Er Oslo børs et effisient aksjemarked?

En test av markedseffisiens på svak form i perioden 1996-2013.

Per Magne Dalen
FORORD

Denne masteroppgaven markerer slutten på min mastergrad i økonomi og administrasjon ved Handelshøyskolen, NMBU.

Jeg har alltid vært interessert i børsmarkedet og har gjennom flere år konkurrert internt med min bror om å få størst mulig avkastning på våre investeringer. Han har holdt markedsporteføljen, mens jeg har fulgt min egen magefølelse og kjøpt enkeltaksjer. Jeg ønsket derfor å tilegne meg mer kunnskap om dette feltet og undersøke om enkelte børsstrategier kan gi risikojustert meravkastning utover markedet.

Jeg vil takke min veileder Glenn Kristiansen som har brukt både kvelder og helger for å bistå meg i oppgavearbeidet. Takk også til medstudentene Nancy-Ann Karlsen og Helene Greeny som har tvunget opp fra dyp søvn til masterskriving hver morgen. Avslutningsvis også en takk til min arbeidsgiver i TV 2 Nyhetene som har vist forståelse og gitt meg fri fra jobb når jeg har måttet intensivere arbeidet med masteroppgaven.

Oslo, 15. mai 2014

Per Magne Dalen
SAMMENDRAG

Masteroppgaven har som hovedmål å undersøke om børsmarkedet er effisient på svak form eller ikke. Jeg har foretatt en analyse av ulike handelsstrategier i børsmarkedet som alle har et felles mål, å skape risikojustert meravkastning utover markedet. Jeg har benyttet strategier som er teoretisk forankret i finansiell litteratur. Datagrunnlaget for å kunne gjennomføre disse handelsstrategiene er aksjene ved Oslo børs i en periode på 18 år, fra 1996-2013. Disse strategiene har prøvd å utfordre avkastningen til markedsporteføljen, som i mitt tilfelle er hovedindeksen ved Oslo børs, OSEBX.

Resultatene mine viser at aksjer som presterte godt i én måned, fortsetter å prestere bra og i gjennomsnitt bedre enn markedsporteføljen påfølgende måned. Likevel var det ingen av de tre handelsstrategier med såkalte vinneraksjer som oppfylte kravet om signifikant risikojustert meravkastning. Jeg fant derfor at markedet har vært effisient på svak form i undersøkelsesperioden.

ABSTRACT

My master thesis’ goal is to examine if the stock market is a weak form efficiency market. I have analysed different trading strategies in the stock market where all have a common goal, to create a higher significant return than the market. I have used strategies that are theoretically grounded in financial literature. The data basis I have used to carry out these trading strategies are stocks at the Oslo Stock Exchange for a period of 18 years, from 1996 to 2013. These strategies have tried to challenge the return of the market portfolio, which in my case is the main index of the Oslo Stock Exchange, OSEBX.

My results show that stocks that performed well in one month, continue to perform well and in average, better than the market portfolio the following month. Still, none of the three trading strategies of the so-called “win stocks” met the requirements for significant outperformance. I therefore found that the market was weak form efficient during the investigation period.
INNHOLDSFORTEGNELSE

1. **Innledning** ... 1
 1.1 Problemstilling ... 2
 1.2 Struktur .. 2

2. **Aksjemarkedet** .. 3
 2.1 Hva er aksjer? ... 3
 2.2 Arbitrasjemuligheter .. 3
 2.3 Benchmark ... 4
 2.4 Passive og aktive investeringsstrategier .. 6
 2.5 Kjøp og salg av aksjer .. 6
 2.6 Indeksfond ... 7

3. **Teori** .. 10
 3.1 Markedseffisiens .. 10
 3.1.1 Random Walks ... 11
 3.1.2 Spørsmålstegn ved markedseffisiens .. 11
 3.2 Kapitalverdimodellen ... 12
 3.2.1 Kritikk av Kapitalverdimodellen ... 14
 3.3 Risiko ... 15
 3.4 Aksjenes prestasjoner justert for risiko ... 18
 3.4.1 Sharpe ratio .. 19
 3.4.2 Jensens Alpha .. 20
 3.4.3 Information ratio .. 21
 3.5 Sesongvariasjoner i aksjemarkedet ... 22
 3.6 Hypoteser .. 23
 3.6.1 "Omsetningsstrategien" ... 23
 3.6.2 "Taperstrategien" .. 24
 3.6.3 "Vinnerstrategien" .. 26

4. **Metode** .. 28
 4.1 Forskningsdesign ... 28
 4.2 Testing av hypotesenes signifikans ... 28
 4.2.1 $\text{Sharpe}_p > \text{Sharpe}_m$... 28
FIGURLISTE

Figur 1: Struktur på oppgaven .. 2
Figur 2: Utvalg av indekser i verden ... 5
Figur 3: Markedsandelen til indeksfond ... 8
Figur 4: Aksjefond vs indeksfond i USA ... 9
Figur 5: Kapitalmarkedslinjen .. 13
Figur 6: "Mean-variance"-kriteriet .. 15
Figur 7: Indifferenskurve av forventet risiko og avkastning ... 16
Figur 8: Usystematisk og systematisk risiko .. 17
Figur 9: Kapitalallokeringslinja ... 19
Figur 10: Porteføljenes utvikling 1996-2013 .. 34
Figur 11: Grafisk normalfordeling av z-verdi ... 36
Figur 12: Årlig Information ratio blant "vinneraksjer" ... 39

TABELLER

Tabell 1: Korrelasjonen mellom utvalgte aksjer og OSEBX 2005-2013 5
Tabell 2: Korrelasjonen mellom utvalgte aksjer og OSEBX i 2008 .. 5
Tabell 3: Porteføljenes statistiske Information ratio ... 21
Tabell 4: Porteføljenes utvikling 1996-2013 ... 34
Tabell 5: Porteføljenes risiko, avkastning og korrelasjon .. 35
Tabell 6: Porteføljenes Sharpe ratio og z-verdi .. 37
Tabell 7: Porteføljenes alpha, Information ratio og t-verdi ... 38
1. Innledning

Maurice Kendall fant i sin forskning i 1953, til sin store overraskelse, at det ikke var noe mønster i utviklingen av aksjekurser. Prisene så ut til å forandre seg tilfeldig. Det var umulig å vite om en aksjekurs skulle gå opp eller ned, uansett tidligere utvikling (Bodie et al., 2009). Det ble raskt klart at tilfeldige prisforandringer skyldtes et effektivt marked.

Dette har senere blitt studert og diskutert, og teorien om markedseffisiens har blitt satt på prøve gang på gang de senere tiåren. Er det mulig å finne en strategi som utkonkurrerer markedsporteføljen? Studier viser at svaret på det spriker i begge retninger.

Jeg vil i denne oppgaven forsøke å styrke eller svekke teorien om markedseffisiens på svak form. Teorien går ut på at historiske tall ikke kan være med på å predikere videre utvikling av aksjekurser. For å undersøke dette vil jeg følge fem ulike strategier som jeg selv har valgt, men som tar utgangspunkt i finansiell litteratur. Jeg vil benytte stock-picking, som går ut på å velge enkeltaksjer ut fra et sett av kriterier. Men dette vil ikke innebære at jeg tar hensyn til graden av porteføljenes diversifiserte sammensetning. Ut fra resultatene vil jeg se om det er mulig å oppnå en risikojustert avkastning som er signifikant bedre enn markedet.

Med historiske data fra de siste 18 årene vil jeg se om én eller flere av strategiene gjør det bedre enn Oslo Børs benchmark (hovedindeksen). Indeksen gjenspeiler markedet og investorer kan investere i denne indeksen.

Strategiene er en mellomtning mellom det passive og aktive, der det ikke trengs store menneskelige ressurser til å analysere data eller gjennomføre strategiene i praksis.
1.1 Problemstilling

Som nevnt i innledningen ønsker jeg å undersøke om det er mulig å få unormal avkastning på børsmarkedet ved å kun se på historiske tall. Jeg har på bakgrunn av dette følgende forskningsspørsmål:

“Er det mulig å oppnå meravkastning i det norske aksjemarkedet, ved å benytte historiske data og følge en fast kjøp/salg-strategi hver måned i perioden 1996-2013?”

1.2 Struktur

Introduksjon
- Kapittel 1: Innledning

Teori og fokusområde
- Kapittel 2: Aksjemarkedet
- Kapittel 3: Teori
- Kapittel 4: Metode
- Kapittel 5: Data

Porteføljeevaluering
- Kapittel 6: Resultat og analyse
- Kapittel 7: Diskusjon

Konklusjon
- Kapittel 8: Konklusjon

Figur 1: Struktur på oppgaven

I seksjon 3 viser jeg de resultatene jeg har kommet frem til og drøfter disse i lys av teorien og begrensninger ved oppgaven. Deretter vil jeg anbefale videre forskning på dette feltet innen finansiell økonomi. Avslutningsvis vil jeg i seksjon 4 konkludere med om hypotesen om markedseffisiens på svak form forsterkes eller svekkes.

2. Aksjemarkedet

Jeg vil i dette kapittelet gi en kortfattet innføring i sentrale temaer i aksjemarkedet, som er viktig for det jeg søker å finne svar på i min oppgave. Store deler av teorien i dette kapittelet er hentet fra den niende utgaven av boken "Investments" av Bodie et al., 2009, om ikke annet er beskrevet.

2.1 Hva er aksjer?

2.2 Arbitrasjemuligheter

Arbitrasjemuligheter oppstår når en investor kan motta en risikofri fortjeneste, uten å gjøre en netto investering. For eksempel om en aksjekurs er høyere i ett marked i forhold til et annet, vil det gi en risikofri fortjeneste å kjøpe aksjene på det markedet hvor prisen er lavest og selge der hvor prisen er høyest.

