Statlig program for forurensningsovervåking
Langtidsovervåking av miljøkvaliteten i kystområdene av Norge

SPFO-rapport: 1048/2009
TA-2513/2009
ISBN 978-82-577-5531-7

Oppdragsgiver: Statens forurensningstilsyn (SFT)
Utførende institusjon: Norsk institutt for vannforskning NIVA

Årsrapport for 2008

Utførende institusjoner:
Norsk Institutt for Vannforskning NIVA
Havforskningsinstituttet HI

Prosjektansvarlig: NIVA
NIVA-prosjektnr.: O-28050
NIVA-rapport: 5796-2009
Forord

Kystovervakingsprogrammet - "Langtidsovervåking av miljøkvalitet i kystområdene av Norge" ble startet i 1990 under Statlig program for forurensningsovervåking. Programmet ble utarbeidet av Norsk institutt for vannforskning (NIVA) i 1989 på oppdrag fra Statens forurensningstilsyn (SFT). Kystovervakingsprogrammet omfatter hydrofysiske, -kjemiske og biologiske undersøkelser (plankton, hard- og bløtbunn) langs den ytre kyst av Sør-Norge. Den hydrofysiske/-kjemiske delen av programmet utføres av NIVA og Havforskningsinstituttet i Bergen (HI), samt Havforskningsinstituttets forskningsstasjon Flødevigen i Arendal. De biologiske undersøkelsene utføres av NIVA. NIVA har også hovedansvaret for gjennomføring av prosjektet og utarbeidelse av rapportene.

Denne rapporten beskriver miljøtilstanden i 2008 og utviklingstrender i perioden fra 1990 til i dag.

Rapporten er skrevet av følgende personer (NIVA om ikke annet er gitt):
Klima, vannmasser og næringsalter: Jan Magnusson, Jan Aure (HI)
Planteplankton: Torbjørn Johnsen, Evy Lømsland
Dyreplankton: Tone Falkenhaug (HI) og Lena Omli (HI)
Bløtbunn: Brage Rygg og Hilde Cecilie Trannum
Hardbunn: Frithjof Moy og Kjell Magnus Norderhaug
Redaktør for rapporten: Kjell Magnus Norderhaug

Mange mennesker har vært med og gjennomføringen av Kystovervåkingsprogrammet hadde ikke vært mulig uten deres medvirkning. En spesiell takk rettes tidligere programleder Frithjof Moy for bistand i gjennomføringen av 2008-programmet og prosjektsekretær Lise Tveiten for uvurderlig organisatorisk bistand. Også følgende personer har vært av stor betydning for gjennomføringen av programmet og alle takkes for innsatsen:

Hydrografi/kjemi/plankton: Einar Dahl (HI), Terje Jåvold (HI), Kai Sørensen og Are Folkestad.
Hardbunn: Norman W. Green, Janne Gitmark, Mats Walday, Lise Tveiten og Camilla With Fagerli

Vi takker også Danmarks Miljøundersøkelser, Sveriges Meteorologiska och Hydrologiska Institut och Biologische Anstalt Helgoland for å kunne benytte deres hydrografidata fra Kattegat og Tyskebukta.

Kjell Magnus Norderhaug har vært leder av programmet i 2008. Lena Omli er prosjektansvarlig på HI og saksbehandler hos SFT er Karen Fjøsne.

Oslo, 05. mai 2009.

Kjell Magnus Norderhaug
Programleder
Innhold:

<table>
<thead>
<tr>
<th>Kapittel</th>
<th>Innledning</th>
<th>Klima og vannmassene i Skagerrak</th>
<th>Tilførsler av næringssalter til Skagerrak</th>
<th>Vannkvalitet i kystvannet</th>
<th>Planktonsamfunn i Skagerrak</th>
<th>Hardbunnsamfunn</th>
<th>Bløtbunnsamfunn</th>
<th>Referanser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innledning</td>
<td>Klima og vannmassene i Skagerrak</td>
<td>Tilførsler av næringssalter til Skagerrak</td>
<td>Vannkvalitet i kystvannet</td>
<td>Planktonsamfunn i Skagerrak</td>
<td>Hardbunnsamfunn</td>
<td>Bløtbunnsamfunn</td>
<td>Referanser</td>
</tr>
<tr>
<td>1.1</td>
<td>Bakgrunn for programmet</td>
<td>NAO, lufttemperatur og nedbør</td>
<td>Langtransporterte tilførsler</td>
<td>Vinterverdier i overflatelaget</td>
<td>Planteplankton</td>
<td>Tilstand</td>
<td>Bunnfauna</td>
<td>TA-1048/2009</td>
</tr>
<tr>
<td>1.2</td>
<td>Målsetting</td>
<td>Vannmasser og sjøtemperatur</td>
<td>Lokale tilførsler</td>
<td>Sommerverdier i overflatelaget</td>
<td>Dyreplankton</td>
<td>Utvikling over tid</td>
<td>Bunnsedimenter</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Faginnhold og stasjonsnett</td>
<td></td>
<td></td>
<td>Siktdyp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Metodikk</td>
<td></td>
<td></td>
<td>Vannkvalitet i ulike vannmasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Klima og vannmassene i Skagerrak</td>
<td></td>
<td></td>
<td>Geografiske gradienter i næringssalter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>NAO, lufttemperatur og nedbør</td>
<td></td>
<td></td>
<td>Spesielle forhold med betydning for biologien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Vannmasser og sjøtemperatur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tilførsler av næringssalter til Skagerrak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Langtransporterte tilførsler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Lokale tilførsler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vannkvalitet i kystvannet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Vinterverdier i overflatelaget</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Sommerverdier i overflatelaget</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Siktdyp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Vannkvalitet i ulike vannmasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Geografiske gradienter i næringssalter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Spesielle forhold med betydning for biologien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Planktonsamfunn i Skagerrak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Planteplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Dyreplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hardbunnsamfunn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Tilstand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Utvikling over tid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bløtbunnsamfunn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Bunnsfauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Bunnsedimenter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Tidstrender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Referanser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sammendrag ... 5
Abstract ... 7

Sammendrag ... 5
Abstract ... 7

1. **Innledning** ... 9
1.1 Bakgrunn for programmet .. 9
1.2 Målsetting .. 9
1.3 Faginnhold og stasjonsnett .. 9
1.4 Metodikk .. 11

2. **Klima og vannmassene i Skagerrak** ... 12
2.1 NAO, lufttemperatur og nedbør .. 12
2.2 Vannmasser og sjøtemperatur .. 16

3. **Tilførsler av næringssalter til Skagerrak** .. 20
3.1 Langtransporterte tilførsler .. 20
3.2 Lokale tilførsler .. 22

4. **Vannkvalitet i kystvannet** .. 27
4.1 Vinterverdier i overflatelaget ... 28
4.2 Sommerverdier i overflatelaget .. 33
4.3 Siktdyp ... 37
4.4 Vannkvalitet i ulike vannmasser .. 39
4.5 Geografiske gradienter i næringssalter .. 45
4.6 Spesielle forhold med betydning for biologien .. 47

5. **Planktonsamfunn i Skagerrak** .. 50
5.1 Planteplankton .. 50
5.2 Dyreplankton ... 61

6. **Hardbunnsamfunn** .. 68
6.1 Tilstand ... 68
6.2 Utvikling over tid .. 72

7. **Bløtbunnsamfunn** .. 81
7.1 Bunnsfauna .. 82
7.2 Bunnsedimenter ... 94
7.3 Tidstrender .. 95

8. **Referanser** ... 96
Sammendrag

Årsrapporten fra Kystovervåkingsprogrammet, 'Langtidsovervåking av miljøkvalitet i kystområdene av Norge' under Statlig program for forurensningsovervåking beskriver miljøstatus i kystvannet av Sør-Norge i 2008 og utviklingstrender i perioden fra programstart i 1990 og fram til i dag. Rapporten omfatter klima, næringssalter, vannkvalitet og biologisk mangfold i vannsøylen (plankton), på hardbunn (makroalger og -dyr) og bløtbunn (dyr).

Programmets målsetting er å a) gi oversikt over miljøtilstanden mht. næringssalter og effekter av disse, b) identifisere fra hvilke områder ulike næringssaltmengder kommer til norske-kysten, c) kartlegge endringer i næringssaltkonsentrasjoner over tid, d) kartlegge effekter av næringshalter på utvikling og tilstand i plankton-, hard- og bløtbunnssamfunn og e) dokumentere det biologiske mangfoldet og beskrive endringer i dette.

Generelt ble det registrert lave forekomster av plante- og dyreplankton i 2008. En begynnende våroppblomstring ble registrert i slutten av februar, men denne ble avbrutt slik at hovedopblomstringen fant sted sist i mars. Det ble ikke registrert dinoflagellatoppt ovalomstring på høsten. I første halvdel av september blomstreng for første gang i våre farvann raphidophycenen Chattonella globosa som er rapportert å forårsake fiskekåret fordi den ødelegger fiskens gjeller. Denne blomstringen falt sammen med høstmaksimum både for målt klorofyll a og beregnet celldensit. Varmt klima i senere år har ført til at nye, varmekjære planktonarter (både plante- og dyreplankton) opptrer i norske farvann, og varmere klima er sannsynligvis en viktig årsak til at øvre voksegrense for sukkertare gradvis har gått dypere i Skagerrak.

Tilstanden på bløtbunn var generelt god eller meget god, unntatt på stasjon A36 i ytre Oslofjord der tilstanden var mindre god. Indikatorarter viste beste tilstand på stasjon C38 (Lista) og D20 (Sotra). Utviklingen over tid viste en generell bedring av tilstanden i ytre og dype del av Oslofjorden (område A) og i ytre område på Sørlandet (område B), med mindre individmengder av opportunistiske arter, spesielt mangebørstemarken *Heteromastus*. Dette kan sees i sammenheng med nedgang i mengde planteplankton og næringssalter. Det har imidlertid vært en svak forverring på Sørvestlandet (område C).
Abstract

The present report for 2008 in the Coastal Long-term monitoring of environmental quality in the coastal regions of Norway describes the environmental status in South Norway coastal waters, and the development from 1990 and until today. Topics described in report include climate, nutrients, water quality and biodiversity in the plankton, and on hard (macroalgae and fauna) and soft bottom (fauna).

The aims of the program are to a) give an overview of the environmental status with regard to nutrients and their effects, b) identify important nutrient inputs to Norwegian coastal areas, c) describe temporal changes in nutrient concentrations, d) describe effects of nutrients on the status and development in plankton, hard bottom and soft bottom communities and e) describe the biodiversity and eventual biodiversity changes.

In 2008, the NAO clima index was positive and the winter was warm. A large precipitation resulted in large land run-off during winter and spring. This, in turn, resulted in large inputs of freshwater to coastal areas, increased amounts of particles in the surface water and poor Secchi depth, in particular on the South coast. Surface waters as well as deeper water masses were warmer than normal, and during winter and spring, the deep water was less influenced by Atlantic water than normally, and more influenced by water from central parts of the North Sea. Still, the water quality regarding nitrogen, phosphorus, visibility, chlorophyll a was classified as “Good” or “High” in Skagerrak in 2008, except for the Outer Oslofjord area. Due to an upwelling event (vertical transport of deeper water to the surface) on the South coast, tot P concentrations were classified as “Moderate”. Upwelling events are not uncommon in the Lista area. Throughout the monitoring period 1990-2008, the risk of harmful algal blooms has decreased, although the nutrient values increased in 2008 compared to 2007. The particle concentration in the outer Oslofjord area increases, but no such trend is observed on the South Norway coast. However, the Secchi depth is markedly reduced in the outer Oslofjord and in the Arendal and Lista area. Although transports of nutrients from the southern North Sea have been reduced in later years, the oxygen consumption in the Risør fjord is still high.

Generally, low levels of phyto- and zooplankton were recorded in 2008. A starting spring bloom in late February was abrupt, and the main spring bloom occurred in late March. No dinoflagellate bloom occurred in the autumn. For the first time in Norwegian waters, Chattonella globosa blooms in early September. This raphidophycee has been reported to harm fish gills and cause fish death. This bloom coincided with the autumn peak chlorophyll a and cell carbon peak. With warm climate in later years, southerly distributed species have been introduced to Norwegian waters, and warmer climate is also an important reason for the downward displacement of the upper growth limit of sugar kelp in Skagerrak.

The status on hard bottom was generally “good”, but reduced biodiversity was observed on the South and South-West coast in 2008, compared to 2007. Primarily, occurrences and number of species of red algae were reduced. Reduced Secchi depth is probably an important reason for poorer conditions for macroalgae. Faunal diversity showed a good status, and years with high occurrences of fauna have also earlier coincided with low occurrences of algae, suggesting that competition for space is important for occurrences of benthic organisms.
The condition on soft bottom was generally "Good" or "High", except at station A36 in the outer Oslofjord area, where the status was "Poor". Indicator species showed "High" status at station C38 (Lista) and D20 (Sotra). Temporally, the development is positive in the outer and deeper part of the Oslofjord (Area A) and in the outer parts of the South Norway coast (Area B), with fewer opportunistic species, especially of polychaetes in the genus *Heteromastus.* This finding is probably a result of reduced levels of phytoplankton and nutrients. On the South-West coast (Area C), poorer conditions on soft bottoms have been recorded.
1. Innledning

1.1 Bakgrunn for programmet

Kystområdene er sentralsom matkammer, oppvekst- og tilholdssted for marine arter og arter på land i kystsonen. Tilfredsstillende miljøforhold i kystområdene har derfor stor betydning, både for livet og produktiviteten i havområdet og for menneskenes trivsel (St.meld. nr. 64, 1991-92). Den menneskelige aktiviteten i Skagerrak, Nordsjøen og områdene som drenerer til dette havområdet, bidrar til store forurensningstilførsler via elver, luft og direkteutslipp, samt tiltagende interessekonflikter i kystsonen.

Den store algeoppblomstringen av *Chrysochromulina polylepis* våren 1988 medførte dramatiske konsekvenser av tidligere ukjent omfang for det marine liv. Hyppige oppblomstringer av giftalger i Skagerrak påfører et betydelig tap for oppdrettsnæringen og er negativt for allmennhetens skjellhøsting.

Med bakgrunn i Nordsjødeklarasjonen og konsekvensene av *Chrysochromulina*-oppblomstringen, ble det bestemt å opprette et langsiktig overvåkingsprogram under Statlig program for forurensningsovervåking, med fokus på eutrofiproblematikken i Skagerrak. Kystovervåkingsprogrammet fikk som målsetting å overvåke miljøtilstanden mht. næringssalter og de biologiske samfunn.

Kystovervåkingsprogrammet ble startet i 1990 og er administrert og finansiert av Statens forurensningsstilsyn (SFT) gjennom Statlig program for forurensningsovervåking. Programmet ledes av Norsk Institutt for Vannforskning (NIVA) og utføres av NIVA i samarbeid med Havforskningsinstituttet (HI). Resultater fra Kystovervåkingsprogrammet rapporteres til ICES som del av Norges forpliktelser innen OSPAR.

1.2 Målsetting

Formålet med Kystovervåkingsprogrammet er å:
- gi oversikt over miljøtilstanden mht. næringssalter og effekter av disse
- identifisere fra hvilke områder ulike næringssaltmengder kommer til norskskysten
- kartlegge endringer i næringssaltkonsentrasjoner over tid
- kartlegge effekter av næringssalter på utvikling og tilstand i plankton-, hard- og bløtbunnssamfunn
- dokumentere det biologiske mangfoldet og beskrive endringer i dette.

