye 1085 % 1990, og noe lavere 469 % i 1995.

Igjen er det vanskelig å forsøre hvilke år modellen faktisk skal basere sine beregninger på. En forskjell på ett enkelt år gir her betydelige utslag i $\hat{R}_{Q/X}$, som igjen vil gi tilsvarende utslag med tanke på predikert årstall for peak. Disse utslagene vil være betydelig større enn eksempelvis både for norsk oljeproduksjon, USA og
verden samlet sett, sistnevnte som Hubbert og Deffeyes bruker som utgangspunkt, da mengden datapunkter er mye mindre i dette tilfellet. Det bemerkes at analysen under tar utgangspunkt i produksjonstall regnet om til 1000 milliarder Sm3, for slik å forhindre at γx^2 og γx^3 blir uforholdsmessig store og resulterer i små, uleselige desimaltall i statistikkutskrifter og tabeller. Estimatene for K oppgis likevel i alle tabeller som milliarder Sm3.

TABELL 9 - LINEÆRE REGRØNSRESULTATER Q_i/X_i, NORSK GASSPRODUKSJON, 1977 - 2005

<table>
<thead>
<tr>
<th>Starttidspunkt (År)</th>
<th>β_0</th>
<th>β_X</th>
<th>$\bar{R}_{Q/X}$</th>
<th>$\bar{R}{Q/X}/X{2014}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>0,580</td>
<td>-0,494</td>
<td>1173</td>
<td>63 %</td>
</tr>
<tr>
<td>1978</td>
<td>0,620</td>
<td>-0,534</td>
<td>1160</td>
<td>63 %</td>
</tr>
<tr>
<td>1979</td>
<td>0,272</td>
<td>-0,186</td>
<td>1458</td>
<td>79 %</td>
</tr>
<tr>
<td>1980</td>
<td>0,197</td>
<td>-0,112</td>
<td>1753</td>
<td>95 %</td>
</tr>
<tr>
<td>1981</td>
<td>0,158</td>
<td>-0,074</td>
<td>2130</td>
<td>115 %</td>
</tr>
<tr>
<td>1982</td>
<td>0,137</td>
<td>-0,054</td>
<td>2547</td>
<td>138 %</td>
</tr>
<tr>
<td>1983</td>
<td>0,124</td>
<td>-0,041</td>
<td>2991</td>
<td>162 %</td>
</tr>
<tr>
<td>1984</td>
<td>0,115</td>
<td>-0,033</td>
<td>3480</td>
<td>188 %</td>
</tr>
<tr>
<td>1985</td>
<td>0,106</td>
<td>-0,025</td>
<td>4218</td>
<td>228 %</td>
</tr>
<tr>
<td>1986</td>
<td>0,100</td>
<td>-0,019</td>
<td>5188</td>
<td>280 %</td>
</tr>
<tr>
<td>1987</td>
<td>0,095</td>
<td>-0,015</td>
<td>6429</td>
<td>347 %</td>
</tr>
<tr>
<td>1988</td>
<td>0,090</td>
<td>-0,010</td>
<td>8695</td>
<td>470 %</td>
</tr>
<tr>
<td>1989</td>
<td>0,086</td>
<td>-0,007</td>
<td>12502</td>
<td>676 %</td>
</tr>
<tr>
<td>1990</td>
<td>0,082</td>
<td>-0,004</td>
<td>20073</td>
<td>1085 %</td>
</tr>
<tr>
<td>1995</td>
<td>0,090</td>
<td>-0,010</td>
<td>8671</td>
<td>469 %</td>
</tr>
<tr>
<td>2000</td>
<td>0,103</td>
<td>-0,020</td>
<td>5156</td>
<td>279 %</td>
</tr>
<tr>
<td>2005</td>
<td>0,120</td>
<td>-0,032</td>
<td>3707</td>
<td>200 %</td>
</tr>
</tbody>
</table>

TABELL 10 – LINEÆRE REGRESJONSRESULTATER, NORSK GASSPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>-0,494</td>
<td>-0,074</td>
<td>-0,025</td>
<td>-0,010</td>
</tr>
<tr>
<td></td>
<td>(0,286)</td>
<td>(0,039)</td>
<td>(0,014)</td>
<td>(0,006)</td>
</tr>
<tr>
<td>β_0</td>
<td>0,580</td>
<td>0,158</td>
<td>0,106</td>
<td>0,090</td>
</tr>
<tr>
<td></td>
<td>(0,217)*</td>
<td>(0,042)***</td>
<td>(0,016)***</td>
<td>(0,007)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0,08</td>
<td>0,27</td>
<td>0,26</td>
<td>0,25</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>$K_{Q/X}$</td>
<td>1173</td>
<td>2130</td>
<td>4218</td>
<td>8670</td>
</tr>
<tr>
<td>$K_{Q/X,T,F(1)}$</td>
<td>0,63</td>
<td>1,15</td>
<td>2,28</td>
<td>4,69</td>
</tr>
<tr>
<td>$\beta_{x^2}=0,F(1)$</td>
<td>p: 0,053</td>
<td>p: 0,051</td>
<td>p: 0,320</td>
<td>p: 0,000***</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Nei</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja*</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Ja*</td>
<td>Ja**</td>
<td>Nei</td>
</tr>
</tbody>
</table>

*p<0,05; ** p<0,01; *** p<0,001

TABELL 11 – KVADRATISKE REGRESJONSRESULTATER, NORSK GASSPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_x</td>
<td>0,072</td>
<td>0,079</td>
<td>0,104</td>
<td>0,169</td>
</tr>
<tr>
<td></td>
<td>(0,016)***</td>
<td>(0,020)***</td>
<td>(0,021)***</td>
<td>(0,012)***</td>
</tr>
<tr>
<td>γ_{x^2}</td>
<td>-0,005</td>
<td>-0,009</td>
<td>-0,021</td>
<td>-0,050</td>
</tr>
<tr>
<td></td>
<td>(0,009)</td>
<td>(0,011)</td>
<td>(0,011)</td>
<td>(0,006)***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0,011</td>
<td>0,009</td>
<td>-0,002</td>
<td>-0,032</td>
</tr>
<tr>
<td></td>
<td>(0,004)*</td>
<td>(0,007)</td>
<td>(0,009)</td>
<td>(0,006)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0,95</td>
<td>0,95</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>K_Q</td>
<td>14400</td>
<td>8778</td>
<td>4952</td>
<td>3380</td>
</tr>
<tr>
<td>$K_{Q/X,T,F(1)}$</td>
<td>7,78***</td>
<td>4,74***</td>
<td>2,68***</td>
<td>1,83***</td>
</tr>
<tr>
<td>$\gamma_{x^3}=0,F(1)$</td>
<td>p:0,000***</td>
<td>p:0,000***</td>
<td>p:0,001***</td>
<td>p:0,955</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Nei</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

*p<0,05; ** p<0,01; *** p<0,001

Standardavvik i parentes, signifikansnivå oppgitt ved * til ***, alle testresultater F-fordelt med fordeling F(Z), Newey-West-metode ved angitt N.
5.3.1 Tolkning av resultatet

Sammenliknet med regresjonene for norsk oljeproduksjon, er det her enda mindre støtte for HDPO-modellen i de lineære spesifikasjonene. β_0 er statistisk signifikant for alle perioder, mens β_X i alle tilfeller er av riktig fortegn men ikke statistisk signifikant. Utregnet verdi for $\hat{R}_{0/X}$ er numerisk større enn X_{2014} i periodene 1981, 1985 og 1995, men passerer ingen av hypotesetestene for å bekrffe dette. β_X^2 er signifikant ulik null fra 1981 og 1995. Den lineære HDPO-modellen støtter således ikke alle hypotesene i noen av tilfellene.

