Oppdragsgiver | Statens forurensningstilsyn
Deltakende institusjon | NIVA

Tiltaksorientert overvåking i Orkla 1995

TA 1364/1996
NIVA | Norsk institutt for vannforskning
Rapportens tittel:
Tiltaksorientert overvåking i Orkla, 1995

(Overvåkingsrapport nr. 670/96) TA 1364/1996

Dato: 30.4.1996
Trykket: NIVA 1996

Faggruppe: Vassdrag

Forfatter(e):
Grande, Magne
Romstad, Randi

Geografi:
Sør-Trøndelag

Oppdragsgiver:
Statens forurensningstilsyn (SFT)

Oppdrag.

Ekstrakt:
Vannkvalitet og biologiske forhold i Orkla er undersøkt spesielt med hensikt på å overvåke effekter av reguleringsinngrep og tungmetallforurensninger fra gruver. De nedre 15 km av Orkla fra Svorkmo har noe høye konsentrasjoner av kobber og sink (7,5 og 23 µg/l middelverdier), men forholdene har bedret seg gjennom de siste årene. Det er avtagende effekter på begroing og bunndyr og de biologiske forhold er nå tilnærmet normale. I Orkla er det i 1995 ikke påvist negative effekter av tungmetaller overfor biologiske forhold ved Stai ca 5 km nedenfor samløpet med Ya. Kjemiske undersøkelser er i 1995 ikke utført i denne del av vassdraget.

4 emneord, norske
1. Forurensningsovervåking
2. Orkla 1994
3. Gruveforurensninger
4. Vassdragsreguleringer

4 emneord, engelske
1. Pollution monitoring
2. Orkla river
3. Mining pollution
4. Hydro Power Regulation

Prosjektleder
Magne Grande

For administrasjonen
Dag Berge

ISBN 82-577-3079-3
O-800210

TILTAKSORIENTERT OVERVÅKING I ORKLA 1995

Oslo, 30. april 1996

Saksbehandler: Magne Grande
Medarbeidere : Sigbjørn Andersen
 Pål Brettum
 Egil R. Iversen
 Randi Romstad
FORORD

Undersøkelsen er utført etter oppdrag av Statens forurensningstilsyn (SFT), og inngår i Statlig program for forurensningsovervåking som administreres av SFT. Undersøkelsen finansieres av Kraftverkene i Orkla, Grueprosjektet og SFT.

Oslo, 30. april 1996

Magne Grande
INNHOLD

FORORD ... 2
1. FORMÅL - KONKLUSJONER - TILRÅDNINGER .. 4
 1.1 Formål .. 4
 1.2 Konklusjoner .. 4
 1.3 Tilrådninger .. 5
2. INNLEDDNING .. 6
 2.1 Områdebeskrivelse ... 6
 2.2 Vannbruk, forurensninger og vassdragsreguleringer 8
 2.3 Andre undersøkelser ... 8
 2.4 Målsetting og program ... 9
3. RESULTATER ... 9
 3.1 Meteorologi og hydrologi .. 9
 3.2 Fysisk-kjemiske undersøkelser ... 12
 3.2.1 Stasjoner, prøvetaking og analyser ... 12
 3.2.2 Resultater ... 12
 3.3 Biologi .. 22
 3.3.1 Begroing ... 22
 3.3.2 Bunndyr .. 32
 3.3.3 Fisk .. 37
4. LITTERATUR ... 39
5. VEDLEGG .. 42
1. FORMÅL - KONKLUSJONER - TILRÅDNINGER

1.1 Formål

Hovedhensikten med overvåkingsundersøkelsene i Orkla er å holde løpende kontroll med vannkvalitet og generelle biologiske forhold slik at eventuelle utviklingstendenser kan avdekkes og nødvendigheten av tiltak vurderes. Av særlig interesse er det å belyse forekomst og effekter av tungmetaller fra gruveområder, samt eventuelle effekter av de gjennomførte vannkraftsreguleringer.

1.2 Konklusjoner

Orkla har fortsatt noe høye konsentrasjoner av metallene kobber og sink fra Svorkmo og videre nedover i vassdraget. I 1995 var middelverdiene ved Vormstad henholdsvis 7.5 og 23 µg/l (1994: 7.9 og 26 µg/l) for disse metallene.

Tungmetallkonsentrasjonene har avtatt betydelig i Orkla nedenfor Svorkmo i de siste 12 år, og dette har ført til rikere plantevekst og økt produksjon av bunndyr. Bedringen skyldes tiltak ved Løkken Verk for å redusere forurensningstiførslerne, driftsendringer, samt muligens naturlige årsaker. Utjevning av vannføringene i forbindelse med reguleringen har også hatt betydning. Videre føres nå Raubekken inn på kraftverkstunnellen hvor en viss utfelling av metaller kan finne sted før vannet kommer ut i Orkla.

I Orkla ved Stai i Kvikne, ca 5 km nedenfor samløpet med Ya er det hverken i 1995 eller tidligere rapportert om eller observert skader på fisk, bunndyr eller begroeng.

Erosjon i Falningsjøen som følge av reguleringen resulterte tidligere i tilsamming av Orkla nedover forbi Berakk og Rennebu. De siste 9 år har dette ikke forekommet.

Forøvrig har Orkla en god vannkvalitet med høy pH (7.3-7.5) og høyt innhold av kalsium. Dette fører til et rikt sammensatt plante- og dyreliv og god fiskeproduksjon.