1.3 Faginnhold og stasjonsnett

Siden 1990 har Kystovervåkingsprogrammet samlet inn vannprover for næringssaltanalyser, oksygenmålinger og planktontellinger fra 12 til 22 ganger årlig. Årlig er det blitt samlet inn bløtbumnsprover for samfunnsanalyse og sedimentkarakterisering, og det er også gjennomført årlige dykkeundersøkelser for registrering av fastsittende alger og dyrs forekomst på klippekyst (hardbunn) fra fjæra og ned til 30 m dyp. Kysttrekningen fra svenskegrensen til fylkesgrensen Nordland - Sogn og Fjordane ble i første omgang prioritert, med spesiell fokus på Skagerrak. Stasjonsvalget (Figur 1.1) ble foretatt med sikte på å overvåke tilstanden i kystvannet langs den ytre kystlinjen, og stasjonene skulle fungere som referanser ("referansestilstand") for lokale undersøkelser.
Figur 1.1. Kystovervåkningsprogrammet i 2008 dekket de 4 områdene A: Ytre Oslofjord, B: Sørlandet, C: Sør-vestlandet og D: Vestlandet. Stasjonsposisjoner er gitt i tabeller under. FerryBox er automatisk prøvetaking fra 4 m dyp.

Vannmasser

Tabell 1.1. Oceanografistasjonen overvåket i 2008 (EUREF89-WGS84).

<table>
<thead>
<tr>
<th>Region</th>
<th>Stasjon</th>
<th>Lengdegrad</th>
<th>Breddegrad</th>
<th>Dyp (m)</th>
<th>Frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Torbjørnskjær – OF1*</td>
<td>10.77</td>
<td>59.03</td>
<td>0-150</td>
<td>7 ggr. pr. år</td>
</tr>
<tr>
<td></td>
<td>CF Færder*</td>
<td>10.6800</td>
<td>58.3000</td>
<td></td>
<td>ca hver 14 dag Ferrybox</td>
</tr>
<tr>
<td>B</td>
<td>Jomfruland – J</td>
<td>09.6667</td>
<td>58.8500</td>
<td>0-125</td>
<td>14 ggr. pr. år</td>
</tr>
<tr>
<td>B</td>
<td>Arendal St. 2 - A2</td>
<td>08.8167</td>
<td>58.3833</td>
<td>0-75</td>
<td>21 ggr. pr. år</td>
</tr>
<tr>
<td>B</td>
<td>Arendal St. 3 - A3</td>
<td>08.9000</td>
<td>58.3333</td>
<td>100-240</td>
<td>12 ggr. pr. år</td>
</tr>
<tr>
<td>C</td>
<td>Lista – L</td>
<td>06.5333</td>
<td>58.08</td>
<td>0-300</td>
<td>12 ggr. pr. år</td>
</tr>
<tr>
<td>D</td>
<td>Y. Utsira - U</td>
<td>04.7333</td>
<td>59.3166</td>
<td>0-250</td>
<td>12 ggr. pr. år</td>
</tr>
<tr>
<td></td>
<td>FN 13</td>
<td>05.3666</td>
<td>59.6566</td>
<td>0</td>
<td>ca hver 14 dag Ferrybox</td>
</tr>
<tr>
<td></td>
<td>FN 16</td>
<td>05.1666</td>
<td>60.2216</td>
<td>4</td>
<td>ca hver 14 dag Ferrybox</td>
</tr>
</tbody>
</table>

* Hovedstasjonen er nå Torbjørnskjær (koordinering med overvåkingen av ytre Oslofjord). Ferrybox-stasjonen (CF Færder) ligger nær Torbjørnskjær og i denne rapporten kalles den også for ytre Oslofjord.
Kystoversåkingsprogrammet 2008

Innledning

Utenfor Arendal er det to stasjoner; A2 og A3 henholdsvis 1 og 2 nautiske mil fra land, for å kunne overvåke endringer i hele vannsøylen fra 0-240 m dyp. Vanndypet på A2 er ca. 105 og på A3 ca. 260 m.

Bløtbunn

<table>
<thead>
<tr>
<th>Region</th>
<th>Stasjon</th>
<th>Lengdegrad</th>
<th>Breddegrad</th>
<th>Dyp (m)</th>
<th>Frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A05</td>
<td>10.3717</td>
<td>59.0123</td>
<td>50</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>A</td>
<td>A36</td>
<td>10.6392</td>
<td>58.9467</td>
<td>360</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>B</td>
<td>B05</td>
<td>8.6295</td>
<td>58.3253</td>
<td>50</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>B</td>
<td>B35</td>
<td>9.0312</td>
<td>58.4038</td>
<td>350</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>C</td>
<td>C16</td>
<td>7.0480</td>
<td>58.0358</td>
<td>160</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>C</td>
<td>C38</td>
<td>6.5747</td>
<td>58.0188</td>
<td>380</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>D</td>
<td>D60</td>
<td>5.4667</td>
<td>60.1042</td>
<td>600</td>
<td>1 g. pr. år</td>
</tr>
<tr>
<td>D</td>
<td>D20</td>
<td>4.8778</td>
<td>60.2290</td>
<td>200</td>
<td>1 g. pr. år</td>
</tr>
</tbody>
</table>

Hardbunn

Tabell 1.3. Hardbunnstasjoner overvåket i 2008 (EUREF89-WGS84). Prøvetakingsfrekvens er 1 gang pr. år, i juni måned (E=eksponert. M=moderat eksponert).

<table>
<thead>
<tr>
<th>Region</th>
<th>Stasjon</th>
<th>Lengdegrad</th>
<th>Breddegrad</th>
<th>Dyp (m)</th>
<th>Himmelhøyretn (°)</th>
<th>Eksponering</th>
<th>Periode (år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a02</td>
<td>10.5268</td>
<td>59.0267</td>
<td>0-26</td>
<td>89</td>
<td>E</td>
<td>1990, 94-2008</td>
</tr>
<tr>
<td>A</td>
<td>a03</td>
<td>10.2963</td>
<td>59.0432</td>
<td>0-30</td>
<td>160</td>
<td>E</td>
<td>1990-2008</td>
</tr>
<tr>
<td>A</td>
<td>a92</td>
<td>10.4549</td>
<td>59.1219</td>
<td>0-30</td>
<td>80</td>
<td>M</td>
<td>2002-2008</td>
</tr>
<tr>
<td>A</td>
<td>a93</td>
<td>10.3754</td>
<td>59.1169</td>
<td>0-30</td>
<td>100</td>
<td>M</td>
<td>2002-2008</td>
</tr>
<tr>
<td>B</td>
<td>b07</td>
<td>8.9443</td>
<td>58.5132</td>
<td>0-30</td>
<td>360</td>
<td>M</td>
<td>1990-2008</td>
</tr>
<tr>
<td>B</td>
<td>b10</td>
<td>8.5372</td>
<td>58.2732</td>
<td>0-30</td>
<td>140</td>
<td>E</td>
<td>1990-2008</td>
</tr>
<tr>
<td>B</td>
<td>b11</td>
<td>8.4289</td>
<td>58.2382</td>
<td>0-30</td>
<td>85</td>
<td>M</td>
<td>1990-2008</td>
</tr>
<tr>
<td>C</td>
<td>c95</td>
<td>7.0406</td>
<td>58.0239</td>
<td>0-30</td>
<td>270</td>
<td>M</td>
<td>2002-2008</td>
</tr>
<tr>
<td>C</td>
<td>c15</td>
<td>6.7960</td>
<td>58.0480</td>
<td>0-25</td>
<td>190</td>
<td>E</td>
<td>1990-2008</td>
</tr>
<tr>
<td>C</td>
<td>c17</td>
<td>6.7147</td>
<td>58.2216</td>
<td>0-30</td>
<td>240</td>
<td>M</td>
<td>1990-2008</td>
</tr>
<tr>
<td>C</td>
<td>c18</td>
<td>6.5011</td>
<td>58.2280</td>
<td>0-26</td>
<td>170</td>
<td>E</td>
<td>1990-2008</td>
</tr>
<tr>
<td>D</td>
<td>d22</td>
<td>5.1442</td>
<td>59.5805</td>
<td>0-30</td>
<td>116</td>
<td>M</td>
<td>1990-99+2005-08</td>
</tr>
<tr>
<td>D</td>
<td>d23</td>
<td>5.08530</td>
<td>59.8800</td>
<td>0-30</td>
<td>340</td>
<td>E</td>
<td>1990-99+2005-08</td>
</tr>
<tr>
<td>D</td>
<td>d25</td>
<td>4.90816</td>
<td>60.4210</td>
<td>0-30</td>
<td>25</td>
<td>M</td>
<td>1990-99+2005-08</td>
</tr>
<tr>
<td>D</td>
<td>d27</td>
<td>4.68393</td>
<td>60.7965</td>
<td>0-30</td>
<td>30</td>
<td>E</td>
<td>1990-99+2005-08</td>
</tr>
</tbody>
</table>

*Stasjonenes lokalisering er vist med stasjonsnummer i figur 1.1 og aktive stasjoner er merket med grønn sirkel.

1.4 Metodikk

2. **Klima og vannmassene i Skagerrak**

NAO-klimaindeksen for vinteren 2008 var positiv. Vinteren var betydelig varmere enn normalt og med mer nedbør. Utover året var både vår og sommer varmere enn normalt på Østlandet og Vestlandet. Sommeren var også nedbørrik på Sørlandet og Østlandet. Overflatetemperaturen i havet var varmere enn normalt (1961-90) omtrent hele året. I ytre Oslofjord var temperaturen over 20° C i 16 døgn i månedskiftet juli/august og i 8 døgn ved Flødevigen. Overflatervannmassene var preget av mer brakkvann i april/mars enn normalt som en følge av den milde og nedbørrike vinteren. Sjøtemperaturen i de dyptere vannmassene (ned til 75 m dyp) var også høyere enn normalt i 2008 og dypvannet (under 100 m) var i februar-mars preget av mindre innslag av Atlantisk vann og mer vann fra sentrale deler av Nordsjøen.

2.1 **NAO, lufttemperatur og nedbør.**

I 2008 var indeksen høy og vinteren var mild. 2008 ble et varmt og nedbørrikt år (figur 2.3-2.4). Vintertemperaturene var høyere enn normalt i hele Norge, spesielt på Østlandet (figur 2.3). Våren ble mild og nedbørrik på Østlandet og Sørlandet, mens sommeren ble varm på Østlandet og Vestlandet, og mer normal på Sørlandet. Både Østlandet og spesielt Sørlandet fikk mer nedbør enn normalt. Utover høsten ble forholdene mer normale, men fortsatt mildere enn normalt på Østlandet.

Figur 2.3 Sesongmessig oversikt over avvik fra normal lufttemperatur i Norge i 2008 (Kilde: Met.no). Rød farge = varmere, blå farge = kaldere og hvit farge = som normalt.
Figur 2.4. Sesongmessig oversikt over nedbør i Norge i 2008 som utjevnet nedbørsom i prosent av normalen (Kilde: Met.no). Gult = mindre enn normalt. Blått = mer enn normalt.
2.2 Vannmasser og sjøtemperatur

Vannmasser deles inn etter saltholdighet og temperatur, og tradisjonelt i oceanografi deles vannmassene langs Skagerrakkysten inn i fem hovedvannmasser som reflekerer hvor vannet kommer fra og hvor influert det er av ulike kilder (Tabell 2.1). Denne inndelingen skiller seg fra inndelingen som ligger til grunn i Vanndirektivet, hvor saltvannet deles i 4 klasser etter saltholdighet: oligohalin (0,5-5), mesohalin (5-18), polyhalin (18-30) og euhalin (>30). Ferskvann regnes som vann med saltholdighet lavere enn 0,5. Sjøvann ble tradisjonelt definert som vann med saltholdighet høyere enn 30 (euhalin) og brakkvann er en blanding av sjøvann og ferskvann. Forskjell i inndeling av vannmasser medfører ingen problemer mht. utnyttelse av Kystovervåkingsdata i Vanndirektivsammenheng. Saltholdighet er en viktig økologisk faktor som påvirker og bestemmer hvilke organismer som lever i en vannmasse og Kystovervåkingens inndeling gir større informasjonsverdi mht. programmets målsetning.

Tabell 2.1. Vannmasser i Skagerrak etter saltholdighet, temperatur og kilde.

<table>
<thead>
<tr>
<th>Saltholdighet</th>
<th>Temperatur °C</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV - Brakkvann</td>
<td>< 25</td>
<td>–1 – 23</td>
</tr>
<tr>
<td>SK - Skagerrak kystvann</td>
<td>25 - 32</td>
<td>–1 – 21</td>
</tr>
<tr>
<td>SV – Skagerrakvann</td>
<td>32 - 35</td>
<td>3 – 16</td>
</tr>
<tr>
<td>SVØ – SK-øvre</td>
<td>32 - 34,5</td>
<td></td>
</tr>
<tr>
<td>SVN – SK-nedre</td>
<td>34,5 - 35</td>
<td></td>
</tr>
<tr>
<td>AV - Atlantisk vann</td>
<td>>35</td>
<td>5,5 – 7,5</td>
</tr>
</tbody>
</table>

Brakkvann dannes ofte i perioder med stor lokal ferskvannstilførsel. Normalt ligger vannet mellom overflaten og ca. 5 meters dyp, men kan forekomme ned til ca. 10 m dyp. Brakkvannet består av vann fra de norske elvene blandet med Skagerrak kystvann. **Skagerrak kystvann** består hovedsakelig av en blanding mellom Østersjøvann/overflatevann fra Kattegat, lokalt elvevann og vann med opprinnelse i sørlige og sentrale deler av Nordsjøen. Vannmassene ligger mellom overflaten og ned til ca. 15-20 m dyp. **Skagerrakvann øvre** har sin opprinnelse i sørlige Nordsjøen, og blandes med vann fra Østersjøen/Kattegat og lokalt ferskvann. Vannmassen ligger mellom ca. 20-80 m dyp med en klar årlig variasjon og med størst utbredelse i oktober-mars. **Skagerrakvann nedre** er i hovedsak vann fra de sentrale deler av Nordsjøen. Vannmassen kan forekomme mellom ca. 60-200 m dyp og er mektigst i perioden fra januar til mai. **Atlantisk vann** tilføres Skagerrak fra Norskehavet via nordlige Nordsjøen og forekommer fra ca. 100 m dyp og ned til bunn. Atlantisk vann trenger generelt høyt opp i vannmassene i juni/juli og er minst dominerende om vinteren.

Den vertikale fordelingen av vannmassene i 2008 sammenliknet med en 'normalfordeling' (beregnet ut fra en sammenhengende måleperiode fra 1947 til 1992) er vist i Figur 2.5. Karakteristisk for vannmassene i kystområdene av Skagerrak i 2008, var et større innslag av brakkvann enn normalt for april/mai. Det var mindre forekomst av Atlantisk vann i dypvannet (under 100 m dyp) i februar og mars og større innslag av vann fra de sentrale deler av Nordsjøen (Skagerrakvann nedre). Forekomsten av Skagerrak kystvann var omtrent som normal i store deler av året, unntatt i januar og oktober hvor det var hhv. mindre og mer.

Overflatetemperaturen i Skagerrak var i 2008 betydelig over gjennomsnittlig sjøtemperatur (1961-90) for vintermånedene (Figur 2.6 og 2.8) og med unntak fra noen kortere perioder også noe varmere enn normalt i resten av året. Det var to perioder med temperaturer over 20 °C – en i begynnelsen av juni i ytre Oslofjord (8 sammenhengende døgn) og en i juli/august (16 døgn i ytre Oslofjord og 8 døgn ved Flødevigen på Sørlandet). I de dypere vannmassene var månedsmiddeltemperaturen over det normale (figur 2.8). Sjøtemperaturen i overflatevannet langs kysten samvarierer på de ulike stasjonene (Jomfruland til Lista), men ofte er årsamplituden større ved Jomfruland enn ved Arendal, og minst ved Lista. I 2008 ble det registrert en periode med kaldt vann ved Lista (figur 2.7) i juni, noe som tyder på en oppstrømning av dypere vann (upwelling). Upwelling er ikke uvanlig ved Lista.

