Bruk av biopolymerer for fjerning av humus fra drikkevann i fem Sørlandskommuner
Tittel

Bruk av biopolymerer for fjerning av humus fra drikkevann i fem Sørlandskommuner

<table>
<thead>
<tr>
<th>Løpenr. (for hœvilling)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>4361-2001</td>
<td>05.04.2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prosjektnr.</th>
<th>Undernr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-99147</td>
<td>E-20461</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sider</th>
<th>Pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Forfatter(e)

Helge Liltved (NIVA)
Thomas Frydenberg (Asplan Viak Sør AS)
Jon Brandt (Asplan Viak Sør AS)
Christian Vogelsang (NIVA)

<table>
<thead>
<tr>
<th>Fagområde</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geografisk område</th>
</tr>
</thead>
<tbody>
<tr>
<td>SØ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribusjon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trykket</th>
<th>NIVA</th>
</tr>
</thead>
</table>

Oppdragsgiver(e)

Arendal kommune, Grimstad kommune, Lillesand kommune, Risør kommune, Tvedestrand kommune, Norges forskningsråd (Drikkevannsprogrammet), Primex Ingredients ASA, FMC Biopolymer AS og As Norsk Leca.

Oppdragsreferanse

Sammendrag

Felles for kommunene som har deltatt i prosjektet er at de ønsket å få vurdert mulighetene for å felle ut farge på eksisterende marmorfilter ved at disse ombygges til 3-mediafiltrer. Forsøk er blitt utført i laboratorieskala (jar-tester) og i pilotområde. Effekten av kitosan er sammenliknet med effekten av jernkloridylsulfat (JKL), og det er gjort økonomiske beregninger.

I pilotforsøk i 3-mediafiltrer ble det vist at fargetallet i vannkilden til Arendal og Grimstad (Rorevann) kan reduseres fra 21 mg Pt/l til ca. 6 mg Pt/l med en kitosandosis på 1,6 mg/l ved fellings-pH 4. Til sammenlikning ga felling med JKL bedre resultat m.h.p. fargetall og totalt organisk karbon (TOC), men dårligere resultat m.h.p. turbiditet ved lik filtreringshastighet (9,2 m/h). Det ble videre vist at det er mulig å produsere et vann som tilfredsstiller drikkevannsnormen m.h.p. korrosjonsparameterer med både kitosan og JKL ved 11 min "empty bed contact time" (EBCT) i marmormassen og en CO₂-dosering på 10 mg/l. Kjemikaliekostnadene ved anvendelse av kitosan som fellingsmiddel er ca. 3 ganger så høye som ved JKL-felling. Høyere kjemikaliekostnader må veies mot fordeler i forbindelse med utbygging og drift; f.eks. er slampaugensjonen ved kitosanfelling beregnet til 1/3 del av slampaugensjonen ved JKL-felling. Metoder for behandling av slypevann og deponering/bruk av slam må vurderes ut fra lokale forhold ved hvert enkelt vannverk. Ved deponering og bruk vil kitosanslam ha fordeler framfor jernslam p.g.a. sin organiske natur.

Filre norske emneord

1. Humus
2. Direktefiltrering
3. Biopolymerer
4. Jernkloridylsulfat

Filre engelske emneord

1. Natural organic matter
2. Direct filtration
3. Biopolymers
4. Ferric chloride

Signaturer

Helge Liltved
Forskningsleder
Svein Stene-Johansen
Forskningsleder

Bente Wathne
Forskningsassistent

ISBN 82-577-3998-7
Bruk av biopolymerer for fjerning av humus fra drikkevann i fem Sørlandskommuner
Forord

Det har vært knyttet 2 prosjektoppgaver ved Høgskolen i Agder (HiA) til prosjektet. Veiledere har vært høgskolelektor Kjell Skaug ved HiA i Grimstad og professor Egil Gjessing ved HiA i Kristiansand, sammen med undertechnede. I tillegg har de to studentene som utførte prosjektoppgaven ved HiA i Grimstad (Kristin Ødegård Tangerud og Synnøve Anette Gran Terjesen) hatt sommerjobb med å kjøre pilotforsøk ved Grimstad vannverk. Driftsoperatør Torvild Gundersen i Grimstad kommune har vært behjelpelig med tilrettelegging av pilotforsøkene.

NIVA har stått som hovedansvarlig for gjennomføringen og den faglige kvalitetssikringen.

NIVA takker alle de involverte partene for at prosjektet har vært mulig å realisere.

Grimstad, 05.04.2001

Helge Liltved
Innhold

Sammendrag 6

Summary 7

1. Innledning 8
 1.1 Bakgrunn 8
 1.2 Direktelfiltrering 9
 1.3 Målsetting 10

2. Materialer og metoder 10
 2.1 Laboratorietester (jar-tester) 10
 2.2 Forsøk i pilotskala 11

3. Resultater 13
 3.1 Laboratorietester (jar-tester) 13
 3.2 Forsøk i pilotskala 15
 3.2.1 Rentvannskvalitet ved bruk av kitosan og jernkloridsulfat (JKL) 15
 3.2.2 Vurdering av mulighetene for å erstatte CO₂-dosering med syredosering 18
 3.2.3 Trykktap i filtermediet og spylebehov 18
 3.2.4 Slamproduksjon - slamkarakterisering 19
 3.2.5 Rentvannskvalitet ved bruk av alginat i kombinasjon med JKL 20

4. Fellingsanlegg med kitosan og jern 21
 4.1 Felling med kitosan 21
 4.1.1 Beskrivelse 21
 4.1.2 Erfaringer med prosessen 21
 4.1.3 Beskrivelse av doseringsutstyr/kjemikaliehåndtering 21
 4.2 Felling med jern 22
 4.2.1 Beskrivelse 22
 4.2.2 Erfaringer med prosessen 23
 4.2.3 Beskrivelse av doseringsutstyr/kjemikaliehåndtering 23

5. Ombygging av eksisterende anlegg til fargefjerning 24
 5.1 Nøkkeldata eksisterende vannverk 24
 5.2 Dimensjoneringskriterier 25
 5.3 Filterareal (behov) 25
 5.3.1 Kitosan 25
 5.3.2 Jernfelling 26
 5.4 Filtersyklaus 26
 5.5 Filtersammensetning 26
 5.6 Spylevannsmengde 26
 5.7 Spyleluft 27
 5.8 Håndtering av spylevann og modningsvann 27
 5.8.1 Kitosan 27
5.8.2 Jernkloridsulfat 28
5.8.3 Slammengder 28
5.9 Kjemikalieforbruk - kostnader 29
5.9.1 Kitosan/saltsyre 29
5.9.2 JKL 29
5.9.3 Forbruk av CO₂ 29
5.9.4 Marmorforbruk 30
5.9.5 Klor 30
5.9.6 Oppsummering kjemikaliekostnader 30
5.9.7 Ombyggingsbehov 31

6. Referanser 32
Sammendrag

Felles for kommunene som har deltatt i prosjektet er at de ønsket å få vurdert mulighetene for å felle ut farge/humus på eksisterende (modifiserte) filtre. Kommunene har allerede bygget anlegg for alkalisering av drikkevannet. For alkalisering filtreres vannet gjennom knust marmor etter tilsats av karbонioksid. Flere av anleggene belastes høyt, spesielt sommerstid med høyt forbruk til hage/jordbruksvannning (opptil 15 m/time). Det er også et ønske om fortsatt lokal deponering av slamboldig spylevann fra filtrene. For å undersøke mulighetene for en slik løsning, ønsket kommunene å prøve ut felling med naturlige organiske polymerer (biopolymerer). Den mest aktuelle biopolymeren er kitosan som framstilles fra rekkeskall. Det ble også gjort noen forsøk med alginat i kombinasjon med jernkloridsulfat (JKL) eller kalk.

Forsøk er blitt utført i laboratorieskala (jar-tester) og i pilotforsøk. Effekten av kitosan er sammenlignet med effekten av JKL, og det er gjort økonomiske beregninger.

I laboratorieforsøk er det vist at kitosan kan benyttes til å fjerne farge fra råvannet ved alle vannverkene som har deltatt i prosjektet.

Ved direktefiltrering i pilotforsøk i et 3-mediafiltre (antrasitt/sand/marmor eller Filtralite/sand/marmor) ble det vist at fargetallet i vannkilden til Arendal og Grimstad (Rørevann) kan reduseres fra 21 mg Pt/l til ca. 6 mg Pt/l med en kitosandose på 1,6 mg/l ved fellings-pH 4. For å justere fellings-pH til 4 ble det tilsatt små mengder saltsyre. Til sammenlikning ga felling med JKL bedre resultat m.h.p. fargetall og totalt organisk karbon (TOC), men dårligere resultat m.h.p. turbiditet ved lik filtreringshastighet (9,2 m/h). JKL fjernt 92% av fargen og 69% av TOC, mens tilsvarende for kitosan var 72% og 32%. Rent visuelt er det bare små forskjeller å registrere. JKL-dosen var 22 ml JKL pr. m² vann, tilsvarende 3,8 mg rent jern pr. liter. Alginat i kombinasjon med JKL ga lavere turbiditet enn ved bruk av JKL alene.