I de senere år er det observert et øket artsantall med høyere innslag av blågrønnalger i begroeningen på de fleste undersøkte lokaliteter i vassdraget. Dette kan ha sammenheng med utjevnet vannføring som følge av regulering. Denne utvikling ble ikke påvist hverken i 1994 eller 1995. Årlige variasjoner betyr at slike effekter bare kan manifesteres over lengre tid.

Det oppsto i 1984 fiskedød i forbindelse med manøvrering av Svorkmo kraftverk. En mindre episode ble også registrert i 1985. Dette skyldtes opphopning og deretter utskylland av

1.3 Tilrådninger

Alle aktuelle større kraftverksutbygginger i Orklavassdraget er gjennomført. Tungmetall-konsentrasjonene i de nedre deler av Orkla har avtatt i de senere år, men ligger fortsatt høyere enn naturlig bakgrunnsnivå. Tungmetallavrenningen fra gruveområdene i Kvikne, Meldal og Løkken bør fortsatt holdes under oppsikt.

Det bør vurderes om det kan gjennomføres tiltak for å redusere tilførslene av kobber til Ya, eventuelt øke vannføringen.

Vannføringen i Orkla gjennom Kvikne kan ikke reduseres ytterligere uten at økende kobber-konsentrasjon kan gi skadevirkninger på fisket.

De påviste endringer som har skjedd med begroingen i vassdraget er et forhold som fortsatt bør oversvåkes.

Fordi Orkla hører til blant landets viktigste laksevassdrag, kan forurensninger med effekter på fisk få alvorlige konsekvenser. Det har vært gjennomført en rekke tiltak i Løkkenområdet for å redusere tilførslene av metallater til vassdraget. Det er imidlertid ikke sikkert at forholdene ennå har stabilisert seg. Dette, sammen med mulige langtidseffekter av reguleringen, er viktige grunner for fortsatt overvåking av Orkla. Overvåkingsprogrammet for Orkla er også meget viktig som supplement til kontrollprogrammet for Løkken for å vite hvor tiltak skal settes inn om skadevirkninger skulle inntræffe. Orkla er også det eneste større vassdrag i Midt-Norge som har vært under kontinuerlig overvåking siden 1980 og det er derfor sterkt ønskelig å fortsette denne overvåkingen som en referanse også for andre vassdrag.
2. INNLEDNING

2.1 Områdebeskrivelse

Orkla har sitt utspring ved Store Orkelsjøen i Oppdal kommune (fig. 1) og munner ut i Orkangerfjorden, en fjordarm til Trondheimsfjorden. I sitt løp renner den gjennom kommunene Tynset i Hedmark, og Rennebu, Meldal og Orkdal i Sør-Trøndelag. Elva er ca 170 km lang og har et nedbørfelt på ca 2700 km².

En oversikt over arealfordelingen er vist i tabell 1. Lengst sør i nedbørfeltet er det et fjellviddelandskap, ca 1000 m.o.h. Nordover går feltet over i et ås-kollelandskap. Dalen, som på strekningen Nåvårdal- Berkåk er svært trang, vider seg ut etter hvert. Det er adskillig skog her, og gode jordbruksområder i dalbunnen.

Bosettingen er stort sett konsentrert langs elva ved Kvikne, Berkåk, Rennebu, Meldal, Svorkmo og Orkanger. Det er få innsjøer i nedbørfeltet, og samtlige er lokalisert til Orklas sidevassdrag.

Dalbunnen vider seg ut ved Meldal hvor elva blir bredere og strømforløpet roligere. De største bielvene Orkla tar opp er Ya, Inna, Byna, Grana, Reisa og Svorka.

Berggrunnen i Orklas nedbørfelt er hovedsakelig sedimentære bergarter fra kambro-silur. Disse inneholder kalk og er relativt lett nedbrytbare. Enkelte steder er det innslag av tungt nedbrytbare eruptiver. En rekke steder i nedbørfeltet finnes forekomster av sulfidimalmer og det har vært betydelig gruvevirksomhet i området.

Under siste istid sto havet ca 200 m over nåtidens nivå. Over denne grensen (marine grense) består løsmassesene av sand og grusholdig morene. Under den marine grense (lavere enn Meldal) er det mye løsmateriale som ble avsatt av istidens elver i marint miljø.
Fig. 1 Orklavassdraget, nedbørfelt og prøvetakingsstasjoner.
Tabell 1. Arealfordeling i Orklas nedbørfelt

<table>
<thead>
<tr>
<th>Tettsted</th>
<th>Dyrket</th>
<th>Skog</th>
<th>Innsjø</th>
<th>Annet (fjell, myr) etc</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>km²</td>
<td>8.1</td>
<td>108</td>
<td>1187</td>
<td>31</td>
<td>1387</td>
</tr>
<tr>
<td>%</td>
<td>0.3</td>
<td>4</td>
<td>43.6</td>
<td>1.1</td>
<td>51</td>
</tr>
</tbody>
</table>

2.2 Vannbruk, forurensninger og vassdragsreguleringer

I Bruksinteresser

Forurensninger

Vannet i Orkla er fra naturens side svakt basisk og har et høyt innhold av elektrolytter (Ca, Mg etc.). Orklavassdraget er belastet med tungmetaller fra nedlagt gruveindustri, hvorav kan nevnes Kvikne Kobbegraver i Ya's nedbørfelt, Undal Verk i Skuamas nedbørfelt og Dragset Verk i Vorma's nedbørfelt og tilsist Løkken Gruber med avrenning til Raubekken/Svorka. Den sistnevnte betyr også mest i forurensningssammenheng. Forøvrig er forurensningene av beskjedent omfang, og Orkla er lite belastet med planteneringsstoffene nitrogen og fosfor.