I Flødevigen hadde den meget varme sommeren i 2006, 53 (33) dager med temperaturer over 18 (20) grader, hvorav 45 (30) sammenhengende dager i juli/august. I 2008 var det 34 dager med temperatur over 18 grader, hvorav 25 var i en periode i juli/august, og 7 dager med temperaturer over 20°C. Sommeren 2008 var dermed blant de varmeste i overvåknings-perioden og betydelig varmere enn 2007. Overflatetemperaturene på Vestlandet (Raunefjorden og Bømlafljorden, figur 2.7) var generelt lavere enn i Skagerrak om sommeren, men ofte høyere om vinteren. Figuren viser at augusttemperaturen ligger noe lavere enn ved Lista og Torbjørnskjær.

Figur 2.7. Temperaturen på ca 4 meters dyp i ulike områder observert fra fartøy med FerryBox systemer i 2008. Observere at skifte av fartøy og tekniske driftproblemer førårskent perioder med manglende observasjoner.

Avbrudd i prøvetakingen i juli skyldes driftstekniske problemer.
3. Tilførsler av næringsalter til Skagerrak

3.1 Langtransporterte tilførsler

Forurensning fra Tyskebukta, sørlige Nordsjøen og Kattegat, føres med havstrømmer mot den norske Skagerrakkysten (Figur 3.1). Transporten av vann fra sørlige Nordsjøen med Jyllandsstrømmen til Skagerrak er vindavhengig, og størst i år med sterke sørlige vinder. Det er beregnet at overflatekystvannet (0-30 m) utenfor Arendal er en blanding av vann fra sørlige og sentrale Nordsjøen (ca. 55 %), overflatevann fra Kattegat (ca. 25 %) og vann fra Tyskebukta (ca. 20 %, Aure og Magnusson 2008). Det er vist at denne transporten av vann med næringsalter og forurensninger, har ført til økte næringsaltskonsentrasjoner, spesielt av nitrat, i vårt kystvann. For en periode fra 1980 til 1995, var en ca 100 % økning i nitratverdiene målt i kystvannet (0-30 m dyp) om våren utenfor Arendal (Moy et al. 2007, Aure og Magnusson 2008).

Figur 3.1. Forenklet bilde over strømmene i Skagerrak. Jyllandstrømmen (rød piler) fører vann fra sydlige del av Nordsjøen inn i Skagerrak hvor Jyllandsstrømmen blandes med ferskere vann fra Kattegat (oransje piler) og salt Atlanterhavsvann (blå piler). Den norske kyststrømmen (grønne piler) er en lagdelt blanding av lokale elvetilførsler og ulike havstrømmer.
Aure og Magnusson (2008) beregnet at tilførslene av vann fra Tyskebukta i vårsesongen per i dag utgjør 20 % av overflatevannmassene (0-30 m) i kyststrømmen utenfor Arendal, og at dette vannet bidrar med henholdsvis 75 og 40 % av nitratet og fosfatet i kyststrømmen (Figur 3.2). Det er noe lavere enn henholdsvis 83 og 48 % for nitrat og fosfat som Aure et al. (1998) beregnet for perioden 1990-1995. Det var i denne perioden utslippene fra de kontinentale elvene var størst (Figur 3.3). På grunn av høye konsentrasjoner av løste næringssalter i Tyskebukta i vinterhalvåret har transport fra Tyskebukta størst betydning for vårt kystvann i vinter/vår-sesongen. Sammenlikning av vannmålinger i Tyskebukta og Arendal St. 2 indikerer at vannet fra Tyskebukta har stor innflytelse på vannkvaliteten i vår kyststrøm (Figur 3.3 og 3.4). I 2006-2008 lå konsentrasjonene ved Arendal St. 2 omrønt som for 1995-2005. Det ser dermed ut til at situasjonen har stabilisert seg på et nytt nivå som ligger under 1980-95 nivåene, men fortsatt klart over tidligere perioder som 1965-80. Langtransporterte tilførsler var temakapittel i 2006-årsrapporten fra Kystovervåkingsprogrammet, og endringer over tid er videre utredet der (Moy et al. 2007).

Figur 3.2. Andelen nitrat, fosfat og vannmengde fra Tyskebukta (TBV), Nordsjøen (SCN) og Kattegat (KAT) i kystvannet utenfor Arendal beregnet for 0-30 m dyp i mai måned (etter Aure et al. 1998 og Aure og Magnusson 2008).

Figur 3.3. Nitratkonsentrasjoner ved Helgoland (Tyskebukta) i januar-april beregnet for 5-årsperioder (gjennomsnitt) (Kilde: AWI).

Figur 3.4. Nitratkonsentrasjoner på Arendal St. 2 i januar-april beregnet for 5-årsperioder, samt 2006-2008 (middelverdi, 0-30m dyp).

3.2 Lokale tilførsler

Tilførsler fra de store norske elvene som Glomma, Drammenselva og Numedalslågen starter vanligvis med vårflommen i mai og strekker seg ut i juni for Glommas del. I de kontinentale elvene (som for eksempel Elbe) er vannføringen derimot størst i desember til mai og kulminerer i april før vår lokale vårflom starter (Figur 3.6). Avrenningen fra Danmark til Kattegat er til sammenlikning lav.

Sommerstid har normalt lokale tilførsler fra Norge en relativt større innflytelse på kystvannet enn langtransporterte tilførsler. De lokale tilførslene av bl.a. nitrogen og fosfor har nær sammenheng med vannføringen i elvene. Undersøkelser i Numedalslågen viste at mer enn 90 % av årstilførselen av næringssalter og partikler fra elva gikk ut med flomepisoder. Spesielt partikkelttransport, fosfor og andre stoffer som er knyttet til partikler, samvarierer med variasjon i vannføringen.

Den totale vannføringen i Glomma var i 2008 større enn normalt (Figur 3.7), noe som skyldtes den varme og nedbørrike vinteren. Vintervannføringen var vesentlig høyere enn normalt og vårflommen i mai/juni større enn normalt, mens vannføringen på høsten var som normalt (Figur 3.8).
Figur 3.6 Ferskvanns-avrenning fra Elben og Glomma, og beregnet avrenning fra Danmark til Kattegat

Figur 3.7 Midlere årsavføring i Glomma fra 1980 til 2008 og gjennomsnitt for 30-årsnormalen 1961-90. (Data fra NVE og Glommens og Laagens Brukseierforening (GLB)).

Figur 3.8 Månedsavføring i Glomma i 2008 sammenlignet med gjennomsnittlig vannføring fra 1980-2001 (Data fra NVE og Glommens og Laagens Brukseierforening (GLB)).
Vannføringen i utvalgte elver på Østlandet, Sørlandet og Vestlandet (Figur 3.9) viser at vannføringen var høy tidlig på året til Østlandsområdet, og at vårflokkmen var stor. Generelt dramerer Glomma et stort nedbørsfelt med mange bassenger. Dette resulterer i lange perioder med høy vannføring, mens vannføringen i Numedalslågen generelt er mindre og med kortere flomtopper. Vannføringen i Otra på Sørlandet er generelt lavere enn vassdragene på Østlandet. I 2008 ble det i likhet med Østlandet registrert høy vannføring tidlig på året med to, korte flomtopper (i januar og mai). Vannføringen var da høyere enn det som ble målt i 2007. Også vannføringen i elvane på vestlandet var høy vintertid og på våren (spesielt Orreelva), men den var lav sommerstid og høstdammen kom senere enn i 2007.

Ostlandet

Sørlandet

Vestlandet

Figur 3.10. Beregnede elvetilførsler av nitrogen (TOT N) og fosfor (TOT P) i tonn pr år for elvene Glomma, Numedalslågen, Otra, Orreelva og Suldalslågen (Kilde: RID).

Figur 3.11. Beregnede elvetilførsler av organisk karbon (TOC) i 1 000 tonn pr år for elvene Glomma, Numedalslågen, Otra, Orreelva og Suldalslågen (Kilde: RID). Merk at verdier for Glomma er gitt langs høyre y-akse.
4. **Vannkvalitet i kystvannet**

Vannkvaliteten i Skagerrak var i 2008 i klasse god (II) eller meget god (I) med hensyn til nitrogen, fosfor, sikttyp og klorofyll på de fleste stasjoner, unntatt i ytre Oslofjord (Torbjørnskjær, sikttyp sommeren 2008 var i klasse dårlig). Vinterverdier av tot-P på Jomfruland og sommerverdier for nitrat ved Lista var i klasse mindre god på grunn av upwellingsituasjon i området. Forholdstallet mellom nitrat og fosfat var under Redfield-ratio=16:1, unntatt ved Torbjørnskjær i ytre Oslofjord, og det var også positivt at forholdet nitrat/silikat og fosfat/silikat var klart under det nivå som OSPAR bedømmer å gi økt risiko for oppblomstring av skadelige alger. For hele perioden 1991-2008 er det i Skagerrak en tendens til avtakende risiko for oppblomstring av skadelige alger, med unntak av stasjonen Jomfruland hvor det har vært år med høy næringssaltinnværd og lite silikat.

Sikttypet på Skagerrakkysten var lavere i vinter- og vår-perioden i 2008 sammenlignet med tidligere år. Dårlige lysforhold i Skagerrak har trolig sammenheng med stor avrenning fra land. Stort innsalg av brakkvann kan ha betydning for tidspunktet for våroppblomstringen av planktonalger, og grumsete vann kan redusere vertikalutbredelsen for makrozalger på hardbunn.
4.1 Vinterverdier i overflatelaget

For samtlige variable i Figur 4.1 ligger konsentrasjonene i hovedsak i klasse I-II i 2008, dvs. meget god til god tilstand, med unntak for Jomfruland (tot-P) som havner i tilstandsleiste mindre god. Bare i enkelte år har det tidligere vært observert tilstandsleiste mindre god for tot-P. Tidligere i overvåkningsperioden har økning av næringsalter (spesielt nitrogen) langs sørlandsstyksten i stor grad skyldes transport fra sørlige Nordsjøen (Aure og Johannessen, 1997, Aure og Magnusson 2008), men de milde vintrene i 2007 og 2008 kan bety en større lokal tilførsel av nitrat fra elvene til kystvannet enn tidligere.

Næringssaltskonsentrasjonene avtar generelt fra øst (ytre Oslofjord/Jomfruland) til vest (Lista/Utsira), men det har ibland vært høyere verdier ved Jomfruland enn i ytre Oslofjord. Antall observasjoner fra ytre Oslofjord er imidlertid betydelig lavere og dette kan være en del av forklaringen.

Figur 4.1. a) Tot-N, b) Tot-P, c) NO₃+NO₂-N og d) PO₄-P (µM) i 0-10 m dyp, desember-februar 1991-2008. SFTs grenser for miljøtilstand er markert (SFT 1997).
Figur 4.2. Partikkelmålinger i overflatevann (0-10 m dyp). a) Partikler (TSM), b) POC*, c) PON* og d) POP vinterstid 1991-2008 i Ytre Oslofjord, Jomfruland, Arendal St. 2, Lista og Utsira, samt forholdstallene e) POC/PON og f) PON/POP. * = Det er en systematisk forskjell mellom Jomfruland og øvrige stasjoner i analysen av POC og PON. Parallelanalyser har vist god korrelasjon mellom de ulike laboratoriene (HI og NIVA), men at NIVAs analyser gir høyere konsentrasjoner. I denne rapporten er alle POC og PON analyser fra NIVA korrigert iht. resultatet fra parallelanalyserne.

POC vinterverdier (Desember-februar), 0-10 m dyp på ulike stasjoner 1991-2008. Korrigert for analyseforskjeller

![Diagram som viser gjennomsnittlige POC-konsentrasjoner vinterstid (0-10 m dyp) på alle stasjoner. POC-observasjonene er korrigerte for analyseforskjeller mellom laboratorier.](image-url)
OSPAR (Oslo-Paris kommisjonen) opererer med et sett kriterier for næringsalter vinterstid som kommisjonen mener kan være kritiske for utvikling av giftige eller uønskede algerarter. I Figur 4.4 er tre forhold mellom næringsalter vinterstid sammenlignet med forholdstall som ifølge OSPAR kan gi utvikling av giftige eller uønskede algerarter. Økte N/P-forhold (>24, dvs. 50 % økning sammenlignet med Redfield-ratio (16:1)) og overskudd på nitrat vil øke risikoen for skadelige alger, mens økte forholdstall av N/Si (>2) og P/Si (>0.125) vil kunne føre til et skifte fra diatomeer til flagellater. For kystovervåkingsstasjonene er de fleste observasjonene under OSPAR’s grenser (Figur 4.4). Frem til vinteren 2002 var det en tendens til økende N/P-forhold, men lavt forhold fra vinteren 2003 gjør at det ikke lengre er noen slik tendens. For NO₃+NO₂-N/SiO₃ og PO₄-P/SiO₃ er det i perioden 1990-2008 signifikant avtakende middelverdier på stasjon Arendal 2 og Lista, det vil si avtakende risiko for oppblomstring av skadelige alger ut fra OSPARs kriterier. På Jomfruland er også risikoen avtakende (NO₃+NO₂-N/SiO₃), unntatt for PO₄-P/SiO₃. Det ble observert forhøyet risiko i 2003 og 2006. Høye vinterkonsentrasjoner av nitrat og fosfat på Jomfruland, spesielt i 2003, kan ha sammenheng med langtransporterte tilforsler.

bortsett fra Lista viser de 4 siste årene ikke noen større forskjell mellom ytre Oslofjord, Jomfruland og Arendal St. 2. For organisk fosfor (figur 4.5) er det ikke noen klar utvikling i perioden.

Figur 4.5. Organisk nitrogen (a) og fosfor (b) i Ytre Oslofjord, Jomfruland, Arendal St.2, Lista og Utsira vinterstid 1991-2008.

4.2 Sommerverdier i overflatelaget

I Figur 4.6 er sommerkonsentrasjoner i overflatelaget (vannprøver fra 0, 5 og 10 m dyp) sammenlignet med SFTs miljøkvalitetskriterier for kystvann (SFT 1997). Vannkvaliteten for alle parametere sommeren 2008 er i tilstandsklassen meget god (klasse I), med unntak for total-fosfor og fosfat (klasse II-god) samt nitrat (klasse III-mindre god) ved Lista. Høye konsentrasjoner ved Lista skyldtes sannsynligvis en upwelling-situasjon i området. Sommerstid er innholdet av løste næringssalter ofte nær eller under den nedre målbare grense fordi planteplanktonproduksjonen tømmer vannet for løste næringssalter. I denne analysen er alle verdier mindre enn nedre målbare grense satt lik denne grenseverdien.

Figur 4.6. Næringssalter i overflatevann (0-10m dyp) sommerstid (juni-august).
a) Tot-N, b) Tot-P, c) NO₃+NO₂-N og d) PO₄-P (µM). SFTs klassifiseringsgrenser er markert.

Partikkelkonsentrasjonen (TSM) økte på Jomfruland gjennom observasjonsperioden frem til 2003, men de siste fem årene har den blitt betydelig lavere og det er ikke noen trend over hele perioden lengre. Det kan se ut som at tidsrommet 1998-2003 var spesielt med høyere partikkelkonsentrasjoner og at de siste årenes observasjoner antyder mer normale forhold.

Figur 4.7. Sommerverdier i overflatelaget (0-10 m dyp) 1991-2008 av a) klorofyll α, b) totalt suspendert materialet (TSM), c) partikulært organisk karbon (POC), d) nitrogen (PON), e) fosfor (POP), f) karbon/nitrogen (POC/PON). Observasjoner fra Lista og Ytre Oslofjord i deler av perioden.
Figur 4.7 g). Sommerverdier i overflatelaget (0-10 m dyp) 1991-2008 av nitrogen/fosfor (PON/POP). Observasjoner fra Lista og Ytre Oslofjord i deler av perioden.
4.3 Siktdyp

Siktdypet sommeren 2008 tilfredsstilte tilstandsclasse god (SFTs miljøkvalitetskriterier) på stasjonene Jomfruland og Lista, men ikke på stasjonen i ytre Oslofjord (Torbjørnskjær, Figur 4.8 og 4.9) hvor tilstanden var i klasse dårlig. Stasjon Arendal St. 2 lå på grensen mellom mindre god/god. Generelt for perioden 1991-2008 har det vært signifikant avtagende (dårligere) siktdyp på stasjonene Arendal og Lista, både for sommerobservasjoner og for hele året sett under ett (Tabell 4.1). Avtagende siktdyp i perioden betyr at vannet blir mer grumsete. Det stemmer med økende mengde partikulært organisk karbon (POC) i vannmassene, men samtidig viser målingene at gjennomsnittlig algeplanktonbiomasse har gått ned (jfr. kapittel 5). Høye POC-verdier kan derfor være resultat av stor avrenning fra land som følge av mye nedbør. Dette stettes av høye verdier av POC/PON (Figur 4.2 e), men resultatet skal brukes med forsiktighet på grunn av usikkerhet i analysetekniske forhold.