I pilotforsøkene ble det også vist at det var mulig å produsere et vann som tilfredsstiller drikkevannsnormen m.h.p. korrosjonsparametre med både kitosan og JKL ved 11 min "empty bed contact time" (EBCT) i marmormassen (filtreringshastighet på 9,2 m/h). For å øke utløsningen av kalsium og karbonat fra marmoren ble det tilsatt 10 mg/l CO₂. CO₂ mengden kan trolig reduseres noe. Vannet som ble produsert hadde pH-verdi, alkali og kalsiumverdi som lå riktig i forhold til grenseverdiene, og var tilnærmet partikkelfritt (turbiditet <0,05 FTU med kitosan og 0,07 FTU med JKL).

Ved høyere filtreringshastighet (15 m/h og 7 min EBCT i marmormassen) og med kitosan som fellingsmiddel sank som ventet pH, alkali og kalsiumkonsentrasjonen noe i rentvannet. Det ble registrert en svak økning i turbiditet (0,14 NTU), fargetall og TOC-verdi sammenlignet med en filtreringshastighet på 9,2 m/h. Resultatene tyder på at det er mulig å kjøre med høyere filtreringshastighet med kitosan enn med JKL, og at nødvendig filterareal derved kan reduseres.

Kjemikaliekostnadene ved anvendelse av kitosan som fellingsmiddel er ca. 3 ganger så høye som ved JKL-felling. Høyere kjemikaliekostnader må veies mot eventuelle fordeler i forbindelse med utbygging og drift; f.eks. er slamprodukjonen ved kitosanfelling beregnet til 1/3 del av slamprodukjonen ved JKL-felling. Metoder for behandling av spylevann og deponering/bru av slam må vurderes utfra lokale forhold ved hvert enkelt vannverk. Ved deponering eller bruk vil kitosanslam ha fordeler framfor jernslam p.g.a. sin organiske natur.

Bruk av kitosan til behandling av drikkevann er en forholdsvis ny metode. Imidlertid benyttes metoden i fullskala ved Haugesund nye vannverk og Bjøa vannbehandlingsanlegg i Ølen kommune.
Begge disse følges opp fra NIVAs side, og driftserfaringene vil bli nyttige for andre vannverk som vurderer å benytte metoden.

Sammenliknet med jernfelling er fordelene med kitosanfelling i første rekke knyttet til den lave slamproduksjonen og at slammet lettere kan deponeres eller anvendes, samt at det ikke er behov for så streng styring av fellings-pH og doseringsmengde som med JKL. Restmetall i rentvann er ikke et problem når kitosan benyttes. Ulempene er i første rekke knyttet til høyere kostnader for kitosan, samt noe dårligere effekt m.h.p. humusfjerning. Kitosan er pr. idag lett tilgjengelig kommersielt, men for sikkerhets skyld bør anlegg som bygges med kitosanfelling også kunne drives med annet fellingsmiddel, f.eks. JKL.

Summary

Title: Use of biopolymers for removal of humic substances from the drinkingwater
Year: 2001
Author: Helge Liltved

The aim of this study was to examine the removal of natural organic matter (NOM) (in terms of colour and total organic carbon (TOC)) by the use of biopolymers (chitosan and alginate) and ferric chloride as coagulants, followed by direct dual media filtration. A combination of antrasite/Filtralite, silica sand and crunched marable was used as filter media. The pilotstudy was conducted at Grimstad waterwork in the county of Aust-Agder, Norway. The raw water to the pilotscale unit was supplied by pumping from the Rore lake. The inlet was equipped with small pumps for dosing coagulants and acid for pH-adjustment.

At a filtration rate of 9.2 m/h and a coagulation-pH of 4, the color was reduced from 21 mgPt/l to approximately 6 mgPt/l with a chitosan-dosage of 1,6 mg/l. Compared to the performance of chitosan, improved color- and TOC-removal was demonstrated by the use of ferric chloride. However, chitosan gave better turbidity removal and allowed higher filtration rate. The color- and TOC-removal by ferric chloride was 92% and 69% respectively, compared to 72% and 32% by chitosan. The use of alginate in combination with ferric chloride resulted in reduced turbidity compared to the use of ferric chloride alone.

To produce a water with acceptable alkalinity and pH-value, a CO₂-dosage of 10 mg/l and 11 min empty bed contact time (EBCT) in the crunched marable was required.

The chemical costs by use of chitosan as a coagulant is approximately 3 times higher than by the use of ferric chloride. However, when total costs are summarized including filter construction costs and sludge handling, chitosan may become a cost-effective alternative to ferric chloride.
1. Innledning

1.1 Bakgrunn

I løpet av de siste årene har flere kommuner i Aust-Agder opplevd en økning i fargetall i sine drikkevannskilder. Flere steder har fargetallet steget over det nivået som er fastsatt som største tillatte konsentrasjon (20 mg Pt/l) i "Forskrift om vannforsyning og drikkevann mm." fra Sosial- og helsedepartementet. Denne fargeøkningen synes å ha skjedd i løpet av de siste årene, da tidligere målinger som er foretatt av kommunene ved planlegging og bygging av vannverkene viser tildels betydelig lavere verdier.

![Figur 1. Fargetallsutviklingen i Rorevann (drikkevannskilde for Grimstad og Arendal) og Østeråvann (drikkevannskilde for Tvedestrand).](image)

Felles for kommunene som deltar i prosjekteret er at de ønsker å få vurdert mulighetene for å felle ut humus på eksisterende (modifiserte) filter. Kommunene har allerede bygget anlegg for alaksivering av drikkevannet. For alaksivering filteres vannet gjennom knust marmor etter tilsats av kalksild. Flere av anleggene belastes høyt, spesielt sommerstid med høy forbruk til hage/jordbruksvannning (opptil 15 m/time). Det er også et ønske om fortsatt lokal deponering av slammhold spylevann fra filterne. Dersom spylevannet skal ledes til kommunalt avløpsnett, eller avvannes for transport og deponering/bruk, vil det de fleste steder være kostnader forbundet med dette.

For å undersøke mulighetene til en slik løsning, ønsker kommunene å prøve ut felling med naturlige organiske polymerer (biopolymerer). Den mest aktuelle muligheten er å benytte kitosan som fellingsmiddel. En alternativ mulighet er å benytte alginanat i kombinasjon med jern eller kalk. Fordelen med å benytte naturlige organiske polymerer (førstnevnte produsert fra rekeskall, sistnevnte fra tang) er følgende:
• Det produseres mindre slam enn ved tradisjonell felling med jern- eller aluminiumssalter. Det slamholdige spylevannet inneholder ikke metaller fra fellingsmidlene som kan skape problemer ved deponering/bruk. Kostnadene forbundet med slamhåndtering kan derved reduseres. Ved bruk av alginat/jern i kombinasjon vil det bli noe metall i slammet, men p.g.a. lavere dosering vil mengdene bli mindre enn dersom jern benyttes alene.

• Det er indikasjon på at bruk av polymerer gir sterkere humus-fnokker, slik at overflatebelastningen kan økes i forhold til ved bruk av jern- eller aluminiumssalter. Dette kan gi muligheter for at de eksisterende filtrene kan håndtere de høye vannmengdene sommerstid, og at man derved unngår en kostbar utvidelse av filterarealet.

• Når naturlige organiske polymerer benyttes som eneste fellingsmiddel kan man se bort fra restmetall i det rensede vannet. Når jern- eller aluminiumssalter benyttes må restverdier for metaller overvåkes nøye da det er lave grenseverdier for disse (< 0,1 mg Me/l).

• Muligheter for å erstatte noe av CO₂-dosering med syre, da saltsyre allikevel må benyttes for å løse kitosan.

I utgangspunktet har man tenkt at det er mulig å felle med kitosan eller alginat/jern, alginat/kalk direkte i eksisterende fylte eller legge et topplag med et egnet filtermedium over marmor-massen (jmfr. Moldeprosessen). For å kunne modifisere eksisterende fullskala vanntekn til felling av farge med ett av de nevnte fellingsmidlene, er det viktig å få avklart forhold omkring doseringsmengder (optimale doseringsmengder for de aktuelle råvannskvalitetene), hvilke filtermedier som egner seg for fjerning av de utfalle fnokkene, driftsbedingelser inkl. maksimal overflatebelastning, spylevannsmengder, rentvannskvalitet, slammengder, slammkvalitet, kostnader (drift og ombyggingskostnader).