I finansmarkedet er det høy konkurranseliv mellom de ulike aktørene i bransjen. Konkurransen fører til at det er vanskelig å få noe "gratis". Hvis prisene er i likevekt vil det si at vi har et arbitrasjefritt marked.
2.3 Benchmark

Hovedindeksen bestod den 31. desember 2013 av 53 selskaper. Indeksen er vektet i forhold til aksjeverdien til hvert selskap (Se appendiks 2). Det betyr at en endring i aksjekursen til et stort selskap på Oslo børs, vil påvirke hovedindeksen i større grad enn et mindre selskap. For eksempel er Statoil vektet med 17,658 % av OSEBX. Da de la frem et svært godt 1. kvartalsresultat tirsdag 29. April 2014, steg Statoil-aksjen 4,49 %, og dro med seg hovedindeksen som steg med over én prosent. Mesteparten på grunn av Statoil.

Ved bruk av OSEBX som markedsportefølje, er det viktig å være klar over faren for benchmark error. Situasjonen oppstår når feil indeks er valgt i analysearbeidet. Ved å sammenligne aksjeporteføljenes prestasjoner opp mot markedsporteføljens, er det viktig å velge en korrekt markedsportefølje. For eksempel innenfor samme sektor og/eller samme land. I min oppgave benytter jeg et bredt spekter av aksjer ved Oslo børs, og derfor er hovedindeksen den passende markedsporteføljen. Å vite at man har valgt riktig markedsportefølje kan forsterkes om korrelasjonen mellom aksjer og markedsporteføljen er høy.

Oslo børs er en relativt liten børs i internasjonal målestokk, noe som raskt kan føre til at store aksjeselskap er sterkt korreleret med hovedindeksen. Jeg har gjort en utregning som viser korrelasjonen mellom de fire største selskapene i OSEBX pr 31.12. 2013 og hovedindeksen over en åtte års periode fra 2005-2013:
Mine observasjoner viser samtidig at korrelasjonen er mye sterkere i nedgangstider. For eksempel under finanskrisen da Oslo børs falt kraftig, var korrelasjonen til de utvalgte aksjene enda kraftigere. Tabellen nedenfor viser korrelasjonen mellom aksjene og hovedindeksen i 2008:

<table>
<thead>
<tr>
<th></th>
<th>STL</th>
<th>TEL</th>
<th>DNB</th>
<th>YARA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,740</td>
<td>0,689</td>
<td>0,759</td>
<td>0,686</td>
</tr>
</tbody>
</table>

Tabell 1: Korrelasjonen mellom utvalgte aksjer og OSEBX 2005-2013

Dette viser at aktiv porteføljeforvaltning kan være vanskelig, siden korrelasjonen mellom enkeltaksjer og hovedindeksen er så stor. Det kan derfor være fristende for aktive porteføljeforvaltere med risiko-appetitt å bare investere en brøkdel av pengene i disse store selskapene, siden deres kursutvikling har stor påvirkning på hovedindeksens utvikling. Likevel har hovedindeksen på Oslo børs vist seg å være en svært god investering internasjonalt de siste 18 årene, sammenlignet med indekser i store økonomier som Storbritannia og USA. Vår nordiske nabo Danmark har holdt samme utvikling som det norske aksjemarkedet.

Endast enkelte fra et virkelig viselig avvik fra det norske markedsdrevet, med CSP som en av eksempler.

Kilde: Tall hentet fra finance.yahoo.com

Figur 2: Utvalg av indekser i verden
2.4 Passive og aktive investeringsstrategier

En passiv investeringsstrategi går ut på å holde en diversifisert investeringsprofil, uten å bruke mye tid og penger på å prøve å forbedre investeringene gjennom analyse og lignende. Eksempel på en passiv investeringsstrategi er å sette pengene i indeksfond.

En aktiv investeringsstrategi handler om å forbedre resultatene gjennom analyse. For eksempel å finne feilprisete verdipapirer. På den måten er det mulig å få en ekstra avkastning utover det normale. Men kritikerne er skeptiske til at det er mulig å tjene noe særlig på dette, tatt i betraktning at man bruker store ressurser på å skaffe seg informasjon som muligens kan gi en litt større avkastning enn indeksfond.

I et effektivt marked er en passiv investeringsstrategi å foretrekke, siden det er nytteløst å bruke tid og ressurser på å prøve å slå et marked der all informasjon er tilgjengelig.

2.5 Kjøp og salg av aksjer

Ved investering i aksjefond betales det forvaltningshonorar. Dette skal dekke kostnadene blant annet knyttet til porteføljevalt. Indeksfond har mye lavere forvaltningshonorar enn aktive fond, siden indeksfond krever svært små ressurser for å kunne forvalte. Jeg vil i denne oppgaven også se bort i fra både transaksjonskostnader og forvaltningshonorar for å forenkle arbeidet. Årsaken er også at kostnadene varierer, avhengig av institusjon og størrelse på investeringer. På den måten kan det være vanskelig å finne korrekte tall å benytte seg av, selv om mangelen på disse kostnadene kan bidra til å gi et litt misvisende bilde av resultatet.

2.6 Indeksfond

De siste to tiårene har det blitt mer og mer populært å investere i såkalte indeksfond. Det sees på som en tryggere investering enn å investere i enkeltaksjer eller aksjefond, siden indeksfond gjenspeiler hele markedet, og ikke enkelte selskap, bransjer og/eller strategier.

I finansiell litteratur har også indeksfond og benchmarking fått støtte gjennom hypotesen om markedseffisiens (Samuelson 1965 og Fama 1970). Hypotesen går ut på at det ikke er mulig å oppnå unormal avkastning utover markedsporteføljen, fordi markedet er effisient. Effektiv markedsteori angir at aksjekursene er rettferdige. Derfor er det ikke penger å hente på å kjøpe og selge aksjer ofte, som bare vil føre til høyere avgifter, uten å øke forventet resultat.

Indeksfond ble introdusert i USA for første gang i 1993. Det første ble kalt "spider", og var et indeksfond der porteføljen fulgte utviklingen til markedsindeksen S&P 500 i USA. Til tross for at indeksfond er blant de mest omsatte aksjefondene verden over, har de aldri vært populære blant resultathungrige investorer. De ønsker større avkastning enn markedet, og er ofte villige til å ta større risiko. Også porteføljevalttere mislíker indeksfond,
siden de ikke tjener store beløp på å forvalte penger i disse fondene. Likevel får indeksfond en større og større markedsandel av totale aksjefond over hele verden.

Indeksfond i prosent av totale aksjefond i perioden 1998-2012

![Diagram: Markedsandelen til indeksfond](image)

Kilde: Investment Company Institute, (www.ici.org)

Figur 3: Markedsandelen til indeksfond

Kritikerne av indeksfond lister opp følgende når de viser sin motstand mot de raskt voksende fondene:

- De er ikke nok diversifisert. Kun de største selskapene er representert, og fondene inneholder aksjer fra få sektorer.
- De følger de aksjene som er "hottest", og som er mest omsatt. Viser ikke en oversikt over hele børsen.
- Man kan klare det bedre selv, ved å slå indeksen.

Men det har gjennom historien vist seg å være vanskelig for de fleste å presterere bedre enn markedet. En oversikt investeringsselskapet Vanguard har laget, viser at amerikanske aksjefond får større og større problemer med å presterere bedre enn markedsindeksen dess lengre tid som går.
Andelen aktive amerikanske aksjefond som har slått markedsindeksen. Målt i hvor lenge man holder et aksjefond.

![Diagram showing the percentage of active American stock funds that have beaten the market index over various holding periods: 1 year: 40%, 5 years: 34%, 10 years: 27%, 20 years: 20%, 30 years: 14%, 40 years: 12%]

Figur 4: Aksjefond vs indeksfond i USA

Figuren viser at dess lengre man holder et aksjefond, dess mindre er muligheten for å slå markedet.
3. Teori

Jeg vil i dette kapittelet gjøre rede for en del av den finansielle litteraturen som eksisterer i forbindelse med markedseffisien. Det er viktig å ha forståelse for den grunnleggende teorien på dette området, for å kunne utlede hypotesene i dette kapittelet.

3.1 Markedseffisien

Et effisient marked går ut på at aksjekursene reflekterer all kursrelevant informasjon. Det vil si at aksjene alltid er priset korrekt ut fra den tilgjengelige informasjonen. Ut fra denne hypotesen kan det derfor konkluderes med at man ikke kan predikere aksjekurser i et effisient marked (Bodie et al., 2009).

Svak effisiens betyr at alle historiske priser til en aksje reflekteres i dagens aksjepris. Derfor kan ikke teknisk analyse brukes til å predikere aksjekursen eller slå markedet. Det betyr at all historisk informasjon til å predikere fremtidige aksjepriser er innkalkulert av investorene. Det er denne type effisien jeg vil se om stemmer i denne oppgaven. Jeg gjennomfører fem strategier, som tar utgangspunkt i historiske aksjepriser, for å se om historikk likevel kan predikere fremtiden. Samtidig sier teorien om svak effisiens at fundamental analyse kan bli brukt til å analysere hvilke selskaper som er under- eller overpriset. Fundamental analyse går ut på å analysere selskapets økonomisk prestasjoner, gjennom avkastning, omsetning, kontantstrøm etc.

Semi-sterk effisiens betyr at all offentlig informasjon er innkalkulert i dagens aksjepris. Det er dermed ikke mulig å oppnå høyere avkastning enn markedet verken gjennom fundamental eller teknisk analyse. Kun informasjon som ikke er offentlig tilgjengelig kan gi investorer en fordel til å oppnå abnormal avkastning.
Sterk effisiens betyr at absolutt all informasjon i markedet er offentlig tilgjengelig. Ikke engang insider-informasjon kan gi en investor en fordel. Dette medfører at det ikke er mulig for investorer å få abnormal avkastning, uansett forskningsinnsats eller informasjonstilgang. Denne formen for effisiens sees på som ekstrem, og fungerer svært sjeldent i praksis (Fama 1970).