Historien er den samme for de kvadratiske spesifikasjonene. γ_0 er signifikant forskjellig fra 0 i modellene for 1977 og 1995, γ_X er godkjent i alle tilfellene, mens γ_X^2 bare er signifikant for 1995–tilfallet.

Uavhengig av analyseperiode er det likevel ingen av datasettene som fullt ut tilfredsstiller både Hypotese 1, 2 og 3. Dette er et interessant resultat siden produksjonskurven til norsk gass, jamfør Figur 2, minner om norsk oljeproduksjon på et tidligere tidspunkt på produksjonskurven. Dersom disse to produksjonskurvene var antatt å ha relatív like egenskaper, og således representerte tilsvarende kurver på to ulike tidspunkt i tid, kunne dette indikere at HDPO-modellen ikke er hensiktsmessig hverken for slike kurver som har oppnådd «peak», eller de som ikke har det. Antakelsen om slik likhet ville kreve betydelige undersøkelser utenfor denne utredningens definerte mandat, men kunne vært en interessant videreføring av de undersøkelser som gjøres her.

Tabellen under oppsummerer resultatene fra hypotesetestene både for lineære og kvadratiske spesifikasjoner av modellen på hver av de fire, ulike analyseperiodene:
Tabell 12 - Oppsummering av Hypotestester Norsk Gassproduksjon

<table>
<thead>
<tr>
<th>Oppsummering hypotestester</th>
<th>Hypotese 1</th>
<th>Hypotese 2</th>
<th>Hypotese 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineær modell 1977 – 2013</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1981 – 2013</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1985 – 2013</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1995 – 2013</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1977 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1981 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1985 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1995 – 2013</td>
<td>Nei</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

5.4 Britisk Oljeproduksjon

Her, som tidligere, er det relevant å undersøke i hvor stor grad valg av år for starttidspunkt påvirker estimatet for \(R_{Q/X} \) i den lineære spesifikasjonen gitt av likning (8). Tabell 13 viser at estimatet for endelig utvinnbare ressurser varierer tilsvarende sterkt som de norske modellene med tanke på hvilket år HDPO-modellen estimeres med hensyn på. Dersom hele datamaterialet legges til grunn estimeres endelig utvinnbare ressurser til 21,2 milliarder fat, eller bare omtrent 77 % av dagens allerede produserte volum. For kortere perioder av datamaterialet virker modellen å kunne gi tall som i større grad anses som rimelige, blant annet representert ved at estimatet for endelig utvinnbare volumer er større enn det som allerede faktisk er
produsert for alle årene mellom 1985 og 2005 til 2012. Årene forut for dette gir dog for lave estimator for \(R_{Q/X} \), hvilket vil bli diskutert videre i resultatanalysen.

Også her er det vanskelig å forsvare hvilke år modellen faktisk skal basere sine beregninger på. En forskjell på ett enkelt år gir som tidligere betydelige utslag i \(\hat{R}_{Q/X} \), som igjen vil gi tilsvarende utslag med tanke på predikert årstall for «peak». \(Q_t/X_t \) følger imidlertid ganske tydelig et Hubbert-Deffeyes-plott, jamfør Figur 10, som legger forholdene godt til rette for å kunne iverksette en statistisk analyse på modell og datagrunnlag i tråd med HDPO-modellens forutsetninger.

TABELL 13 - LINEÆRE REGRJENSRESULTATER \(Q_t/X_t \), BRITSKE OLJEPRODUKSJON, 1965 - 2005

<table>
<thead>
<tr>
<th>Starttidspunkt (År)</th>
<th>(\beta_0)</th>
<th>(\beta_X)</th>
<th>(\hat{R}_{Q/X})</th>
<th>(\hat{R}{Q/X}/X{2013})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>0,623</td>
<td>-0,029</td>
<td>21,20</td>
<td>77 %</td>
</tr>
<tr>
<td>1970</td>
<td>0,683</td>
<td>-0,032</td>
<td>21,02</td>
<td>76 %</td>
</tr>
<tr>
<td>1972</td>
<td>0,720</td>
<td>-0,034</td>
<td>20,93</td>
<td>76 %</td>
</tr>
<tr>
<td>1974</td>
<td>0,766</td>
<td>-0,037</td>
<td>20,82</td>
<td>76 %</td>
</tr>
<tr>
<td>1976</td>
<td>0,807</td>
<td>-0,039</td>
<td>20,74</td>
<td>75 %</td>
</tr>
<tr>
<td>1978</td>
<td>0,376</td>
<td>-0,017</td>
<td>22,62</td>
<td>82 %</td>
</tr>
<tr>
<td>1981</td>
<td>0,223</td>
<td>-0,009</td>
<td>25,31</td>
<td>92 %</td>
</tr>
<tr>
<td>1985</td>
<td>0,152</td>
<td>-0,005</td>
<td>28,55</td>
<td>104 %</td>
</tr>
<tr>
<td>1986</td>
<td>0,139</td>
<td>-0,005</td>
<td>29,55</td>
<td>107 %</td>
</tr>
<tr>
<td>1987</td>
<td>0,128</td>
<td>-0,004</td>
<td>30,54</td>
<td>111 %</td>
</tr>
<tr>
<td>1988</td>
<td>0,119</td>
<td>-0,004</td>
<td>31,47</td>
<td>114 %</td>
</tr>
<tr>
<td>1989</td>
<td>0,114</td>
<td>-0,004</td>
<td>32,11</td>
<td>117 %</td>
</tr>
<tr>
<td>1990</td>
<td>0,115</td>
<td>-0,004</td>
<td>31,96</td>
<td>116 %</td>
</tr>
<tr>
<td>1995</td>
<td>0,136</td>
<td>-0,005</td>
<td>30,11</td>
<td>109 %</td>
</tr>
<tr>
<td>2000</td>
<td>0,137</td>
<td>-0,005</td>
<td>30,04</td>
<td>109 %</td>
</tr>
<tr>
<td>2005</td>
<td>0,118</td>
<td>-0,004</td>
<td>30,94</td>
<td>112 %</td>
</tr>
</tbody>
</table>