1.2 Direktefiltrering

Direktefiltrering er i dag den mest brukte metoden for fjerning av naturlig organisk materiale (NOM) fra drikkevann ved norske vanntekn. Hovedbestanddelen av NOM er negativt ladete humus-stoffer som kan destabiliseres og felles ut med jern- eller aluminiumsbaserte fellingsmidler til filtrerbare fnokker. Ved de lave vanntemperaturene man ofte har i Norge vil NOM-fjerningen, målt som nedgang i fargetall eller organisk stoff, kunne bli redusert. Det har vist seg at tilsats av vannglass (natriumsilikat) og bruk av prepolymeriserte derivater av metallsaltene, som f.eks. aluminiumpolymeren PAX 14, delvis har kunnet kompensere for dette.

Høyt slamproduksjon med dertil korte filtersyklinger, samt vanskeligheter med å oppfylle de relativt strenge kravene til restmetall i rentvannet, har satt søkelset på bruken av naturlig organiske polymerer som alternative koagulanter. Selv om polymerer forbindelser normalt fører til raskere tryktap over filteret, vil den betydelig reduserte slamproduksjonen kunne gi lengre filtersyklinger og reduserte utgifter til slambehandling. Hvis en organisk polymer brukes som eneste koagulant, vil gjenbruksverdien av slammet øke betraktelig, samtidig som klarensen av spylevannet muligens vil kunne ledes direkte ut i resipienten uten fare for kysiske effekter. Disse polymerene er også, i større eller mindre grad, biologisk nedbrytbare. Men høyt pris er en ulempe som har gjort at man har fokusert på å minimalisere dosene av de organiske polymerene.

Kitosan er den av de naturbaserte organiske polymerene det er stilt størst forventninger til som koagulant. Den er et delvis eller fullstendig deacetylt derivat av kitin, som i dag fremstilles i industriell skala fra rekke- og krabbeskall. Amino- og gruppe av de deacetylerede enhetene gir kitosan en kationisk karakter i hele det sure pH-området (pK₉, ligger i området 6,2-7,0), og vil dermed kunne nøytralisere og destabilisere humussyreine innenfor et bredt pH-område. At det ved gitt pH er påvist en direkte støtkometrisk sammenheng mellom humusstoffenes totaladannelse og optimal dose av den
Følgende fellingsmidler ble benyttet:

- kitosan - kvalitet ChitoClear TM381 fra Primex Ingredients ASA, enkelte forsøk ble gjennomført med en kvalitet fra BioEffect AS
- alginat - Protanal S 20 og XL-RB fra FMC Biopolymers AS
- jernkloridsulfat - JKL fra Kemira Chemicals AS

Råvann ble hentet fra de ulike vannkildene og brakt til laboratoriet ved Høgskolen i Agder, Kristiansand. Råvann ble tilsatt 1 mmol/l natriumbikarbonat (NaHCO₃) for buffering før inndosering av fellingsmiddel ved hurtigomrøring (400 rpm i 1 min). Fortynnet saltsyre (HCl) eller lut (NaOH) ble benyttet for pH-justering. Deretter fulgte saktoomrøring (30 rpm) i 30 min. Forholdsvis lang saktoomrørings-periode ble benyttet då det tar tid før man visuelt kan påvise fnokkdamnelse med bruk av kitosan. Videre sedimentrerer de utfelte fnokkene dårlig, noe som gjorde at fnokker fulgte med ved prøveuttag etter normale sedimenteringstider. Dette ga et turbiditetstilskudd i prøvene, og de ble derfor filtrert gjennom et 0,45 μm membranfilter (Millipore) før analysering.

![Jar-test apparat med omrøtere og begerglass](image)

Figur 2. Jar-test apparat med omrøtere og begerglass

2.2 Forsøk i pilotskala

Forsøkene i pilotskala er blitt gjennomført ved Grimstad vannverk. Råvannskilden (Rørevann) er også råvannskilde for Arendal vannverk. Humusinhaltet i Rørevann er i et område som er typisk for drikkevannskildene på Sørlandet (fargetall 20-30 mg Pt/l). P.g.a. kildens størrelse og stort inntaksdyp, har fargetallet vært relativt stabilt i forsøksperioden.

Pilotanlegget bestod av to parallelle filterkolonner, hver med høyde 4000 mm og indre diameter 190 mm for nedstrøms direktesfjering, som gir et filterareal på 0,283 dm² (figur 3). Hver kolonne hadde separat kjemikaliedosering og syredosering med styringsautomatikk for å justere fellings-pH. Den ene filterkolonen (kolonne 1) var fylt med antrasitt/sand/marmor, mens den andre (kolonne 2) var fylt med Filtralite/sand/marmor. Rentvannet ble overvåket kontinuerlig m.h.p. fargetall, pH, turbiditet og ledningsevne. Anlegget ble tilført råvann med og uten tilsetting av CO₂.

Filtermediet i kolonnene bestod av:

- bunnlag av grus og grov marmor
- 170 cm knust marmor (1 - 3 mm kornstørrelse fra Visnes kalk- og marmorbrudd AS)
- 40 cm fin sand (0,5 – 1,0 mm kornstørrelse fra Woldstad Sandforretning AS)
- 50 cm antrasitt (0,8 – 1,6 mm kornstørrelse fra Alfsen og Gundersen AS) eller 50 cm Filtralite (0,8 – 1,6 mm kornstørrelse fra a.s. Norsk Leca)

Råvann ble pumpet fra råvannsbassenget i vannverket. Mengden ble regulert v.h.a. en manuell ventil. Filtreringshastigheter fra 8 til 15 m/h ble forsøkt, noe som tilsvarer vannmengder fra 225 til 425 liter pr. time (l/h). Kitosan og alginat ble dosert v.h.a. peristaltiske pumper, mens JKL ble dosert v.h.a. en membran-magnetpumpe. Alle fellingsmidlene ble dosert direkte på innløpsledningene for råvann. Innløpsledningen til hvert filter bestod av en 5 m lang fleksibel 3/4" slange.

Forsøk er blitt gjennomført ved bruk av kitosan, jernkloridsulfat og kombinasjonen jernkloridsulfat/alginat som fellingsmiddel. Forsøkene ble utført ved ulike fellings-pH og med ulike doseringer.

3. Resultater

3.1 Laboratorietester (jar-tester)

Store deler av de praktiske laboratorieforsøkene er utført ved Høgskolen i Agder av 3 studenter som har hatt dette som en prosjektoppgave. Resultatene er samlet i studentenes rapport (Skogerbø og medarb. 2000). Et sammendrag er tatt med her.

Resultatene fra forsøkene med kitosanfelling tyder på at det er forskjeller i "behandlingsbarhet" mellom de ulike vanntypene/humustypene. Imidlertid viser resultatene at det er mulig å redusere fargetallet til lave verdier med kitosandoser fra 1,5-3 mg/l ved lav fellings-pH (4,0) (figur 4). Redusjonene m.h.p. totalt organisk karbon (TOC) og uv-absorbans på filtrerte prøver var mer moderate.

Forsøk med alginat (3 mg/l av kvaliteten S 20 eller XL-RB) i kombinasjon med kalk viste liten eller ingen effekt ved lave kalkdoser ved pH 7. Ved høye doser (100 mg/l) var det en svak reduksjon i fargetall og UV-absorbans. Imidlertid var det problematisk å få løst all kalken, noe som gjorde at effektiv dose trolig var lavere enn det som ble tilsatt.

Ved å dosere alginat (0,5 mg/l) sammen med jern ved pH 4,5 ble det ikke oppnådd bedre resultater m.h.p. fargetall og UV-absorbans enn med jern alene (5 og 6 mgFe/l) (figur 5). Jern alene ga meget lave fargetall og UV-absorbans i alle vanntypene ved fellings-pH 4,5 og en dosering på 4 mgFe/l (figur 6).
Figur 4. Reduksjon i fargefyll og totalt organisk karbon (TOC) ved økende kitosandose ved fellings-
pH 4,0. Råvannsfarge: Risør: 19,1 mg Pt/l, Tvedestrand: 25,6 mg Pt/l, Lillesand: 28,2 mg Pt/l,
Rørvann: 22,9 mg Pt/l. Råvanns-TOC: Risør: 4,0 mg/l, Tvedestrand: 4,9 mg/l, Lillesand: 4,2 mg/l,
Rørvann: 3,8 mg/l

Figur 5. Reduksjon i fargefyll ved bruk av JKL alene eller i kombinasjon med 0,5 mg/l alginat (XL-
RB eller S-20) ved pH 4,5. Råvannsfarge (Røre): 22,9 mg Pt/l
3.2 Forsøk i pilotskala

3.2.1 Rentvannskvalitet ved bruk av kitosan og jernkloridsulfat (JKL)

Det er foretatt en rekke forsøk ved ulike fellings-pH og ulike kitosan- og JKL-doseringer for å komme fram til optimale betingelser. Mye av dette arbeidet er rapportert som et studentprosjekt ved Høyskolen i Agder (Tangerud og Terjesen 2000), mens et sammendrag av dette, pluss noen nye forsøk er tatt med i denne rapporten. De fleste forsøkene er kjørt med en filtreringshastighet på 9,2 m/h, men det er også kjørt med høyere belastninger, opp til 14,7 m/h uten at dette ser ut til å redusere effekten m.h.p. fargefjerning i vesentlig grad (figur 7). Imidlertid indikerer en svak økning i rentvannsturbiditet ved høy filtreringshastighet (tabell 1). For stabil drift med en rentvannsfarge på 6-7 mg Pu/l, kreves 1,6 mg kitosan pr. liter ved en fellings-pH på 4.