3.1.1 Random Walks

Uttrykket ”Random Walks” handler om at prisendringer i aksjekursene skjer tilfeldig og at det ikke er mulig å predikere hvilken vei aksjekursene tar. Dette støtter opp under markedseffisiens, der all informasjon som kan brukes til å predikere aksjekursen, allerede er priset inn og reflekteres i aksjekursen. Derfor vil ”Random Walks” være det naturlige resultatet av priser som alltid reflekterer nåtidens informasjon. (Bodie et al., 2009)

3.1.2 Spørsmålstegn ved markedseffisiens

Investeringens størrelse

Hvis en portefølje på for eksempel fem milliarder dollar, overpresterer i forhold til markedet med bare 0,1 %, vil det likevel gi en økt gevinst på fem millioner dollar. Dette vil da føre til at aktive forvaltere vil si at de er verdet lønnen sin og vel så det. Men en signifikant forskjell vil det sannsynligvis ikke bli, siden standardavviket vil være større i aksjeporteføljen sammenlignet med markedsporteføljen. Det vil derfor være svært vanskelig å finne små forskjeller når hensynet til risiko tas med i prestasjonene.
Utvalgets skjevhet

Flaks

3.2 Kapitalverdimodellen

\[E(R_i) = R_f + \beta \{E(R_m) - R_f\} \]
Når forventet avkastning er regnet ut, kan vi sammenligne dette med aksjens estimerte avkastning for å finne ut om det kan være en riktig investering.

Kapitalverdimodellen støtter opp under teorien om at markedsporteføljen er den optimale porteføljen for å få størst mulig avkastning justert for risiko. Det legges i denne modellen flere forutsetninger til grunn, som i hovedtrekk går ut på at ulike investorer er så like som mulig:
- Det finnes mange investorer som opptrer likt og som har samme tidshorisont på sine investeringer.
- Alle investorer har lik tilgang til de ulike finansielle verdipapirene. Og det er ingen skatte- eller transaksjonskostnader.
- Alle investorer har den samme oppfatningen av de investeringsmulighetene som finnes i verden.

\[E(r_p) \]
\[\sigma_p \]

\[r_f \]

Figur 5: Kapitalmarkedslinjen
Figuren viser sammenhengen mellom forventet avkastning (E_r) og risiko (σ). Målet for investorer er å investere i en portefølje som tangerer kapitalmarkedslinjen (KML), for å finne optimal avkastning justert for risiko. Det vil i dette scenarioet ikke være noen vits for investorer å bruke ressurser på aksjeanalyse, siden markedsporteføljen er optimum (Bodie et al., 2009).

3.2.1 Kritikk av Kapitalverdimodellen

Kapitalverdimodellen har fått kraftig kritikk, spesielt for flere av sine forutsetninger som er lagt til grunn for modellen. Det oppleves som urealistiske blant kritikerne at alle investorer har den samme tidshorisonten på sine investeringer. I tillegg er eventuelle skatte- og transaksjonskostnader sløyfet fra modellen. Dette er noen av forutsetningene i modellen som gir et uriktig virkelighetsbildet av den finansielle verden, mener kritikerne.

\[
E(R_i) - R_f = \beta_m \{E(R_m) - R_f\} + \beta_s \cdot E(SMB) + \beta_h \cdot E(HML)
\]

Estimatet til den første betaen i denne modellen blir forskjellig fra betaen i Kapitalverdimodellen. Årsaken er at denne modellen har to andre variabler som gjør litt av jobben med å regne ut forventet avkastning.

SMB viser forskjellen på forventet avkastning til et stort selskap og et lite selskap. Mens HML forklarer forskjellen mellom avkastningen til selskaper med stor bokført verdi av markedsverdi, og de med lav bokført verdi av markedsverdi.

3.3 Risiko

Noen investorer er risikoaverse, mens andre foretrekker høy risiko. De som foretrekker høy risiko forventer også høyere avkastning på sine investeringer. Standardavvik brukes ofte som et mål for risiko, og ved økt risiko øker forventet avkastning. Dette ses ofte på som en lineær sammenheng, selv om målet til en investor er at avkastningen øker mer enn standardavviket.

![Diagram til "Mean-variance"-kriteriet](image)

Figur 6: "Mean-variance"-kriteriet

Figuren viser forholdet mellom risiko og avkastning til en potensiell portefølje, P. Den viser også at ønsket til investorer er en portefølje som gir høyere avkastning til lavere risiko. Det er dette som også gjelder for "mean-variance"-kriteriet.
(Bodie et al., 2009). For eksempel en portefølje A er å foretrekke fremfor en portefølje B når følgende er oppfylt:

\[E(r_A) \geq E(r_B) \]

og

\[\sigma_A \leq \sigma_B \]

I tillegg må minst ett av kriteriene resultere i en absolutt ulikhet mellom de to porteføljonene. Det vil si at en portefølje som befinner seg innenfor kvadrat nummer 1 i figuren ovenfor, er overlegen portefølje P og at ”mean-variance”-kriteriet er oppfylt.

Alle porteføljer som er like attraktive som portefølje P, vil ligge langs en indifferentskurve som krysser portefølje P. Langs denne kurven finner vi ulike sammensetninger av forventet risiko og avkastning, men som gir porteføljen den samme nytteverdi.

![Indifferentskurve av forventet risiko og avkastning](image)

Figur 7: Indifferentskurve av forventet risiko og avkastning

En investor som liker høy risiko, investerer i større grad i enkeltaksjer/enkeltsektorer og holder en mindre diversifisert portefølje. For en risikoavers investor er det motsatt. Her kan for eksempel en portefølje bestå av både risikofrie statskasseveksler og aksjer fra ulike sektorer med ulik grad av risiko.
Hvis vi holder oss til investeringer i aksjer, vil det alltid være risiko tilstede, selv om porteføljen i høy grad er diversifisert. Dette kalles markedsrisiko eller systematisk risiko. Eksempel på dette kan være naturkatastrofer som fører til at hele aksjemarkedet faller. Andre eksempel er reseksjon, politisk kaos, endring i oljepris og renter. Figuren nedenfor viser sammenhengen mellom systematisk og usystematisk risiko og antallet aksjer i porteføljen. Den systematiske risikoen vil lik, uavhengig av antall aksjer i porteføljen, mens usystematisk risiko synker i takt med økning i aksjeantallet i porteføljen.

![Diagram med undertittel "Usystematisk og systematisk risiko"](image)

\[\beta_i = \frac{\text{cov}(r_p, r_m)}{\text{var}(r_m)} \]

I følge kapitalverdimodellen er forventet avkastning til et selskap drevet av systematisk risiko, \(\beta_i\), som viser hvor mye i gjennomsnitt en aksje endrer seg ved en prosentvis endring i markedet. For eksempel om Betaen er 2, vil en økning på 3 prosent i markedet før til en økning på 6 % på den aktuelle aksjekursen. Betaen regnes ut på følgende måte:
3.4 Aksjenes prestasjoner justert for risiko

Å foreta en prestasjonsmåling av aksjer kun ut fra gjennomsnittlig avkastning, er ikke særlig nyttig. I finansverdenen bør man ta hensyn til risikoen som forbindes med hver enkelt aksje for å kunne gjøre en prestasjonsmåling. Metoden ved å bruke varians og standardavvik for å finne risikojustert prestasjonsmåling, kom samtidig med Kapitalverdimodellen.

Samtidig begrenser nyttet seg ved disse modellene, ved at det er umulig å spå fremtiden. Så selv om en aksje/portefølje med historiske data scorer sterkt på en risikojustert modell på grunn av høy avkastning/lav varians, så er det ingen garanti for at dette vil fortsette. I praksis må vi ofte foreta investeringsbeslutninger, før vi har nødvendig data tilgjengelig.

Noen av de mest brukte prestasjonsmålene på dette feltet er følgende:

- **Sharpe ratio**
 \[
 \frac{r_p - r_f}{\sigma_p}
 \]
 Modellen måler belønningen i forhold til den totale risikoen.

- **Treynor ratio**
 \[
 \frac{r_p - r_f}{\beta_p}
 \]
 Modellen måler belønningen i forhold til den systematiske risikoen.

- **Jensens Alpha**
 \[
 \alpha_p = r_p - \left(r_f + \beta (r_m - r_f) \right)
 \]
 Modellen måler avkastningen utover kapitalverdimodellen.

- **Information ratio**
 \[
 \frac{\alpha_p}{\sigma(e_p)}
 \]
 Modellen måler abnormal avkastning opp mot den aktive risikoen.

De metodene jeg ønsker å forklare nærmere, er de tre som jeg bruker i min oppgave; Sharpe ratio, Jensens Alpha og Information ratio.
3.4.1 Sharpe ratio

Sharpe ratio til en portefølje regnes ut ved å ta gjennomsnittlig risikopremie, delt på standardavviket til porteføljen.

\[
S_p = \frac{r_p - r_f}{\sigma_p}
\]

Dette kan også vises grafisk, der \(S_p \) er helningen til kapitalallokeringslinja (KAL), som starter i risikofri rente, \(r_f \).

\[\begin{align*}
E(r_p) & \quad \text{KAL} \\
\sigma_p & \quad \text{KML} \\
\]

\[\text{Mulighetskurve med et sett av aksjer.}\]

\[\text{Figur 9: Kapitalallokeringslinja}\]

Hvis man legger Kapitalverdimodellen til grunn, vil den beste Sharpe ratioen være langs kapitalmarkedslinja (KML), slik at en portefølje bør være vektet likt som markedsporteføljen.
Men hvis vi ikke tenker på teorien rundt Kapitalverdimodellen, vil det ut fra det grafiske eksempelen, være hensiktsmessig å vekte porteføljen der hvor den tangerer KAL. Det vil gi størst mulig avkastning justert for risiko, når man bruker Sharpe ratio som prestasjonsmål.

3.4.2 Jensens Alpha

Jensens Alpha regnes ut ved å ta risikopremien til en portefølje, minus risikopremien til markedsporteføljen multiplisert med betaen til porteføljen. Betaen viser sensitiviteten til en porteføljes avkastning i forhold til markedsporteføljen avkastning.

\[\alpha_p = r_p - \{r_f + \beta(r_m - r_f)\} \]

Hvis alfa blir null, vil den være lik estimert risikojustert avkastning i Kapitalverdimodellen, mens en negativ alfa viser at den risikojusterte avkastningen er lavere enn forventet gitt Kapitalverdimodellens estimator.