TABELL 14 – LINEÆRE REGRESJONSRESULTATER, BRITISK OLJEPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>-0.029</td>
<td>-0.009</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.011)*</td>
<td>(0.002)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>β_0</td>
<td>0.623</td>
<td>0.223</td>
<td>0.128</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>(0.214)***</td>
<td>(0.045)***</td>
<td>(0.010)***</td>
<td>(0.009)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.23</td>
<td>0.72</td>
<td>0.88</td>
<td>0.93</td>
</tr>
<tr>
<td>N</td>
<td>48</td>
<td>32</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>$K_{Q/X}$</td>
<td>21.20</td>
<td>25.31</td>
<td>30.54</td>
<td>31.96</td>
</tr>
<tr>
<td>$K_{Q/X} F(1)$</td>
<td>0.77</td>
<td>0.92</td>
<td>1.11***</td>
<td>1.16***</td>
</tr>
<tr>
<td>$\beta_{x^2} = 0, F(1)$</td>
<td>p: 0.043*</td>
<td>p: 0.000***</td>
<td>p: 0.656</td>
<td>p: 0.000***</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja**</td>
<td>Ja***</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja***</td>
<td>Ja***</td>
</tr>
</tbody>
</table>

*p < 0.05; ** p < 0.01; *** p < 0.001

TABELL 15 – KVADRATISKE REGRESJONSRESULTATER, BRITISK OLJEPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_x</td>
<td>0.121</td>
<td>0.054</td>
<td>0.133</td>
<td>0.216</td>
</tr>
<tr>
<td></td>
<td>(0.017)***</td>
<td>(0.020)*</td>
<td>(0.035)***</td>
<td>(0.018)***</td>
</tr>
<tr>
<td>γ_{x^2}</td>
<td>-0.004</td>
<td>-0.002</td>
<td>-0.004</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0.163</td>
<td>0.628</td>
<td>-0.049</td>
<td>-0.821</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.105)***</td>
<td>(0.303)</td>
<td>(0.151)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.78</td>
<td>0.63</td>
<td>0.78</td>
<td>0.95</td>
</tr>
<tr>
<td>N</td>
<td>48</td>
<td>32</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>K_Q</td>
<td>28.82</td>
<td>24.37</td>
<td>30.91</td>
<td>33.80</td>
</tr>
<tr>
<td>$K_Q/X, F(1)$</td>
<td>1.05</td>
<td>0.89</td>
<td>1.12</td>
<td>1.23***</td>
</tr>
<tr>
<td>$\gamma_{x^2} = 0, F(1)$</td>
<td>p: 0.214</td>
<td>p: 0.026*</td>
<td>p: 0.124</td>
<td>p: 0.008 **</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja**</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Ja***</td>
<td>Ja*</td>
<td>Ja**</td>
<td>Nei</td>
</tr>
</tbody>
</table>

*p < 0.05; ** p < 0.01; *** p < 0.001

Standardavvik i parentes, signifikansnivå oppgitt ved * til ***, alle testresultater F-fordelt med fordeling F(Z), Newey-West-metode ved angitt N.
5.4.1 TOLKNING AV RESULTATER

Datagrunnlaget fra perioden 1987 til 2012 støtter fullt ut Hypotese 1 om negativ β_x og positiv β_0 signifikant forskjellig fra null. Resultatene støtter videre Hypotese 2, hvor forholdet $\frac{Q}{X}$ er signifikant større enn 1. I tillegg tyder resultatene på at modellen heller ikke ville kunne forbedres ved å inkludere høyere potenser av X-variablene i henhold til Hypotese 3. Alle hypotesene tilfredsstilles med andre ord fullt ut av den statistiske analysen.

Gitt disse positive, statistiske resultatene, kan man gå videre til å utføre en mer kvalitativ betraktning av modellens evne til å produsere en K som samsvarer med virkeligheten. Nærmere undersøkelser viser en estimert $\frac{Q}{X}$ på 30,5 milliarder fat, bare 12 % høyere enn dagens akkumulerte produksjon. Dette virker innledningsvis noe lavt, men et viktig poeng med HDPO-modellen er dens antakelse om normalfordelt produksjon; altså en produksjonskurve med relativt lange, tynne haler. Med en årlig – stadig fallinge – produksjon på 0,35 milliarder fat per 2012 skal ikke forfatteren her spekulere for sterkt i hvilket endelig produksjonspotensial Storbritannia i dag besitter og hvor troverdig dette eventuelt er. Det er likevel et sentralt poeng at britiske myndigheter, som nevnt tidligere, har publisert estimater som tyder på endelig utvinnbare reserver, X_T, på helt opp mot 35 milliarder fat.

Overnevnte er dog et unikt tilfelle for britisk oljeproduksjon. Ingen av de øvrige hverken lineære eller kvadratiske modellene for ulike analyseperioder gir tilsvarende
resultater som 1987-perioden, og ender uten hverken statistisk signifikans eller metodisk støtte gitt utredningens definerte hypoteser. Den viktigste analyseperioden som omfatter all historikk høster også svak støtte i statistikken, både i sin lineære og kvadratiske spesifikasjon.

Tabellen under oppsummerer resultatene fra hypotesetestene både for lineære og kvadratiske spesifikasjoner av modellen på hver av de fire, ulike analyseperiodene:

<table>
<thead>
<tr>
<th>Oppsummering hypotesetester</th>
<th>Hypotese 1</th>
<th>Hypotese 2</th>
<th>Hypotese 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineær modell 1976 – 2012</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell 1981 – 2012</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell 1987 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1990 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1976 – 2012</td>
<td>Ja</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvadratisk modell 1981 – 2012</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1987 – 2012</td>
<td>Ja</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvadratisk modell 1990 – 2012</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
</tbody>
</table>

5.5 **BRITISK GASSPRODUKSJON**
Sist, men ikke minst, vil det undersøkes i hvor stor grad valg av år for starttidspunkt påvirker estimatet for \(\hat{R}_Q/X \) i den lineære spesifikasjonen gitt av likning (8) for britisk gassproduksjon.

Det britiske Department of Energy & Climate Change (UK DECC, 2014a) estimerer, jamfør kapittel 1.1, Storbritannias gjenværende, beviste og sannsynlige reserver til 0,46 milliarder Sm3, i tillegg til mulige reserver på ytterligere 0,25 milliarder Sm3. Dette resulterer i en \(X_T \) på omtrent 3 milliarder Sm3.

Tabellen under er i stor grad en repetisjon av foregående kapitler, hvor \(K \) varierer sterkt med hvilket år HDPO-modellen estimeres med hensyn på. Dersom hele datamaterialet legges til grunn, estimeres endelig utvinnbare ressurser til 1907 milliarder Sm3, eller bare 79 % av dagens allerede produserte volum \(X_{2014} \) på 2424 milliarder Sm3. Dette samsvarer med tidligere resultater for både norske og britiske
data. For kortere perioder av datamaterialet virker modellen imidlertid også her å kunne gi tall som i større grad anses som rimelige. Årene fra 1976 til 2005 resulterer i $\hat{R}_{Q/X} > X_{2013}$, hvorav flere av disse er relativt lik i størrelse som britiske myndigheters offentlige estimater, som nevnt ovenfor.