Ved høy filtreringshastighet (14,7 m/h) oppnås det raskere god rentvannskvalitet etter tilbakespuling av filteret enn ved lavere filtreringshastighet (9,2 m/h) (figur 7). Dette medfører at modningstiden kan reduseres. Når kitosan brukes som fellingsmiddel kan man se bort fra hensynet til restmetall i vannet i løpet av modningstiden, noe som gjør at man trolig kan redusere modningstiden i forhold til når jern- eller aluminiumsforbindelser benyttes. Imidlertid må hensynet til hygiene og mikroorganismer vurderes på lik linje med når andre fellingsmidler benyttes. Det er kjent at høye turbiditetsverdier er korrelelert med høye bakterietall (Ndiongue og medarb. 2000).
I figur 8 er effekten av kitosan sammenliknet med effekten ved bruk av JKL. Bildet viser farge i råvannet og farge etter felling med henholdsvis kitosan og JKL. Som det framgår, var det mulig å fjerne mer farge og TOC med JKL enn med kitosan ved lik filtreringshastighet (9,2 m/h). JKL fjernet 92% av fargen og 69% av TOC, mens tilsvarende for kitosan var 72% og 32%. Rent visuelt er det bare små forskjeller å registrere. JKL-dosen var 22 ml JKL pr. m³ vann, tilsvarende 3,8 mg rent jern pr. liter. Disse tallene er også gitt i tabell 1, sammen med en rekke andre analyser og belastningstall.

Figur 7. Fargetallsutvikling som funksjon av filtreringstid ved bruk av kitosan som koagulant.

Figur 8. Representative rentvanns-verdier for fargetall og TOC ved felling med kitosan (1,6 mg/l) og JKL. Prosentvise renseefekter er angitt, samt filtreringshastigheter i m/h. Råvannets fargetall var 21 mg P/l, mens TOC-verdien var 3,5 mg/l.

Som det framgår av tabell 1 var det mulig å produsere et vann som tilfredstiller kravene m.h.p. korrosjonsparametere ved å bruke kitosan (1,6 mg/l) eller JKL (3,8 mg Fe/l) som fellingsmiddel med etterfølgende filtrering i et 3-mediafilter (antrasitt, sand og marmor) ved en filtreringshastighet på 9,2 m/h (11 min "empty bed contact time", EBCT, i marmormassen). For å justere fellings-pH til 4 ble det tilsatt små mengder saltsyre, og for å øke utløsningen av kalsium og karbonat fra marmoren ble det tilsatt 10 mg/l CO₂. CO₂ mengden kan trolig reduseres noe. Vannet som ble produsert hadde pH-verdi, alkalitet og kalsiumverdi som lå riktig i forhold til grenseverdiene, og var tilnærmet partikkelfritt (turbiditet <0,05 FTU med kitosan og 0,07 FTU med JKL).
Ved høyere filtreringshastighet (14,7 m/h og 7 min EBCT i marmormassen) og med kitosan som fellingsmiddel sank som ventet pH, alkali et og kalsiumkonsentrasjonen noe i rentvannet. Det ble registrert en svak økning i turbiditet (0,14 NTU), fargetall og TOC-verdi sammenliknet med en filtreringshastighet på 9,2 m/h. De lave turbiditetsverdiene tyder på at felling med både kitosan og JKL vil fungere godt som hygienisk barriere, i allefall med filtreringshastighetene opp til 9,2 m/h. Det er tidligere vist at direktefiltrering med kitosan som kaogulant kan fjerne mer enn 99,9% av coliforme bakterier fra råvannet (Liltved og Norgaard 1999).

Tabell 1 angir også verdier for spurtopper og metaller i rentvann og råvann. Som det framgår ligger alle langt under grenseverdiene som er angitt i forskriften. Jern, arsen, bly og vanadium blir redusert av både kitosan og JKL. Kadmium, kobolt, kobber og sink viser høyere verdier i rentvannet enn i råvannet. Om disse økningene stammer fra fellingsmidlene, fra filtermediene, eller fra komponenter i anlegget er uvist. Aluminium ble ikke målt, men erfaringer fra andre pilotkjøringen med kitosan som kaogulant tilsier at hoveddelen av råvannets aluminiumsinnhold fjernes (opp til 80%) (Liltved 2000b).

Tabell 1. Driftskriterier og belastningstall for kitosan- og JKL-felling med vannkvalitetsparametere for rentvann og råvann, samt grenseverdier hentet fra retningslinjene.

<table>
<thead>
<tr>
<th>Driftskriterier</th>
<th>Rentvannskvalitet etter koagulering og filtrering</th>
<th>Råvannskvalitet</th>
<th>Grenseverdi rentvann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koagulant</td>
<td>kitosan, 1,6 mg/l</td>
<td>kitosan, 1,6 mg/l</td>
<td>JKL, 3,8 mg Fe/l</td>
</tr>
<tr>
<td>Filtrerings-hastighet, m/h</td>
<td>9,2</td>
<td>14,7</td>
<td>9,2</td>
</tr>
<tr>
<td>CO₂-dose, mg/l</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fallings-pH</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Syreforbruk, ml kons. HCl pr m³</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Vannkvalitets-parametere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7,8</td>
<td>7,53</td>
<td>7,72</td>
</tr>
<tr>
<td>Alkalitet, mmol/l</td>
<td>0,748</td>
<td>0,557</td>
<td>0,829</td>
</tr>
<tr>
<td>Turbiditet, FTU</td>
<td><0,05</td>
<td>0,14</td>
<td>0,07</td>
</tr>
<tr>
<td>UVabs, abs/cm</td>
<td>0,072</td>
<td>0,076</td>
<td>0,025</td>
</tr>
<tr>
<td>Fargetall, mg Pt/l</td>
<td>5,91</td>
<td>6,3</td>
<td>1,58</td>
</tr>
<tr>
<td>Tot-N, µg/l</td>
<td>475</td>
<td>495</td>
<td>440</td>
</tr>
<tr>
<td>TOC, mg/l</td>
<td>2,4</td>
<td>2,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Ca, mg/l</td>
<td>17,8</td>
<td>13,8</td>
<td>21,9</td>
</tr>
<tr>
<td>Fe, µg/l</td>
<td>8</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>As, µg/l</td>
<td>0,20</td>
<td>0,12</td>
<td>0,24</td>
</tr>
<tr>
<td>Cd, µg/l</td>
<td>0,16</td>
<td>0,12</td>
<td>0,06</td>
</tr>
<tr>
<td>Co, µg/l</td>
<td>0,15</td>
<td>1,1</td>
<td>0,14</td>
</tr>
<tr>
<td>Cr, µg/l</td>
<td>0,1</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>Cu, µg/l</td>
<td>11</td>
<td>3,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Ni, µg/l</td>
<td>0,28</td>
<td>1,4</td>
<td>0,51</td>
</tr>
<tr>
<td>Pb, µg/l</td>
<td>0,07</td>
<td>0,03</td>
<td>0,59</td>
</tr>
<tr>
<td>V, µg/l</td>
<td><0,1</td>
<td><0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Zn, µg/l</td>
<td>20</td>
<td>24</td>
<td>15</td>
</tr>
</tbody>
</table>

* = veiledende verdi
** = største tillatte konsentrasjon
3.2.2 Vurdering av muligheten e for å erstatte CO$_2$-dosering med syredosering

Dosering av små mengder saltsyre, ca 5 ml kons. HCl pr m3 vann i tillegg til den sure kitosanløsningen, er nødvendig for å redusere pH til 4 som regnes som nær optimalt med tanke på utnyttelse av kitosan som fellingmiddel. Ved å redusere pH til 4 med saltsyre oppnås en viss grad av alkalisering ved 11 min EBCT i marmormassen (tilsvarende en filtreringshastighet på 9,2 m/h i pilotanlegget) (tabell 2). Imidlertid er ikke dette tilstrekkelig for å nå verdiene som er fastsatt i retningslinjen som er 0,6 - 1,0 mmol/l for alkalitet. Alkalitetsverdiene uten CO$_2$-dosering er bare halvparten av hva de burde være. Dette viser at det er nødvendig med CO$_2$-dosering i tillegg for å oppnå tilstrekkelig alkaliseringseffekt.

CO$_2$-dosering ser ikke ut til å påvirke effekten av kitosanfellingen direkte. CO$_2$ er med på å redusere fellings-pH, noe som er en fordel da kitosan fungerer best ved lav fellings-pH.

Tabell 2. Alkalisering i marmorfilteret med og uten CO$_2$-dosering.

