RAPPORT LNR 3982-99

Miljøvurdering av et uhellsutslipp av toluen til Glomma ved Sarpsborg
Norsk institutt for vannforskning

RAPPORT

Hovedkontor
Postboks 173, Kjelsås
0411 Oslo
Telefon (47) 22 18 51 00
Telefax (47) 22 18 52 00
Internet: www.niva.no

Sørlandsavdelingen
Postboks 25, Grimstad
Telefon (47) 37 29 50 55
Telefax (47) 37 04 45 13

Østlandsavdelingen
Sandvikaveien 41
2312 Oslo
Telefon (47) 62 57 64 00
Telefax (47) 62 57 66 53

Vestlandsavdelingen
Nordnesboder 5
5008 Bergen
Telefon (47) 55 30 22 50
Telefax (47) 55 30 22 51

Akvaplan-NIVA A/S
9015 Tromsø
Telefon (47) 77 88 52 80
Telefax (47) 77 88 05 09

Tittel
Miljøvurdering av et uhellsutsipp av toluen til Glomma ved Sarpsborg

Laperv. (for bestilling)
3982-99

Dato
11/1-99

Prosjekt nr.
Under nr.
O-99029

Sider
Pris
9

Forsatter(e)
John Arthur Berge

Fagområde
Miljøgifter i sjøvann

Distribusjon
Fri

Geografisk område
Østfold

Trykket
NIVA

Oppdragsgiver(e)
Borregaard Industries A/S

Oppdragsreferanse

Sammandrag
I forbindelse med et uhell ved Borregaards vanillinfabrikk i Sarpsborg den 13/12-1998 ble det ble sluppet ut ca. 1000 l toluen til Glomma. Utsippet fant sted over en periode på ca. 30 min. Vannføringen i Glomma var på det aktuelle tidspunkt ca. 450 m3/time. Ved homogen innblanding ville dette teoretisk gi en konsentrasjon av toluen på ca. 1 mg/l. Det er realistisk å tro at en i løpet av noen få timer-ett dagt hovedsakelig pga. fordampning vil miste en vesentlig del toluen til atmosfæren slik at gjennomsnittskonsentrasjon av toluen neppe vil overskrige ca. 0.15-0.5 mg/l. Grenseverdier for akutte effekter av toluen i akvatiske miljøer ligger for de fleste undersøkte organiser på over 1 mg/l, dvs. høyere verdier enn det som kan tenkes å oppstå etter full innblanding av utslippet med vannet fra resipienten. Det er derfor lite trolig at utslippet har hatt vesentlige akutte konsekvenser på vannlevende organiser i resipienten. Pga. rask fordampning, nedbrytning og forynning med annet vann i kystsone er det ingen grunn til å anta at utslippet vil få langsiktige konsekvenser for organismer i Glomma og dens munningsområde.

Fire norske emneord
1. Toluene
2. Spill
3. Effects
4. Glomma

4. Fire engelske emneord
1. Toluene
2. Spill
3. Effects
4. Glomma

John Arthur Berge
Prosjektleder

ISBN 82-577-3578-7

Horn Braaten
Forskningssjef
Miljøvurdering av et uhellsutslipp av toluen til Glomma ved Sarpsborg
Forord

I forbindelse med et episodisk utslipp av toluen ved vanillinfabrikken til Borregaards i Sarpsborg den 13/12-1998 ble NIVA bedt om å vurdere eventuelle miljøeffekter i Glomma og dens munningsområde.

Oslo, 11/1 1999

John Arthur Berge
Innhold

1. Innledning 5
2. Toluens fysiske kjemiske egenskaper 5
3. Forventede konsentrasjoner i resipienten 6
4. Giftighet av toluen i akvatisk miljø og vurdering av mulige effekter 7
5. Konklusjoner 8
6. Referanser 9
1. Innledning

I forbindelse med et episodisk uhellsutslipp av toulen ved Borregaards vanillinfabrikk i Sarpsborg den 13/12-1998 rant det ut 3000 l av en toulen/vann løsning til Glomma. Løsningen rant ut i elven som et overflateutslipp. Konsentrasjonen av toulen i løsningen tilsvarer et utslipp på ca. 1000 l toulen. Utslippet fant sted over en periode på ca 30 min. Vannføringen i Glomma var på det aktuelle tidspunkt ca. 450 m3/time.