Ved bruk av sitt eget prestasjonsmål, testet Jensen 115 aksjefond sine prestasjoner i perioden 1945-64 (Jensen, 1968). Resultatene viser at 115 aksjefond i gjennomsnitt ikke har mulighet til å slå prestasjonene til markedsporteføljen. Han hadde i dette arbeidet ikke tatt hensyn til om aksjefondene som ble testet var diversifisert eller ikke, men viste til forskning om at aksjefond vanligvis er gode til å diversifisere porteføljen for å minimere risikoen.
3.4.3 Information ratio

Information ratio er et måltall som forteller om en portefølje har klart å skape risikojustert meravkastning i forhold til en referanseindeks. Jo større Information ratio, jo bedre har porteføljen prestert sammenlignet med en markedsportefølje. Information ratio tar hensyn til både avkastningen og risikoen til porteføljen i forhold til markedsporteføljen. I motsetning til Sharpe ratio, sammenlignes porteføljens avkastning med markedsporteføljens, og ikke med risikofrirente. Information ratio (IR) beregnes ut fra forholdet mellom meravkastningen og residual-volatilitet (standardavviket til differanseavkastningen).

\[IR_p = \frac{\alpha_p}{\sigma(e_p)} \]

Målet til en forvalter er å utkonkurrere markedsporteføljen. Dermed er det ønskelig å oppnå en så høy som mulig Information ratio. I følge Grinold og Kahn (2000), er Information ratioen til samtlige porteføljer normalfordelt, der IR=0 er gjennomsnittet og markedsporteføljens Information ratio. Halvparten av porteføljene har positiv Information ratio, mens halvparten har negativ verdi. De har laget denne tabellen:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Information ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1,0</td>
</tr>
<tr>
<td>75</td>
<td>0,5</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>-0,5</td>
</tr>
<tr>
<td>10</td>
<td>-1,0</td>
</tr>
</tbody>
</table>

Tabell 3: Porteføljenes statistiske Information ratio

En Information ratio på over 0,5 i en portefølje sees på som godt. Ut fra denne tabellen gjelder det 25 % av porteføljene, og forvaltere bør etterstrebe å bli blant de 25 %. Information ratio kan derfor brukes som mål på forvalterens prestasjoner. Grinold og Kahn (2000) mener også at det er samsvar mellom den
residuale risikoen og den residuale avkastningen. Forholdstallet vil holde seg konstant når risikoen stiger eller synker. Eksempelvis om avkastningen er 2% ved 4% risiko, vil avkastningen være 3% om risikoen er 6%. Information ratio kan også gi svar på om porteføljen har prestert bedre enn markedsporteføljen jevnt over hele tiden, eller bare mye noen perioder, ved å sammenligne porteføljens Information ratio i ulike perioder av tidsintervallet.

Information ratio har også blitt kritisert for å ikke være et fullstendig risikojustert prestasjonsmål. Årsaken er at Information ratio kun tar hensyn til standardavviket til differanseavkastningen, og ikke hele risikoen. For eksempel spredningen av mulige utfall og sannsynligheten for tap (Modigliani og Modigliani, 1997).

3.5 Sesongvariasjoner i aksjemarkedet

3.6 Hypoteser

Null-hypotesene tar utgangspunkt i teorien om markedseffisien på svak form som jeg fremla i kapittel 3.1. Med andre ord, det er ikke mulig å oppnå gevinst utover markedets avkastning ved å bruke historisk data til å predikere aksjekursenes fremtid.

Jeg vil i dette kapittelet drøfte relevant forskning om brudd på markedseffisien, som vil munne ut i tre alternativhypoteser for de strategiene jeg vil gjennomføre i denne oppgaven.

3.6.1 "Omsetningsstrategien"

1: Høyt handelsvolum på en aksje skyldes ulik informasjonstilgang og/eller ulik oppfatning mellom aksjespekulanter. Dette fører til økt usikkerhet i prediksjon av aksjekursens utvikling.

2: Høyt handelsvolum er knyttet til spekulanter med ikke-offentlig informasjon, noe som fører til økt grad av pålitelighet til å predikere aksjekursens utvikling.

3: Det finnes ingen sammenheng mellom høyt handelsvolum og framtidig utvikling av en aksjekurs.

4: Normalt handelsvolum forbindes med lik informasjonstilgang og oppfatninger mellom aksjespekulantene. Det fører til lavere usikkerhet i markedet og større mulighet til å predikere fremtidig aksjeavkastning.

I denne oppgaven ser jeg bare på selskapets total omsetning forrige måned, og ikke på omsetning i forhold til samlet aksjeverdi. Jeg vil derfor utlede alternativhypotesen på følgende måte:

H1: **Å kjøpe de aksjene som forrige måned hadde høyest omsetning på Oslo børs, gir en risikojustert meravkastning i forhold til markedsporteføljen OSEBX.**

3.6.2 "Taperstrategien"

Contrarian-investeringsstrategier går ut på å gjøre det motsatte av markedstrender. For eksempel kjøpe aksjer som har gjort det dårlig på børs den siste tiden, og selge aksjer som har gjort det godt. Målet er å kjøpe på bunn, og

Flere studier som jeg har nevnt i dette avsnittet og i neste avsnittet under "Vinnerstrategien", viser at det kan finnes en reverseringseffekt på aksjekursene på lang sikt. Jeg vil i denne oppgaven undersøke om det kan finnes en slik reverseringseffekt på kort sikt blant "taperaksjene", altså innen én måned. Jeg vil teste om en "taperportefølje" gir en signifikant risikojustert meravkastning som er med på å svekke hypotesen om markedseffisensiens på svak form. Jeg utleder følgende alternativhypotese:

H2: Å kjøpe forrige måneds "taperaksjer" på Oslo børs gir en risikojustert meravkastning i forhold til markedsporteføljen OSEBX.
3.6.3 "Vinnerstrategien"

Selv om det av og til kan være mer emosjoner enn logikk som styrer interessen for enkelte aksjekurser, har flere studier funnet at det kan være penger å tjene på å kjøpe aksjer som allerede har prestert godt. En av grunnene til det kan jo være at man rekker å kaste seg på trenden før den er på topp, og selge seg ut igjen før det eventuelt begynner å falle. Jegadeesh og Titman (1993) finner i sine studier fra perioden 1965-89 at porteføljer som holder tidligere "vinneraksjer" overpresterer. De har testet sine strategier ved å kjøpe aksjer som har prestert
godt, og solgt de aksjene som har prestert dårlig. Deretter har de holdt denne porteføljen i 3-12 måneder, før de på nytt har kjøpt og solgt aksjer for å oppdatere sin portefølje. Deres studier viser også at om de samme “vinneraksjene” beholdes i porteføljen i to år utover de første 12 månedene, så forsvinner halvparten av meravkastningen. Da er det de tidligere “taperaksjene” som gjør det best. De prøver å gi to ulike forklaringer på dette, uten å konkludere med at noen av forklaringene er korrekte. Men deres hypoteser går ut på at kjøp av “vinneraksjer” fører til at prisene overreagerer. Mens den andre forklaringen er at markedet underreagerer på ny informasjon på kortsikt, for deretter å overreagere på lang sikt. Dette studiet tyder uansett på at det er momentum-effekt på kort sikt.

Dette støttes av Grinblatt et al. (1995), som i tillegg til å finne at en høy andel av aksjefondene var “momentum-investorer” i sine studier, også fant at de aksjefondene som bestod av tidligere “vinneraksjer” i gjennomsnitt gjorde det bedre enn de andre fondene påfølgende kvartal. De konkluderte også med at disse aksjefondene gjorde det bedre delvis på grunn av en enkel trendstrategi, snarere enn overlegen informasjon om aksjene.

Fong og Tai (2009) lagde en trendsimulator i sin forskning, som kjøpte aksjer etter fastsatte handelsregler. Simulatoren kjøpte og solgte aksjer avhengig av aksjekursen i forhold til glidende gjennomsnitt. En rask kursstigning hos en aksje utløste et kjøpssignal, mens et raskt fall utløste et salgssignal for å hindre ytterligere tap. Studiet ga signifikant bedre avkastning enn markedsporteføljen, og handelsstrategien ga også positiv avkastning i dårlige tider når markedet totalt sett falt.

Resultatene fra disse studiene stemmer ikke overens med hypotesen om markedseffisisiens på svak form. Jeg vil derfor sette opp denne alternativhypotesen for “vinneraksjer”:

H3: Å kjøpe forrige måneds “vinneraksjer” på Oslo børs gir en risikojustert meravkastning i forhold til markedsporteføljen OSEBX.
4. Metode

4.1 Forskningsdesign

Jeg vil ta i bruk hypotetisk-deduktiv metode for å prøve og komme nærmere sannheten på min problemstilling. Jeg vil teste fem ulike strategier for å styrke eller svekke teorien om at Oslo børs er et effisient marked på svak form eller ikke. Én strategi går ut på å kjøpe de aksjene med størst omsetning forrige måned, én strategi på å kjøpe "taperaksjene" fra forrige måned, og tre strategier på å kjøpe "vinneraksjene" fra forrige måned. De tre siste strategiene er ganske like, slik at de vil ligge under den samme hypotese.

Med bakgrunn i teorien om markedseffisiens og studier som svekker denne hypotesen, har jeg framsatt alternativhypotesene i kapittel 3. Jeg vil i de kommende kapitlene vise hvordan jeg tester hypotesene gjennom observasjoner av historisk data, for til slutt å forkaste eller beholde hypotesene.

4.2 Testing av hypotesenes signifikans

For å finne ut om resultatene jeg får er signifikante, ønsker jeg å benytte en z-test og en t-test. For hver av strategiene vil jeg teste om to ulike prestasjonsmål fører til en signifikant positiv forskjell mellom datassetet til mine egne strategiporteføljer og markedsporteføljen OSEBX. Selv om jeg skal teste om mine porteføljer gir en signifikant risikojustert meravkastning, benytter jeg tosidige tester. Årsaken til det er at resultatene kan være både positive og negative i forhold til markedsporteføljen.

4.2.1 Sharpe_p > Sharpe_m

Ved utregning av Sharpe ratio benytter jeg geometrisk avkastning. Årsaken er at den tør hensyn til den løpende avkastningen, og er derfor å foretrekke fremfor den aritmetisk avkastning (Goodwin, 1998). For å teste om porteføljenes Sharpe...
ratio er signifikant større enn markedet, benytter jeg en tosidig z-test med et signifikansnivå på 5 % og kritisk z-verdi på 1,96.