Vassdragsreguleringer

Grana kraftverk ble satt i drift 1. mai 1982.

2.3 Andre undersøkelser

Det har tidligere vært foretatt en rekke undersøkelser av Orklavassdraget. En oversikt over en del arbeider i den forbindelse finnes i litteraturlisten bak i denne rapporten. Undersøkelsene har spesielt hatt tilknytning til fiskeforhold i forbindelse med forurensninger og vassdragsreguleringer, men også bruken av vassdraget som resipient og andre brukerinteresser har vært undersøkt.
2.4 Målsetting og program

Prøvetaking og plassering av prøvetakingsstasjoner er fastsatt i samråd med Statens forurensningstilsyn (SFT). Det er lagt vekt på å plassere stasjonene i de deler av vassdraget som er eller kan bli utsatt for størst belastning av forurensninger. Fra tidligere undersøkelser av Orkla (Grande et al. 1979) er forholdene i vassdraget i hovedtrekken kjent. Flere av de valgte stasjonene er derfor også identiske med de som tidligere er anvendt. I 1987 ble antall stasjoner for fysisk/kjemisk prøvetaking noe redusert (avsn. 3.2.1). I 1994 ble en ytterligere reduksjon foretatt. Stasjonsplasseringen fremgår av figur 1 og vedlegg 1.

3. RESULTATER

3.1 Meteorologi og hydrologi

I fig. 2 er gjengitt temperatur og nedbørdata for 1995 fra Orkla's nedbørfelt. Da den meteorologiske stasjon Seter i Kvikne ble nedlagt i januar 1989 er nedbør- og temperaturdataene nå fra Berkåk (Lyngholt). Tallene er sett i relasjon til nedbørmalere og temperaturnormaler fra Berkåk.

Året var temperaturmessig karakterisert ved litt høyere temperaturer i januar-april og september-oktober enn normalt. I de øvrige måneder var temperaturen omtrent lik eller litt under normalen. Avvikene fra det normale var imidlertid ikke særskilt store i noen måned.

Nedbøren var høyere enn normalen i månedene januar-mai. Spesielt hadde april store nedbørmengder i forhold til det normale. Spesielt lite nedbør var det i september.

Fig. 3 viser daglig vannføring ved vannmerke 1936 Syrstad i Meldal, 1995. Fig. 4 viser 7 døgns midler for 1995.

Som vanlig etter reguleringene var vannføringen relativt høy i vintermånedene (20-40 m³/s). Det var to markerte toppere i vårmånedene, én i begynnelsen av mai og én i månedsskiftet mai-juni som var spesielt høy. Vannføringen var da på det høyeste 481 m³/s (2. juni). Forøvrig var vannføringen spesielt lav i september og begynnelsen av oktober.

3.2 Fysisk-kjemiske undersøkelser

3.2.1 Stasjoner, prøvetaking og analyser

I vedlegg 1 er oppført de stasjoner som ble benyttet ved innsamlingen av de kjemiske og biologiske prøver. Antallet stasjoner for vannprøvetaking ble noe redusert i 1987 ved at Brattset (st. 3), Hol (st. 4) og Bjørset (st. 5) gikk ut. Videre ble prøvetakingsfrekvensen for endel parametere redusert til det halve, dvs. at disse bare ble analysert annen hver måned (Vedlegg 3). Fra og med 1994 ble også de tre øverste stasjonene Yset (1), Ya (1T) og Stai (2) tatt ut. Videre ble prøvetakingen ved Rønningen (6) flyttet til Bjørset (5). Her har en Orklas samlede vannføring før kraftverkstunellen til Svorkmo kraftverk og lokaliten vil derfor være en bedre referanse for Vormstad. Påvirkningen på strekningen Bjørset-Svorkmo blir imidlertid ikke fanget opp. Prøvene blir tatt fra stranden på plastflasker. De samles inn i løpet av en dag på hele elvestrekningen og blir snarest mulig sendt til analyselaboratoriet ved Kjøtt- og næringsmiddelkontrollen, Trondheim, og NIVA for analyse (vedlegg 2 og 3). Tungmetallanalysene for Bjørset og Vormstad er i 1995 utført med ICP-MS av NILU.

3.2.2 Resultater

Surhetsgrad, pH

Vannets surhetsgrad reguleres av naturgitte forhold og sur nedbør. Optimalt betingelser for vannorganismer og bruk av vann har en som regel når pH ligger mellom 6 og 8.

Eutrofiering og næringssalter

Næringssalter, som fosfor og nitrogen, tilføres vassdraget naturlig fra nedbørfeltet og fra jordbruk, husholdning og industrivirksomhet. Økede tiltak vil føre til økt produksjon av planter og dyr (eutrofiering).

Svingningene i middelverdiene for P og N kan for endel skyldes tilfeldigheter på grunn av relativt få årlige analyser (4).
Den anvendte klassifisering av forurensningsgrad er avhengig av på hvilket nivå bakgrunnsverdiene fastsettes. Det knytter seg en viss usikkerhet til dette når det gjelder Orkla hvor jordsmonn og berggrunn er næringsrike fra naturens side. Det er små variasjoner i bakgrunnsverdiene som skal til for å andre klassifisering i det system som er anvendt.

Orkla har fra naturens side et relativt høyt innhold av bl.a. kalsium. Dette gir meget gode livssettinger for planter og dyr og er hovedårsaken til den frodigheten som både planter og dyr oppviser i vassdraget (se kap. 3.3).