<table>
<thead>
<tr>
<th></th>
<th>Saltsyre til pH 4, ingen CO$_2$-dosering</th>
<th>Saltsyre til pH 4, 10 mg CO$_2$/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8,0 - 8,4</td>
<td>7,8</td>
</tr>
<tr>
<td>Alkalitet, mmol/l</td>
<td>0,26 - 0,32</td>
<td>0,75</td>
</tr>
<tr>
<td>Kalsium, mg/l</td>
<td>12 - 13</td>
<td>17,8</td>
</tr>
</tbody>
</table>

3.2.3 Trykktap i filtermediet og spylebehov

Trykktap som funksjon av filtreringsstid med kitosanfelling ved filtreringshastigheter på 9,2 m/h og 14,7 m/h er vist i figur 9. Ved en filtreringshastighet på 9,2 m/h og en kitosandose på 1,6 mg/l vil trykktapet bli ca. 120 cm i løpet av 24 timer forutsatt en lineær utvikling. Dette indikerer at 24 timers driftstid før spylning er fullt mulig.

![Trykktap graf](image)

Figur 9. Trykktapbygging i filteret med kitosanfelling (1,6 mg/l) og filtreringshastigheter på 9,2 m/h og 14,7 m/h. Fellings-pH 4,0.
3.2.4 Slamproduksjon - slamkarakterisering

I forsøk med kitosanfelling ble det ene filteret spylt etter 17 timers driftstid. Spylehastigheten var 50 m/h (tilsvarande 24 l/min) noe som ga en spylevannsmengde på 110 liter ved ca. 4,5 min tilbakespyling. Alt spylevannet ble samlet opp for måling av volum og analyse.

Ved en kitosandosering på 1,6 mg/l ble det tatt ut en prøver av det oppsamlede spylevannet, av fortykket slam etter 2 timers sedimentering, og av dekantvannet (klarfasen). Ved sedimentering ble spylevannets gjennomsnittlige tørrstoffkonsentrasjon skt fra 153 mg/l til 4300 mg/l, noe som representerer 28 gangers oppkonsentrering (tabell 3). Slamvolumet var ca. 4 liter. Det er gjort beregninger av slamproduksjonen basert på gjennomsnittlige konsentrasjonsmålinger og volummålinger.

Basert på tallene fra målingene ble slamproduksjonen 3,9 g tørrstoff pr. m³ rentvann.

Sammenliknet med teoretisk slamproduksjon ved kitosanfelling stemmer de målte verdiene bra: Tørrstoffet i slammet vil i hovedsak bestå av tilsatt mengde kitosan (1,6 mg/l) pluss fjernet organisk stoff (humus). Dersom alt kitosan holdes tilbake i filteret utgjør dette 1,6 g/m³. Basert på målingene av nitrogen i råvann og rentvann etter kitosanfelling synes dette å være en god antakelse da det er svært lite nitrogen i rentvannet som stammer fra kitosan (kitosan inneholder ca. 8% nitrogen). Det ble i gjennomsnitt fjernet 1,1 g TOC pr. m³ vann. Dersom man antar at TOC utgjør ca. 50% av organisk stoff i humus (Gjessing 2000), blir den fjernede tørrstoffmengden det dobbelt; 2,2 g pr. m³. Sammen med kitosan utgjør dette en tørrstoffmengde på 3,8 g/m³ rentvann. I tillegg kommer eventuelle uorganiske partikler, som det er liten av i.h.t. turbiditetsmålingene.

Tilsvarende beregning kan gjøres for JKL. Tilsatt JKL-mengde (3,8 gFe Fe²⁺/m³) tilsvarer 0,068 mol/m³. En antar at alt dette faller ut som jernhydroksid, Fe(OH)₃, som tilsvarer 7,3 g/m³. I tillegg kommer TOC-mengden som fjernes, 2,2 gC/m³ som ganges med en faktor på 2, som da blir 4,4 g tørrstoff pr. m³. Total tørrstoffmengde som produseres ved JKL-felling blir 11,7 g/m³, altså ca. 3 ganger tørrstoffmengden ved kitosanfelling.

Tabell 3. Slamproduksjon i pilotanlegget ved en kitosandosering på 1,6 mg/l. Verdiene er basert på målinger av suspendert stoff i spylevann og fortykket slam.

<table>
<thead>
<tr>
<th></th>
<th>Beregninger basert på spylevann (n=2)</th>
<th>Beregninger basert på fortykket slam (n=2)</th>
<th>Beregnet slammengde ved JKL-felling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrasjon, STS (mg/l)</td>
<td>153</td>
<td>4300</td>
<td></td>
</tr>
<tr>
<td>Volum pr. 17 timer, liter</td>
<td>107</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tørrstoffproduksjon pr. 17 timer, g</td>
<td>16,4</td>
<td>17,2</td>
<td></td>
</tr>
<tr>
<td>Tørrstoffproduksjon pr. m³ rentvann, g</td>
<td>3,9</td>
<td>11,7</td>
<td></td>
</tr>
</tbody>
</table>

I tillegg til de nevnte tørrstoff-analysene, ble spylevannet analysert m.h.p. totalt tørrstoff ved inndamping (TT), totalt gjøderest (TGR), totalt nitrogen (tot-N), totalt organisk karbon (TOC), og jerninnhold. I tillegg ble dekantvannet etter 2 timers sedimentering analysert m.h.p. STS, TOC, tot-N og jern (tabell 4).

Hovedmengden av tørrstoffet i spylevannet består av humus/kitosan-fnokker avsatt i løpet av filtreringstiden. Disse organiske fnokkkene vil også utgjøre den dominerende delen av totalt tørrstoff som ble målt til 170 mg/l. Totalt gjøderest (<20 mg/l) utgjør den uorganisk delen av totalt tørrstoff.
Innholdet av organiske fnokker i spylevannet gir seg utslag i høy verdi for TOC (36,2 mg/l). Både utfelt humus og kitosan bidrar til TOC-verdien. Begge disse er relativt tungt biologisk nedbrytbare. Nitrogeninnholdet i spylevannet var 3,0 mg/l, og stammer fra kitosan og humus. Jerninnholdet var 1,8 mg/l. Etter 2 timers forytting var innholdet av alle disse kraftig redusert i dekantvannet (klarfasen).

Tabell 4. Kjemisk analyse av spylevannet fra filteret etter 17 timers driftstid (kitosandose 1,6 mg/l, filtreringshastighet 9,2 m/h).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spylevann</th>
<th>Konsentrat etter 2 timer</th>
<th>Klarfase etter 2 timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspendert tørrstoff, mg/l</td>
<td>153</td>
<td>4300</td>
<td>10,4</td>
</tr>
<tr>
<td>Totalt tørrstoff, mg/l</td>
<td>170</td>
<td>4410</td>
<td></td>
</tr>
<tr>
<td>Total gløderest, mg/l</td>
<td><20</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td>Total nitrogen, mg N/l</td>
<td>3,0</td>
<td></td>
<td>0,93</td>
</tr>
<tr>
<td>Totalt organisk karbon, TOC, mg/l</td>
<td>36,2</td>
<td></td>
<td>9,6</td>
</tr>
<tr>
<td>Jern, mg/l</td>
<td>1,8</td>
<td></td>
<td>0,21</td>
</tr>
</tbody>
</table>

3.2.5 Rentvannskvalitet ved bruk av alginat i kombinasjon med JKL

I pilotforsøk ble alginat testet i kombinasjon med JKL. Med hensyn på fargetall var det ikke mulig å påvise forskjeller i effekt ved å benytte kombinasjonen sammenliknet med JKL alene. Imidlertid var det en liten men klar forbedring i turbiditet når 0,5 mg/l alginat ble benyttet sammen med JKL (2,5 mgFe/l) (figur 10). Når alginatdoseringen ble slått av steg turbiditetsverdiene med ca. 0,05 NTU. Tilsvarende reduksjon ble observert når alginatdoseringen ble slått på. Effekten av alginat kan være viktig i forbindelse med å optimalisere direktefiltreringsprosessen som en hygienisk barriere. Andre undersøkelser har nemlig vist at turbiditeten i rentvannet etter filtrering er direkte korrelelt med bakterietall (Ndiongue og medarb. 2000). Lav rentvannsturbiditet gir vann av god hygienisk kvalitet.

Figur 10. Effekten av å benytte 0,5 mg/l alginat i kombinasjon med JKL (2,5 mgFe/l) m.h.p. turbiditet. Fellings-pH 4,1.
4. Fellingsanlegg med kitosan og jern

4.1 Felling med kitosan

4.1.1 Beskrivelse

Felling med kitosan på tremediafilter foregår ved at råvannet tilføres kitosan, saltsyre og CO₂ før vannet går inn på tremediafilteret (figur 11). Kitosan er løst i saltsyre og fører derfor til en pH reduksjon. For å gi den ønskede fellings-pH benyttes saltsyre i tillegg. CO₂ tilsettes for å øke råvannets evne til å løse marmor og derved heve alkaliteten.