TABELL 17 - LINEÆRE REGRESJONSRESULTATER Q_{t}/X_{t}, BRITISK GASSPRODUKSJON, 1965 - 2005

<table>
<thead>
<tr>
<th>Starttidspunkt (År)</th>
<th>β_0</th>
<th>β_X</th>
<th>$R_{Q/X}$</th>
<th>$R_{Q/X}/X_{2013}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>0,309</td>
<td>-0,162</td>
<td>1907</td>
<td>79 %</td>
</tr>
<tr>
<td>1972</td>
<td>0,238</td>
<td>-0,116</td>
<td>2048</td>
<td>85 %</td>
</tr>
<tr>
<td>1974</td>
<td>0,166</td>
<td>-0,070</td>
<td>2370</td>
<td>98 %</td>
</tr>
<tr>
<td>1976</td>
<td>0,133</td>
<td>-0,049</td>
<td>2702</td>
<td>111 %</td>
</tr>
<tr>
<td>1978</td>
<td>0,114</td>
<td>-0,037</td>
<td>3037</td>
<td>125 %</td>
</tr>
<tr>
<td>1980</td>
<td>0,104</td>
<td>-0,031</td>
<td>3301</td>
<td>136 %</td>
</tr>
<tr>
<td>1985</td>
<td>0,098</td>
<td>-0,028</td>
<td>3475</td>
<td>143 %</td>
</tr>
<tr>
<td>1986</td>
<td>0,098</td>
<td>-0,028</td>
<td>3472</td>
<td>143 %</td>
</tr>
<tr>
<td>1987</td>
<td>0,099</td>
<td>-0,029</td>
<td>3459</td>
<td>143 %</td>
</tr>
<tr>
<td>1988</td>
<td>0,100</td>
<td>-0,029</td>
<td>3437</td>
<td>142 %</td>
</tr>
<tr>
<td>1989</td>
<td>0,102</td>
<td>-0,030</td>
<td>3370</td>
<td>139 %</td>
</tr>
<tr>
<td>1990</td>
<td>0,106</td>
<td>-0,032</td>
<td>3270</td>
<td>135 %</td>
</tr>
<tr>
<td>1995</td>
<td>0,132</td>
<td>-0,046</td>
<td>2877</td>
<td>119 %</td>
</tr>
<tr>
<td>2000</td>
<td>0,161</td>
<td>-0,060</td>
<td>2680</td>
<td>111 %</td>
</tr>
<tr>
<td>2005</td>
<td>0,155</td>
<td>-0,057</td>
<td>2702</td>
<td>111 %</td>
</tr>
</tbody>
</table>

TABELL 18 – LINEÆRE REGRESJONSRESULTATER, BRITISK GASSPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>-0.162</td>
<td>-0.031</td>
<td>-0.032</td>
<td>-0.046</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.004)***</td>
<td>(0.007)***</td>
<td>(0.004)***</td>
</tr>
<tr>
<td>β_0</td>
<td>0.309</td>
<td>0.104</td>
<td>0.106</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>(0.126)*</td>
<td>(0.007)***</td>
<td>(0.012)***</td>
<td>(0.009)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.19</td>
<td>0.80</td>
<td>0.78</td>
<td>0.94</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>33</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>$K_{Q/X}$</td>
<td>1907</td>
<td>3301</td>
<td>3270</td>
<td>2877</td>
</tr>
<tr>
<td>$K_{Q/X}, F(1)$</td>
<td>0.79</td>
<td>1.36***</td>
<td>1.35***</td>
<td>1.19***</td>
</tr>
<tr>
<td>$\beta_{x^2} = 0, F(1)$</td>
<td>p: 0.041*</td>
<td>p: 0.305</td>
<td>p: 0.000***</td>
<td>p: 0.000***</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja*</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Ja**</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Ja*</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

* $p<0.05$; ** $p<0.01$; *** $p<0.001$

TABELL 19 – KVADRATISKE REGRESJONSRESULTATER, BRITISK GASSPRODUKSJON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_x</td>
<td>0.100</td>
<td>0.162</td>
<td>0.260</td>
<td>0.266</td>
</tr>
<tr>
<td></td>
<td>(0.021)***</td>
<td>(0.025)***</td>
<td>(0.010)***</td>
<td>(0.017)***</td>
</tr>
<tr>
<td>γ_{x^2}</td>
<td>-0.033</td>
<td>-0.055</td>
<td>-0.085</td>
<td>-0.087</td>
</tr>
<tr>
<td></td>
<td>(0.009)***</td>
<td>(0.009)***</td>
<td>(0.003)***</td>
<td>(0.005)***</td>
</tr>
<tr>
<td>γ_0</td>
<td>0.011</td>
<td>-0.026</td>
<td>-0.096</td>
<td>-0.100</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.014)</td>
<td>(0.007)***</td>
<td>(0.013)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.79</td>
<td>0.87</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>33</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>K_Q</td>
<td>2998</td>
<td>2969</td>
<td>3054</td>
<td>3060</td>
</tr>
<tr>
<td>$K_{Q/X}, F(1)$</td>
<td>1,24***</td>
<td>1,23***</td>
<td>1,26***</td>
<td>1,26***</td>
</tr>
<tr>
<td>$\gamma_{x^3} = 0, F(1)$</td>
<td>p: 0,000***</td>
<td>p: 0,000***</td>
<td>p: 0,766</td>
<td>p: 0,045*</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja***</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

* $p<0.05$; ** $p<0.01$; *** $p<0.001$

Standardavvik i parentes, signifikansnivå oppgitt ved * til ***, alle testresultater F-fordelt med fordeling F(Z), Newey-West-metode ved angitt N.
5.5.1 TOLKNING AV RESULTATER
Heller ikke for britisk gassproduksjon klarer HDPO-modellen den viktigste øvelsen, nemlig å gi troverdige resultater som passerer de påkrevde hypotesetester når anvendt på hele datamaterialet. Den lineære spesifikasjonen for alle observasjoner tilfredsstiller faktisk ingen av utredningens hypotesser hverken hva angår signifikans, estimering av, størrelser eller nytte av høyere potenser av eksisterende variabler.

Oppsiktsvekkende nok forekommer det likevel her, som for britisk oljeproduksjonsdata, et sett med vellykkede resultater. Den lineære modellen gir for tidsperioden 1980 – 2012 statistisk signifikante β_x og β_0 med korrekt fortegn, en $\bar{R}_{Q/X}$ signifikant større enn X_{2013}, og indikerer i tillegg at inkludering av β_x^2 ikke ville forbedret modellen. Størrelsen på $\bar{R}_{Q/X}$ (3301 milliarder Sm3) er videre ikke nødvendigvis helt urimelig gitt Storbritannias årlige, fallende gassproduksjon på 41 milliarder Sm3 i 2012 og beviste reserver per 2013 (BP Statistical Review of World Energy 2013). Britiske myndigheter estimerer X_T til omtrent 3 milliarder Sm3, her omfattende både beviste, sannsynlige og mulige reserver (UK DECC, 2014a).

Det faktum at denne analyseperioden ikke inkluderer all tilgjengelig data for britisk gassproduksjon er, som for britisk oljeproduksjon, et sentralt moment som ikke kan forbigås. Dette vil drøftes senere i kapittel 6.