2003-2006 bedret siktdypet på Jomfruland seg, men i 2007 og 2008 ble siktdypet igjen dårligere, noe som også kan ha sammenheng med nedbørrike somre. I 2008 var også vinter- og vårperioden spesiell, med dårlig siktdyp og store mengder partikler, spesielt ved Arendal St. 2. At forverringen var spesielt stor her kan komme av at denne stasjonen er mindre påvirket av brakkvann enn for eksempel ytre Oslofjord og Jomfruland, og at ferskvann derfor gir en relativ sterkere påvirkning enn stasjoner som er mer ferskvannspåvirket.

Figur 4.8 Siktdyp målt i kystvannet i Skagerrak i sommerperioden juni-august.

a) Siktdypskvalitet fra Torbjørnskjær (ytre Oslofjord), b) Jomfruland, c) Arendal, d) Lista. Siktdypskvaliteten er iht. SFTs kvalitetskriterier.
Figur 4.9. viser at siktdypet sommeren 2008 var god fra Jomfruland til Utsira (Arendal St. 2 på grensen til mindre god), mindre god i Langesundsforden utenfor Langesund og dårlig i ytre Oslofjord (Torbjørnskjær). Langesundstasjonen ligger innenskjærs og er direkte påvirket av brakkvann fra Frierfjorden. Det dårligste siktdypet ble observert ved Torbjørnskjær (merk bare 2 observasjoner) og skyldes sannsynligvis store partikkeltilførsler fra Glomma i juni.

<table>
<thead>
<tr>
<th>Periode</th>
<th>Stasjon</th>
<th>r^2</th>
<th>Signifikans P</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hele året</td>
<td>Jomfruland</td>
<td>0.05</td>
<td>0.21</td>
<td>Ingen</td>
</tr>
<tr>
<td></td>
<td>Arendal St. 2</td>
<td>0.48</td>
<td>0.002</td>
<td>Negativ</td>
</tr>
<tr>
<td></td>
<td>Lista</td>
<td>0.46</td>
<td>0.002</td>
<td>Negativ</td>
</tr>
<tr>
<td>Sommer-verdier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>juni-august</td>
<td>Jomfruland</td>
<td>0.05</td>
<td>0.37</td>
<td>Ingen (negativ tendens)</td>
</tr>
<tr>
<td></td>
<td>Arendal St. 2</td>
<td>0.41</td>
<td>0.004</td>
<td>Negativ</td>
</tr>
<tr>
<td></td>
<td>Lista</td>
<td>0.74</td>
<td>0.00</td>
<td>Negativ</td>
</tr>
</tbody>
</table>
4.4 Vannkvalitet i ulike vannmasser

Oksygenmetningen i de dypere vannmassene i kyststrømmen er i 2008 i tilstandsklasse "meget god" i henhold til SFTs miljøkvalitetskriterier (Figur 4.10).

![Oksygenobservasjoner fra 1990-2008](image_url)

Kystvannets oksygeninnhold varierer gjennom året og mellom de ulike vannmassene i Skagerrak (Figur 4.11). I det brakke overflatevannet måles det en overmetning i de varme sommermånedene juni-august og lavest metningsprosent utover høsten (lite brakkvann om høsten gjør at få målinger ligger til grunn for dette resultatet som dermed må brukes med forsiktighet). Overmetning betyr at oksygenkonsentrasjonen overstiger 100% av det vannmassen etter temperatur og saltholdighet normalt klarer å holde på. I overflatelaget er overmetning ofte et resultat av høy planteplanktonproduksjon (som gir oksygen).

I Skagerrak-kystvann er det gode oksygenforhold gjennom hele året. I Skagerrakvann (vann fra 25 til 100-150 m dyp) er det lavest oksygeninnhold på sensommeren (august-september), mens det i Atlantisk vann (dypere enn 100 m, jfr. Figur 2.4) er lavest i oktober-november (Figur 4.11).

Selv om oksygenforholdene i Kyststrømmen er gode, vil avtakende konsentrasjoner i Kyststrømmen ha betydning for fjorder og estuarier langs Skagerrakkysten siden disse stadig forsynes med, og er avhengige av, oksygenrikt vann fra Kyststrømmen. En moderat lavere oksygenkonsentrasjon i det innstrømmende vannet kan få alvorlige konsekvenser for oksygenkonsentrasjonen i fjordbassenget, avhengig av oppholdstiden på bassengvannet. Økt organisk belastning på fjorder og kystbasseng gir økt oksygenforbruk, og til sammen med lavere oksygeninnhold i innstrømmende vann fører det til dårlig vannkvalitet i dypvannet. Figur 4.13 illustrerer en klar økning i oksygenforbruket fra 1980 til i dag, - omlag 70 % større forbruk i perioden 1984-2005 enn i 1930-77 (målinger fra Risørbassenget utført av Havforskingsinstituttet, Forskningsstasjonen i Flødevigen). Resultatene betyr at den organiske belastningen på Risørbassenget har økt tilsvarende. Dette har sammenheng med økt tilførsler av næringssalter fra Tyskebukta i samme periode (Figur 3.3 og 3.4). I 2006 og 2007 var...
Kystovervåkingsprogrammet 2008 Vannkvalitet

oksygenforbruket lavere, før det økte igjen i 2008. Det økte oksygenforbruket de siste 15 år har ført til dårligere oksygenforhold i en rekke fjord- og kystbasseng langs Skagerrakkysten, med klart negative konsekvenser for bl.a. faunaen i bassengene (Buhl-Mortensen m.fl. 2006).

Det en signifikant økning av POC og PON i perioden 1990-2008 for brakkvann, kystvann og spesielt Skagerrakkvann, men ikke i Atlantisk vann (Tabell 4.2). For POP er det en ingen signifikant endring. PON/POP-forholdet (Figur 4.14 e) øker derfor i alle vannmasser (skyldes økende PON), unntatt i Atlantisk vann hvor det avtar gjennom observasjonsperioden (Figur 4.14 e og Tabell 4.2). POC/POP-forholdet ligger nær 7:1, dvs. det organiske materialet som måles er i all hovedsak marine organismer (planteplankton etc.). Imidlertid viser POC/PON-forholdet ved Jomfruland at det noen år er noe større innslag av terrestrisk materiale her. Det marine signalet avtar med dypet når det brytes ned under sedimentasjon (terrestrisk materiale som lignin brytes svært langsom ned).

Konsentrasjonen av total nitrogen (Tot-N, Figur 4.15a) er vanligvis størst i Brakkvann, deretter i Skagerrak kystvann. Atlantic vann har ofte høyere konsentrasjoner enn Skagerrakvann. For total fosfor (Tot-P, Figur 4.15b) er konsentrasjonen gjennomgående høyere i de dypereliggende vannmasser som Atlantic vann, enn i f.eks. Brakkvann. N/P-forholdet blir derved størst i Brakkvann og lavest i Atlantic vann, som også framgår av Figur 4.15c. For Tot-P og Tot-N er det ikke noen signifikant utvikling i perioden (Tabell 4.2), med unntak for

TSM (mg/l) i ulike vannmasser 1991-2007 (årsmidler)
Observasjoner fra Jomfruland og Arendal St. 2

<table>
<thead>
<tr>
<th>År</th>
<th>TSM (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>0.2</td>
</tr>
<tr>
<td>1993</td>
<td>0.4</td>
</tr>
<tr>
<td>1994</td>
<td>0.6</td>
</tr>
<tr>
<td>1995</td>
<td>0.8</td>
</tr>
<tr>
<td>1996</td>
<td>1.0</td>
</tr>
<tr>
<td>1997</td>
<td>1.2</td>
</tr>
<tr>
<td>1998</td>
<td>1.4</td>
</tr>
<tr>
<td>1999</td>
<td>1.6</td>
</tr>
<tr>
<td>2000</td>
<td>1.8</td>
</tr>
<tr>
<td>2001</td>
<td>2.0</td>
</tr>
<tr>
<td>2002</td>
<td>2.2</td>
</tr>
<tr>
<td>2003</td>
<td>2.4</td>
</tr>
<tr>
<td>2004</td>
<td>2.6</td>
</tr>
<tr>
<td>2005</td>
<td>2.8</td>
</tr>
<tr>
<td>2006</td>
<td>3.0</td>
</tr>
<tr>
<td>2007</td>
<td>3.2</td>
</tr>
<tr>
<td>2008</td>
<td>3.4</td>
</tr>
</tbody>
</table>

POC (µM) i ulike vannmasser 1991-2007 (årsmidler)
Observasjoner fra Jomfruland og Arendal St. 2/3

<table>
<thead>
<tr>
<th>År</th>
<th>POC (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>10.0</td>
</tr>
<tr>
<td>1993</td>
<td>20.0</td>
</tr>
<tr>
<td>1994</td>
<td>30.0</td>
</tr>
<tr>
<td>1995</td>
<td>40.0</td>
</tr>
<tr>
<td>1996</td>
<td>50.0</td>
</tr>
<tr>
<td>1997</td>
<td>60.0</td>
</tr>
<tr>
<td>1998</td>
<td>70.0</td>
</tr>
<tr>
<td>1999</td>
<td>80.0</td>
</tr>
<tr>
<td>2000</td>
<td>90.0</td>
</tr>
<tr>
<td>2001</td>
<td>100.0</td>
</tr>
<tr>
<td>2002</td>
<td>110.0</td>
</tr>
<tr>
<td>2003</td>
<td>120.0</td>
</tr>
<tr>
<td>2004</td>
<td>130.0</td>
</tr>
<tr>
<td>2005</td>
<td>140.0</td>
</tr>
<tr>
<td>2006</td>
<td>150.0</td>
</tr>
<tr>
<td>2007</td>
<td>160.0</td>
</tr>
<tr>
<td>2008</td>
<td>170.0</td>
</tr>
</tbody>
</table>

PON (µM) i ulike vannmasser 1991-2007 (årsmidler)
Observasjoner fra Jomfruland og Arendal St. 2/3

<table>
<thead>
<tr>
<th>År</th>
<th>PON (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>100.0</td>
</tr>
<tr>
<td>1993</td>
<td>200.0</td>
</tr>
<tr>
<td>1994</td>
<td>300.0</td>
</tr>
<tr>
<td>1995</td>
<td>400.0</td>
</tr>
<tr>
<td>1996</td>
<td>500.0</td>
</tr>
<tr>
<td>1997</td>
<td>600.0</td>
</tr>
<tr>
<td>1998</td>
<td>700.0</td>
</tr>
<tr>
<td>1999</td>
<td>800.0</td>
</tr>
<tr>
<td>2000</td>
<td>900.0</td>
</tr>
<tr>
<td>2001</td>
<td>1000.0</td>
</tr>
<tr>
<td>2002</td>
<td>1100.0</td>
</tr>
<tr>
<td>2003</td>
<td>1200.0</td>
</tr>
<tr>
<td>2004</td>
<td>1300.0</td>
</tr>
<tr>
<td>2005</td>
<td>1400.0</td>
</tr>
<tr>
<td>2006</td>
<td>1500.0</td>
</tr>
<tr>
<td>2007</td>
<td>1600.0</td>
</tr>
<tr>
<td>2008</td>
<td>1700.0</td>
</tr>
</tbody>
</table>

POC/PON i ulike vannmasser 1991-2007 (årsmidler)
Observasjoner fra Jomfruland og Arendal St. 2/3

<table>
<thead>
<tr>
<th>År</th>
<th>POC/PON (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>4.0</td>
</tr>
<tr>
<td>1992</td>
<td>6.0</td>
</tr>
<tr>
<td>1993</td>
<td>8.0</td>
</tr>
<tr>
<td>1994</td>
<td>10.0</td>
</tr>
<tr>
<td>1995</td>
<td>12.0</td>
</tr>
<tr>
<td>1996</td>
<td>14.0</td>
</tr>
<tr>
<td>1997</td>
<td>16.0</td>
</tr>
<tr>
<td>1998</td>
<td>18.0</td>
</tr>
<tr>
<td>1999</td>
<td>20.0</td>
</tr>
<tr>
<td>2000</td>
<td>22.0</td>
</tr>
<tr>
<td>2001</td>
<td>24.0</td>
</tr>
<tr>
<td>2002</td>
<td>26.0</td>
</tr>
<tr>
<td>2003</td>
<td>28.0</td>
</tr>
<tr>
<td>2004</td>
<td>30.0</td>
</tr>
<tr>
<td>2005</td>
<td>32.0</td>
</tr>
<tr>
<td>2006</td>
<td>34.0</td>
</tr>
<tr>
<td>2007</td>
<td>36.0</td>
</tr>
<tr>
<td>2008</td>
<td>38.0</td>
</tr>
</tbody>
</table>

POC/POP i ulike vannmasser 1991-2007 (årsmidler)
Observasjoner fra Jomfruland og Arendal St. 2/3

<table>
<thead>
<tr>
<th>År</th>
<th>POC/POP (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>4.0</td>
</tr>
<tr>
<td>1992</td>
<td>6.0</td>
</tr>
<tr>
<td>1993</td>
<td>8.0</td>
</tr>
<tr>
<td>1994</td>
<td>10.0</td>
</tr>
<tr>
<td>1995</td>
<td>12.0</td>
</tr>
<tr>
<td>1996</td>
<td>14.0</td>
</tr>
<tr>
<td>1997</td>
<td>16.0</td>
</tr>
<tr>
<td>1998</td>
<td>18.0</td>
</tr>
<tr>
<td>1999</td>
<td>20.0</td>
</tr>
<tr>
<td>2000</td>
<td>22.0</td>
</tr>
<tr>
<td>2001</td>
<td>24.0</td>
</tr>
<tr>
<td>2002</td>
<td>26.0</td>
</tr>
<tr>
<td>2003</td>
<td>28.0</td>
</tr>
<tr>
<td>2004</td>
<td>30.0</td>
</tr>
<tr>
<td>2005</td>
<td>32.0</td>
</tr>
<tr>
<td>2006</td>
<td>34.0</td>
</tr>
<tr>
<td>2007</td>
<td>36.0</td>
</tr>
<tr>
<td>2008</td>
<td>38.0</td>
</tr>
</tbody>
</table>

Figur 4.14. Partikulært materiale i ulike vannmasser. a) partikler TSM, b) partikulært organisk karbon, POC, c) nitrogen, PON, d) fosfor, POP, e) forholdet nitrogen og fosfor, PON/POP, f) forholdet karbon og nitrogen POC/PON. For TSM er det brukt data fra Jomfruland og Arendal St. 2, for POC, PON og POP data fra Jomfruland og Arendal St 2 og 3.
Figur 4.15. Næringssalter i ulike vannmasser. a) total nitrogen, Tot-N), b) total-fosfor, Tot-P, c) forholdet Tot-N/Tot-P. Data fra Jomfruland, Arendalstasjonene og Lista.