Organisk stoff

Organisk stoff, særlig i form av humusstoff, tilføres naturlig fra nedbørfeltet og fra menneskelig virksomhet som jordbruk, husholdning og industri. I stilleflytende elver og innsjøer kan høyt innhold av organisk stoff føre til oksygensvinn. Organisk stoff kan ha positiv effekt ved å binde og inaktivere giftige tungmetaller.

Verdiene for TOC og farge er stort sett middels høye og på et nivå en kan forvente ut fra nedbørfeltets naturlige forutsetninger. Enkelte deler av nedbørfeltet har et betydelig innslag av myr som gir grunnlag for et visst humusinnhold i vannet. Tilstands klassen blir for begge stasjonene II, dvs. "mindre god", og forurensningsgraden 1, dvs. "lite forurenset".

Suspenderte partikler - slamtransport

Turbiditetstallene gir informasjon om mengden av svevende partikulært stoff f.eks. fra naturlig erosjon, sprengningsarbeider etc. Partikler kan virke negativt inn på vannet ved å gi nedsatt sikt, tilslamming av bunnmateriale med effekter på planter og dyr. De kan også ha en positiv effekt ved å binde og inaktivere tungmetaller og andre miljøgifter.

På Vormstad har det vært en klar nedgang i turbiditetsverdiene siden begynnelsen av 1980 årene. Dette skyldes nok for en vesentlig del at tilførslene til Orkla via Raubekken er redusert. I de fem siste år har verdiene stabilisert seg på omkring 0.5 FTU, hvilket er lavt.
Metaller

Metaller kan tilføres vassdraget fra naturlige kilder og industri som f.eks. gruvevirksomhet. De er mer eller mindre giftige for vannorganismer og enkelte kan akkumuleres f.eks. i fisk til nivåer som kan utgjøre helserisiko ved konsum.

Avrenning fra gruveområder er fortsatt det viktigste forurensningsproblem i Orkla, selv om gruvedriften nå er nedlagt overalt. Det er derfor lagt stor vekt på tungmetallanalyser. Alle resultatene er oppført i vedlegg 3 og 4. I fig. 6-8 er fremstilt utviklingen i metallkonsentrasjonene i Raubekken og i Orkla ved Rønningen/Bjørset og Vormstad 1975-95.

De mest berørte strekninger i selve Orkla er i øvre del i Kvikne mellom Yset og Storeeng samt nedenfor Svorkmo. I Kvikne er det tilførsler av kobber fra de gamle Kvikne kobbergruver som har avrenning gjennom Storbekken til Ya. I denne del av vassdraget har det imidlertid ikke vært foretatt målinger siden 1993.

Om en regner ut fra konsertrasjoner av metaller i Orkla ved Vormstad kan den årlige transport i 1995 settes til ca 15, 49 og 0,1 tonn for kobber, sink og kadmium henholdsvis. Dette var omtrent som i 1994 (1994: 16, 55 og 0,08 tonn).

Tabell 2 Kobber- og sinkkonsentrasjoner (årsmiddel) i Raubekken og i Orkla ved Vormstad (μg/l). Fortynningsfaktor er konsertrasjoner i Raubekken: konsentrasjoner i Orkla ved Vormstad.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Raubekken</th>
<th>Orkla v/Vormstad</th>
<th>Fortynningsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu</td>
<td>Zn</td>
<td>Cu</td>
</tr>
<tr>
<td>År</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977-78</td>
<td>3420</td>
<td>7350</td>
<td>70</td>
</tr>
<tr>
<td>1980</td>
<td>3310</td>
<td>6220</td>
<td>67</td>
</tr>
<tr>
<td>1981</td>
<td>3020</td>
<td>5420</td>
<td>79</td>
</tr>
<tr>
<td>1982</td>
<td>3510</td>
<td>6020</td>
<td>48</td>
</tr>
<tr>
<td>1983</td>
<td>1860</td>
<td>3020</td>
<td>31</td>
</tr>
<tr>
<td>1984</td>
<td>2590</td>
<td>4450</td>
<td>26</td>
</tr>
<tr>
<td>1985</td>
<td>2130</td>
<td>3630</td>
<td>19</td>
</tr>
<tr>
<td>1986</td>
<td>2490</td>
<td>3940</td>
<td>23</td>
</tr>
<tr>
<td>1987</td>
<td>1840</td>
<td>3430</td>
<td>15</td>
</tr>
<tr>
<td>1988</td>
<td>2150</td>
<td>3740</td>
<td>21</td>
</tr>
<tr>
<td>1989</td>
<td>1550</td>
<td>2550</td>
<td>21</td>
</tr>
<tr>
<td>1990</td>
<td>1510</td>
<td>2660</td>
<td>16</td>
</tr>
<tr>
<td>1991</td>
<td>1500</td>
<td>2860</td>
<td>13</td>
</tr>
<tr>
<td>1992</td>
<td>1150</td>
<td>2880</td>
<td>12</td>
</tr>
<tr>
<td>1993</td>
<td>800</td>
<td>2820</td>
<td>7,5</td>
</tr>
<tr>
<td>1994</td>
<td>730</td>
<td>2930</td>
<td>7,9</td>
</tr>
<tr>
<td>1995</td>
<td>680</td>
<td>2380</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Fig. 8a Kobber og sinkkonsentrasjoner i Orkla ved Vormstad 1974-1995. Tidsveide middelverdier.

Fig. 8b Kobber og sinkkonsentrasjoner i Orkla ved Vormstad 1974-1995. Enkeltverdier.
3.3 Biologi

3.3.1 Begroing

Metoder

Betegnelsen begroing omfatter i hovedsak fastsittende bakterier, sopp, alger og moser. Ved å være bundet til et vaksenhet vil begroingen avspeile vaksenhetets fysisk/kjemiske karakter og integrere denne påvirkningen over tid.