Tabellen under oppsummerer resultatene fra hypotesetestene både for lineære og kvadratiske spesifikasjoner av modellen på hver av de fire, ulike analyseperiodene:

TABELL 20 – OPPSUMMERING AV HYPOTESETESTER BRITISK GASSPRODUKSJON

<table>
<thead>
<tr>
<th>Oppsummering hypotesetester</th>
<th>Hypotese 1</th>
<th>Hypotese 2</th>
<th>Hypotese 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineær modell 1970 – 20132</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell 1980 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell 1990 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell 1995 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1970 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1980 – 2012</td>
<td>Ja</td>
<td>Ja</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell 1990 – 2012</td>
<td>Nei</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvadratisk modell 1995 – 2012</td>
<td>Nei</td>
<td>Ja</td>
<td>Nei</td>
</tr>
</tbody>
</table>
5.6 EKSKLUDERING AV NYERE OBSERVASJONER

Kritikk og etterprøving av HDPO-modellen har, både i Boyce (2013) og i denne utredningen så langt konsentrert seg som hvorvidt 1) modellen evner å gi fornuftige verdier for endelig utvinnbare reserver (K) ved bruk av hele datamaterialet, og 2) hvor stor og eventuelt hvilken effekt det gir å ekskludere tidlige observasjoner fra datagrunnlaget. Sistnevnte som en naturlig respons på modellens faktiske anvendelse av dens skapere, Hubbert og Deffeyes.

Dette gjør det interessant å undersøke om HDPO-modellen, på bakgrunn av den informasjon som var tilgjengelig for et gitt antall år siden, faktisk gir prediksjoner som stemmer overens med slik framtidsutsiktene er i dag – og i så fall i hvilken grad.

I den sammenheng er det tatt utgangspunkt i produksjonsdata tilgjengelig for 10 år siden, altså tall gjeldende fra første tilgjengelige produksjonsår til 2004 for alle de fire gruppene med produksjonsdata. På lik linje med for overnevnte analyser er det interessant å se hvilke eventuelle ulikheter HDPO-modellen gir på tvers av ulike data også når nyere tall ikke tas med i beregningene. Dette særlig siden både norsk og britisk olje- og gassproduksjon er på ulike steder i sine respektive livssykluser, hvilket ytterligere forsterker HDPO-modellens utfordring.

Dette ville imidlertid krevd en forutsetning om at disse to datamaterialene er like, samtidig som det ikke nødvendigvis er det mest interessante med modellen sett i lys av ekskludering av data, som er det denne utredningen begir seg ut på å undersøke (jmf. kapittel 5.3.1). Det er da mer relevant å undersøke om hvert enkelt datasett, norsk og britisk olje- og gassproduksjon, hver for seg evner å gi fornuftige resultater når modellen anvendes på et datagrunnlag satt et gitt antall år tilbake i tid. Dette ville i så fall, for hvert enkelt datasett, gitt indikasjoner på hvorvidt resultatene basert på tall helt frem til i dag også kan si noe om fremtidens produksjonsnivåer. Figuren under, først presentert i kapittel 1.1, illustrerer denne innfallsvinkelen.

TABELL 21 – LINEÆRE REGRESJONSRESULTATER, EKSKLUDERING AV NYERE OBSERVASJONER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x</td>
<td>-0,337</td>
<td>-1,441</td>
<td>-0,039</td>
<td>-0,258</td>
</tr>
<tr>
<td></td>
<td>(0,186)</td>
<td>(0,727)</td>
<td>(0,015)*</td>
<td>(0,092)**</td>
</tr>
<tr>
<td>β_0</td>
<td>0,679</td>
<td>0,851</td>
<td>0,662</td>
<td>0,355</td>
</tr>
<tr>
<td></td>
<td>(0,211)**</td>
<td>(0,305)**</td>
<td>(0,225)**</td>
<td>(0,077)**</td>
</tr>
<tr>
<td>R^2</td>
<td>0,09</td>
<td>0,13</td>
<td>0,22</td>
<td>0,19</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>28</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>$K_{Q/X}$</td>
<td>2,01</td>
<td>590</td>
<td>17,11</td>
<td>1380</td>
</tr>
<tr>
<td>$K_{Q/XT}, F(1)$</td>
<td>0,52</td>
<td>0,32</td>
<td>0,62</td>
<td>0,57</td>
</tr>
<tr>
<td>$\beta_{x^2} = 0, F(1)$</td>
<td>p: 0,155</td>
<td>p: 0,050*</td>
<td>p: 0,058</td>
<td>p: 0,015*</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja**</td>
<td>Nei</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

* *p<0,05; **p<0,01; ***p<0,001

TABELL 22 – KVADRATISKE REGRESJONSRESULTATER, EKSKLUDERING AV NYERE OBSERVASJONER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y_X</td>
<td>0,182</td>
<td>0,003</td>
<td>0,125</td>
<td>0,050</td>
</tr>
<tr>
<td></td>
<td>(0,006)**</td>
<td>(0,021)</td>
<td>(0,025)**</td>
<td>(0,016)**</td>
</tr>
<tr>
<td>y_{x^2}</td>
<td>-0,047</td>
<td>0,076</td>
<td>-0,004</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>(0,002)**</td>
<td>(0,022)**</td>
<td>(0,001)**</td>
<td>(0,009)</td>
</tr>
<tr>
<td>y_0</td>
<td>0,006</td>
<td>0,019</td>
<td>0,158</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>(0,002)**</td>
<td>(0,004)**</td>
<td>(0,100)</td>
<td>(0,004)**</td>
</tr>
<tr>
<td>R^2</td>
<td>0,99</td>
<td>0,92</td>
<td>0,78</td>
<td>0,92</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>28</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>K_Q</td>
<td>3,89</td>
<td>K < 0</td>
<td>28,17</td>
<td>K < 0</td>
</tr>
<tr>
<td>$K_{Q/XT}, F(1)$</td>
<td>0,99</td>
<td>K < 0</td>
<td>1,02</td>
<td>K < 0</td>
</tr>
<tr>
<td>$y_{x^2} = 0, F(1)$</td>
<td>p: 0,138</td>
<td>p: 0,103</td>
<td>p: 0,044*</td>
<td>p: 0,005**</td>
</tr>
<tr>
<td>Autokorrelasjon</td>
<td>Ja***</td>
<td>Ja**</td>
<td>Ja***</td>
<td>Ja***</td>
</tr>
<tr>
<td>Heteroskedastisitet</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja***</td>
<td>Ja*</td>
</tr>
</tbody>
</table>

* *p<0,05; **p<0,01; ***p<0,001

Standardavvik i parentes, signifikansnivå oppgitt ved * til ***, alle testresultater F-fordelt med fordeling F(Z), Newey-West-metode ved angitt N.

68
5.6.1 TOLKNING AV RESULTATER

Tabellene over oppsummerer resultatene for norsk og britisk olje- og gassproduksjon basert på HDPO-modellens anvendelse fra start til og med året 2004.