4.2.2 Jensens Alpha, $\alpha_p > 0$

For å undersøke om Jensens Alpha er signifikant større enn null, benytter jeg prestasjonsmålet Information ratio. Årsaken er at Information ratio tar hensyn til den usystematiske risikoen. Også her benytter jeg geometrisk avkastning, som tidligere nevnt for å ta hensyn til den løpende avkastning. En annen grunn er at bruk av aritmetisk avkastning kan gi en positiv Information ratio til en negativ Alpha og vice versa. Ved å bruke geometrisk avkastning, unngår vi slike motsetninger. I tillegg er det vanlig å bruke geometrisk avkastning når man skal rapportere investeringsresultat (Modigliani og Modigliani, 1997). Jeg benytter en tosidig t-test med et signifikansnivå på 5 % og kritisk t-verdi på 1,96 for å teste om porteføljenes alpha-verdier er signifikant positive.

4.2.3 Bonferroni-korreksjon

$$\frac{\alpha}{n} = \alpha_b$$
4.3 Oppgavens strategier for kjøp og salg av aksjer.

Som tidligere nevnt i oppgaven, vil jeg kjøpe og selge aksjer til min portefølje ved starten av hver måned. Aksjeutvelgelsen beror på hvordan aksjene har utviklet seg forrige måned. Jeg har valgt å lage en portefølje bestående av 10 aksjer for hver av de fem strategiene, hvor hver aksje teller like mye, altså 10 %. Siden jeg kun bruker 10 aksjer per portefølje, vil hver enkelt aksje utgjøre en større del av porteføljenes samlede utvikling sammenlignet med markedsporteføljen. For selskapenes innvirkning på OSEBX er avhengig av deres aksjeeverdi. Hos OSEBX er bare Statoil, Telenor og DNB vektet mer enn 10 % (se appendiks 2).

Et annet utvalgskriterium til min portefølje er at jeg ikke benytter meg av de aksjene med lavest omsetning på Oslo børs forrige måned. Aksjen må være blant de 70 % mest omsatte aksjene i kroner forrige måned. Dette for å hindre aksjer med lav omsetning og store variasjoner.

Dermed vil utvalget av aksjer innenfor dette intervallet variere fra 59 til 118 aksjer, avhengig av måned og år. Dette vil ligne svært mye på utvalget til OSEBX, som består av de mest omsatte aksjene på Oslo børs. Med tanke på de kriteriene jeg har listet opp, kjøpes aksjer den 1. hver måned til de fem strategiene på følgende måte:

“Omsetningsporteføljen” – Kjøpe de 10 aksjene som forrige måned hadde høyest omsetning.

Her rangeres de aksjene som har hatt størst omsetning forrige måned. De 10 aksjene med høyest omsetning forrige måned, tas med i ”Omsetningsporteføljen” påfølgende måned. Det hadde vært enda bedre å kunne lage en portefølje som tar utgangspunkt i de selskapene som har høyest månedlig omsetning i forhold til aksjeeverdi. Men det er mye mer tidkrevende å undersøke, siden man da må finne antall aksjer som er utstedt fra hvert selskap til enhver tid.
"Taperporteføljen" - Kjøpe forrige måneds aksjer som kom på plass 11-20 av de med dårligst avkastning.

Alternativhypotesen om at kjøp av tidligere "vinneraksjer" gir risikojustert meravkastning vil jeg undersøke ved å teste tre strategier som tidligere nevnt. Disse strategiene består alle av såkalte "vinneraksjer", én strategi med absolutte "vinneraksjer" mens de to andre er relative "vinneraksjer" som tar hensyn til risiko. Jeg har valgt tre ulike navn på følgende porteføljer:

"Vinnerporteføljen" – Kjøpe forrige måneds aksjer som kom på plass 11-20 av de med høyest avkastning.

Her rangeres de aksjene som har hatt best avkastning den forrige måned. På samme måte som under "taperporteføljen", rangeres aksjene ved å regne ut den kumulative avkastningen til hver av aksjene den forrige måneden. For å begrense muligheten for ekstremverdier, har jeg også i "vinnerporteføljen" valgt ut de aksjene som har endt på plassering 11-20 av de med best avkastning forrige måned.

"Sharpe-porteføljen" – Kjøpe de 10 aksjene som hadde høyest Sharpe ratio forrige måned.

Denne porteføljen tar utgangspunkt i prestasjonsmåling av aksjene forrige måned, justert for risiko. For å finne de 10 aksjene jeg trenger til hver portefølje, har jeg regnet ut forrige måneds Sharpe ratio. Dette har jeg gjort ved å bruke den
daglige endring i aksjekursen. De 10 aksjene som scorer best i en måned, er med i porteføljen den påfølgte måneden.

"Jensen-porteføljen" – Kjøpe de 10 aksjene som hadde høyest Jensens Alpha forrige måned.

I denne porteføljen gjelder mye av det samme som forrige strategi. De 10 aksjene som scorer høyest på Jensens Alpha, blir med i porteføljen påfølgende måned.

5. Data

I dette kapittelet vil jeg gjøre rede for den datainnsamlingen jeg har gjennomført, som har vært nødvendig for å kunne gi svar på min problemstilling.

5.1 Utvalgskriterier

5.1.1 Risikofri rente

Til å beregne Sharpe ratio og Jensens alpha trengs risikofri rente. For å estimere risikofri rente er det vanlig i finansiell økonomi og ta utgangspunkt i statsobligasjoner. Siden jeg undersøker aksjer i Norge, er det naturlig å bruke norske statsobligasjoner til å beregne risikofri rente. Ingen obligasjoner er helt risikofrie, men dette er blant det nærmeste man kommer i den virkelige verden.

5.2 Aksjer i utvalgsmaterialet

Fra oslobors.no fikk jeg tilsendt litt over 600 selskaper som hadde vært registrert på Oslo Børs de siste 20 årene. Noen av disse selskapene hadde svært kort levetid, mens andre hadde svært sjeldne handledager. Jeg gikk manuelt inn på hvert enkelt selskap og valgte de selskapene som hadde aksjehandler nesten hver dag på Oslo Børs over en tidsperiode på minst en måned. Ved å utelukke disse aksjene, minsker jeg sjansene for store feilmarginer og ekstreme verdier som det ofte kan være på aksjer med lav omsetning og få handledager. Siden jeg også skal kjøpe og selge aksjer hver måned, er det viktig at det er handler i aksjene daglig. Skulle jeg prøvd strategien i praksis, er det viktig at jeg får solgt og kjøpt når jeg ønsker, siden min portefølje endres månedlig.

Jeg utelukket også B-aksjer, fordi de er sterkt korrelert med A-aksjer til de samme selskapene. Dette for å unngå at porteføljenene mine kan få en dobbelt-effekt av ett selskaps kursutvikling. Til slutt gjensto 310 aksjer, men ikke alle disse aksjene er nødvendigvis med i noen av mine porteføljer. Årsaken til det skyldes at deres omsetning eller aksjeutvikling ikke samsvarer med mine utvalgskriterier til strategiene jeg har valgt. Listen over de 310 aksjene er å finne i appendiks 1.
6. Resultat og analyse

![Graf over porteføljenes utvikling 1996-2013](image)

Figur 10: Porteføljenes utvikling 1996-2013

<table>
<thead>
<tr>
<th></th>
<th>Jensen-porteføljen</th>
<th>Vinner-porteføljen</th>
<th>Sharpe-porteføljen</th>
<th>OSEBX</th>
<th>Omsetnings-porteføljen</th>
<th>Taper-porteføljen</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan.96</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>des.13</td>
<td>1459</td>
<td>1411</td>
<td>1127</td>
<td>548</td>
<td>501</td>
<td>458</td>
</tr>
</tbody>
</table>

Tabell 4: Porteføljenes utvikling 1996-2013

Resultatene viser at det er Jensen-porteføljen som gir best avkastning isolert sett, uten å ta hensyn til risiko. Alle de tre porteføljene som tar utgangspunkt i aksjer som har prestert godt forrige måned gir en bedre avkastning enn hovedindeksen, OSEBX. Samtidig ser vi av grafen at utslagene, både positivt og negativt, er mye kraftigere blant disse tre porteføljene, der Jensen-porteføljen er
i en særstilling. Det ser vi også i gjennomsnittlig standardavvik per måned ut fra tabellen som følger:

<table>
<thead>
<tr>
<th>1996-2013</th>
<th>OSEBX</th>
<th>Omsetnings-portefølje</th>
<th>Taper-portefølje</th>
<th>Vinner-portefølje</th>
<th>Sharpe-portefølje</th>
<th>Jensen-portefølje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvik pr måned</td>
<td>0,06</td>
<td>0,07</td>
<td>0,09</td>
<td>0,08</td>
<td>0,08</td>
<td>0,11</td>
</tr>
<tr>
<td>Geometrisk avkastning pr måned</td>
<td>0,79 %</td>
<td>0,75 %</td>
<td>0,71 %</td>
<td>1,23 %</td>
<td>1,13 %</td>
<td>1,25 %</td>
</tr>
<tr>
<td>Korrelasjon med OSEBX</td>
<td>1</td>
<td>0,89</td>
<td>0,71</td>
<td>0,72</td>
<td>0,70</td>
<td>0,67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1996-2007</th>
<th>OSEBX</th>
<th>Omsetnings-portefølje</th>
<th>Taper-portefølje</th>
<th>Vinner-portefølje</th>
<th>Sharpe-portefølje</th>
<th>Jensen-portefølje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvik pr måned</td>
<td>0,06</td>
<td>0,07</td>
<td>0,09</td>
<td>0,08</td>
<td>0,08</td>
<td>0,12</td>
</tr>
<tr>
<td>Geometrisk avkastning pr måned</td>
<td>1,11 %</td>
<td>1,08 %</td>
<td>1,08 %</td>
<td>1,86 %</td>
<td>1,87 %</td>
<td>2,52 %</td>
</tr>
<tr>
<td>Korrelasjon med OSEBX</td>
<td>1</td>
<td>0,86</td>
<td>0,70</td>
<td>0,74</td>
<td>0,71</td>
<td>0,63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2008</th>
<th>OSEBX</th>
<th>Omsetnings-portefølje</th>
<th>Taper-portefølje</th>
<th>Vinner-portefølje</th>
<th>Sharpe-portefølje</th>
<th>Jensen-portefølje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvik pr måned</td>
<td>0,12</td>
<td>0,11</td>
<td>0,11</td>
<td>0,06</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Geometrisk avkastning pr måned</td>
<td>-6,28 %</td>
<td>-4,58 %</td>
<td>-6,76 %</td>
<td>-6,08 %</td>
<td>-6,09 %</td>
<td>-7,24 %</td>
</tr>
<tr>
<td>Korrelasjon med OSEBX</td>
<td>1</td>
<td>0,99</td>
<td>0,86</td>
<td>0,87</td>
<td>0,75</td>
<td>0,74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2009-2013</th>
<th>OSEBX</th>
<th>Omsetnings-portefølje</th>
<th>Taper-portefølje</th>
<th>Vinner-portefølje</th>
<th>Sharpe-portefølje</th>
<th>Jensen-portefølje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvik pr måned</td>
<td>0,05</td>
<td>0,05</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td>0,08</td>
</tr>
<tr>
<td>Geometrisk avkastning pr måned</td>
<td>1,49 %</td>
<td>1,06 %</td>
<td>1,37 %</td>
<td>1,26 %</td>
<td>0,85 %</td>
<td>-0,002 %</td>
</tr>
<tr>
<td>Korrelasjon med OSEBX</td>
<td>1</td>
<td>0,94</td>
<td>0,62</td>
<td>0,67</td>
<td>0,62</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Tabell 5: Porteføljenes risiko, avkastning og korrelasjon