Ved felling med kitosan viser forsøkene at optimal pH ligger i området 3,0 til 4,0. Av hensyn til mulig korrosjonsfare er det valgt å benytte en fellings-pH på 4,0. I vannvolumet over filtermateriale gis humus/kitosanflokker tid til å bygge seg opp. Flokrene settes av i antrasitt og kvartssandfilteret. Når vannet kommer inn på marmorfilteret er det surt og inneholder fritt CO₂, og opplosning av marmor starter.

![Diagram av felling med kitosan på tremediafilter](image)

Figur 11. Prinsippskisse av felling med kitosan på tremediafilter

4.1.2 Erfaringer med prosessen

4.1.3 Beskrivelse av doseringsutstyr/kjemikalihåndtering

Bygningsmessig må det legges inn syrefast dekke under kjemikalieteraker. Det bygges opp ett "basseng" med sluk rundt tankene for oppsamling ved en eventuell lekkasje.

\begin{center}
\includegraphics[width=0.8\textwidth]{diagram.png}
\end{center}

4.2 Felling med jern

4.2.1 Beskrivelse

Felling med jern på nedstrøms tremediafilter, der det nederste laget er marmor, går under navnet Moldeprosessen (figur 13). Metoden ble utviklet for å kombinere direktefiltrering og karbonatisering i ett og samme filter.

4.2.2 Erfaringer med prosessen

Følgende alternative prosessløsninger er benyttet:
- Modningsvann og spylavannets klarvannsfase kjøres i retur inn på råvannsiden
- CO₂ benyttes ikke.
- Filtrene spyles med råvann
- Aluminiumsulfat benyttes som fallingskjemikalie

Erfaringer har vist at prosessen er enkel i drift og robust i forhold til variasjoner i råvannskvaliten.

4.2.3 Beskrivelse av doseringsutstyr/kjemikaliehåndtering

Figur 14 viser en typisk installasjon for dosering av JKL i et større anlegg. JKL leveres ferdig utblandet fra tankbil til lagertank med lagerkapasitet til 1-3 måneders forbruk. JKL inneholder 11,7 vekt-% treverdig jern. Fra lagertanken mates JKL over til doseringstank/dagtank med en transportpumpe. Doseringspumpene styres etter råvannsmengde inn på anlegget og doserer inn på råvannsledningen.

Råvannsledningen utstyres med en statist mikser i innblandingspunktet for å sikre god innblanding. Doseringspunkt for JKL vil ofte plasseres sammen med, eller rett etter dosering av CO₂.

Figur 14. Prinsippskisse for dosering av JKL i et større anlegg

JKL er et svært korrosivt kjemikalium som er tyngre enn vann. Dersom det doseres JKL inn på råvannsledningen (i rustfritt stål) uten at det går vann i ledningen, vil JKL legge seg på bunnen av ledningen og tære hull på denne. Det legges derfor gjerne inn ett lavbrekk i polyetylen slik at eventuell JKL som måtte doseres uten at det går vann i råvannsledningen legger seg på bunnen av PE bendet.
Alternativt bygges doseringsanlegget uten transportpumpe og dagtank. Det doseres da direkte fra lagertank. For ekstra kontroll med dosert mengde JKL kan det monteres flow-meter på doseringsslangen.

Lagertanken bygges normalt i GUP og doseringsslanger i PF. For dosering benyttes membranpumpe, slangepumpe eller liknende. Bygningsmessig må det legges inn sluk i kjemikalierom og støpt kanter rundt kjemikalietanker for oppsamling av JKL ved eventuell lekkasje.

5. Ombygging av eksisterende anlegg til fargefjerning

5.1 Nøkkeldata eksisterende vannverk

Før eksisterende behandlingsanlegg kan bygges om til fargefjerning må en ha fastlagt nødvendige dimensjoneringskriterier for de aktuelle prosessene. Utforming av eksisterende anlegg legger også sterke føringer på valg av løsninger og vil påvirke ombyggningskostnadene vesentlig. I tabell 5 er det vist viktige nøkkeldata for de eksisterende anleggene.

<table>
<thead>
<tr>
<th>Kommuune</th>
<th>Grimstad</th>
<th>Arendal</th>
<th>Lillesand</th>
<th>Risør</th>
<th>Tvedestrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilde</td>
<td>Rorevann</td>
<td>Rorevann</td>
<td>Grimevann</td>
<td>Auslands-vann</td>
<td>Østeråvann</td>
</tr>
<tr>
<td>Q_{dim} (l/s)</td>
<td>312,5</td>
<td>560</td>
<td>160</td>
<td>107,5</td>
<td>70</td>
</tr>
<tr>
<td>$Q_{måle}$ (l/s)</td>
<td>107</td>
<td>240</td>
<td>45</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>$Q_{måle i dag}$ (l/s)</td>
<td>75</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filterareal (m²)</td>
<td>75</td>
<td>134</td>
<td>36</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>Antall filter (stk)</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dim filterhast (m/time)</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>10,5</td>
</tr>
<tr>
<td>Midlere filterhast (m/time)</td>
<td>5,1</td>
<td>6,4</td>
<td>4,5</td>
<td>4,8</td>
<td>5,0</td>
</tr>
<tr>
<td>Høyde bunn filter - topp spyleren (mm)</td>
<td>3750</td>
<td>5400</td>
<td>4450</td>
<td>3750</td>
<td>2800</td>
</tr>
<tr>
<td>Høyde bunn - topp filter (mm)</td>
<td>4000</td>
<td>5550</td>
<td>4500</td>
<td>4100</td>
<td>3300</td>
</tr>
<tr>
<td>Avstand til avløpsnett (m)</td>
<td>900 (Derav 800m sjøledning)</td>
<td></td>
<td></td>
<td>Ca. 50m til SP110.</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Dimensjoneringskriterier

I tabell 6 er de viktigste parametrene for dimensjonering av prosessanleggene listet opp. For felling med JKL er disse kjent fra driftserfaring fra mange anlegg. Når det gjelder felling med kitosan har forsøkene besvart mange, men ikke alle parametrene, og det er sparsomt med driftserfaringer som kan underbygge svarene fra forsøksseriene.

Tabell 6. Viktige parametre for dimensjonering av prosessanleggene. Tallene for kitosan er i hovedsak basert på pilotforsøkene.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KITOSAN</th>
<th>JKL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimal filterhastighet (m/t)</td>
<td>15 m/h</td>
<td>9 m/h</td>
</tr>
<tr>
<td>Filtersyklos ved farge 20-30</td>
<td>minst 24 timer</td>
<td>24 timer</td>
</tr>
<tr>
<td>Filtersammensetning</td>
<td>I pilotforsøkene er det benyttet samme filtersammensetning som for JKL</td>
<td>0,6 m antrasitt/leca (0,8 - 1,6 mm) 0,4 m kvartssand (0,4 - 0,6 mm) 2,0 m marmor (1 - 3 mm) 0,5 m støttelag (5-15 mm)</td>
</tr>
<tr>
<td>Spylevannsmengde (m/s)</td>
<td>I pilotforsøkene er det benyttet samme spylevannsmengde og spyletid som for JKL</td>
<td>Normalt 50-60 m/time, 3-6 min spyletid</td>
</tr>
<tr>
<td>Spyleluft</td>
<td>I pilotforsøkene ble det ikke benyttet lyftspylng. Dette er trolig påkrevd i fullskala</td>
<td>Normalt 60-70 m/time 1-2 min spyletid</td>
</tr>
<tr>
<td>Modningstid</td>
<td>30 minutter</td>
<td>45 minutter</td>
</tr>
<tr>
<td>Slamproduksjon</td>
<td>Ca 4 g/m³</td>
<td>Ca 12 g/m³</td>
</tr>
<tr>
<td>Sammensetning av slam</td>
<td>Organisk materiale</td>
<td>Jern og organisk materiale</td>
</tr>
</tbody>
</table>

I de videre kapitlene har vi utdypet og diskutert de forskjellige parameterene.

5.3 Filterareal (bevø)

5.3.1 Kitosan

Det ble kjørt en forsøksserie med en filterhastighet på 14,7 m/h. Dette er høy hastighet og bortimot det dobbelte av hva som regnes for normalt for andre typer fellingsanlegg. Forsøkene viste at vannkvaliteten endret seg lite i forhold til en hastighet på 9,2 m/h, eneste parameter med signifikant endring var turbiditetten som steg fra 0,05 til 0,14. Erfaringene fra drift av rene marmorfilter viser også en tendens til turbiditetsøkning når en drifter anleggene ved denne hastigheten.

En forklaring på den høye filterhastigheten kan være at en produserer vesentlig mindre slam når en feller med kitosan sammenliknet med metallsalter. Utfra forsøket kan en sette 15 m/h som dimensjonerende hastighet, alle de eksisterende anleggene vil ha filterflate nok til denne hastigheten.
5.3.2 Jernfelling
Erfaring fra en rekke anlegg viser at kontinuerlig drift med filterhastigheter over 9-10 m/h gir anstrengt drift. Tilgjengelig filterflate vil bli kritisk for anleggene i Arendal, Grimstad og Lillesand. Risør vil antakelig kunne drives med eksisterende flate og Tvedestrand har filterflate nok.