Resultatene er ikke umiddelbart oppløftene for noen av modellene. Det er generelt liten støtte for noen av hypotesetestene, særlig representert ved manglende oppnåelse av både fornuftig og signifikant K for samtlige modeller. Ingen av de lineære norske og britiske modellene gir henholdsvis $\hat{K} > X_{2014}$ eller $\hat{K} > X_{2013}$, og de kvadratiske modellene for både norsk og britisk gassproduksjon evner her faktisk ikke å gi estimator for $K > 0$, da regresjonene tidligere resulterer i $\gamma_{X^2} > 0$ – sistnevnte i seg selv et brudd på Hypotese 1.

I tillegg viser det seg at estimert \hat{K} i alle disse tilfellene konsekvent resulterer i lavere estimator enn de opprinnelige, sammenliknbare tilfellene som omfatter hele datagrunnlaget frem til siste tilgjengelige registrerte datapunkt (2014 for norske data og 2013 for britiske data). Dette er en indikasjon på at modellen underestimerer K for færre antall observasjoner dersom alle tidlige datapunkter inkluderes, med andre ord at "peak" predikeres å inntreffe tidligere i tid og mengde. Dette er en motsatt effekt av resultatene i foregående kapitler, hvor ekskludering av tidlige datapunkter har en tendens til å øke estimatene for K, siden det da elimineres punkter som i utgangspunktet gjerne ligger over trendlinjen, slik at stigningstallet på trendlinjen Q_t/X_t blir slakere.

<table>
<thead>
<tr>
<th>Oppsummering hypotesetester</th>
<th>Hypotese 1</th>
<th>Hypotese 2</th>
<th>Hypotese 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineær modell norsk olje</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell norsk gass</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Lineær modell britisk olje</td>
<td>Ja</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Lineær modell britisk gass</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell norsk olje</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvadratisk modell norsk gass</td>
<td>Nei</td>
<td>Nei</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvadratisk modell britisk olje</td>
<td>Ja</td>
<td>Nei</td>
<td>Nei</td>
</tr>
<tr>
<td>Kvadratisk modell britisk gass</td>
<td>Nei</td>
<td>Nei</td>
<td>Nei</td>
</tr>
</tbody>
</table>

TABELL 23 – OPNSUMMERING AV RESULTATER, EKSKLUDERING NYERE OBSERVASJONER
Tabellen over oppsummerer resultatene fra hypotesetestene både for lineære og kvadratiske spesifikasjoner av modellen på hver av de fire, ulike datassetene.

Merk at de siste års teknologiske sprang, herunder blant annet knyttet til oljesand, skifergass og skiferolje, som tidligere nevnt forventes å kunne ha påvirket modellens evne til på en rimelig måte å kunne gi et bilde som stemmer overens med nåtiden. Dette er dog i seg selv en svakhet med produksjonsmodeller som ikke tar hensyn til hverken marked, teknologi eller andre makroøkonomiske faktorer. Deffeyes forsvarer for øvrig selv tidligere feilprognoser med nødvendige justeringer av modellen for å kompensere for uventede teknologiske nyvinninger som det på tidligere tidspunkt ikke burde kunne forventes at noen modell skulle ta høyde for (Deffeyes, 2003; 2005; 2010). Disse resultatene vil drøftes nærmere i neste, avsluttende kapittel.
6 OPPSummering og konklusjon

Dette kapittelet har til hensikt å knytte resultatene presentert i analysedelen sammen med utredningens innledning og problemstilling. Det vil først konkluderes om sistnevnte er tilfredsstilt. Påfølgende vil det diskuteres noen relevante samfunnspolitiske implikasjoner av Peak Oil-teoriens påstander og denne utredningens resultater. Disse diskusjonene er sentrale for å sette utredningens resultater og konklusjoner i perspektiv.

6.1 OPPSummering av resultatet

Denne utredningen har omhandlet statistisk inferens av Hubbert Deffeyes Peak Oil-modell, en mye omdiskutert produksjonsmodell fremlagt og forsvart av geologene Marion King Hubbert (1903 – 1989) og Kenneth S. Deffeyes (1931 –).

Analyseperiodene som er gjort gjenstand for mer detaljerte undersøkelser, har hatt sitt utspring i følgende vurderinger, jamfør kapittel 5.1:

a) En visuell observasjon av når forholdstallet Q_t/X_t flater ut og «roer seg ned til en ganske god rett linje» (Deffeyes, 2005, s. 36, egen oversettelse).

b) År som i henhold til innledende lineære regresjoner representerer ulike kronologiske deler av datamaterialet.

Følgende momenter oppsummerer de fem ulike analysene, hvorav hver består av åtte enkeltanalyser på ulike analyseperioder, som er utført på HDPO-modellen for norsk og britisk olje- og gassproduksjon:

- Ingen av analyseperiodene som omfatter hele datagrunnlaget fra første til siste registrerte observasjon, tilfredsstiller alle definerte hypotesetester.
- To av 40 enkeltanalyser på tvers av alle datagrunnlag, henholdsvis én for britisk olje og én for britisk gass, tilfredsstiller alle definerte hypotesetester. I begge tilfeller ekskluderes eldre observasjoner fra analysen på grunnlag av vurderingene nevnt i moment a) ovenfor og tidligere kapittel 2.3 og 2.4.
- Ingen av analyseperiodene hvor nyere data ekskluderes tilfredsstiller alle definerte hypotesser, og K, modellens estimat for størrelsen på endelig
utvinnbare reserver, estimeres her konsekvent lavere enn i opprinnelige modeller basert på alle tilgjengelige observasjoner.

- Ulike tolkninger av når en nødvendig utflating har funnet sted, i analysene representert ved ulike analyseperioder basert på ulik grad av ekskludering av data, jamfør moment b), gir svært store variasjoner i estimatet for K – selv ved få års forskjell. Dette gjør det nærmest umulig å skulle kunne forsvare spesifikke år som valg av starttidspunkt for HDPO-modellen.

- Estimert K virker å øke ved antall ekskluderte tidlige observasjoner. Det er stor forskjell mellom hvor få eller mange tidlige år som ekskluderes.

- Estim K oppgis i de fleste tilfeller som enten lavere enn det som allerede p.t. er produsert og levert, eller såpass lavt / høyt at det likevel ikke virker troverdig når sammenliknet med tilgjengelige data.

- Uten troverdige estimator for K, resulterer modellen heller ikke hverken i troverdige anslag for størrelsen ($K/2$) eller tidspunkt for «peak».

Dette sammenfaller i stor grad med resultatene presentert av Boyce (2011, 2013), hvor modellen ble benyttet blant annet for amerikanske og internasjonale, aggregerte og disaggregerte data i ulike former.

Resultatene samsværer også med den matematiske modellen som utredet av Bere (2010), som ikke gav hverken troverdige estimator for K eller tidspunkt for «peak» for de geografiske områdene hvor maksimal produksjon ikke enda har inntruffet – hvilket jo er hele poenget med modellen.