<table>
<thead>
<tr>
<th>Periode</th>
<th>Stasjoner</th>
<th>Parameter</th>
<th>Vannmasse</th>
<th>r^2</th>
<th>p</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2</td>
<td>TSM</td>
<td>BV</td>
<td>0.22</td>
<td>0.05</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSM</td>
<td>SK</td>
<td>0.31</td>
<td>0.02</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSM</td>
<td>SV</td>
<td>0.23</td>
<td>0.05</td>
<td>Økende</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2/3</td>
<td>POC</td>
<td>BV</td>
<td>0.40</td>
<td>0.005</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC</td>
<td>SK</td>
<td>0.46</td>
<td>0.002</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC</td>
<td>SV</td>
<td>0.65</td>
<td>0.000</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC</td>
<td>AV</td>
<td>0.00</td>
<td>0.84</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2/3</td>
<td>PON</td>
<td>BV</td>
<td>0.49</td>
<td>0.001</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON</td>
<td>SK</td>
<td>0.50</td>
<td>0.000</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON</td>
<td>SV</td>
<td>0.54</td>
<td>0.000</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON</td>
<td>AV</td>
<td>0.08</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2/3</td>
<td>POP</td>
<td>BV</td>
<td>0.02</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP</td>
<td>SK</td>
<td>0.09</td>
<td>0.23</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP</td>
<td>SV</td>
<td>0.14</td>
<td>0.13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP</td>
<td>AV</td>
<td>0.03</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2/3</td>
<td>PON/POP</td>
<td>BV</td>
<td>0.48</td>
<td>0.001</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON/POP</td>
<td>SK</td>
<td>0.23</td>
<td>0.044</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON/POP</td>
<td>SV</td>
<td>0.43</td>
<td>0.003</td>
<td>Økende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PON/POP</td>
<td>AV</td>
<td>0.33</td>
<td>0.13</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal St. 2/3</td>
<td>POC/PON</td>
<td>BV</td>
<td>0.09</td>
<td>0.23</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC/PON</td>
<td>SK</td>
<td>0.02</td>
<td>0.53</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC/PON</td>
<td>SV</td>
<td>0.00</td>
<td>0.93</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POC/PON</td>
<td>AV</td>
<td>0.02</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal +Lista</td>
<td>Tot-N, Tot-P</td>
<td>BV, SK, SV, AV</td>
<td>0.0-0.1</td>
<td>0.1-0.8</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal +Lista</td>
<td>Tot-P</td>
<td>AV</td>
<td>0.26</td>
<td>0.03</td>
<td>Økende</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal +Lista</td>
<td>Tot-N</td>
<td>AV</td>
<td>0.14</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>1991-2008</td>
<td>Jomfruland+Arendal +Lista</td>
<td>Tot-(N/P)</td>
<td>BV, SK, SV, AV</td>
<td>0.0-0.1</td>
<td>0.2-0.8</td>
<td>-</td>
</tr>
</tbody>
</table>
4.5 Geografiske gradierter i næringssalter

Vintermålinger av næringssalter i overflatevannet (0-5 m dyp) i 2007-2008 (år med målinger fra alle stasjonene) viser at det er en klar geografisk gradient fra ytre Oslofjord til Vestlandet med de høyeste verdiene i østlige deler av Skagerrak (Figur 4.17). Som vist i kapittel 3 har det sammenheng med store langtransporterte tilførsler til kyststrømmen som starter i østre deler av Skagerrak, men også på grunn av stor lokal tilførsel til i de øverste meterne. På Vestlandstasjonene var næringssaltskonsentrasjonene noe lavere i 2008 enn i 2007, spesielt når det gjelder fosfat. Sommerobservasjonene viser avtakende Tot-N konsentrasjoner fra øst til vest, og noe høyere konsentrasjoner i 2008 enn i 2007 i ytre Oslofjord (Torbjørnskjær) og ved Jomfruland (Figur 4.18). Øvrige næringssalter viser små forskjeller, unntatt Lista hvor en upwelling-situasjon i juni bidro til høyere konsentrasjoner. Konsentrasjonene tilsvarer tilstandsklasse I-II (meget god til god tilstand) på alle stasjonene, unntatt Lista.

TA-1048/2009 45 NIVA-rapport 5796
Figur 4.17. Vinterverdier av total nitrogen (Tot-N), total fosfor (Tot-P), nitrat (NO3+NO2) og fosfat (PO4) i overflatevann (0-5 m) i 2007-2008 på stasjonene Torbjørnskjær, Jomfruland, Arendal st 2, Lista, Utsira, Bømlafjorden* og Raunefjorden*. *= FerryBox-målinger (vannprøver).
4.6 Spesielle forhold med betydning for biologien

Vinter-vær 2008
Sikttypet på Skagerrakkysten var lavere i vinter- og vår-perioden (januar til mai) i 2008 sammenlignet med tidligere observasjoner (1991-2007). Det framgår av figur 4.8 som viser sommerverdier, og figur 4.19 som viser den markerte reduksjonen som ble målt i vinter- og vår-perioden. Sikttypet kan omregnes til ca. 1 % lysdyp som definerer den generelle nedregrensen for opprette makroalger. Figur 4.20 viser at det var signifikant mørkere i vannet utenfor Jomfruland i 2008 enn det har vært tidligere (en endring i 1% lysdyp fra ca. 23 til 16 m). Ved stasjonene Arendal St. 2 og Lista var 1 % lysdypet tilsvarende redusert med henholdsvis ca 5 og 6 m.

Dårlige lysforhold i Skagerrak har trolig sammenheng med stor avrenning fra land. Klimafiguren 2.4 viser unormalt store nedbørsmengder på vinteren/våren på Sør- og Østlandet i 2008, og det var flere nedbørsrekorder i mars måned (tabell 4.3). Mildt klima (figur 2.3) og mye nedbør, førte det til stor vannføring, spesielt i Sørlandselvene, i vinter- og vår-perioden (se Otra i figur 3.9). I kystvannet ble det målt større innsalg av brakkvann (utenfor Arendal, figur 2.6) og større mengder partikler (TSM) enn det pleier (figur 4.21 og vinter- og sommerverdier i figur 4.2a og 4.7b). Det høye forholdstallet POC/PON (partikulært organisk bundet karbon mot nitrogen) indikerer stort innslag av terrestrisk materiale til kystvannet i Skagerrak. At tilførslene var størst i perioden februar-mars (figur 4.22) gjør at de i liten grad er synlige i figurene 4.2 og 4.7 som i henhold til SFTs vannkvalitetskriterier, viser henholdsvis gjennomsnittlige vinter- (desember-februar) og sommerverdier (juni-august).

Stort innsalg av brakkvann kan ha betydning for tidspunktet for våroppblomstringen av planktonalger (stabilisering av øvre vannmasser og mulig tidlig oppblomstring), og grumsete vann kan redusere vertikalutbredelsen for makroalger på hardbunn.

Tabell 4.3. Meteorologistasjonen med ny marsrekord for månedsnedbør (mm).

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Sted, kommune (Fylke)</th>
<th>mm</th>
<th>Startår for måleserie</th>
<th>Forrige rekordår</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>36560</td>
<td>Nelaug Åmli (AA)</td>
<td>259,8</td>
<td>1961</td>
<td>1978</td>
<td>192,6</td>
</tr>
<tr>
<td>37230</td>
<td>Tveitsund Nissedal (TE)</td>
<td>135,6</td>
<td>1945</td>
<td>1982</td>
<td>117,6</td>
</tr>
<tr>
<td>38421</td>
<td>Senumstad Birkenes (AA)</td>
<td>268,8</td>
<td>1959</td>
<td>1979</td>
<td>216,2</td>
</tr>
<tr>
<td>41670</td>
<td>Konmo Audnedal (VA)</td>
<td>258,9</td>
<td>1952</td>
<td>1990</td>
<td>240,3</td>
</tr>
<tr>
<td>43010</td>
<td>Eik Lund (RO)</td>
<td>386,7</td>
<td>1999</td>
<td>2007</td>
<td>299,6</td>
</tr>
<tr>
<td>13140</td>
<td>Fåvang Ringebu (OP)</td>
<td>65,1</td>
<td>1997</td>
<td>1999</td>
<td>59,7</td>
</tr>
<tr>
<td>24710</td>
<td>Gulsvik Flå (BU)</td>
<td>145,7</td>
<td>1948</td>
<td>1988</td>
<td>112,2</td>
</tr>
<tr>
<td>25100</td>
<td>Hemsedal Hemsedal (BU)</td>
<td>109,8</td>
<td>1896</td>
<td>1913</td>
<td>94,0</td>
</tr>
</tbody>
</table>
Figur 4.21 Månedlig partikkelmålinger (TSM - total suspendert materiale, mg/l) i overflatevann (0-10 m) på stasjon Jomfruland i 2008 sammenliknet med perioden 1991-2007.

5. **Planktonsamfunn i Skagerrak**

I 2008 var den integrerte algebiomassen 20,9 g C/l/år. De siste 3 årene har den integrerte algebiomassen over året variert mellom 20,7 og 21,0 g C/l/år, og 2008 var det sjunde året med relativt lav total algemengde. Lav total algebiomasse indikerer begrenset tilførsel av næringssalter. En begynnende våroppblomstring helt i slutten av februar med kiselalgen Skeletonema som blomstringsart, ble avbrutt slik at vårens hovedoppblomstring først stod i perioden fra slutten av mars til begynnelsen av april. I hovedperioden før våroppblomstringen dominoerte biomassemessig først Skeletonema og deretter Rhizosolenia hebetata f. semispina. Ingen betydelige sommer- eller høstblomstringer av dinoflagellater ble registrert dette året. I første halvdel av september blomstret for første gang i våre farvann raphidophycen Chattonella globosa som er en alge som sannsynligvis er introdusert med ballastvann og er rapportert å forårsake fiskedød fordi den ødelegger fiskens gjeller. Denne blomstringen falt sammen med høstmaksimum både for målt klorofyll a og beregnet cellekarbon.

5.1 **Planteplankton**

KLOROFYLL A

En begynnende, men avbrutt våroppblomstring ble registrert i slutten av februar 2008 både i ytre Oslofjord og i de ytre fjordområdene mellom Bergen og Haugesund (Raunefjorden-Bømlafjorden) (figur 5.1-5.2). Slike avbrudd skjer når sjiktningen i vannmassene destabiliseres av på grunn av uvær eller annet som fører til omrøring i de øvre vannmasser. Selve våroppblomstringen fant sted langs kysten av Sør-Norge helt mot slutten av mars, mens den på Vestlandet før for Bergen, nådde sitt maksimum 1-2 uker tidligere. Stasjonen utenfor Lista skiller seg fra de andre stasjonene med en mindre markert våroppblomstring. En høstopplomstring ble observert fra Lista til Bergen i midten av september, mens høyeste klorofyll a-verdier i ytre Oslofjord først ble målt i midten av oktober.
Figur 5.1. Klorofyll-a (µg/l) i ytre Oslofjord fra Breiangen (OF7) til Torbjørnskjær (OF1, FerryBox-data).

I Vanndirektivet vil planteplanktonbiomassen under produksjonssesongen inngå som et av de biologiske kvalitetselementene som skal danne grunnlag for klassifisering av vannmassene i ulike vannarter i våre økoregioner. På grunnlag av FerryBox-observasjonene fra 2007-2008 er det foretatt ulike beregninger for klorofyll a (Tabell 5.1) etter metode benyttet i Østersjøen (Fleming og Kaitala, 2006). Beregningsmetoden er avvikende fra metode benyttet i forbindelse med interkalibrering av klorofyll a innen NEA-GIG (North-East Atlantic Geographic Intercalibration Group), men ved anvendelse av metoden kan bearbeidelse av flere års data kunne gi informasjon om tendenser i datamaterialet slik som for eksempel endringer i produksjonsperiode (vekstsesong), produksjonsperiodens varighet osv. Grunnlaget for alle beregninger er 7-døgnshitlende middel og interpolering i perioder uten observasjoner og at grenseverdien for oppblomstringer er satt til 0,9 µg klf.a/l. Beregningene for 2008 viser at den høyeste klorofyll a-indeksen dette året var å finne i ytre Oslofjord (Torbjørnskjær) med en klorofyll-a indeks omtrent 43% høyere enn ved Lista, og 13% høyere enn for gjennomsnittet for Bømla- og Raunefjorden. Basert på analyser fra vannprøvetaking for 2007-2008 (figur 5.3) er klorofyll a-konsentrasjonene i den nordøstlige delen av Skagerrak høyere enn fra Lista og nordover til Bergen. For de vestlige stasjonene er imidlertid variasjonen i klorofyll a betydelig større for de beskyttede ytre fjordstasjonene (Bømlafjorden og Raunefjorden) enn for de kystnære eksponerte stasjonene (Lista, Utsira).

Tabell 5.1. Beregninger av klorofyll a-konsentrasjoner ved Torbjørnskjær (ytre Oslofjord), Lista, Bømlafjorden og Raunefjorden i 2008. Beregningene blir usikre på Lista og Vestlandet da det i enkelte perioder om våren og sommeren manglede noen av observasjonene (Fig. 4.19). Verdiene er relatert til produksjonsperioden som defineres av klorofyllkonsentrasjon over gitt grenseverdi.

<table>
<thead>
<tr>
<th>Torbjørnskjær (ytre Oslofjord)</th>
<th>Lista</th>
<th>FN13- Bømlafjorden</th>
<th>FN16-Raunefjorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenseverdi (µg/l)</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Startdato (Jday)</td>
<td>50</td>
<td>68</td>
<td>46</td>
</tr>
<tr>
<td>Varighet (d)</td>
<td>253</td>
<td>217</td>
<td>262</td>
</tr>
<tr>
<td>Klf-a maks (µg/l)</td>
<td>6.1</td>
<td>3.8</td>
<td>7.4</td>
</tr>
<tr>
<td>Klf-a middel (µg/l)</td>
<td>2.1</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Klf-a index (d * µg/l)</td>
<td>529</td>
<td>369</td>
<td>515</td>
</tr>
</tbody>
</table>

Figur 5.3. Klorofyll-a (µg/l) i 0-5 meters dyp i produksjonssesongen februar til oktober. Analyser fra hydrografiske tokt og fra FerryBox.
CELLEKARBON
Beregnet cellekarbon fra planktonstallinger fra Arendal St. 2 viser at den begynnende våroppblomstringen av kiselalger som ble registrert tidlig i mars, ble avbrutt før næringssaltene var brukt opp (Figur 5.4 og 5.5). Våroppblomstringens hovedperiode startet i stedet i siste halvdel av mars og kulminerte tidlig i april. I månedsskiftet april/mai, i slutten av juni og midt i september var det mindre kiselalgebloomstringer. Ingen større dinoflagellatblomstringer ble registrert i 2008. En markert økning i den totale algebloommassen fant sted i slutten av september som følge av en betydelig økning i flagellatbloommassen i midten av september.

Beregnet cellekarbon, Arendal st.2, 2008

![Beregnet cellekarbon, Arendal st.2, 2008](image)

Høyeste biomasseverdi under våroppblomstringen i 2008 var 294,2 µg C/l som er ca. 50% høyere enn maksimumsverdien registrert i 2007. Etter kollapsen i den begynnende oppblomstringen av kiselalgen *Skeletonema* tidlig i mars, kom det en ny kraftig blomstring av *Skeletonema* i siste halvdel av mars. På dette tidspunktet var imidlertid det biomassesmessige bidraget fra den store kiselalgen *Rhizosolenia hebetata f. semispina* nesten like viktig. Tidlig i april hadde konsentrasjonen av denne algen økt til det dobbelte og sto for over 90% av den totale algebloommassen, mens *Skeletonema*-blomstringen var kulminert. På dette tidspunktet var kiselalgenes vekst silikatbegrenset (jfr. figur 5.5) – noe som resulterte i et sammenbrudd i våroppblomstringen.
Figur 5.5. Tidsutviklingen for næringssaltene silikat, nitrat og fosfat på 5 meters dyp ved Arendal (st.2) gjennom året 2008.

I midten av september økte algebiomassen betydelig – først som følge av at flere arter innen kiselalgeslektet *Chaetoceros* hadde en blomstringsperiode med *C. contortus* og *C. affinis* som de viktigste bidragsyterne til algebiomassen. Deretter hadde raphidophycéen *Chattonella globosa* sin første blomstring i våre farvann. Dette er en alge som blir ansett som skadelig og har blitt assosiert med fiskedød.