Et annet resultat vi kan trekke ut fra tabellen er den sterke korrelasjonen mellom hovedindeksen og omsetningsporteføljen. Det vil nok i stor grad skyldes at omsetningsporteføljen tar utgangspunkt i de 10 aksjene med høyeste omsetning forrige måned, mens OSEBX er vektet etter de største selskapene på Oslo børs, men som da også ofte har høy omsetning.

For å finne ut om noen av strategiene er signifikant forskjellig fra markedsporteføljen, vil jeg teste porteføljenes Sharpe ratio, Jensens Alpha og Information ratio.

6.1 Z-test av Sharpe ratio

Med utgangspunkt i den gjennomsnittlige Sharpe ratioen årlig for hver av strategiene og markedsporteføljen, ønsker jeg å finne ut om Sharpe_p > Sharpe_m. Jeg velger å ta i bruk sentralgrenseteoremet som går ut på at summen av et stort antall uavhengige variabler går mot normalfordeling.

![Grafisk normalfordeling av z-verdi](http://www.stat.lsu.edu)

Kilde: http://www.stat.lsu.edu

Jeg benytter en tosidig z-test, for å finne ut om noen av mine porteføljer gir signifikant risikojustert meravkastning i forhold til markedsporteføljen. For å finne kritisk z-verdi er det vanlig å benytte 5 % signifikansnivå. Det vil si at en
verdi som ligger utenfor 95 %-konfidensintervallet kan sies å avvike signifikant fra forventningene. Fra z-tabell finner jeg at det gir en kritisk z-verdi på 1,96.

For å regne ut z-verdiene til Sharpe-ratio for hver av de fem strategiene, benytter jeg en modell publisert av Liu et al. (2012).

\[
\frac{\sqrt{T} \left(S\hat{R} - SR \right)}{\sqrt{1 + (1/2)S\hat{R}^2}} \rightarrow N(0,1).
\]

Det gir disse resultatene:

<table>
<thead>
<tr>
<th></th>
<th>OSEBX</th>
<th>Omsetningsporteføljen</th>
<th>Taperporteføljen</th>
<th>Vinnerporteføljen</th>
<th>Sharpeporteføljen</th>
<th>Jensenporteføljen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharpe ratio</td>
<td>42,40 %</td>
<td>38,45 %</td>
<td>27,99 %</td>
<td>52,60 %</td>
<td>47,60 %</td>
<td>38,54 %</td>
</tr>
<tr>
<td>Z-verdi</td>
<td>0,00</td>
<td>-0,13</td>
<td>-0,60</td>
<td>0,41</td>
<td>0,21</td>
<td>-0,16</td>
</tr>
</tbody>
</table>

Tabell 6: Porteføljenes Sharpe ratio og z-verdi

Tabellen viser at "Vinnerporteføljen" og "Sharpe-porteføljen" har en Sharpe ratio som er større enn markedsporteføljen. Det betyr at disse porteføljenene gir en risikojustert meravkastning i forhold til markedsporteføljen på Oslo børs i perioden 1996-2013. Men samtidig viser z-testen at disse porteføljenene ikke gir en signifikant meravkastning. Årsaken er at z-verdiene er lavere enn den kritiske z-verdien på 1,96 ved et signifikansnivå på 5 %. Selv om porteføljenes gir en risikojustert meravkastning, er ikke verdiene høyere enn det vi kan forvente av en normalfordeling av porteføljenene.

6.2 T-test av Jensens Alpha

Som beskrevet i teoridelen, regner jeg ut Jensens Alpha til en portefølje på følgende måte:

\[
\alpha_p = r_p - \{r_f + \beta(r_m-r_f)\}
\]

Men her tas det ikke hensyn til den usystematiske risikoen. Jeg benytter derfor Information ratio til å regne ut om alpha-verdiene til porteføljenene er signifikant
større enn null, justert for risiko. Det gir følgende tabell:

<table>
<thead>
<tr>
<th></th>
<th>Omsetnings-porteføljen</th>
<th>Taper-porteføljen</th>
<th>Vinner-porteføljen</th>
<th>Sharpe-porteføljen</th>
<th>Jensen-porteføljen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Månedlig alpha</td>
<td>-0,0003</td>
<td>-0,0008</td>
<td>0,0045</td>
<td>0,0035</td>
<td>0,0042</td>
</tr>
<tr>
<td>Standardavvik av månedlige alpha</td>
<td>0,031</td>
<td>0,062</td>
<td>0,056</td>
<td>0,059</td>
<td>0,088</td>
</tr>
<tr>
<td>IR månedlig</td>
<td>-0,0094</td>
<td>-0,013</td>
<td>0,080</td>
<td>0,059</td>
<td>0,048</td>
</tr>
<tr>
<td>IR årlig</td>
<td>-0,0326</td>
<td>-0,0441</td>
<td>0,2764</td>
<td>0,2060</td>
<td>0,1667</td>
</tr>
<tr>
<td>t-stat</td>
<td>-0,139</td>
<td>-0,187</td>
<td>1,173</td>
<td>0,874</td>
<td>0,707</td>
</tr>
</tbody>
</table>

Tabell 7: Porteføljenes alpha, Information ratio og t-verdi

Vi ser at alle de tre porteføljenene med “vinneraksjer” gir en positiv alpha, noe som viser at disse porteføljenene gir en meravkastning i forhold til markedet i undersøkelsesperioden. Men ved å benytte Information ratio, justeres dette for den usystematiske risikoen. Ved å gjennomføre en t-test med 5 % signifikansnivå og en kritisk verdi på 1,96, ser vi at ingen av porteføljenene gir en signifikant alpha som er forskjellig fra null. Dette viser at verdiene for alpha er innenfor det vi kan forvente i en normalfordeling av porteføljer.

En positiv alpha og en positiv Information ratio kan gi inntrykk av at en portefølje presterer bedre enn markedsporteføljen hele tiden. Men ved å dele opp Information ratio årlig, kan det gi en pekepinn på om porteføljenene har prestert bedre enn markedsporteføljen i perioder eller jevnt over hele tiden. For de tre porteføljenene som hadde positiv alpha, finner jeg disse resultatene om den årlige Information ratioen:

"Vinnerporteføljen"
Figur 12: Årlig Information ratio blant "vinneraksjer"

Av grafene ser vi at alle de tre porteføljene med “vinneraksjer” har både negative og positive Information ratioer. Alle de tre porteføljene har positiv Information ratio i kun 10 av 18 år. Dette tyder på at porteføljene har slått markedsporteføljen mye i perioder, men ikke jevnt over hele tiden.
7. Diskusjon

Resultatene fra kapittel 6 viser at alle de tre porteføljene som kjøper "vinneraksjer" har fått en betydelig større avkastning enn markedsporteføljen i undersøkelsesperioden. Justert for risiko ved å benytte prestasjonsmålet Sharpe ratio, gir to av de tre porteføljene mer avkastning utover markedsporteføljen OSEBX. Og ved å benytte prestasjonsmålet Information ratio gir alle tre porteføljene av "vinneraksjer" mer avkastning. Flere studier jeg viste til i teoridelen, fant en "momentum-effekt" på kort sikt, der tidligere "vinneraksjer" fortsetter å prestere godt. Mulige forklaringer var at aksjekursene overreagerte fordi investorer kaster seg på en trend, og at typiske vinneraksjer oftere var populære investeringsobjekt (Grinblatt et al., 1995). Flere studier fant derfor en signifikant risikojustert avkastning blant "vinneraksjene" på kort sikt. Jeg finner ikke en slik signifikant sammenheng på Oslo børs ved å bruke en månedlig kjøp/salg-strategi i perioden 1996-2013. Spesielt interesserant er det å se på resultatene fra de senere år. Porteføljene med "vinneraksjer" får en lavere avkastning enn markedsporteføljen, til tross for høyere risiko i perioden 2009-2013. Dette medvirker til at alt tyder på at det norske aksjemarkedet i undersøkelsesperioden har vært effisient på svak form.

Kanskje kunne resultatene vært annerledes om jeg hadde brukt en annen tidshorisont og/eller andre måter å beregne såkalte "vinneraksjer" på. Det som likevel overrasker meg er at "Vinnerporteføljen" presterer bedre enn "Sharpe-porteføljen" som tar hensyn til risiko. Det som kunne vært interessant å undersøke i den forbindelse, er hvordan "Vinnerporteføljen" hadde utviklet seg om jeg brukte de 10 aksjene med høyest avkastning i stedet for aksjene med plassering 11-20. Samtidig viser resultatene at Jensens alpha er et dårlig prestasjonsmål til å rangere aksjene fra måned til måned. Risikoen til "Jensen-porteføljen" er mye større enn de andre porteføljene. Det viser seg også på grafen over avkastningen til porteføljene. "Jensen-porteføljen" stiger kraftig i oppgangstider, og faller tungt ved kriser i aksjemarkedet. Til tross for at porteføljen har en mye høyere avkastning enn markedsporteføljen i undersøkelsesperioden, har "Jensen-porteføljen" en lavere Sharpe ratio på grunn...