6.2 Konklusjon

Ved tidligere nevnte problemstilling har jeg søkt å avdekke hvorvidt Hubbert Deffeyes Peak Oil-modell evner å gi empirisk robuste og troverdige estimator for

1) størrelsen på endelig utvinnbare olje- og gassreserver
2) når olje- og gassutvinningens toppunkt vil forekomme – eller har forekommet

Resultatene fra kapittel 5, som oppsummeres i forrige delkapittel, tyder på at modellen i sin nåværende form i svært liten grad evner å si noe om størrelsen på endelige utvinnbare olje- og gassreserver for Norge og Storbritannia. Det samme
NHH, 2014

gjelder tidspunktet for når disse ressursenes produksjonskurver vil passere sine maksimumsverdier. Begge deler er i stor grad et resultat av generelt dårlig statistisk validitet og lite tilfredsstillende estimater for K, som igjen gjør det lite interessant å benytte dette estimatet til å kalkulere tidspunkt og størrelse ($K/2$) for «peak».

Først og fremst tyder resultatene på at modellen ikke evner å gi statistisk tilfredsstillende resultater dersom alle tilgjengelige observasjoner legges til grunn. Modellen møter i tillegg på vanskeligheter ved analyseperioder som faktisk er i tråd med Hubberts og Deffeyes’ forutsetninger, altså tilfeller som ekskluderer produksjonshistorikk som «inntraff for tidlig» til at de vurderes som relevante for modellen (Deffeyes 2005, s. 37).

Således er spørsmålet hva årsaken til dette er. Som henvist til tidligere i kapittel 2.5, passer den matematiske spesifikasjonen av Hubbert-kurven relativt godt til flere internasjonale produksjonskurver, selv om dens predikative evner ikke anslås å være særlige gode (Bere, 2010). Årsaken til at modellen ikke overlever grundigere, statistisk etterprøving er nok nettopp det Deffeyes selv implisitt påpeker da han argumenterer for at tidlig inntrufne produksjonsdata ikke er relevant utfordrer modellen (Deffeyes, 2005, s. 36). Disse observasjonene følger nemlig ikke de forutsetninger og egenskaper modellen tillegger datagrunnlaget.

Analysene av både norske og britiske data resulterte i denne sammenheng i et interessant fenomen som tydelig eksemplifiserer problemerne ved en slik forutsetning. Som først nevnt i kapittel 5.1, indikerer tabellene som oppsummerer de innledende, lineære regresjonene (Tabell 5, Tabell 9, Tabell 13 og Tabell 17) at estimert K øker ved økt antall ekskluderte tidlige observasjoner. Dette er egenskaper alle de fire delanalysene fra kapittel 5.2 til 5.5 i stor grad deler, og skyldes forholdene illustrert i HDPO-grafene vist og forklart i kapittel 2.4. Fenomenet forklares med at produksjonen innledningsvis vokser såpass raskt at de tidlige forholdstallene Q_t/X_t blir relativt høye sammenliknet med senere observasjoner. Disse kronologisk tidlige tilfellene virker da å falle utenfor «mønsteret» til de senere, mer visuelt passende datapunktene.
På bakgrunn av dette ekskluderer Hubbert og Deffeyes data som ikke passer til modellen. Som følger av fallende Q_t/X_t med økende t, vil ekskludering av kronologisk tidlige, høye observasjoner naturlig nok redusere det negative stigningstallet $\frac{d(Q_t)}{dX_t}$, slik at K øker. Slik ekskludering kan ikke, metodisk og vitenskapelig, uten videre aksepteres i en slik modell. Resultatene viser at K varierer sterkt med antallet år som ekskluderes, og det kan vanskelig argumenteres for hvor mange år som er «riktig» å utelate, dersom dette overhodet skulle aksepteres.

Analyseperiodene som gjenskaper en vurdering av akkurat dette viser seg dog, kanskje noe overraskende, faktisk å tilfredsstille alle definerte hypoteser i to tilfeller for britisk olje- og gassproduksjon. Det betyr ikke nødvendigvis at modellen og teorien aksepteres i sin helhet, men heller at det blir noe vanskeligere å avskrive den. Drøftelsen må i så fall berøre det faktum at modellen ikke har gitt tilsvarende, gode resultater for norsk sokkel. Bare to av 40 enkeltanalyser gav tilfredsstillende resultater, hvorav 24 av disse ekskluderte tidlige observasjoner. Dette underminerer modellens evne til å gjenskape tilsvarende resultater for ulike datagrunnlag og ulike analyseperioder. I tillegg gjør ekskluderingen av data, som argumentert for tidligere, at man vanskelig kan akseptere modellens resultater i disse tilfellene.

I tillegg til dette, kan modellen heller ikke sies å være robust når anvendt på eldre produksjonshistorikk, altså de åtte enkeltanalysene hvor nyere data ekskluderes i modelleringen. Hensikten med denne øvelsen har vært å undersøke hvorvidt modellen, basert på produksjonstall 10 år tilbake, evnet å gi prediksjoner i tråd med dagens, observerte størrelser. Dette er ikke tilfellet for noen av analyseperiodene.

Det er også et merkbart avvik i estimatene for K basert på disse forhistoriske analyseperiodene (kapittel 5.6), og K basert på oppdaterte analyseperioder (kapittel 5.2 – 5.5). Dette tyder på at nye observasjoner endrer modellens utfall i så stor grad at også modellene basert på dagens tilgjengelige datagrunnlag vanskelig kan vurderes å gi troverdige prediksjoner tilsvarende antall år frem i tid. Denne slutningen samsvarer med Beres (2010) alternative, matematiske tilnærming til HDPO-modellen.
Boyce (2013, s. 101) påpeker at Hubbert og Deffeyes, i strid med vanlig vitenskapelig metode, tilpasser datagrunnlaget til deres egen modell i stedet for å videreutvikle modellen for på best mulig måte å forklare datagrunnlaget. De fleste økonomiske og statistiske modeller er forenklinger som sjeldent reflekterer virkeligheten fullt ut. Dersom modellen konsekvent, over tid og på tvers av geografiske lokasjoner og modenhet produserte statistisk signifikante resultater, som i tillegg ved etterprøvbarhet viste seg å være relativt gode, ville kanskje situasjonen vært annerledes.

Slik er det ikke, i følge denne utredningens resultater. De positive britiske utfallene virker nok mer som en statistisk tilfeldighet. De tyder på at modellen ikke er fullstendig urimelig, at dens form og prinsipper ikke nødvendigvis er sterkt i strid med datagrunnlagets egenskaper. Den vitenskapelige metoden som ligger til grunn for denne bruken av modellen er likevel lite akseptabel fra et statistisk og økonometrisk standpunkt. Resultatene modellen produserer er ikke troverdige, uavhengig av hvorvidt datagrunnlaget allerede har nådd en tydelig produksjonstopp eller ikke, som eksemplifisert ved ulikhetene i norske og britiske datagrunnlag.