Ved befaringen 28-29/9 1995 ble det samlet inn prøver av begroingen ved åtte stasjoner i vassdraget. Ved prøvetakingen ble ulike begroingselementet samlet inn hver for seg og mengdemessig forekomst av hvert element ble angitt i form av dekningsgrad som er en subjektiv vurdering av hvor stor prosent av elveleiet som dekkess av vedkommende element.

I fig. 9 og vedlegg 5 er det gitt en sammenstilling av de viktigste begroingselementene og deres dekningsgrad. Dekningsgraden er gitt ut fra følgende skala:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>100-50% av bunnarealet dekket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>50-25%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25-12%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12-5%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td><5%</td>
</tr>
</tbody>
</table>

Det innsamlede materiale ble fiksert i felt og bragt til laboratoriet for videre analyse. Artsliste er gitt i vedlegg.
Fig. 9 Sammenstilling av de viktigste begroingselementene og deres dekningsgrad - Orkla 1995.
Stasjon 1, Yset

Prøvene ble tatt i området ved terskel ca. 100 m oppstrøms bro, i et småstrykende parti med substrat av store og mellomstore stein, \(t = 3.7 \, ^\circ \text{C} \). Vannstanden var lav og vannføringen liten.

Begroingen var dominert av blågrønnalgen *Phormidium autunnale* og grønnalgen *Oedogonium c.* Rentvannsformer som grønnalgene *Zygmena b* og *Bulbochaeae* sp., var tilstede i begroingen. Mosen *Blindia acuta* som regnes som en god indikator på næringsfattig vann, hadde som tidligere en godt utviklet forekomst. Artssammensetningen var stort sett som tidligere år. Det ble ikke observert arter som indikerer tilførsel av næringsalter eller løst organisk materiale.

Fig. 10 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 1, Yset.
Stasjon 1t, Ya

Prøvene ble tatt ca. 100-150 m oppstrøms bro over riksveien i et jevnt strykende parti med substrat av mellomstore og store steiner, t = 3.4 °C. Vannstanden var lav og vannføringen liten.

Som tidligere år var det lite synlig begroing bortsett fra mosen Blindia acuta, som foretrekker vann med lavt næringsinnhold og som synes å være metalltolerant. Artsantallet var lavt og samfunnet var tydelig påvirket av metallforurensning.

Fig. 11 Artsantall for grønn- og blågrønnalger for årene 1980-95. Stasjon 1t, Ya.
Stasjon 2, Stai

Prøvene ble tatt på vestsiden, ca. 400 m nedstrøms Stai bro, i et stilleflytende parti med substrat av mellomstore steiner, småstein og grus, t = 4,5 °C. Vannstanden var lav og vannføringen liten.

Fig. 12 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 2, Stai.
Stasjon 3, Brattset

Prøvene ble tatt i et parti med stilleflytende vann, rett oppstrøms tilløpet fra sideelv. Substrat av mellomstore og store stein, t = 5.6 °C. Vannstanden var lav og vannføringen liten.

Begroingen var som i 94 helt dominert av kiselalgen *Tabellaria flocculosa*, som har en vid toleranse for ulike vanntyper. Arten finnes overalt og får ofte masseforekomst i humøst vann. Arter som indikerer lavt innhold av næringssalter var tilstede, og artsantallet var omtrent som tidligere år. Forurensningseffekter ble ikke påvist.

Fig. 13 Artsantall grønn- og blågrønnalger i årene 1980-95. Stasjon 3, Brattset.
Stasjon 4, Hol

Prøvene ble tatt ca. 200-250m oppstrøms hengbro i et jevnt småstrykende parti med substrat av store og mellomstore stein, $t = 6.4 \, ^\circ C$. Både vannføring og vannstand var normal.

![Diagram av antall arter fra 1980 til 1995](image)

Fig. 14 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 4, Hol.
Stasjon 5, Bjørset (Meldal)

Prøvene ble tatt på vestsiden ca. 400 m oppstrøms bro, i jevnt strykende og tildels kraftig strømmende vann med substrat av små og mellomstore stein, t = 5.5 °C.

Begroingen var som tidligere relativt svakt utviklet og hadde i hovedtrekk de samme begroings-elementene som før. Rentvannsformer som mosen Blindia acuta og grønnalgen Zyglena b var som i 94 tilstede i begroingen. Arter som indikerer forurensning ble ikke observert.

Fig. 15 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 5, Bjørset (Meldal).
Stasjon 6, Rønningen

Prøvene ble tatt ca. 200 m oppstrøms campingplassen i et jevnt strykende parti med substrat av store og mellomstore stein, t = 5.1 °C. Vannføring og vannstand var normal / noe lav.

![Diagram showing the number of species over the years](image)

Fig. 16 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 6, Rønningen.
Stasjon 7, Vormstad

Prøvene ble tatt på østsiden ca.50 m oppstrøms bro i jevnt strykende vann med substrat av store og mellomstore stein, t = 5.9 °C. Vannføring og vannstand var normal.

![Diagram](image)

Fig. 17 Artsantall for grønn- og blågrønnalger i årene 1980-95. Stasjon 7, Vormstad.
3.3.2 Bunndyr

Bunns faunaen er rikt og variert sammensatt i Orkla fra naturens side. I Ya er bunns faunaen sterkt påvirket av kobberforurensinger fra de nedlagte Kvikne kobbergraver. I Orkla ved Stal i Kvikne er det ikke påvist forurensningsseffekter. Også i Orkla ved Vormstad nedenfor Løkkenområdet er faunaen normalt utviklet.