Dersom en sammenligner algebiomasse i form av beregnet cellekarbon på bakgrunn av algebobløp med målt klorofyll a, faller kurvenes form ganske godt sammen (Figur 5.6). Mengden klorofyll a i en og samme algebobløp vil variere og blant annet være avhengig av faktorer som mengden innstrålt lys, næringssaltligg og temperatur. Det er derfor naturlig at kurvene for beregnet cellekarbon og klorofyll a ikke er helt sammenfallende.
Figur 5.6. Beregnet cellekarbon versus målt klorofyll a på 5 meters dyp ved Arendal (st.2).

DINOFLAGELLATER (Dinophyceae)

Potensielt toksiske dinoflagellater

Alexandrium, som er en slekt med flere potensielle PSP-producenter, ble i 2008 registrert med spredte forekomster i perioden fra mars til september, men mengdene lå under faregrensennivå. Maksimumsregistrering (160 celler/l) ble gjort i begynnelsen av april. Faregrensennivå for *Alexandrium* er differensiert med en faregrense på 200 celler/l for *A. tamarense* og et vurderingsnivå på 1.000 celler/l for *A. ostenfeldii* som er langt mindre potent.

Slektten *Dinophysis*, som består av flere ulike arter som er potensielle produsenter av diaré-gift, ble registrert stort sett hele året, men forekom bare i lave/moderate konsentrasjoner under faregrensennivå (Figur 5.7). Den mest potente arten som er *Dinophysis acuta* og som har et faregrensennivå på 200 celler/l eller 100 celler/l i tre påfølgende uker, ble kun registrert en gang i september i et antall på 80 celler/l. *Dinophysis acuminata*, som i 2008 hadde en faregrense på 1.000 celler/l, hadde maksimumsforekomst i perioden mai-juni da den forekom i et antall på 400-480 celler/l. *D. norvegica* forekom i perioden fra slutten av mars til slutten av juni, men maksimumskonsentrasjonen var bare 240 celler/l som er langt under faregrensennivået for opphoping av diarégift i blåskjell på 4.000 celler/l.

Karenia mikimotoi hadde i 2008 kun forekomster av sporadisk karakter, men ble registrert til alle årstider.

Andre framtredende dinoflagellater

2008 ble et år uten de helt store dinoflagellatblomstringene. Artdiversiteten var høy, men det var få arter som enkeltvis bidro i betydelig grad til algebiomassen.

Selv om den helt store *Ceratium*-blomstringen uteble (Figur 5.8), var likevel *Ceratium* den slekten blant dinoflagellatene som bidro mest til algebiomassen. Bare *Ceratium fusus*, som er en art som har økt i antall de senere årene, ble registrert i blomstringskonsentrasjon (>1.000 celler/l). I slutten av juli hadde den maksimumsregistrering på 2.640 celler/l og bidro da til 13,6 % av den totale algebiomassen. På grunn av størrelsen var imidlertid *C. tripos* også dette året den biomassemessig mest framtredende dinoflagellatarten. På tross av en maksimumsregistrering på bare 840 celler/l i begynnelsen av juni utgjorde den 21,6 % av den totale algebiomassen.
Kystovervåkingsprogrammet 2008 Planktonsamfunn

KISELALGER (Bacillariophyceae)

Kiselalgeforekomstene var i 2008 lave fram til begynnelsen av mars da våroppblomstringen startet med en moderat blomstring av Skeletonema (1,4 mill. celler/l, Figur 5.9). 10 dager senere var algeforekomstene betydelig redusert, men i slutten av mars ble det registrert en betydelig kiselalgeblomstring der Skeletonema (8,3 mill. celler/l) og Rhizosolenia hebetata f. semispina (36.900 celler/l) dominererte biomassemessig og bidro til henholdsvis 49,6 og 36,6% av den totale algebiomassen.

Skeletonema-blomstringen kulminerte raskt etter dette, men kiselalgebiomassen holdt seg høy også i begynnelsen av april på grunn av økte forekomster av Rhizosolenia hebetata f. semispina (73.600 celler/l). Dette er en stor alge som 7. april bidro til 90, 4 % av den totale algebiomassen. Allerede 11. april var kiselalgebiomassen betydelig redusert, men den tok seg opp igjen i begynnelsen av mai med dominans av Proboscia alata (33.600 celler /l) og Rhizosolenia hebetata f. semispina (15.600 celler/l).

En liten kiselalgeblomstring ble registrert i slutten av juni da Cerataulina pelagica (18.400 celler/l) dominerede og hadde sitt årsmaksimum. Den bidro på dette tidspunktet til 34,8 % av den totale algebiomassen.

I juli og august var kiselalgeforekomstene lave, men økte i september uten at det resulterte i noen stor hostoppbломstring. Kiselalgesamfunnet var artsrik, og i begynnelsen av september ble hele 39 arter registrert med Chaetoceros contortus (177.000 celler/l) som den biomassemessig mest framtreddie kiselalgen med et bidrag på 13,9 % til den totale algebiomassen. Ditylum brightwellii forekom også, men hadde sitt årsmaksimum (7.800 celler/l) uken etter da den biomassemessig var den viktigste kiselalgen. Ditylum brightwellii

Skeletonema 1992-2008

![Diagram of Skeletonema 1992-2008](image)

FLAGELLATER

Det var bare to flagellatarter som utmerket seg i 2008. Den ene var kalkflagellaten *Emiliania huxleyi* og den andre var *Chattonella globosa* som er en fisketoksisk art. Forøvrig var flagellatforekomstene gjennomgående lave.

Fisketoksiske (ichthyotoksiske) flagellater

Det ble i år bare registrert lave forekomster av de fisketoksiske flagellatene *Pseudochattonella verruculosa* (synonym *Verrucophora farcimem* og *Chattonella aff. verruculosa*) og *Heterosigma akashiwo*. Det ble imidlertid registrert betydelige forekomster av *Chattonella globosa* som i 2008 var en hovedart i høstoppblomstringen. Maksimumsforekomsten på 36,800 celler/l ble registrert 18. september da *C. globosa* bidro med 54,2 % til den totale algebiomassen.

Chattonella globosa er en stor (40) 30-55 µm) flagellat som er kjent fra eutrofierte kystfarvann i Japan, sørosten Asia, Australia og Canada (Hallegraeff & Hara 2003). Arten ble beskrevet fra japanske farvann i 1994 (Hara et al 1994) og er en HAB-art som gir gjelleskader på fisk og har fort til fiskedød (HAB - Harmful Algal Bloom. Denne betegnelsen benyttes på masseblomstringer av alger som har negative effekter på andre organismer ved at de
produserer toksiner (humantoksiske, ichthyotoksiske eller andre), medfører mekaniske skader på andre organismer eller på andre måter har negative effekter.

Høsten 2008 ble *Chattonella globosa* på nytt registret i september. I østre Skagerrak forekom den også denne gangen sammen med *Pseudochattonella verruculosa* and *Heterosigma akashiwo*. Som i 2007 ble den registrert først i Skagerrak i september og spreidte seg så videre til Vestlandet der den ble registrert i et antall på 27.000 celler/l ved Bømlo i slutten av oktober og 53.000 celler/l i Karmsundet i slutten av november der ca 100 tonn oppdrettslaks gikk tapt. Det var i tillegg betydelige forekomster av *Pseudochattonella verruculosa* (780.000 celler/l) i Karmsundet. Forekomstene i november viste skjelett av *Dictyocha fibula* i ulike stader inne i *Chattonella globosa* flagellaten. Slike registreringer ble gjort både i Rogaland, Hordaland og Sogn og Fjordane. Den nær beslektede skjelettbærende *Dictyocha speculum* har en livssyklus som involverer en langt mindre skjelettlos flagellat. Denne flagellaten har vært assosiert med fiskedød i danske farvann (Moestrup & Thomsen 1990) og det er mye som tyder på at *Chattonella globosa* er en del av livssyklusen til *Dictyocha fibula*. Koblingen mellom *Chattonella globosa* og *Dictyocha fibula* er antydet tidligere i litteraturen, men funnene fra Rogaland bekrefter langt på vei denne sammenhengen.

Andre flagellater

Prymnesiophyceae

Kalkflagellaten *Emiliania huxleyi* forekom hele året, men det ble ikke registrert noen masseblomstring i 2008. Det ble påvist to moderate blomstringstopper på rundt 1 mill. celler/l i juni og august. Det høyeste relative bidraget til den totale algebiomassen var i august da *E. huxleyi* bidro med 55,3 %.

Ubestemte flagellater/monader

Generelt var forekomsten av gruppen ubestemte nakne flagellater/monader relativt lav, med høyest registrering i mai og juli. I juli utgjorde denne gruppen 22,3 % av den totale
algebiamassen. Dette er en gruppe som ofte har et høyt relativt bidrag når algebiamassen er lav for eksempel sent på høsten og om vinteren, men det relative bidraget fra denne gruppen var i 2008 bare unntaksvis over 20 %.

DETRITUS

UTVIKLING I PLANTEPLANKTONSAMFUNN OVER TID
Integrt algekarbonmengde over året 2008 var 20,9 g C/l/år (Figur 5.10), og de siste 3 årene har den integrerte algebiamassen over året variert kun mellom 20,7 og 21,0 g C/l/år. For øvrig er det sjueåret på rad med relativt lav integrert algebiamasse. Totalt sett over året bidro kiselalgene med mer enn halvparten av algebiamassen (55%), mens for dinoflagellatene og flagellatene var bidraget henholdsvis 24 og 20%. Sammenlignet med de to foregående årene har bidraget fra kiselalgene økt, for dinoflagellatene er det en reduksjon, mens bidraget fra flagellatene har holdt seg på 2007-nivå.

2002 representerte et skille når det gjelder integrt mengde cellekarbon pr år, og i perioden før 2002 var det betydelig høyere gjennomsnittlig algebiamasse totalt sett gjennom året enn i de etterfølgende årene. Denne utviklingen synes tidmessig å falle godt sammen med reduksjonen i de langtransporterte næringsstoffene (jfr. kapittel 3). Gjennomsnittlig algebiamengde for perioden 1994-2001 er 30,2 g C/l/år, mens tilsvarende tall for perioden 2002-2008 er 17,9 g C/l/år (Figur 5.11), dvs. en reduksjon på 41%.

Integrt cellekarbon, Arendal st.2, 1994-2008

![Diagram over algebiamassen for perioden 1994-2008](Figur 5.10. Total planteplanktonbiomasse (µg C/l/år) integrert over året for perioden 1994-2008.)
5.2 Dyreplankton

Dyreplankton lever i stor grad av planteplankton og er et viktig ledd i næringskjeden mellom planteplankton og fisk. De fleste gruppene av dyreplankton som blir registrert i Kystovervåkingsprogrammet er planteetere (herbivore) eller alletende (omnivore), mens enkelte (f.eks. pilorm, chaetognatha) er utelukkende rovdyr (carnivore). Forekomsten av dyreplankton i de øvre 50 m på Arendal St. 2 har vært overvåket siden 1994, ca. hver 14. dag.

5.2.1 Artssammensetning

Artssammensetningen av dyreplanktonet ved Arendal St. 2 i 2008 viste lignende sesongvariasjon som er blitt observert tidligere år og som avspeiler de ulike artenes livssyklus. *Calanus* spp. utgjør en viktig komponent i planktonet i perioden februar - mai, mens andre calanoide kopepoder og cyclopoide kopepoder dominerer dyreplanktonet både i antall og i biomasse senere på sommeren (juli– september).

Calanus spp.

Calanus spp (*C. finmarchicus* og *C. helgolandicus*) lever primært av planteplankton. Den er en nøkkelart i det pelagiske økosystemet fordi den er føde for fiskelarver og planktonspisende fisk. *Calanus finmarchicus* overvintrer på dypere vannlag (juli-januar) og vandrer opp i øvre vannlag i februar/mars for å gyte. Tettheten av *Calanus* spp. i 2008 var på samme nivå som i 2007 og nær gjennomsnittet for 1994-2007 (Fig 5.12a). De høyeste tetthetene av *Calanus* spp. (37 000 ind./ m²) ble observert i midten av april, og var dominert av små kopepodittstadier (CI-III). Den noe lavere, sekundære toppen av *Calanus* spp. i figuren er sannsynligvis
dominert av *C. helgolandicus*. Dette er en varmekjær art som advekeres fra sørlige Nordsjøen inn mot kysten senere på sesongen.

Andre copepoder

Pseudocalanus/Paracalanus spp. var som normalt tallmessig den dominerende gruppen av calanoide copepoder ved Arendal St2 med maksimalforekomst i midten av april (52 000 ind./m², Figur 5.12b). På sensommeren 2008 (august-september) var tetthetene lavere enn året før.

Annet dyreplankton

Cladocera er knyttet til vann med høy temperatur og lav saltholdighet og denne gruppen var mest tallrik på sommeren (Figur 5.12d), da overflatelageret holdt lave saltholdigheter (Figur 2.5). Planktoniske mollusker (*Pteropoda*) forekom i størst mengde i juli. Disse organismene har et kalkskall og vil gi et uforholdsmessig stort bidrag til tørrvekten. Andre grupper av dyreplankton, for eksempel muslingkreps (*Ostracoda*), børstemark (*Polychaeta*), krillarver (*Euphausiacea*) og pilorm (*Chaetognatha*) ble observert periodvis i lave tettheter.

Forekomst av larveplankton karakteriseres ofte av en eller få arter som dominerer i korte perioder og raskt avløses av nye arter. F.eks larver av børstemark (polychaetlarver) i april, rur (cirripedlarver) i juni, og krill (euphausiid larver) i juli. Den mest tallrike gruppen av planktoniske larver var pigghuder (*Echinodermata*) med størst tetthet i mars (Figur 5.12d).

Mnemiopsis leidyi

I 2008 ble forekomst (volum) av ribbemaneten ”Amerikansk lobemanet” (*Mnemiopsis leidyi*) registrert i håvtrekkene på Arendal St. 2. Denne prøvetakingsmetoden er ikke egnet for maneter, men vil gi en indikasjon på sesongvariasjonen. Håven vil sannsynligvis underestimere forekomsten av maneter, spesielt ved lave tettheter (< 4 ind./m²). Lobemaneten viser store sesongmessige variasjoner (Figur 5.13): Fra lave forekomster vinterstid (januar-april), økte tetthetene fra august og utover høsten (basert på andre stasjoner, vises ikke i figur). Maksimumsforekomstene opptrer i en periode der tettheten av dyreplanktonet er lav og dominerer av små omnivore hoppekreps med kort generasjonstid. Dette tyder på at lobemaneten livnærer seg av annen føde i tillegg til hoppekreps, f. eks mikrozooplankton.
5.2.2 Biomasse
Dyreplanktonbiomassen som tørrvekt (g/m²) ble målt for to størrelsesfraksjoner: 180-1000 μm og større enn 1000 μm (Figur 5.14). *Calanus* spp. stadie IV-VI bidrar mest til biomassen i den største størrelsesgruppen (> 1000 μm). Den minste størrelsesfraksjonen (180-1000 μm) utgjøres hovedsakelig av små stadier av *Calanus* spp, andre calanoide kopepoder (*Pseudocalanus/Paracalanus* spp., *Acartia* spp.), cyclopoide kopepoder (*Oithona* spp.) og larveplankton. Total biomasse i 2008 varierte mellom 0,1 og 2,3 g tørrvekt/m², med de største verdiene i april-mai (Figur 5.14). Gjennomsnittlig dyreplanktonbiomasse i 2008 var 0,98 g/m², som er noe lavere enn i 2007 (Figur 5.15). Som normalt var biomassen dominert av små kopepoder (fraksjonen 180-1000 μm).

Figur 5.13
Sesongsvariasjon av dyreplankton og Americansk lobemanet (*Mnemiopsis leidyi*) i de øvre 50 m på Arendal stasjon 2 i 2008.