2. Toluens fysisk kjemiske egenskaper

Tabell 1. Utvalgte fysisk kjemiske egenskaper til toulen (WHO, 1985)

<table>
<thead>
<tr>
<th>Egenskap</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smeltepunkt</td>
<td>-95 °C</td>
</tr>
<tr>
<td>Kokpunkt</td>
<td>110.6 °C</td>
</tr>
<tr>
<td>Tettet (20 °C)</td>
<td>0.8669</td>
</tr>
<tr>
<td>Damptrykk (25 °C)</td>
<td>28.7 mmHg</td>
</tr>
<tr>
<td>Log oktanolvann fordelingskoeffisient</td>
<td>2.69</td>
</tr>
<tr>
<td>Løsighet i ferskvann (25 °C)</td>
<td>535 mg/l</td>
</tr>
<tr>
<td>Løsighet i sjøvann (25 °C)</td>
<td>380 mg/l</td>
</tr>
</tbody>
</table>

Log oktanolvann fordelingskoeffisient for toulen (Tabell 1) tilsier lite til moderat bioakkumulering (WHO, 1985). Biokonsentrasjonsfaktor (BCF) for fisk er oppgitt til 45 og en må følgelig regne med ca. 50 ganger høyere konsentrasjon i fisk enn i vann (Løke, 1991) ved eksponering over lang tid. WHO (1985) refererer til undersøkelser som tyder på at halveringstiden for toulen i fisk (Anguilla japonica) er kort (1.4 dager) og konkluderer med at toulen ikke vil oppkonsentreres i næringskjeden.
3. Forventede konsentrasjoner i resipienten

Dersom de 1000 l toluen som ble sluppet ut blandes homogent inn i den mengde Glomma vann som passerer utslippspunktet i løpet av 30 min gir dette en teoretisk gjennomsnittlig konsentrasjon på ca. 1 mg/l i Glomma. Før en slik full innblanding finner sted antar en at en betydelig del av toluenen vil ha fordampet til atmosfæren. I sterkt omrørt vann (1 m dypt) er det rapportert en halveringstid for toluen på ca. 0.5 time (Buikema and Hendricks, 1980). Undersøkelser i en mindre elv i USA i en vintersituasjon antyrer en halveringstid for toluen på 4-5 timer basert på fordampning alene, og i tillegg vil også bakteriell nedbrytning bidra til en redusert konsentrasjon (Kim et al. 1995, Cohen et al. 1995).

En antar derfor at mer enn 50% av toluenen vil være fordampet eller nedbrutt før vannmassene når Glommas munningsområde. Dette skulle ved full innblanding Glomma vann (dvs den mengde vann som passerte bedriften i løpet av utslipps perioden) tilsli en gjennomsnittskonsentrasjon som ikke overstiger ca. 0.5 mg/l.

I Glommas munningsområde og i Hvaler estuariet vil toluenholdig Glomma vann i hovedsak legger seg opp på det salte kystvannet men også blandes noe med sjøvann slik at toluenkonsentrasjonen blir redusert tilsvarende. I tillegg vil en få noe innblanding med Glomma vann som ikke inneholder toluen. I selve Hvaler estuariet vil forventet innblanding med sjøvann i det toluenholdige Glomma vann omfatter reduserer konsentrasjonen ytterligere til ca. 30%. Dette skulle tilsli at den initiale gjennomsnittlige utgangskonsentrasjonen av toluen i Glommas munningsområde sannsynligvis ikke har overskredet et nivå tilsvarende ca. 0.15 mg/l. Ytterligere fordampning vil over tid redusere konsentrasjonen videre. Basert på forøk i modelløkossystem er det for en vintersituasjon beregnet at oppoldstiden for toluen i et temperert kystområde (Narragansett bay) pga. fordampning vil være ca 1 uke, mens den sommertid vil kunne være ca 1 dag (Wakeham et al. 1985). Basert på erfaringer fra de samme forøk (Wakeham et al. 1985) må en anta at en helt ubetydelig mengde toluen vil bli adsorbert til partikulært materiale og havne i sedimentene i Glomma og dens munningsområde.

En totalvurdering tilsier at en må forvente at enkelte gruntvannsområde i Hvaler estuariet vil kunne bli eksponert for toluenholdig vann. Som et realistisk verste tilfelle antas at hovedmengden av dette vannet vil ha en konsentrasjon av toluen som ikke overskrider ca. 0.15-0.5 mg/l.
4. Giftighet av toluen i akvatisk miljø og vurdering av mulige effekter

Utslippet av toluen var kortvarig (0.5 time) og det er derfor naturlig å sammenligne de konsentrasjoner som kan tenkes å opptre i resipienten med grenser for akutt giftighet. US Environmental Protection Agency (EPA) opererer i deres vannkvalitetskriterier med grenseverdier for akutt effekter i akvatisk miljø på henholdsvis 17.5 mg/l (ferskvann) og 6.3 mg/l (sjøvann). Dette er langt høyere konsentrasjoner enn det som i dette tilfelle kan tenkes å opptre etter full innmåling av utslippet med vannet fra resipienten (0.15-0.5 mg/l).