Metoder

Resultatene er fremstilt i fig. 18 og vedlegg 6. Lokalitetsangivelse er gitt i vedlegg 1. Nærmere beskrivelse av de enkelte lokaliteter fremgår av foregående avsnitt om begroing.
Fig. 18 Bunndyr i Orkla 1980-95. Antall dyr i hver prøve. Høstprøver.
De enkelte stasjoner

Stasjon I, Yset

Stasjon I, Ya

Figur 19 Bunndyr, fisk og kobberkonsentrasjoner i Ya, 1980-95.
Stasjon 2, Stai

Bunndyrmengeen var i 1995 som vanlig stor og litt mer variert enn ved Yset (fig. 20). I forhold til 1994 var det færre dyr, med et mindre innslag av døgnfluer. De dominerende grupper var døgnfluer og fjærmag, men stein- og vårfluer var også representert. Av døgnfluer kan nevnes *Baetis* sp. og *Heptagenia* sp. Av steinfly er bl.a. funnet *Amphinemura* sp. Heller ikke på denne lokalitet tas det nå vannprøver for analyse av fysisk/kjemiske forhold. Orkla er her stilleflytende og er noe forskjellig fra de andre lokalitetene med hensyn til strømhastighet og bunnssubstrat. Mengden og sammensetningen av dyr gir ikke indikasjoner på effekter av kobber.

![Diagram](image)

Stasjon 3. Brattset

Stasjon 4. Hol

Stasjon 5. Meldal

Stasjon 6. Rønningen

Stasjon 7. Vormstad

Vormstad er en spesielt viktig stasjon fordi den reflekterer virkningene av gruveavrenningen fra Løkkenområdet i Orkla. Utviklingen i faunaen på denne stasjonen gjennom 80 årene er vist i fig. 21. Årsmedelverdiene av metaller har gått betydelig ned, mens bunndyrøkmengden jevnt over har tiltatt. I 1995 var det imidlertid en nedgang i forhold til året før. Sammenlikner en med de øvrige stasjonen (fig. 18) ligger Vormstad omtrent på samme nivå som Meldal og Bratset, såvel i antall grupper som totalmengde dyr. De vanlige grupper er representert med døgnfluer, fjærmygg og steinfluer som de viktigste. Vormstad har alltid (bortsett fra i 1991) hatt mindre dyr enn den nærmeste stasjon, Rønningen, som ikke er influert av metallforurensninger fra Løkkenområdet. Lokalitetene er imidlertid noe forskjellig idet Orkla ved Rønningen (st. 6) som nevnt ovenfor i hele sommerhalvåret (1/5-31/8) har regulert minstevannføring på 20 m³/sek. Dette kan føre til at bunndyrsamfunnene ikke utvikler seg likt på de to stasjonen, bl.a. på grunn av temperaturforskjeller. Forholdene ved Vormstad er oftest mer like de ved Meldal som har omtrent de samme vannføringsforhold. Dette gjaldt
også i 1995. En kan konkludere med at det heller ikke i 1995 ble påvist forurensningseffekter på bunndyr ved Vormstad, selv om antallet dyr var mindre enn det foregående år.

![Diagram](image)

Figur 21 Bunndyr og tungmetallkonsentrasjoner i Orkla ved Vormstad, 1977-95.

3.3.3 Fisk

I tilløpselva Ya i Kvikne har kobberkonsentrasjonene i de senere år vært for høye til at fisk kan leve. Dette skyldes tilførsler fra Kvikne kobbergruve og reduksjoner ved vannføring etter regulering. I 1995 har en ikke fysisk/kjemiske målinger fra denne del av vassdraget.

Det har i 1995 ikke vært meldt om fiskedød eller andre skadelige forhold av betydning som følge av forurensning eller regulering i den lakseførende del av Orkla. Raubekken føres inn i tverrslaget ved Løkken og renner via en sedimentberingsdam i rør ut til hovedtunnelen fra Bjørset. Denne ordningen virker gunstig bl.a. fordi blandingen av vann fra Raubekken og

Slamproblemer ble ikke observert eller rapportert i 1995.

Forurensningene av Ya fra de nedlagte Kvikne kobbergruver har i sammenheng med reduserte vannføringer først til at fisken er forsvunnet i Ya's nedre del (ca 5 km). I selve Orkla i Kvikne er det imidlertid fortsatt bra fiske etter ørret og negative effekter på fisk, bunndyr og begroining er ikke observert ved Stai i Kvikne.

Fig. 22 Fangststatistikk for laks- og sjøaure i Orkla 1876-1995.
4. LITTERATUR

Av foreliggende utredninger og observasjonsresultater som er sitert i teksten eller som kan ha stor betydning ved vurdering av forurensningssituasjonen i Orkla, kan nevnes:

Arnesen, R.T., 1978: Oversikt om undersøkelser i nedre del av Orklavassdraget 1977, O-78/74, 46 s.