5.4 Filtersyklus
Filtersyklus er antall timer mellom hver gang filteret må tilbakespyles. Med et fargetall på 20-30 mg Pt/l i råvannet og en filterningshastighet på 9 m/h, vil et filter med jernfelling ha en filtersyklus på ca. 20 til 24 timer. Forsøkene indikerer at felling med kitsan kan gi minst like lange sykluser, også ved en filterningshastighet opp til 15 m/h. Dette skyldes sannsynligvis at kitsanfelling produserer mindre slam.

I praktisk vannverksdrift bør en ikke ha sykluser under 16 til 12 timer. Korte syklastider gir høyt spylevannsforbruks, og effektiv filterdrift blir redusert på grunn av tid til spyling og mudding.

5.5 Filtersammensetning

Kitosan gir et slam med mindre fnokker enn jern og antakelig finnes det en mer optimal filtersammensetning en den som benyttes i Moldeprosessen. Foreløpig benyttes imidlertid samme filteroppbygning som i Moldeprosessen.

Dimensjonerende kontakttid med marmor er 12 min. Ved en filterningshastighet på 10 m/h betyr dette en marmorhøyde på 2 meter, ved 15 m/h kreves 3 meter marmorhøyde. Ved å redusere kontakttiden fra f.eks. 12 min til 6 min (d.v.s. 1,5 m marmorhøyde ved 15 m/h) vil alkalitetsverdien bli redusert med anslagsvis 0,2-0,3 mmol/l.

5.6 Spylevannsmengde
Erfaringene fra Moldeprosessen er at filteret må spyles med en vannmengde tilsvarende 50-60 m/h, d.v.s. en spylevannsmengde på 4-5 m³ pr. m² filterareal dersom man regner 5 min spyletid. Dette er 10-20 m/h lavere enn det marmoranleggene er dimensjonert for. 50 m/h var også spylevannsmengden ved forsøkene som ble utført med kitsanfelling i dette prosjektet.

Spylevannsmengden må tilpasses slik at filtermassen fluidiserer uten å bli kastet ut i renna. Det er derfor filtersammensetningen, og ikke fellingskjemikaliets, som dimensjonerer spylevannsanlegget. Når en har et filter med antrasitt, som lett spyles ut i renna, må mengden kontrolleres nøye. Dette
medfører behov for mengdemåling og regulering. Anleggene i Risør, Tvedestrand og Lillesand mangler dette.

5.7 Spyleluft

Luftspyl ing er nødvendig for å hindre oppbygging av klumper med sammenkittet filtermateriale (Mudballs) i filteret. De fleste anleggene som benytter Moldeprosessen spyer med luft hver gang filteret spyles med vann. Noen få anlegg spyer med luft kun en sjelden gang, for eksempel en gang i uka.

Pilotforsøkene ble ikke drevet lenge nok til å gi noe informasjon om behovet for luftspyl ing ved bruk av kitsan, men det antas at det er samme behov her som for jernfelling. Ingen av de eksisterende anleggene har utstyr for luftspyl ing. Dette medfører behov for blåsemaskiner, rørsystemer og nye filterbunner dimensjonert for spyleluft.

5.8 Håndtering av spylevann og modningsvann

I prinsippet skal det søkes om tillatelse til alt utslipp, men i h.t. det nye lovverket er det kommunene selv som kan gi slikt tillatelse. Med unntak av Tvedestrand slipper de eksisterende marmoranleggene spylevannet tilbake til kilden. Tvedestrand har utslipp til bekke/sjø. Erfaringen fra vannverk med fargefjerning basert på felling med metallsalter er at det normalt ikke gis tillatelse til å lede spylevannet tilbake til kilden. Utslipp til sjø er blitt godkjent.

5.8.1 Kitsan

Når kitsan benyttes som fellingsmiddel kan det være en mulighet å slippe alt spylevann og modningsvann ut i kilden. Dette er imidlertid avhengig av lokale resipientforhold som må vurderes i hvert enkelt tilfelle. Det er rapportert at spylevann fra kitsanfelling ikke har hemmende effekt m.h.p. vekst av alger (Lilved og medarb. 2001) eller har påviselige gifteffekter overfor lakse som meldes ved fornyende tilstand til 1:100 (ILAB 2000).

Alternativt kan det foretas en satsvis sedimentering der spylevannets klarvannsfase sammen med modningsvannet ledes tilbake til kilden, og den oppkonsentrerte slamfasen føres til avløp eller behandles lokalt. Et alternativ kan være å etablere laguner for spylevannet hvor slamfasen holdes
tilbake mens klarfasen ledes ut i overløp. Erfaringer fra pilotforsøk ved Haugesund vannverk (Liltved 2000c) og fra forsøk i dette prosjektet (se kapitel 3.2.4) tyder på at slamfasen utgjør 4-5% av spylevannsmengden etter 2 timers sedimentering. Dette indikerer at en stor del av klarfasen kan ledes tilbake til kilden.

Det er utført et forskningsarbeide ved Senter for jordfaglig miljøforskning på hvorvidt slamfasen er egnet som jordforbedringsmiddel, og det kan virke som om den har et potensiale for dette. Flere forsøk har vist at kitosan kan ha positive effekter m.h.p. plantevekst. I samarbeid med Norsk Jordforbedring AS vil NIVA forsøke å få finansiert et forskningsprosjekt som tar sikte på å få fram et jordforbedringsprodukt av avannet slam.

5.8.2 Jernkloridsulfat

Ved en normal anleggsutføring legges det opp til en satsvis sedimentering av spylevannet. Etter ca 2 timers sedimentering vil spylevannet ha skilt seg i en klarvannsfase og en slamfase, der slamfasen utgjør i underkant av 10 %. I praksis lar det seg gjøre å hente ut ca 85 % klarvann. Klarvannsfasen sammen med modningsvannet vil i de fleste tilfeller kunne ledes tilbake til kilden, men det vil være nødvendig å søke fylkesmannen om godkjenning for dette.

Et annet alternativ er å føre klarrvannsfase og modningsvann tilbake til røvannsiden av anlegget. Dette må gjøres via et utjønningsbasseng slik at en får dosert dette proporsjonalt med innløpsmengde. Dette er en mye brukt løsning, og for mange røvannstyper vil dette være positivt da returvannet inneholder karbonat.

Ved høye kostnader forbundet med overføring av slam til offentlig avløp kan det være et alternativ med en mer omfattende slambehandlej lokal. Dette medfører fortykking og avvanning på vannverket.

5.8.3 Slammengder

Årlig slamproduksjon som 100% tørrstoff er vist i tabell 7. Slamproduksjonen er basert på midlere rentvannsproduksjon (Q_middel) ved de ulike vannverkene og felling med JKL (4 gFe/m²) og kitosan (1,6 g/m²).

Kitosanslammet vil inneholde omtrentlig 42% kitosan og 58% humus mens jernlammet vil inneholde 62% jernhydrosid Fe(OH)₃ og 38% humus. Da flere forsøk har vist at kitosan kan ha positive effekter m.h.p. plantevekst, kan man tenke seg at det er mulig å komme fram til et slamprodukt som har kommersiell interesse. Dersom slamfasen ledes til kommunalt renseanlegg vil sannsynligvis mye av både kitosanslammet og JKL-slammet bli tatt ut i eksisterende sedimenteringssasseng. Humus og kitosan er relativt tungt biologisk nedbrytbart.
Tabell 7. Beregnet slamproduksjon som tørrstoff ved bruk av JKL og kitosan basert på midlere rentvannsproduksjon \(Q_{\text{middel}}\) ved de ulike vannverkene.

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Grimstad</th>
<th>Arendal</th>
<th>Lillesand</th>
<th>Risør</th>
<th>Tvedestrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{middel}}) (l/s)</td>
<td>107</td>
<td>240</td>
<td>45</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>(Q) (m³/år)</td>
<td>3374352</td>
<td>7568640</td>
<td>1419120</td>
<td>1356048</td>
<td>1040688</td>
</tr>
<tr>
<td>Årlig slammengde</td>
<td>13,2 tonn</td>
<td>29,5 tonn</td>
<td>5,5 tonn slam som inneholder</td>
<td>5,3 tonn slam som inneholder</td>
<td>4,1 tonn slam som inneholder</td>
</tr>
<tr>
<td>med kitosan som koagulant</td>
<td>5,4 tonn kitosan</td>
<td>12,4 tonn slam som kitosan</td>
<td>2,3 tonn slag som kitosan</td>
<td>2,2 tonn slag som kitosan</td>
<td>1,7 tonn slag som kitosan</td>
</tr>
<tr>
<td>Årlig slammengde</td>
<td>39,5 tonn</td>
<td>88,6 tonn</td>
<td>16,6 tonn slam som inneholder</td>
<td>15,9 tonn slag som inneholder</td>
<td>12,2 tonn slag som inneholder</td>
</tr>
<tr>
<td>med JKL som koagulant</td>
<td>24,5 tonn Fe(OH)_3</td>
<td>54,9 tonn slag som Fe(OH)_3</td>
<td>10,3 tonn Fe(OH)_3</td>
<td>9,9 tonn Fe(OH)_3</td>
<td>7,6 tonn Fe(OH)_3</td>
</tr>
</tbody>
</table>

5.9 Kjemikalieforbruk - kostnader

5.9.1 Kitosan/saltseyre

Forsøkene viser at en dosering på 1,6 g kitosan/m³ vil være tilstrekkelig for å oppnå den ønskede reduksjon i fargetall. Midlertidt må det tilsettes saltseyre for å oppnå optimal fellings-pH. Nødvendig dose saltseyre vil være avhengig av alkalitet i råvannet. Det brukes også saltseyre for å løse kitosan i berederen.