Også andre sammenstillinger av toksisitetdata for toluen (Buikema and Hendrics, 1980, WHO, 1985) tyder på at de konsentrasjoner, som kan tenkes å opptre i hovedmengden av vann påvirket av utslippet, er lavere enn det som gir akutt effekt på flertallet av de organismer som en har toksisitetdata for.

Også nyere litteratur fra 90-tallet (tabell 1) tyder på at toluenkonsentrasjonen i hovedvannmassene forårsaket av utslippet til Glomma ligger under det som i tester har gitt akutte toksiske effekter.

Forsøk med enkelte organismer som Salvelinus sp. (Black et al. 1982 referert i Laake et al. 1991), Crassostrea gigas (Buikema and Hendrics, 1980), viser akutte effekter (LC50, 2-4 dager) av toluen på et nivå (henholdsvis 0.02, 0.17 mg/l) som ligger godt under det som kan tenkes å være forårsaket av utslippet. Imidlertid vil varigheten av eksponeringstiden være relativ kort. For faststilte organismer, som vannmassene passerer i selve Glomma, vil eksponeringstiden være ca 0.5 time.

<table>
<thead>
<tr>
<th>Art</th>
<th>Effekt målt</th>
<th>Konsentrasjon av toluene</th>
<th>Referanse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiskelarve (Pimephales pormaeles), Fathead minnow</td>
<td>LC50¹, 4 dager</td>
<td>17.03 mg/l</td>
<td>Marchini et al. 1992</td>
</tr>
<tr>
<td>Fiskelarve (<25 timer gammel) (Pimephales pormaeles), Fathead minnow</td>
<td>LC50¹, 7 dager</td>
<td>9.39 mg/l</td>
<td>Marchini et al. 1992</td>
</tr>
<tr>
<td>Juvenil fisk (28-22 dager gammel) (Pimephales pormaeles), Fathead minnow</td>
<td>LC50¹, 4 dager</td>
<td>36.2 mg/l</td>
<td>Marchini et al. 1992</td>
</tr>
<tr>
<td>Fiskelarve (<25 timer gammel) (Pimephales pormaeles), Fathead minnow</td>
<td>NOEC², 7 dagers test på overlevelse og vekst</td>
<td>5.44 mg/l</td>
<td>Marchini et al. 1992</td>
</tr>
<tr>
<td>Fiskelarve (<25 timer gammel) (Pimephales pormaeles), Fathead minnow</td>
<td>LOEC³, 7 dagers test på overlevelse og vekst</td>
<td>8.04 mg/l</td>
<td>Marchini et al. 1992</td>
</tr>
<tr>
<td>Hjuldyr (Brachionus calyciflorus)</td>
<td>LC50¹, 1 dag</td>
<td>113.3 mg/l</td>
<td>Ferrando and Andreu-Moliner, 1992</td>
</tr>
<tr>
<td>Hjuldyr (Brachionus plicatilis)</td>
<td>LC50¹, 1 dag</td>
<td>552.6 mg/l</td>
<td>Ferrando and Andreu-Moliner, 1992</td>
</tr>
</tbody>
</table>

¹LC50=50% dødelighet ved akutt av forsket
²NOEC=no observed effect concentration
³LOEC=lowest-observed-effect concentration
5. Konklusjoner

Dersom de 1000 l toluen som ble sluppet ut i forbindelse med uhellet, blandes homogent inn i den mengde Glomnavann som passerte utslipspunktet i løpet utslippsperioden (30 minutter) gir dette en gjennomsnittlig konsentrasjon av toluen på ca. 1 mg/l. Transport av toluen fra vann til atmosfære antas å være relativ rask (halveringstid: timer-dager). Det er realistisk å tro at en pga. fordampning, nedbrytning og fortryning, i løpet av noen få timer til-et døgn vil oppnå en gjennomsnittskonsentrasjon av toluen som ikke overskrider ca. 0.15-0.5 mg/l. En antar at en ubetydelig mengde toluen vil bli adsorbert til partikulært materiale og havne i sedimentene i Glomma og dens munningsområde.

Grenseverdier for akutte (48 –96 timer) effekter av toluen på organismer i akvatiske miljøer ligger for de fleste undersøkte organismer på over 1 mg/l (US EPA opererer i deres vannkvalitetskriterier med grenseverdier for akutte effekter i ferskvann og sjøvann på henholdsvis 17.5 mg/l og 6300 mg/l). Dette er høyere verdier enn det som kan tenkes å oppstå etter full innblanding av utslippet med vannet fra resipienten (0.15-0.5 mg/l). Dette betyr at det er lite trolig at utslippet har hatt vesentlige konsekvenser på vannlevende organismer i resipienten.

På grunn av den korte oppholdstiden (fordampning, nedbrytning) og fortryning er det lite trolig at utslippet vil få langsiktige konsekvenser for organismer i Glomma og i dens munningsområde.
6. Referanser