Figur 5.14
Dyreplankton biomasse som tørrvekt (g/m²) for de øvre 50 m fordelt på to størrelsesfraksjoner, 180-1000μm og 1000μm, i 2008 på Arendal St.2. Gjennomsnitt og standardavvik er vist for perioden 1994-2007.
5.2.3 Endring i dyreplanktonet over tid
Årlig gjennomsnittlig dyreplanktonbiomasse (g tørrvekt m⁻²) for årene 1994 til 2008 har variert fra 0,68 – 1,59 g/m² (Figur 5.15, Tabell 5.2). Den laveste dyreplanktonbiomassen ble registrert i 1998 og den høyeste i 2003. Et hovedtrekk i perioden 1998 - 2003 var økt årlig gjennomsnittlig biomasse fra 0,68 til 1,59 g/m², tilsvarende 147 % økning i løpet av 5 år. Etter en nedgang i 2004, er gjennomsnittsverdien for 2008 på høyde med middelet for perioden 1994-2007.

Figur 5.15 Årlig gjennomsnittlig dyreplankton biomasse (g tørrvekt/m²) for de øvre 50 m fordelt på to størrelsesfraksjoner, 180-1000 μm og 1000 μm, 1994-2008 på Arendal St.2. Horisontal linje viser gjennomsnitt for perioden 1994-2007.

Nedgangen i biomasse siden 2003 skyldes nedgang i tettheten av kopepoder de siste 5 årene (Figur 5.16a). Gruppen av små kopepoder som *Pseudocalanus/Paracalanus* spp., *Acartia* spp., *Temora longicornis* og *Oithona* spp. har dominert i antall gjennom hele undersøkelses-perioden. Lavere dyreplankton-biomasse i perioden 2004 - 2008 skyldes fremfor alt en kraftig reduksjon i tettheten av *Pseudocalanus/Paracalanus* spp. og *Oithona* spp. Fra høye tettheter i 2003, har mengden av disse små kopepodene avtatt med 80 % frem til 2008 (Figur 5.16b og Tabell 5.2).

Tabell 5.2 a) Antall individer (årsgjennomsnitt antall*10⁴/m²) og prosentfordeling av dyreplanktongrupper og b) dyreplanktonbiomasse (gjennomsnitt g tørrvekt/m²) og prosentfordeling mellom størrelsesfraksjoner for årene 1994 til 2008 på Arendal St. 2.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus spp</td>
<td>0,40</td>
<td>0,63</td>
<td>1,09</td>
<td>0,50</td>
<td>0,32</td>
<td>0,36</td>
<td>0,57</td>
<td>0,64</td>
<td>0,75</td>
<td>1,08</td>
<td>0,65</td>
<td>1,55</td>
<td>0,42</td>
<td>0,63</td>
<td>0,69</td>
<td>0,68</td>
</tr>
<tr>
<td>Andre calanoid kop. (< 1,5mm)</td>
<td>7,76</td>
<td>4,43</td>
<td>3,17</td>
<td>4,10</td>
<td>6,18</td>
<td>8,68</td>
<td>13,04</td>
<td>7,86</td>
<td>11,72</td>
<td>9,89</td>
<td>5,20</td>
<td>3,68</td>
<td>3,20</td>
<td>3,64</td>
<td>6,59</td>
<td></td>
</tr>
<tr>
<td>Cyclopoide kop.</td>
<td>0,94</td>
<td>1,24</td>
<td>1,55</td>
<td>2,57</td>
<td>2,97</td>
<td>3,23</td>
<td>6,09</td>
<td>6,94</td>
<td>6,99</td>
<td>2,08</td>
<td>2,45</td>
<td>1,40</td>
<td>2,32</td>
<td>2,80</td>
<td>3,39</td>
<td></td>
</tr>
<tr>
<td>Annet dyreplankton</td>
<td>0,73</td>
<td>2,56</td>
<td>3,61</td>
<td>2,26</td>
<td>1,63</td>
<td>6,00</td>
<td>8,34</td>
<td>3,02</td>
<td>7,80</td>
<td>3,19</td>
<td>1,24</td>
<td>1,26</td>
<td>0,86</td>
<td>2,48</td>
<td>1,51</td>
<td>3,21</td>
</tr>
<tr>
<td>Total</td>
<td>9,84</td>
<td>8,86</td>
<td>9,42</td>
<td>9,44</td>
<td>11,10</td>
<td>18,26</td>
<td>28,05</td>
<td>18,16</td>
<td>27,23</td>
<td>21,15</td>
<td>9,17</td>
<td>8,94</td>
<td>5,88</td>
<td>8,76</td>
<td>8,64</td>
<td>13,88</td>
</tr>
</tbody>
</table>

% av ant. dyr i gruppene.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calanus spp</td>
<td>4,7</td>
<td>12,5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Andre calanoid kop. (< 1,5mm)</td>
<td>79,50</td>
<td>34,43</td>
<td>43,56</td>
<td>56,48</td>
<td>47,43</td>
<td>43,47</td>
<td>47,57</td>
<td>41,54</td>
<td>54,38</td>
<td>42,49</td>
<td>79,69</td>
<td>41,54</td>
<td>54,38</td>
<td>42,49</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Cyclopoide kop.</td>
<td>10,14</td>
<td>16,27</td>
<td>27,18</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Annet dyreplankton</td>
<td>7,29</td>
<td>38,24</td>
<td>15,33</td>
<td>30,30</td>
<td>17,29</td>
<td>15,13</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>14,15</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dyr >1000µm</td>
<td>0,34</td>
<td>0,22</td>
<td>0,32</td>
<td>0,29</td>
<td>0,15</td>
<td>0,21</td>
<td>0,19</td>
<td>0,29</td>
<td>0,32</td>
<td>0,43</td>
<td>0,32</td>
<td>0,34</td>
<td>0,24</td>
<td>0,48</td>
<td>0,31</td>
<td>0,30</td>
</tr>
<tr>
<td>180µm < dyr <1000µm</td>
<td>0,76</td>
<td>0,49</td>
<td>0,59</td>
<td>0,66</td>
<td>0,53</td>
<td>0,65</td>
<td>0,92</td>
<td>0,91</td>
<td>1,15</td>
<td>1,16</td>
<td>0,49</td>
<td>0,74</td>
<td>0,74</td>
<td>0,57</td>
<td>0,67</td>
<td>0,74</td>
</tr>
<tr>
<td>total for fraksjonene</td>
<td>1,1</td>
<td>0,71</td>
<td>0,92</td>
<td>0,95</td>
<td>0,68</td>
<td>0,86</td>
<td>1,11</td>
<td>1,2</td>
<td>1,47</td>
<td>1,59</td>
<td>0,81</td>
<td>1,08</td>
<td>0,99</td>
<td>1,06</td>
<td>0,98</td>
<td>1,04</td>
</tr>
<tr>
<td>dyr >1000µm (%)</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>22</td>
<td>24</td>
<td>17</td>
<td>24</td>
<td>22</td>
<td>27</td>
<td>40</td>
<td>31</td>
<td>25</td>
<td>46</td>
<td>32</td>
<td>29,07</td>
</tr>
<tr>
<td>180µm < dyr <1000µm (%)</td>
<td>69</td>
<td>69</td>
<td>64</td>
<td>69</td>
<td>78</td>
<td>76</td>
<td>78</td>
<td>76</td>
<td>73</td>
<td>70</td>
<td>69</td>
<td>75</td>
<td>54</td>
<td>68</td>
<td>70,93</td>
<td></td>
</tr>
</tbody>
</table>

Nedgangen er spesielt fremtredende på høsten, dvs. at den vanlige sekundære "oppblomstringen" i august-september er kraftig redusert de siste årene (Figur 5.12b). Årsaken til nedgangen er ikke kjent, men en lignende nedgang i algekarbon er registrert i samme periode på stasjonen siden 2002 (Figur 5.11). Man har dessuten observert reduksjon i høstoppblomstring av dinoflagellater på både dansk og norsk side av Skagerrak (Skogen et al. 2007). Det er derfor nærliggende å tro at nedgangen av små kopepoder er forårsaket av lavere fødetilgang (planteplankton) for disse artene.

De store endringene som er observert i både mengde og artssammensetning av dyreplankton i Nordsjøen de siste 20 årene vil også påvirke økosystemene ved kysten av Skagerrak. I forbindelse med høyere havtemperaturer har overlevelseevnen til mer varmekjære planktonorganismer økt i våre farvann (f. eks *C. helgolandicus, P. avirostris, M. leidyi*). Endringer i artssammensetning, størrelsesfordeling og produksjonssykluser i dyreplanktonet vil ha betydning for høyere ledd i næringskjeden. Raudåte (*C. finmarchicus*) gyter tidlig vår slik at maksimumstettheten av kopepoder sammenfaller med tidspunktet for forekomsten av pelagiske fiskelarver, som beiter på disse. En nedgang i forekomsten av raudåte, og en økning i dyreplanktonarter med senere gytetidspunkt (f.eks. *C. helgolandicus*) kan gi et misforhold mellom fiskelarver av vårgytende fisk og deres byttedyr. På den annen side vil en nedgang i mengden dyreplankton i høstperioden (*Pseudocalanus/Paracalanus* spp.) ha negativ innvirkning på høstoffertyende fiskearter (f. eks sild). Amerikansk lobemanet har hatt stor innvirkning på slike byttedyr (dyreplankton og fiskelarver) i andre havområder. Vi vet ennå ikke hvilken effekt de årlige tette forekomstene av denne arten vil ha for økosystemene langs Skagerrakkysten.
6. Hardbunnsamfunn

Varmt klima og mye regn tidlig på året i 2008 ga stor elveavrenning, og siktdypet i Skagerrak har blitt redusert over tid (spesielt på Sørlandet, område B i 2008). Dette påvirker floraen på hardbunn negativt og er et sannsynlig årsak til redusert artsmangfold av rødalger, og at nedre grense for makroalger (fagerving) og sukkertare er blitt grunnere på sørlandet. Også på vestlandet ble det registrert redusert voksedyf for fagerving og sukkertare. Varmere klima kan ha vært en viktig årsak til at åvre voksegrense for sukkertare har beveget seg nedover (dybere) over tid på Sørlandet.

6.1 Tilstand

Det er en generell økning i det biologiske mangfoldet fra ytre Oslofjord og vestover (Fig. 6.1). Biomangfoldet var i 2008 omtrent som gjennomsnittet i perioden 1995-2007 i område A, men ned mot 2004-2005-nivå i område B-D og dermed lavere enn i 2007. I 2007 var det biologiske mangfoldet høy og de siste 5 årene har det totale biologiske mangfoldet vært preget av år-til-år variasjoner.

Hovedårsaken til at det biologiske mangfoldet var lavere i 2008 enn i 2007 var at antall arter og også forekomster av alger var lavere enn gjennomsnittet 1995-2007 (Fig. 6.2c). Det totale antallet arter og forekomster av brun- og grønnalger var innenfor det normale i forhold til gjennomsnittet fra 1995-2007, og det var antall registrerte arter rødalger som hadde gått ned. Det ble også registrert døde skorpeformede rødalger (*Lithothamnion* sp.) på stasjonene i ytre Oslofjord. Dårlig siktdyp i 2007 og 2008 (kapittel 4.3 og 4.6) er sannsynligvis en direkte årsak til dårlige forhold for rødalger, som er den makroalgegruppen som vokser dypest. Det er også mulig at mindre lys i vårperioden (kap 4.6) førte til forsinket vekst hos rødalgene og at færre arter og individer var synlige i juni (overvåkningstidspunktet).

Artsantall og forekomster av ulike dyregrupper var normalt, eller i overkant av normalt. Det har også tidligere vært registrert at år med mye dyr sammenfaller med mindre forekomster av alger og omvendt, og dette gjenstør antagelig at konkurranse om plass er viktig mellom ulike grupper av bunnlevende organismer.
Figur 6.2. Antall arter og forekomst av makroalger og dyr i 2008 (registrert fra 4-22 m). Punkter = 2008-observasjoner. Linje m/farget felt = gjennomsnitt og standardavvik (1995-2007). a) antall arter alger, b) forekomst alger, c) antall arter rødalger, d) forekomst rødalger (rød), brunalger (brun) og grønnalger (grønn), e) antall arter dyr, f) forekomst dyr, g) antall arter vannfiltrerere, h) forekomst vannfiltrerere (blå), rovdyr/altetende (gul) og beitere (grå).
Tareskogvegetasjon

Selv om det totale antall arter og forekomster av brunalger i 2008 var nær gjennomsnittet for årene før, økte forekomsten av noen arter og ble redusert for andre. Forekomsten av sukkertare har vært relativt god i senere år, antagelig fordi stortare har vært glissen, men sukkertare gikk noe tilbake i 2008 sammenlignet med 2007 (Fig. 6.3). Generelt ser tarebestandene ut til å ha blitt mer glisne på dypet selv om enkeltregistreringer av sukkertare ble gjort ned til 24 m 2008. I ytre Oslofjord (A-området) ble ikke stortare registrert på grunt vann på de to bølgeeksponerte stasjonene (A02 og A03) og sukkertare hadde forsvunnet helt. Sukkertare ble derimot registrert på en av de indre stasjonene (A93). Forholdene i Skagerrak med høye sommertemperaturer og tidvis lav saltholdighet gjør at alle de registrerte tareartene (stortare, sukkertare og fingertare) lever nær sine fysiologiske tålegrenser. Det er derfor forventet at forekomstene varierer og at stress i form av høy temperatur, lav saltholdighet, økt sedimentering og reduserte lysforhold, vil få stor effekt i dette området. Redusert siktdyp kan i så måte ha innvirket negativt for taren. I område D var forekomstene av sukkertare lavere i 2008 enn i 2007.

![Diagram](image_url)

Figur 6.3. Forekomst og vertikalutbredelse av fingertare, stortare og sukkertare de tre siste år. Bredden på søylene indikerer mengden av tare (enkeltfunn, sjelden, vanlig, dominerende).
6.2 Utvikling over tid

I kapittel 6.2.1-6.2.4 belyses utvikling over tid; først på samfunnsnivå og så på arts-/gruppe-nivå for utvalgte indikatorarter og funksjonelle grupper. Utvikling på samfunnsnivå over tid er basert på likhet i artssammensetning mellom stasjoner og områder av kysten beregnet med multivariante analysemetoder spesielt utviklet for slike samfunnsvurderinger (Multi Dimensional Scaling MDS, i PRIMER, Clarke & Warwick 1994). Disse analysene lager en likhetsmatrise basert på artssammensetning og artsforekomst. Ut fra likhetsmatrisen plottes resultatet slik at avstanden mellom punktene i plottet (der hvert punkt representerer en transektregistrering) gjenspeiler graden av likhet mellom observasjonene. Punkter som ligger nær hverandre har en mer lik artssammensetning og individantall enn punkter som ligger langt fra hverandre. Den grafiske fremstillingen i et todimensjonalt plan er en forenklet framstilling for likheter mellom punkter i et mange-dimensjonalt rom. Gjennom prosessen med å vise samfunnslikheter i et to-dimensjonalt plott (som Figur 6.4) beregnes en såkalt stressverdi som viser graden av feil denne forenklingen medfører. En stressverdi på under 0,2 ansees som akseptabel, og at plotet viser et riktig bilde.

6.2.1 Endringer på samfunnsnivå

Spredningen i registreringene har gjennom hele perioden vært størst i A-området (størst år-til-år variasjon) og 2008-registreringene for A-området er plassert i utkanten av samlingen. På de bølgebeskyttede stasjonene ved Tjøme i ytre Oslofjord (a92 og a93) ble det generelt registrert noe lavere artsantall og redusert voksedyp for flere arter. De bølgeeksponerte stasjonene a02 og a03 har til sammenlikning større likhet med stasjonene i B-området, som har høyere artsdiversitet.