Studiene gjort på Contrarian-strategier som jeg viste til i teoridelen, fant at det kan være en reverseringseffekt i aksjene på lang sikt. Jeg har i dette tilfellet testet reverseringseffekten på kort sikt, og finner da ingen sammenheng for dette. Tvert imot, de såkalte "taperaksjene" fortsetter å underprestere i forhold til markedet på kort sikt. Det gir derfor mer grobunn for en "momentum-effekt" som nevnt under "vinneraksjene". Men jeg finner ingen signifikant "momentum-
effekt” heller blant ”taperaksjene”. Det er mulig at resultatene hadde sett annerledes ut om jeg hadde beholdt taperaksjene over en lengre periode, slik flere lignende studier har gjort (DeBondt og Thaler, 1985).

Det er mange ulike måter å rangere porteføljen på. Jeg har i denne oppgaven benyttet Sharpe ratio, Jensens Alpha og Information ratio for å risikojustere porteføljenes prestasjoner. Alle tre målene gir noenlunde samme resultat. De viser at porteføljen som består av ”vinneraksjer” gir en større avkastning enn markedsporteføljen, men at disse porteføljen som ikke gir en signifikant meravkastning justert for risiko (Sharpe ratio og Information ratio). Alle prestasjonsmål har sine styrker og svakheter. Her kunne det være interessant å se om andre prestasjonsmål ga meg andre svar. For eksempel om jeg hadde brukt prestasjonsmål som var mer ulike, siden Sharpe ratio og Information ratio har mange fellestrekk. Faren ved å bruke like prestasjonsmål er at de kan gi et uriktig bildet av resultatene, siden de alle har sine mangler (Bodie et al., 2009). Det kan føre til at jeg beholder en nullhypotese som burde vært forkastet, og motsatt.

Information ratioen var godt under 0,5 blant samtlig porteføljen som bestod av ”vinneraksjer”. Det viser at ingen av porteføljen har prestert i toppsjiktet av hva som er ønsket prestasjon til en forvalter (Grinold og Kahn, 2000). Selv om mine strategier hører til mer under passiv forvaltning, gir det likevel en pekepinn på om det er lurt å investere i denne type porteføljer. Information ratio bør uansett ikke stå alene og være det eneste målet som brukes for å rangere prestasjonen til en portefølje. Til det er prestasjonsmålet ikke pålitelig nok om forvalternes evner eller til å predikere fremtidig avkastning (Clark, 2003).

Kort oppsummert:

”Omsetningsporteføljen” – Under de forutsetningene jeg gjorde, finner jeg ikke at forrige måneds aksjer med høyest omsetning gir signifikant bedre avkastning enn markedsporteføljen. Dermed beholdes nullhypotesen om markedseffisiens på svak form.
"Taperporteføljen" – Også her vil jeg beholde nullhypotesen. Jeg finner ikke at en Contrarian-strategi der "taperaksjene" beholdes i én måned gir signifikant risikojusteret meravkastning.

"Vinneraksjene" – To av de tre "vinnerstrategiene" gir risikojusteret meravkastning utover markedsporteføljen ved å måle prestasjonene ut fra Sharpe ratio og Information ratio. Men ingen av "vinnerstrategiene" gir en signifikant risikojusteret meravkastning. På bakgrunn av resultatene jeg fikk vil jeg beholde nullhypotesen om at markedet ved Oslo børs er effisient på svak form i undersøkelsesperioden.

7.1 Implikasjoner

I en finansiell verden der flere og flere aktører ønsker å oppnå høyest mulig avkastning på sine investeringer, blir det vanskeligere å prestere bedre enn markedet. I tillegg skal det trekkes fra kostnader knyttet til aksjehandel og porteføljevalutning. Mine funn kan derfor bidra til å øke interessen rundt indeksfond, som allerede er inne i en voksende kurve.
7.2 Begrensninger

7.2.1 Datamaterialet

Alt av tallmateriell jeg har brukt for å teste hypotesen av markedseffisiens på svak form er tilgjengelig for offentligheten. Dette er informasjon som enten kan kjøpes eller som finnes gratis tilgjengelige på enkelte nettsteder samt databaser. Det er derfor mulig å etterprøve de resultatene jeg har fått, ved å bruke det samme tallmaterialet.

I mitt opprinnelige datagrunnlag valgte jeg samtlige aksjer ved Oslo børs de siste 18 årene. Jeg ser derfor bort fra skjevheter som kan oppstå som en følge av det opprinnelige utvalget. Men under bearbeidingen av datamaterialet, har jeg valgt bort de aksjene som ikke har hatt høy nok omsetning. Også de aksjene som ikke har blitt handlet daglig, sammenhengende over en periode på minst én måned ble fjernet fra utvalget. Her kan det ha oppstått skjevheter, da antallet aksjer i utvalget minket fra rundt 600 til 310. Det er ikke til å legge skjul på at under denne prosessen kan det være feilkilder på grunn av mine utvalgskriterier og måten jeg har behandlet disse på.

Ved rangering av aksjenes månedlige prestasjon, har jeg også måttet foreta en del forutsetninger og begrensninger. Blant annet har jeg valgt å se bort fra de aksjene med 30 % lavest omsetning pr måned. Dette for å hindre at man i en reell situasjon ikke får solgt aksjene sine på en spesifikk dato, som i denne oppgaven er i hvert månedsskifte. Å fjerne 30 % av utvalget er en stor andel, noe som kan føre til skjevheter og feil i det endelige resultatet.

Datamaterialet er stort med daglige data over en periode på 18 år. Dette er behandlet flere ganger i Excel til å finne månedlig avkastning, ulike prestasjonsmål og rangeringer. Feil kan oppstå i utførelsen av dette fordi jeg har gjort mye manuelt arbeid og laget mine egne tilpassede formler i Excel. Jeg har til stadighet måttet kopiere Excel-ark over til nye ark der jeg har limt inn verdier og ikke formler. Dette for å minske størrelsen på dokumentet. Ved å beregne den
daglige avkastningen justert for dividende i 4718 dager, og dette gjelder for 310 aksjer, gir det 1 462 580 formler pr ark. I et så omfattende datagrunnlag med mye manuelt arbeid øker faren for at feil kan oppstå.

7.2.2 Forandring underveis i datamaterialet

Hva vil så skje om en av aksjene i min portefølje enten går konkurs og/eller blir tatt av børs midt i en måned? Jeg har da valgt å opprettholde den siste kursprisen aksen ble handlet for, og det er den salgsprisen porteføljen mottar i slutten av måneden. Hvis dette fører til at porteføljen ikke realiserer et 100 % tap som i realiteten kunne oppstått, vil dette føre til at avkastningen til porteføljen blir bedre enn realiteten skulle tilsi.

7.2.3 Kapitalverdimodellen

7.2.4 Transaksjons- og skattekostnader

I mine beregninger har jeg valgt å se bort fra transaksjons- og skattekostnader, på samme måte som Kapitalverdimodellen gjør. Kritikerne mener dette vil gi et feil bilde av realitetene. For eksempel vil den årlige kostnaden knyttet til markedsporteføljen være forskjellig fra mine strategi-porteføljer. Ved å benytte en markedsportefølje, kan man enten betale et forvaltningshonorar på ca. 0,20-0,30 % årlig (Storebrand og DNB), eller man kan på egen hånd kjøpe porteføljjens aksjesammensetning hvert halvår, når OSEBX korrigerer sin portefølje. Ved å
følge mine egne strategier, må jeg kjøpe og selge aksjer hver eneste måned. Det vil føre til at transaksjonene må gjennomføres 12 ganger i løpet av ett år. Sammenlignet med markedsporteføljen vil dette gjøre transaksjonskostnadene sannsynligvis større, og vil også gi et feil bilde av porteføljenes avkastning i praksis.

Som tidligere nevnt ser jeg også bort fra skattekostnaden knyttet til aksjehandel. Det kan være seg skatt på gevinst og utbytte, skattefradrag ved tap og transaksjonskostnader, skjermingsfradrag og skattekostnad ved risikofri rente. I en virkelig verden vil skattekostnadene påvirke porteføljenes avkastning og investeringer. Derfor vil ikke mine resultater gi et 100% korrekt bilde av porteføljenes utvikling.

7.3 Videre forskning

finanskrisen er kortere enn før finanskrisen i resultatene. Men her mener jeg det kan finnes interessant informasjon som kan være med på å si noe om endringene i aksjemarkedet før og etter finanskrisen.