5. VEDLEGG
Vedlegg 1

Lokaliteter for innhenting av vannprøver til fysisk-kjemiske analyser og biologiske prøver i Orkla.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Beliggenhet</th>
<th>UTM-coordinater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orkla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Yset</td>
<td>Ved bru over Orkla for riksvei 3. Ca 1 km oppstrøms</td>
<td>32 VNQ 692 368</td>
</tr>
<tr>
<td>1b Sverja (B)</td>
<td>Ca 1 km nedenfor innløp av Ya i Orkla. Ca 50 m</td>
<td>32 VNQ 671 389</td>
</tr>
<tr>
<td></td>
<td>ovenfor innløp av Sverja på østside.</td>
<td></td>
</tr>
<tr>
<td>2. Stai</td>
<td>Ved Stai bru, Kvikne. Biol. st. ca 400 m nedenfor v. side</td>
<td>32 VNQ 645 418</td>
</tr>
<tr>
<td>3. Brattset</td>
<td>Ca 200 m ovenfor Brattset kraftverk</td>
<td>32 VNQ 514 653</td>
</tr>
<tr>
<td>4. Hol</td>
<td>Ca. 400 m ovenfor bru for fylkesvei over Orkla. Ca. 5 km nedenfor Berkåk</td>
<td>32 VNQ 464 685</td>
</tr>
<tr>
<td>5. Meldal (Bjørset)</td>
<td>Kjemi ved inntak for kraftverk (Bjørset). Ca. 3 km</td>
<td>32 VNQ 335 922</td>
</tr>
<tr>
<td></td>
<td>nedenfor Meldal. Biol. st. 100 m ovenfor Meldal bru</td>
<td>32 VNQ 363909</td>
</tr>
<tr>
<td>6. Rønningen</td>
<td>Campinglass ved Rønningen ca 2 km ovenfor</td>
<td>32 VNR 357 038</td>
</tr>
<tr>
<td></td>
<td>Svorkmo</td>
<td></td>
</tr>
<tr>
<td>7. Vormstad</td>
<td>Ved bru for fylkesvei til Solbu</td>
<td>32 VNR 389 084</td>
</tr>
<tr>
<td>Tiløp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1T Ya</td>
<td>Ved bru over Ya for riksvei 3 ved Yset</td>
<td>32 VNQ 720 392</td>
</tr>
<tr>
<td>2t Raubekken (K)</td>
<td>Ved bru for riksvei 700 ca 500 m nedstrøms</td>
<td>32 VNR 363 030</td>
</tr>
<tr>
<td></td>
<td>Skjøtskifte</td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 2

Fysisk/kjemiske analysemetoder for prøver fra Orklavassdraget.
Enheter og analysemetoder. * Raubekken: Cd, Pb = AA, grafittovn, - resten ICP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Enhet</th>
<th>Nedre grense</th>
<th>Metode</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>NS 4720</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>mS/m 25°C</td>
<td></td>
<td>NS 4721</td>
</tr>
<tr>
<td>Farge</td>
<td>mg PT/l</td>
<td>1 mg/l</td>
<td>NS 4787</td>
</tr>
<tr>
<td>Turbiditet</td>
<td>FTU</td>
<td>0.05 FTU</td>
<td>NS 4723</td>
</tr>
<tr>
<td>Tot. org. karbon</td>
<td>mg C/l</td>
<td>0.1 mg/l</td>
<td>NS 8245</td>
</tr>
<tr>
<td>Ortofosfat</td>
<td>μg P/l</td>
<td>0.5 μg P/l</td>
<td>Autoanalyzer NS 4724</td>
</tr>
<tr>
<td>Total fosfor</td>
<td>μg P/l</td>
<td>1 μg P/l</td>
<td>Autoanalyzer</td>
</tr>
<tr>
<td>Nitrat</td>
<td>μg N/l</td>
<td>10 μg/l</td>
<td>NS 4745</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>μg N/l</td>
<td>10 μg/l</td>
<td>NS 4743</td>
</tr>
<tr>
<td>Sulfat</td>
<td>mg SO₄/l</td>
<td>0.1 mg/l</td>
<td>Autoanalyzer, thorinmetoden</td>
</tr>
<tr>
<td>Klorid</td>
<td>mg Cl/l</td>
<td>0.05 mg/l</td>
<td>NS 4769</td>
</tr>
<tr>
<td>Kalsium</td>
<td>mg Ca/l</td>
<td>0.02 mg/l</td>
<td>NS 4776*</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg Mg/l</td>
<td>0.001 mg/l</td>
<td>NS 4776*</td>
</tr>
<tr>
<td>Natrium</td>
<td>mg Na/l</td>
<td>0.05 mg/l</td>
<td>NS 4775*</td>
</tr>
<tr>
<td>Kalium</td>
<td>mg K/l</td>
<td>0.05 mg/l</td>
<td>NS 4775*</td>
</tr>
<tr>
<td>Sink</td>
<td>μg Zn/l</td>
<td>10 μg/l</td>
<td>ICP-MS*</td>
</tr>
<tr>
<td>Bly</td>
<td>μg Pb/l</td>
<td>1 μg/l</td>
<td>" +</td>
</tr>
<tr>
<td>Kobber</td>
<td>μg Cu/l</td>
<td>1 μg/l</td>
<td>" +</td>
</tr>
<tr>
<td>Kadmium</td>
<td>μg Cd/l</td>
<td>0.5 μg/l</td>
<td>" +</td>
</tr>
<tr>
<td>Jern</td>
<td>μg Fe/l</td>
<td>10 μg/l</td>
<td>NS 4773*</td>
</tr>
<tr>
<td>Dato</td>
<td>pH</td>
<td>Cond</td>
<td>Turb</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>16.01.05</td>
<td>7.28</td>
<td>3.1</td>
<td>0.31</td>
</tr>
<tr>
<td>15.02.05</td>
<td>7.32</td>
<td>3.0</td>
<td>0.34</td>
</tr>
<tr>
<td>17.02.05</td>
<td>7.38</td>
<td>3.0</td>
<td>0.31</td>
</tr>
<tr>
<td>16.01.06</td>
<td>7.28</td>
<td>3.1</td>
<td>0.31</td>
</tr>
<tr>
<td>15.02.06</td>
<td>7.32</td>
<td>3.0</td>
<td>0.34</td>
</tr>
<tr>
<td>17.02.06</td>
<td>7.38</td>
<td>3.0</td>
<td>0.31</td>
</tr>
<tr>
<td>16.01.07</td>
<td>7.28</td>
<td>3.1</td>
<td>0.31</td>
</tr>
<tr>
<td>15.02.07</td>
<td>7.32</td>
<td>3.0</td>
<td>0.34</td>
</tr>
<tr>
<td>17.02.07</td>
<td>7.38</td>
<td>3.0</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Gis. som:
- pH: 7.33
- Cond: 5.3
- Turb: 0.41
- SO4: 3.5
- Ca: 6.69
- Mg: 0.66
- Fe: 8.41
- Cu: 1.7
- Zn: 2.0
- F: 0.01
- Al: 0.05
- SiO2: 0.16
- KOH: 0.1
- Na: 0.5
- K: 0.5
- Mg: 0.5
- Cl: 0.5
- PO4: 0.5
- TDP: 0.5
- TOC: 0.5
- F: 0.5
- ARG: 0.5
- F/R: 0.5
- MgCl: 0.5