Gjennomsnittlig utvikling over tid for hvert område: A, B, C og D, fra 1995 til 2008, er vist i Figur 6.5. Tidsutviklingen er beregnet på grunnlag av de stasjoner som har vært undersøkt i hele den aktuelle perioden. Det vil si at stasjonene a02 og a03 representerer A-området (a92 og a93 er ikke tatt med), stasjonene c15, c17 og c18 representerer C-området (c95 er ikke tatt med), og alle 4 stasjoner inngår i materialet for B- og D-området. For hvert av områdene A, B, C og D, vises en samfunnsanalyse og kurver for antall arter (taxagrupper), forekomst (relativ mengde) og artsmangfold.

6.2.2 Endringer på artsnivå
Endringer på samfunnsnivå er resultat av mange små endringer på artsnivå. I det følgende presenteres noen av de viktigste endringene på gruppe- og artsnivå.

Makroalger

Makrofauna
Også forekomstene av skorpeformede fauna (mosdyr) gikk ned i 2008 i forhold til 2007, mens forekomstene av buskformede mosdyr økte (Fig. 6.8). Økningen var stor i område D, og mosdyr i slektene Scrupocellaria ble funnet i tette matter. Forekomstene av sjøunger endret seg lite i forhold til året før, men forekomstene av kolonidannende sjøunger økte markant i
område D. At kolonidannende sjøpunger øker i forhold til solitære sjøpunger kan tyde på bedre forhold for faunaen, kanskje på grunn av mindre alger. Solitære sjøpunger formeres med frittsvevende larver som kan utnytte ledig substrat. De regnes for å ha en opportunsistisk strategi i forhold til kolonidannende sjøpunger som vokser lateralt og krever mer stabile forhold (Jackson 1977).

Endringer i tareskog

Det er naturlig at forekomst og utbredelse av små, unge tare varierer mye. I en frisk tareskog står det en underskog av små tareplanter under canopy-plantene som venter på en sjanse til å vokse opp. Etter stort tap av store planter, for eksempel som følge av vinterstormer, vokser den unge taren raskt opp og kan utgjøre en betydelig andel av canopyen påfølgende sommer. En stor andel unge tare kan imidlertid også indikere dårlige forhold for voksen tare og unaturlig høy dødelighet.
6.2.3 **Endringer i nedre voksegrense for alger**

I Kystovervåkingsprogrammet måles nedre voksegrense i juni måned. Denne voksegrensen vil være bestemt av vannkvaliteten og andre påvirkningsfaktorer i en lengre periode forut for registreringstidspunktet. Vinter, vår og delvis også høst og sommer året før har hatt innflytelse på voksedypet. I Kystovervåkingsprogrammet har vi definert nedre voksegrense til det dypest dyp hvor fagerving minimum har spredt forekomst. Enkeltindivider av fagerving kan vokse under denne beregnet voksegrensen, men slike sparsomme forekomster av enkelt-individer varierer i sin dybdeutbredelse fra år til år, og det vil variere på hvilket dyp dykkeren oppdager og registrerer forekomst av sjeldne arter. For sammenlikning fra år til år har vi derfor valgt det dyp hvor dykkeren har observert minimum spredt forekomst av arten. Dykketransektene går maksimalt til 30 m dyp og det er en begrensende faktor for fastsetting av nedre voksedyp som for fagerving, spesielt på Vestlandet hvor fagerving ofte vokser dypere enn 30 m.

7. Bløtbunnsamfunn

I undersøkelsesperioden 1990-2008 har det vært en svak reduksjon i eutrofipåvirkning av bløtbunnsfaunasamfunnene på de dype stasjonene i det østlige Skagerrak (ytre A-område og ytre B-område), spesielt etter år 2000. I indre og ytre område ved Lista (C-området) har det vært en svak økning i eutrofipåvirkning i perioden.

Forekomst av indikatorarter for gode miljøforhold, viste høyest indeks (best tilstand) på stasjon C38 i havet utenfor Lista og på D20 i havet utenfor Sotra.

Individtetthetene var generelt høyere på de dype enn på de grunne stasjonene i Skagerrak. På A36 og B35 har individtethetene gått ned, særlig hos en av de dominerende opportunistiske artene, noe som kan tyde på at næringsstilførselen der ikke er like stor som tidligere. På C16 og C38 har individtettheten økt.

Innholdet av totalt organisk karbon (TOC) i sedimentet var lavt til moderat (meget god til god tilstand) gjennom hele perioden på alle stasjonene, bortsett fra på B05 (mindre god tilstand). Dette har ikke påvirket faunatilstanden på B05.

En ny tilstandsindeks som kombinerer artsmangfold og indikatorarter (NQI1) er innført.
7.1 Bunnfauna

Det er lagt vekt på å beskrive de karaktertrekk ved faunaen som antas å kunne bli påvirket av endringer i næringsalter og biologisk produksjon som tilføres bløtbunnen i form av organiske partikler. De karaktertrekkene som er valgt er: artsmangfold, artssammensetning (indikatorarter), artsantall, individtetthet og forekomst av enkelte dominerende arter.

Stasjonskart for 2008 er vist i Figur 7.1. Tidsplott for perioden 1990-2008 av parametere i faunasamfunnet og individtettheter av enkeltarter er vist i Figur 7.2-Figur 7. Signifikante trender er vist i Tabell 7.1.

![Figur 7.1 Kart over bløtbunnsstasjonene i 2008. (Ved å legge til en 0 til stasjonskodene indikerer tallkoden dypet på stasjonen, for eksempel er A05 og A36 hhv. 50 og 360 m)](image)

Artsmangfold

Arstall pr. 100 individer (ES_{100}) var innenfor det normale for fjorder og kystvann i Sør-Norge. Verdier av ES_{100} over 18 kan betraktes som høye (god eller meget god tilstand). Lavest ES_{100} ble funnet på de dype stasjonene A36 og B35 (Figur 7.3) tilsvarende som for H', men indeksen er imidlertid stigende. På fjordstasjonen i Lista-området (C16) har både H' og ES_{100} avtatt de siste årene.
Artstetthet
Artstetthet på bløtbunnsstasjonene er uttrykt ved artstall pr. 0.1 og 0.4 m² (hhv. pr. grabb og for 4 grabber til sammen, Figur 7.4). På alle stasjonene i Skagerrak, bortsett fra den dype stasjonen på Sørlandet (B35), var det en økning i artstetthet i undersøkelsesperioden (Figur 7.4). Lavest antall arter ble funnet på den dype Vestlandsstasjonen i Bjørnafjorden (D60). Denne ble inkludert i overvåkningen i 2005, slik at datamaterialet er for lite til å kunne anslå noen tidstrend. På Vestlandsstasjonen D20 på utsiden av Sotra ble det funnet spesielt høyt antall arter.

Indikatorarter (ISI)
Forekomst av indikatorarter (arter som indikerer god eller dårlig miljøtilstand) viste lite endring i perioden på de fleste av stasjonene (Figur 7.5) og de fleste stasjonene tilfredsstilte kriteriene til tilstandsgruppe meget god (klasse I). Dette tyder på at endringene i påvirkning ikke har vært så store at det har ført til noen betydelig utskifting av arter. Høyest indikatorartsindeks (best tilstand) viste stasjon D20 på utsiden av Sotra og C38 på utsiden av Lista (ISI = 10-11). Lavest indikatorartsindeksverdi og avtagende de siste årene, ble funnet på den dype stasjonen i ytre Oslofjord (A36). Det er i motsetning til indekser for artsdiversitet som har vist tilstandsbedring de siste årene. Artsdiversitetsindeksene tar ikke hensyn til sensitive arter slik ISI-indeksen gjør.

Tilstandsindeks NQI1
NQI1-indeksen (Norsk kvalitetsindeks) combinerer artsmangfold og forekomsten av indikatorarter (Rygg, 2006; Molvær et al., 2008). Grensene mellom tilstandsgruppene er satt etter interkalibrering med andre europeiske tilstandsindeks (Carletti & Heiskanen, 2008). Figur 7.6 viser NQI1 for bløtbunnsfauna over tid. I likhet med artsmangfold indeksene viser NQI en forbedring av tilstanden på stasjon A36 og B35. Særlig på B35 er økningen i NQI-verdien betydelig.

Individtetthet

De vanligste artene
Individtall for de vanligste artene på grunne, kystnære stasjon i Skagerrak er vist i Figur 7.8 og for dype stasjon i Skagerrak i Figur 7.9. Figur 7.10 viser individtallet for de vanligste artene på Vestlandsstasjonene. Individtettheten av de enkelte vanligste slektene viste svært høy variasjon fra år til år og også mellom prøver fra samme stasjon samme år. Mye av den sterke variasjonen antas å være intern biologisk variasjon som har liten sammenheng med
Figur 7.4. Artstetthet i 1990-2008. (Merk utvidet skala for stasjon D20.) Punkter og prikkete linjer: Verdier pr. grabb (0.1 m²) og gjennomsnitt. Heltrukket linje og åpne punkter: Verdier for stasjonen (sammenslåtte grabber, 0.4 m²).
Figur 7.5. Indikatorartsindeks (ISI) for bløtbunnsfauna pr. grabb og stasjon i 1990-2008.
Punkter: Verdier pr. grabb. Prikkete linjer: Gjennomsnitt for parallelle grabber. Heltrekket
linje og åpne punkter: Verdier for stasjonen (sammenslåtte grabber). Fargene angir tilstands-
klasser (se Figur 7.2). (Klassifisering iflg. Rygg 2002.)
Figur 7.8. Antall individer pr. grabb (punkter) og gjennomsnitt (linje) for noen vanlige slekter på de grunne stasjonene A05 (ytre Oslofjord, 50m), B05 (Arendal, 50m) og den middels dype fjordstasjonen C16 (Grønsfjord ved Farsund, 160m). Merk ulik skala for forskjellige slekter.
Figur 7.9. Antall individer pr. grabb (punkter) og gjennomsnitt (linje) for noen vanlige slekter på de dype stasjonene A36 (ytre Oslofjord, 360m), B35 (Arendal, 350m) og C38 (Lista, 380m). Merk ulik skala for forskjellige slekter.
Figur 7.10. Antall individer pr. grabb (punkter) og gjennomsnitt (linje) for noen vanlige slekter på de dype stasjonene på Vestlandet, D20 (i havet utenfor Sotra, 200m) og D60 (Bjørnafjorden, 600m).
7.2 Bunnsedimenter

Tidsserier for totalt organisk karbon (TOC) i sedimentet på stasjonene er vist i Figur 7.11. Det ble ikke påvist noen tydelige tidstrender i innholdet av totalt organisk karbon (TOC) i sedimentet på noen av stasjonene. TOC var også nokså stabilt fra år til år på alle stasjonene, bortsett fra på B05.

Figur 7.11. Innhold av totalt organisk karbon (TOC₆₃, mg/g), korrigert for sedimentets innhold av silt og leire i enkeltprøver (punkter) og som gjennomsnitt (linjer) pr. år 1990-2008. Fargekodene angir tilstandsklasser (se Figur 7.2).
Organisk innhold (TOC) var lavt til moderat, og var høyest i de mest finpartikulære sedimentene. Gjennomsnittlig TOC₆₃-innhold (TOC korrigert for innholdet av silt og leire i sedimentet) i overvåkingsperioden på alle stasjonene, med unntak av B05 ved Grimstad og fjordstasjonen C16, lå i tilstandsklasse I eller II (meget god tilstand/god tilstand) etter SFTs miljøkvalitetskriterier.

Stasjon B05 hadde forhøyet organisk innhold (i gennomsnitt klasse III, mindre god tilstand). Det var en økning i totalt organisk karbon fra tilstandsklasse III (mindre god) i 1990 og 1991 til tilstandsklasse IV (dårlig) senere i perioden. Stasjon B05 ligger nær kysten og mottar trolig organisk materiale fra nærliggende terrestriske kilder og fragmenter av marine makroalger fra strendene i nærheten. Dette kan også forklare den større variasjonen mellom enkeltprover. Fjordstasjonen C16 viste stort sett klasse III (mindre god) i hele perioden.

7.3 Tidstrender

I Tabell 7.1 vises resultater fra en trendanalyse av de enkelte parametrene for hver stasjon (lineær trend 1990-2008). + eller - betyr signifikant stigende eller synkende verdier, mens fargen grønn eller rød indikerer en positiv eller negativ utvikling på de seks stasjonene. Hovedkonklusjonen er at tilstanden har blitt bedre på de to dype havstasjonene A36 i ytre Oslofjord (A-området) og B35 på Sørlandsstasjonen (B-området). Nedgang i antall individer og spesielt antall av den opportunistiske mangebørstemarken *Heteromastus* på B35 kan sees i sammenheng med nedgang i planteplankton (figur 5.7) og næringsalter (nitrat, figur 5.8) målt på nærliggende hydrografistasjon Arendal st 2. På fjordstasjonen C16 og den dype havstasjonen C38 utenfor Lista (C-området) har tilstanden i siste del av perioden blitt dårligere, med redusert artsmangfold og økt individtetthet. Sirkutypet på C38 har også blitt dårligere over tid (figur 4.8 d) og dette kan tyde på en svak eutrofiering. For de andre stasjonene gir ikke den lineære modellen noen entydig trend.

Tabell 7.1. Signifikantest av endringer (lineær modell, P < 0.05) for perioden 1990-2008. Vestlandsstasjonene D20 og D60 er ikke tatt med her, på grunn av få observasjoner.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stasjon</th>
<th>A05</th>
<th>A36</th>
<th>B05</th>
<th>B35</th>
<th>C16</th>
<th>C38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individtetthet</td>
<td></td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Artstall pr grabb</td>
<td></td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Artstall pr 100 individer</td>
<td></td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Artstall pr 100 individer</td>
<td></td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>ISI</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NQI1</td>
<td></td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOC₆₃</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

+= stigende verdier
-= synkende verdier
0 = ikke signifikant
= tilstandsforbedring
= tilstandsforverring
8. **Referanser**

Statlig program for forurensningsovervåking

Kystovervåkingsprogrammet

Statens forurensningstilsyn (SFT)
Postboks 8100 Dep, 0032 Oslo - Besøksadresse: Strømsveien 96
Telefon: 22 57 34 00 - Telefaks: 22 67 67 06
E-post: postmottak@sft.no - Internett: www.sft.no

<table>
<thead>
<tr>
<th>Utførende institusjon</th>
<th>ISBN-nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norsk institutt for vannforskning – NIVA</td>
<td>978-82-577-5531-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oppdragstakers prosjektansvarlig</th>
<th>Kontaktperson SFT</th>
<th>TA-nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjell Magnus Norderhaug</td>
<td>Karen Fjøsne</td>
<td>TA-1048/2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>År</th>
<th>Sidetall</th>
<th>SFTs kontraktnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>97</td>
<td>5008015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utgiver</th>
<th>Prosjektet er finansiert av</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norsk institutt for vannforskning</td>
<td>Statens forurensningstilsyn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forfattere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjell Magnus Norderhaug¹, Frithjof Moy¹, Jan Aure², Tone Falkenhaug², Torbjørn Johnsen¹, Evy Lømsland¹, Jan Magnusson¹, Lena Omli², Brage Rygg¹, Hilde Cecilie Trannum¹</td>
</tr>
</tbody>
</table>

¹) NIVA ²) HI

<table>
<thead>
<tr>
<th>Tittel - norsk og engelsk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langtidsovervåking av miljøkvaliteten i kystområdene av Norge. Kystovervåkingsprogrammet.</td>
</tr>
<tr>
<td>Årsrapport for 2008</td>
</tr>
<tr>
<td>Long-term monitoring of environmental quality in the coastal regions of Norway.</td>
</tr>
<tr>
<td>Report for 2008</td>
</tr>
</tbody>
</table>

Sammendrag

<table>
<thead>
<tr>
<th>4 emneord</th>
<th>4 subject words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langtidsovervåking</td>
<td>Long-term monitoring</td>
</tr>
<tr>
<td>Eutrofiering</td>
<td>Eutrophication</td>
</tr>
<tr>
<td>Norskekysten</td>
<td>Norwegian Coast</td>
</tr>
<tr>
<td>Biologisk mangfold</td>
<td>Bio-diversity</td>
</tr>
</tbody>
</table>