8. Konklusjon

Mine resultater viser at en porteføljestrategi som består av å kjøpe "vinneraksjer" månedlig kan gi en høyere avkastning enn å holde en markedsportefølje. Men å investere i en portefølje med "vinneraksjer" gir kun ekstra avkastning på grunn av økt risiko. Samtlige av mine porteføljer er innenfor normalfordelingen av det som kan forventes av en portefølje, gitt avkastning og risiko. Dette viser at mine investeringsstrategier ikke gir signifikant risikojustert meravkastning i forhold til markedsporteføljen OSEBX i undersøkelsesperioden. Jeg vil derfor konkludere med at Oslo børs var markedseffisient på svak form i perioden 1996-2013.
9. Referanser

9.1 Artikler

9.2 Bøker

9.3 Internett

http://www.oslobors.no
http://www.norges-bank.no
http://finance.yahoo.com
http://rickferri.com
http://www.ici.org
http://www.msci.com
http://www.investopedia.com
http://www.storebrand.no/
https://www.dnb.no

9.4 Databaser

Datastream
MSCI Barra
Yahoo Finance
10. Appendiks

Appendiks 1 – Aktuelle aksjer i datagrunnlaget

<table>
<thead>
<tr>
<th>Aksjonær</th>
<th>Aktie</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABG Sundal Collier Holding</td>
<td>Bridge Energy</td>
<td>BW Gas</td>
</tr>
<tr>
<td>Active 24</td>
<td>BW Offshore</td>
<td>BWG Homes</td>
</tr>
<tr>
<td>AF Gruppen</td>
<td>Bøhler-Gruppen</td>
<td>CanArgo Energy Co.</td>
</tr>
<tr>
<td>Agasti Holding</td>
<td>Captura</td>
<td>Catch Communications</td>
</tr>
<tr>
<td>Aker</td>
<td>Cermaq</td>
<td>Choice Hotels Scandinavia</td>
</tr>
<tr>
<td>Aker BioMarine</td>
<td>Chr. Bank og Kreditkasse</td>
<td>Codfarmers</td>
</tr>
<tr>
<td>Aker Drilling</td>
<td>Consafe Offshore</td>
<td>ContextVision</td>
</tr>
<tr>
<td>Aker Floating Production</td>
<td>Copeinca</td>
<td>Customax</td>
</tr>
<tr>
<td>Aker Maritime</td>
<td>Data Respons</td>
<td>Deep Sea Supply</td>
</tr>
<tr>
<td>Aker RGI A</td>
<td>DeepOcean</td>
<td>Det norske oljeselskap</td>
</tr>
<tr>
<td>Aker Solutions</td>
<td>DiaGenic</td>
<td>DNB</td>
</tr>
<tr>
<td>Aktiv Kapital</td>
<td>DNO International</td>
<td>DOF</td>
</tr>
<tr>
<td>Algeta</td>
<td>Dockwise</td>
<td>DOF Subsea</td>
</tr>
<tr>
<td>Altinex</td>
<td>DOF Subsea</td>
<td>Dolphin Group</td>
</tr>
<tr>
<td>American Shipping Company</td>
<td>Domstein</td>
<td>DSND Subsea</td>
</tr>
<tr>
<td>APL</td>
<td>Eitzen Chemical</td>
<td>Ekornes</td>
</tr>
<tr>
<td>Aqualis</td>
<td>Electromagnetic Geoservices</td>
<td>Elkem</td>
</tr>
<tr>
<td>Archer</td>
<td>Elkjøp</td>
<td>Eltek</td>
</tr>
<tr>
<td>ARK</td>
<td>Enitel</td>
<td>EOC</td>
</tr>
<tr>
<td>Atea</td>
<td>Evercom Network</td>
<td></td>
</tr>
</tbody>
</table>
Nordic Semiconductor
Nordic Water Supply
Nordlandsbanken
Norgani Hotels
Norman
Norse Energy Corp.
Norsk Hydro
Norsk Vekst
Norske Skogindustrier
Northern Offshore
Northland Resources
Norway Royal Salmon
Norway Seafoods
Norwegian Air Shuttle
Norwegian Energy Company
Norwegian Property
Nycomed A
Nycomed Amersham A
Ocean Rig
Ocean Yield
Oceanteam Shipping
Odfjell Drilling
Odfjell Invest
Odfjell ser. A
Odin
Olav Thon Eiendomsselskap
Opera Software
Opticom
ORIGIO
Orkla
Otrum
P4 Radio Hele Norge
PA Resources
Pan Pelagic
Panoro Energy
PC LAN
Petrojack
Petroleum Geo-Services N
Petrolia
Photocure
Polarcus
Polimoon
Procon Offshore
Profdoc
Pronova BioPharma
Prosafe
Prosafe Production Public
Protector Forsikring
Protector Forsikring Gml
Provida
Proxima
PSI Group
Q-Free
Questerre Energy Corporation
REC Silicon
REC Solar
Reitan Narvesen
Rena Karton
Repant
Reservoir Exploration Technology
RGI (Antilles)
Rieber & Søn
Rocksourse
Roxar
Royal Caribbean Cruises
Saga Petroleum
SalMar
Santech Micro Group
SAS AB
Scan Subsea
Scana Industrier
Scandinavia Online
Schibsted
Scorpion Offshore
SE Labels
SeaBird Exploration
Seadrill
SeaDrill Invest
Seateam Technology
Selmer
Selvaag Bolig
Sense Communications
International
SensoNor
Sevan Drilling
Siem Offshore
Simrad Optronics
Simtronics
SinOceanic Shipping
Sinvest
Skaugen Petrotrans
Smedvig ser. A
Software Innovation
Solstad Offshore
Songa Offshore
SpareBank 1 SR-Bank
SPCS-Gruppen
Spectrum
Spits
Statoil
Statoil Fuel & Retail
Steen & Strøm
Stento
Stentofon
StepStone
Stolt-Nielsen
Storebrand P
Subsea 7
SuperOffice
Synnøve Finden
Sævik Supply
Tandberg
Tandberg Data
Tandberg Storage
Tandberg Television
Technor
Tecmar Technologies Int.

Teekay Petrojarl
Telecast
TeleComputing
Telenor
Telio Holding
TGS-NOPEC Geophysical Company
The Scottish Salmon Company
Tomra Systems
Transocean
Trefoil
Trolltech
TTS Group
Unitor
Veidekke
Veripos
Visma
Vizrt
VMetro
Wavefield Inseis
Wentworth Resources
Western Bulk
Wilh. Wilhelmsen
Wilh. Wilhelmsen Holding ser. A
Yara International
Appendiks 2 – Aksjer i hovedindeksen, OSEBX, per 31.12.2013

Vektet. Tall oppgitt for aksjer som har en andel på over 1%.

<table>
<thead>
<tr>
<th>Aksjonær</th>
<th>Antall %</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATOIL</td>
<td>17,658%</td>
</tr>
<tr>
<td>TELENOR</td>
<td>12,797%</td>
</tr>
<tr>
<td>DNB</td>
<td>11,720%</td>
</tr>
<tr>
<td>YARA INT.</td>
<td>5,328%</td>
</tr>
<tr>
<td>SEADRILL</td>
<td>4,984%</td>
</tr>
<tr>
<td>ORKLA A</td>
<td>4,400%</td>
</tr>
<tr>
<td>NORSK HYDRO</td>
<td>4,186%</td>
</tr>
<tr>
<td>SUBSEA 7</td>
<td>3,785%</td>
</tr>
<tr>
<td>SCHIBSTED</td>
<td>3,579%</td>
</tr>
<tr>
<td>GJENSIDIGE</td>
<td>2,590%</td>
</tr>
<tr>
<td>ROYAL CARIBBEAN CRUISES</td>
<td>2,278%</td>
</tr>
<tr>
<td>MARINE HARVEST</td>
<td>2,054%</td>
</tr>
<tr>
<td>TGS NOPEGEOPHYSIC.</td>
<td>1,866%</td>
</tr>
<tr>
<td>PETROLEUM GEO-SERV.</td>
<td>1,794%</td>
</tr>
<tr>
<td>AKER SOLUTIONS</td>
<td>1,707%</td>
</tr>
<tr>
<td>STOREBRAND</td>
<td>1,526%</td>
</tr>
<tr>
<td>DNO INT.</td>
<td>1,306%</td>
</tr>
<tr>
<td>PROSAFE</td>
<td>1,303%</td>
</tr>
<tr>
<td>ALGETA</td>
<td>1,158%</td>
</tr>
<tr>
<td>FRED OLESEN ENERGY</td>
<td>1%</td>
</tr>
<tr>
<td>OPERA SOFTWARE ASA</td>
<td>1%</td>
</tr>
<tr>
<td>KONGSBERG GRUPPEN AS</td>
<td>1%</td>
</tr>
<tr>
<td>DET NORSKE OLJEELSOK</td>
<td>1%</td>
</tr>
<tr>
<td>TOMRA SYSTEMS ASA</td>
<td>1%</td>
</tr>
<tr>
<td>NORWEGIAN AIR SHUTTLE</td>
<td>1%</td>
</tr>
<tr>
<td>REC SILICON</td>
<td>1%</td>
</tr>
<tr>
<td>VEIDEKKE ASA</td>
<td>1%</td>
</tr>
<tr>
<td>STOLT-NIELSEN</td>
<td>1%</td>
</tr>
<tr>
<td>AKER ASA A-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>ATEA ASA A-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>CERMAQ ASA</td>
<td>1%</td>
</tr>
<tr>
<td>NORDIC SEMICONDUCTOR</td>
<td>1%</td>
</tr>
<tr>
<td>SALMAR ASA</td>
<td>1%</td>
</tr>
<tr>
<td>WILH. WILHELMSEN ASA</td>
<td>1%</td>
</tr>
<tr>
<td>LERØY SEAFOOD GROUP</td>
<td>1%</td>
</tr>
<tr>
<td>NORWEGIAN PROPERTY</td>
<td>1%</td>
</tr>
<tr>
<td>OLAV THON EIENDOM</td>
<td>1%</td>
</tr>
<tr>
<td>EKORNES ASA</td>
<td>1%</td>
</tr>
<tr>
<td>REC SOLAR</td>
<td>1%</td>
</tr>
<tr>
<td>WILH. WILH. HOLDING A-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>GOLDEN OCEAN GROUP</td>
<td>1%</td>
</tr>
<tr>
<td>AF GRUPPEN ASA A-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>KONGSBERG AUTOMOTIVE</td>
<td>1%</td>
</tr>
<tr>
<td>POLARCUS</td>
<td>1%</td>
</tr>
<tr>
<td>ABG SUNDAL COLLIER</td>
<td>1%</td>
</tr>
<tr>
<td>WILH. WILH. HOLDING B-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>ODFJELL SE A-AKSJER</td>
<td>1%</td>
</tr>
<tr>
<td>BWG HOMES ASA</td>
<td>1%</td>
</tr>
<tr>
<td>Q-FREE ASA</td>
<td>1%</td>
</tr>
<tr>
<td>SAS AB</td>
<td>1%</td>
</tr>
<tr>
<td>ELTEK ASA</td>
<td>1%</td>
</tr>
<tr>
<td>BIONOR PHARMA ASA</td>
<td>1%</td>
</tr>
<tr>
<td>ASETEK</td>
<td>1%</td>
</tr>
</tbody>
</table>