I forsøkene som ble utført på et råvann med alkalitet ca. 0,05 mmol/l og fellings-pH på 4 vil totalt forbruk av 35% konsentrert saltseyre bli om lag 5 ml/m³. For kitosan er det benyttet en enhetskostnad på 150 kr/kg kitosan fritt levert til anlegget. For saltseyre er det benyttet en enhetspris på 2 300 kr/m³. 35% saltseyre fritt levert anlegget.

5.9.2 JKL

JKL har ett jerninnhold på 11,6 % og en egenvekt på 1,5 kg/m³. Dette gir et jerninnhold på 175 g Fe/l JKL eller 116 g Fe/kg JKL. Forsøkene viser gode resultater med tilsetting av ca. 4,0 g Fe/m³ tilsvarande 34,5 g JKL/m³. Det er benyttet en enhetspris på 1200 kr/tonn JKL fritt levert.

5.9.3 Forbruk av CO₂

Nødvendig forbruk av CO₂ vil reduseres dersom anleggene bygges om til fellingsanlegg med koagulering i et lavt pH område. I tabell 8 er teoretisk beregnett verdier for korrosjonssensitiviteten ved ulike fellings-pH og CO₂-doser vist. Som det framgår reduseres behovet for CO₂ ved reduert fellings-pH, dvs økt syretilsats.

For å oppnå fellings-pH 4,0 kreves det for kitosan en dose på om lag 1,6 g/m³ syreløst kitosan og 5 ml HCl/m³. For å oppnå fellings-pH 4,0 kreves det en JKL-dose på ca. 4,0 g Fe/l. Det er forutsatt opplosning av marmor til 95 % av likevekt. Dette tilsvarer om lag 15 minutter oppholdstid (EBCT) i marmoren.
Tabell 8. Teoretisk beregnede verdier for korrosjonsparametrene ved ulike fellings-pH og CO₂-doser.

<table>
<thead>
<tr>
<th></th>
<th>0 mg CO₂/l</th>
<th>5 mg CO₂/l</th>
<th>10 mg CO₂/l</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td>Kalsium</td>
<td>Alkalitet</td>
<td>pH</td>
<td>Kalsium</td>
</tr>
<tr>
<td>Råvann</td>
<td>9.2</td>
<td>8.5</td>
<td>8.2</td>
<td>Kalsium</td>
<td>Alkalitet</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>10.9</td>
<td>14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.50</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fellings-pH 4,3</td>
<td>8.8</td>
<td>8.3</td>
<td>7.9</td>
<td>pH</td>
<td>Kalsium</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td>14.2</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.57</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fellings-pH 4,0</td>
<td>8.3</td>
<td>8.1</td>
<td>7.8</td>
<td>pH</td>
<td>Kalsium</td>
</tr>
<tr>
<td></td>
<td>11.9</td>
<td>16.1</td>
<td>19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>0.61</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fellings-pH 3,8</td>
<td>8.4</td>
<td>7.9</td>
<td>7.8</td>
<td>pH</td>
<td>Kalsium</td>
</tr>
<tr>
<td></td>
<td>14.1</td>
<td>17.9</td>
<td>22.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.64</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For den aktuelle råvannskvaliteten med felling ved pH 4 vil nødvendig dose CO₂ være 5,0 mg CO₂/l. I de etterfølgende kostnadsberegninger er det benyttet en dose på 6,0 mg CO₂/l. Det er benyttet en enhetspris på 2500 kr/tønn CO₂ fritt levert.

5.9.4 Marmorforbruk

Marmorforbruket styres av den mengde syre og CO₂ som settes til før filtreringen. Ved en fellings-pH på 4,0 og tilsats av 6 mg CO₂, vil kalsiummengden som tilføres rentvannet være om lag 14 mg Ca/l, tilsvarende 35 mg CaCO₃/l.

I tillegg vil det være et tap av finstoff som øker med hyppigheten på filterspylingene. Det er antatt et tap av 10 % finstoff ved felling med kitosan og 15 % finstoff ved felling med JKL. Dette gir et marmorforbruk på 38,5 mg CaCO₃/l og 40,2 mg CaCO₃/l ved bruk av henholdsvis kitosan og JKL. Det er benyttet en enhetspris på 600 kr/tønn CaCO₃ fritt levert.

5.9.5 Klor

Nødendig klorforbruk vil være avhengig av innholdet av organisk stoff i rentvannet. Felling med kitosan viser at en mindre andel av det organiskestoffet fjernes sammenliknet med JKL-felling slik at klorforbruket vil bli høyere.

5.9.6 Oppsummering kjemikaliekostnader

I tabell 9 og tabell 10 er det vist hvilke kjemikaliekostnader som må påregnes i de forskjellige fellingsalternativene. Totale kjemikaliekostnader, inklusive tap ved modning, er vist i en kommentar etter tabellene. Det er da tatt hensyn til mindre modningsvann ved kitosanfelling som følge av lengre filtersyklus.
Tabell 9. Kjemikaliekostnader ved felling med kitosan

<table>
<thead>
<tr>
<th>Kjemikalie</th>
<th>Doseringsmengde</th>
<th>Enhetspris</th>
<th>Kostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitosan</td>
<td>1,6 g kitosan/m³</td>
<td>150 kr/kg</td>
<td>0,240 kr/m³</td>
</tr>
<tr>
<td>Saltsyre</td>
<td>5,0 ml HCl/m³</td>
<td>2 300 kr/m³</td>
<td>0,011 kr/m³</td>
</tr>
<tr>
<td>CO₂</td>
<td>6,0 g CO₂/m³</td>
<td>2 500 kr/tonn</td>
<td>0,015 kr/m³</td>
</tr>
<tr>
<td>Marmor</td>
<td>55 g CaCO₃/m³</td>
<td>600 kr/tonn</td>
<td>0,033 kr/m³</td>
</tr>
<tr>
<td>Klor</td>
<td>0,4 g Cl/m³</td>
<td>3 000 kr/m³</td>
<td>0,008 kr/m³</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
<td>ca 0,300 kr/m³</td>
</tr>
</tbody>
</table>

Korrigert for tap av kjemikalier til modningsvann gir dette en enhetskostnad på 0,3 kr/m³ × 1,05 = 0,315 kr/m³.

Tabell 10. Kjemikaliekostnader ved felling med JKL (jernkloridsulfat)

<table>
<thead>
<tr>
<th>Kjemikalie</th>
<th>Doseringsmengde</th>
<th>Enhetspris</th>
<th>Kostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>JKL</td>
<td>4,0 g Fe/l</td>
<td>1200 kr/tonn</td>
<td>0,042 kr/m³</td>
</tr>
<tr>
<td>CO₂</td>
<td>6,0 g CO₂/m³</td>
<td>2 500 kr/tonn</td>
<td>0,015 kr/m³</td>
</tr>
<tr>
<td>Marmor</td>
<td>55 g CaCO₃/m³</td>
<td>600 kr/tonn</td>
<td>0,033 kr/m³</td>
</tr>
<tr>
<td>Klor</td>
<td>0,25 g Cl/m³</td>
<td>3 000 kr/m³</td>
<td>0,005 kr/m³</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
<td>0,095 kr/m³</td>
</tr>
</tbody>
</table>

Korrigert for tap av kjemikalier til modningsvann gir dette en enhetskostnad på 0,095 kr/m³ × 1,07 = 0,101 kr/m³.

5.9.7 Ombyggingsbehov

Ingen av anleggene har utstyr for dosering av fellingskjemikalier, men noen anlegg har doseringsanlegg for lut. Deler av lutanlegget kan benyttes til dosering av fellingskjemikalie. Alle anleggene har utstyr for CO₂ dosering. Anlegg for saltsyre og oppløsning av kitosan i syre finnes ikke på noen av de eksisterende anleggene.
6. Referanser

ILAB 2000. Toxicity testing and estrogenic effects of drainage water from a water treatment installation using ChitoClear (Primex chitosan) as floculating agent. Test species: Salmon juveniles (Salmo salar). Test reported 18.05.2000. ILAB Environmental Laboratory, Bergen.