6.3 Diskusjon
En mer eller mindre tvilsom statistikkøvelse vektlegges i Peak Oil-samfunnet tyngre enn seriøse, statlige organers geologiske beregninger når det kommer til potensielt utvinnbare og enda ikke oppdagede ressurser. Selv om OPECs tall lenge har vært og fremdeles er emne for diskusjon både i faglige og politiske kretser, er det nokså kontroversielt å påstå at Norge og andre både europeiske og internasjonale stater blåser opp sine estimater, utelukkende for å holde liv i troen på sin egen fortreffelighet som petroleumsnasjon (Cobb, 2012).

Som et eksempel viser figuren under Oljedirektoratets estimater for norsk petroleumsproduksjon (alle relevante petroleumsprodukter) i perioden 2014 – 2030.

Estimatene indikerer en tydelig forventning om utflatning og gradvis nedgang i norsk petroleumsproduksjon, litt avhengig av hvordan de usikre kildene slår ut. Disse avhenger også av oljeprisen, som styrer hvilke påviste områder som er økonomisk lønnsomme å utvinne, og teknologisk utvikling, som ved store fremskritt kan gjøre
tidligere økonomisk ulønnsomme eller teknisk umulige prosjekter både lønnsomme og gjennomførbare. En brå nedgang virker imidlertid ikke å samsvare med direktoratets forventninger.

Økte priser antas altså å fungere som incentiver til økt aktivitet, men teknologisk utvikling er tilsvarende viktig. Nyere informasjon tyder, som nevnt i kapittel 1.1, på at skifergass og skiferolje som følger av nyteknologi og nye utvinningsmetoder kan spille en enda mer fremtredende rolle i verdens oljeproduksjon i tiden fremover enn først antatt (PWC, 2013). Da er det ikke tilstrekkelig simpelthen å justere
datagrunnlaget for å kompensere for oppdatert informasjon. Figuren under viser, som nok et eksempel, USAs årlige oljeproduksjon i perioden 30.06.1900 til 30.06.2013 (EIA, 2014f). De siste årene har det tidligere fallende produksjonsnivået snudd og akselerert nokså kraftig. Dette er ikke forenelig med HDPO-modellens forutsetninger om produksjonskurvens egenskaper som presentert i kapittel 2.

Et motargument til dette i tråd med Peak Oil-tankegangen, kunne være at skiferolje burde behandles som en «egen ressurs» med sin egen Hubbert-kurve. Det ville likevel ikke endret det faktum at USAs produksjon av olje, uavhengig av hvor den kommer fra, ikke ble predikert korrekt av de tidligere års HDPO-beregninger, og nå fortsetter i økende takt som direkte resultat av industriens teknologisk utvikling.

Hubbert brukte en enkel, statistisk innfallsvinkel til en fallende kurve som gjerne kan sees i noen, men antakeligvis ikke alle oljefelt, og antok i tillegg at USA som helhet ville oppføre seg likt. Den moderne tids Peak Oil-tilhengere drar denne antakelsen videre også til å gjelde for internasjonale produksjonskurver, uavhengig av overnevnte (makro-) økonomiske og teknologiske faktorer (Yergin, 2011, s. 236).

Én ting er å få en modell til å stemme noenlunde overens med eksisterende produksjonshistorikk. Det er noe helt annet å skulle predikere fremtidige produksjonsvolumer av en ressurs som tydelig avhenger av både teknologisk evne og investeringslyst blant næringsaktører.
Avslutningsvis må det adresseres at Peak Oil-teorien virker å handle like mye om de antatt katastrofale økonomiske konsekvensene av en produksjonsnedgang, som selve beregningene og bruken av modellen. Det spås et umiddelbart fall i verdens oljepriser og tilhørende dramatiske konsekvenser for verdensøkonomien, ofte gjennom sterk, dystopisk retorikk uten tilstrekkelig belegg hverken i vitenskapelig fundamenterte metoder eller etablerte geologiske oppfatninger. Hvorvidt et slikt fall vil føre til en verdensomspennende økonomisk kollaps er nok vanskelig å konstatere, men påstander både for og mot et slikt utfall burde ledsages av fornuftige, vitenskapelige, og helst også geologiske argumenter.

Motargumentet mot Peak Oil-spådommene er at pris- og markedsmekanismene i en situasjon med redusert produksjon og fortsatt høy etterspørsel vil kunne selvregulere seg slik at drastiske tiltak ikke blir nødvendig (Henriksen & Sjølie, 2008). Dette vet man dog heller ikke sikkert, og er vanskelig å bevise.

Det man faktisk vet er at både verdens, USAs, Storbritannias og Norges petroleumsproduksjon en gang vil ta slutt. Dette enten som følger av fullstendig uttømming av fysisk utvinnbare ressurser, at det som eventuelt er igjen på et tidspunkt ikke vil være regningssvarende å utvinne til en realistisk pris (Hannesson & Aakvik, 2008), eller som følger av nye, billigere, fornybare substitutter.

Nøyaktig når dette vil skje, både i tid og mengde, er vanskelig å forutsi. Dessverre bidrar HDPO-modellen svært lite til å oppklare dette.

Alt dette til tross peker Peak Oil-tematikken likevel på et relevant politisk og økonomisk emne, som det fortsatt er noe usikkert hvordan verdensmarkedet vil respondere på i fremtiden. I 2011 dekket Saudi-Arabias oljeinntekter omtrent 90 % av gulfstatens inntekter (Carey, 2012). For Norge utgjør petroleumstrunderbransjen 21,5 % av samlet BNP og 29 % av statens inntekter (Olje- og energidepartementet, 2014b). Det er utenfor denne utredningens mandat å diskutere for mye politikk. Det virker likevel fornuftig at både Norge og andre stater hvor petroleumstrunderbransjen utgjør en betydelig andel av samlet verdiskapning, har mye å tjene på allerede så tidlig som mulig å ligge i forkant av en fremtidig reduksjon i petroleumstrunderbransjens både produksjons- og investeringstempo.
REFERANSE

Durbin, J. & Watson, G.S. (1951). Testing For Serial Correlation In Least Squares Regression. II. *Biometrika*, vol 38, No. 1/2 (juni), s. 159-177

Monbiot, G. (2012) False Summit - We were wrong about peak oil: there's enough in the ground to deep-fry the planet. www.monbiot.com, 2. juli 2012 [Internett]. Tilgjengelig fra: <http://www.monbiot.com/2012/07/02/false-summit/> [Lest 31.05.14].

Oljedirektoratet (2014a) *Faktasider* [Internett], Oljedirektoratet. Tilgjengelig fra: <http://factpages.npd.no/> [Lest 31.05.14].

Oljedirektoratet (2014b) *Ressursregnskap og analyser* [Internett], Oljedirektoratet. Tilgjengelig fra: <http://www.npd.no/no/Tema/Ressursregnskap-og-analyser/> [Lest 31.05.14].

PWC (2013) Shale oil: the next energy revolution [Internett], PWC United Kingdom. Tilgjengelig fra: <http://www.pwc.se/sv_SE/se/energi/assets/shale-oil-the-next-energy-revolution.pdf> [Lest 31.05.14].

StataCorp (2013) Stata user’s guide, release 13. College Station, Texas: Stata Press.