Maks. venlig:
- pH: 7.48
- Cond: 8.0
- Turb: 0.74
- SO4: 5.4
- Ca: 9.01
- Mg: 0.88
- Fe: 2.90
- Cu: 5.2
- Zn: 0.10
- F: 0.09
- Al: 0.05
- SiO2: 0.33
- KOH: 0.2
- Na: 0.5
- K: 0.5
- Mg: 0.5
- Cl: 0.5
- PO4: 0.5
- TDP: 0.5
- TOC: 0.5
- F: 0.5
- ARG: 0.5
- F/R: 0.5
- MgCl: 0.5

Min. venlig:
- pH: 7.14
- Cond: 3.4
- Turb: 0.25
- SO4: 1.6
- Ca: 4.30
- Mg: 0.42
- Fe: 0.30
- Cu: 0.9
- Zn: 0.80
- F: 0.08
- Al: 0.01
- SiO2: 0.02
- KOH: 0.05
- Na: 0.01
- K: 0.01
- Mg: 0.01
- Cl: 0.01
- PO4: 0.01
- TDP: 0.01
- TOC: 0.01
- F: 0.01
- ARG: 0.01
- F/R: 0.01
- MgCl: 0.01
Vedlegg 3 (forts.)

<table>
<thead>
<tr>
<th>Dato</th>
<th>pH</th>
<th>Kond.</th>
<th>Turb.</th>
<th>SO4</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Co</th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>V</th>
<th>Na</th>
<th>K</th>
<th>Sr</th>
<th>TOTN</th>
<th>TOC</th>
<th>TAP</th>
<th>FARC</th>
<th>FCl</th>
<th>FBr</th>
<th>FSO4</th>
<th>FPO4</th>
<th>F-</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/01/95</td>
<td>7.38</td>
<td>0.42</td>
<td>2.11</td>
<td>0.48</td>
<td>5.3</td>
<td>1.78</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/02/95</td>
<td>7.40</td>
<td>0.42</td>
<td>2.11</td>
<td>0.48</td>
<td>5.3</td>
<td>1.78</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/04/95</td>
<td>7.52</td>
<td>0.48</td>
<td>2.11</td>
<td>0.48</td>
<td>5.3</td>
<td>1.78</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/05/95</td>
<td>7.40</td>
<td>0.42</td>
<td>2.11</td>
<td>0.48</td>
<td>5.3</td>
<td>1.78</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/07/95</td>
<td>7.53</td>
<td>0.43</td>
<td>2.13</td>
<td>0.45</td>
<td>3.6</td>
<td>1.8</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/09/95</td>
<td>7.63</td>
<td>0.34</td>
<td>2.13</td>
<td>0.45</td>
<td>3.6</td>
<td>1.8</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/11/95</td>
<td>7.36</td>
<td>0.60</td>
<td>2.17</td>
<td>0.38</td>
<td>5.6</td>
<td>1.45</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/12/95</td>
<td>7.54</td>
<td>0.47</td>
<td>2.13</td>
<td>0.45</td>
<td>3.6</td>
<td>1.8</td>
<td>0.04</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.04</td>
<td>0.4</td>
<td>0.4</td>
<td>1.66</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gennemsnit:

- pH: 7.47 (6.7)
- Kond.: 0.47 (7.0)
- Turb.: 2.11 (7.1)
- SO4: 0.48 (6.0)
- Ca: 5.3 (6.0)
- Mg: 1.78 (6.0)
- Fe: 0.04 (6.0)
- Cu: 0.15 (6.0)
- Zn: 0.15 (6.0)
- Co: 0.15 (6.0)
- Cr: 0.14 (6.0)
- Ni: 0.15 (6.0)
- Mn: 0.8 (6.0)
- V: 0.4 (6.0)
- Na: 0.8 (6.0)
- K: 0.4 (6.0)
- Sr: 1.66 (6.0)
- TOTN: 0.4 (6.0)
- TOC: 0.4 (6.0)
- TAP: 0.4 (6.0)
- FARC: 0.4 (6.0)
- FCl: 0.4 (6.0)
- FBr: 0.4 (6.0)
- FSO4: 0.4 (6.0)
- FPO4: 0.4 (6.0)
- F-: 0.4 (6.0)

Maks. værdi:

- pH: 7.49 (6.7)
- Kond.: 0.47 (7.0)
- Turb.: 2.11 (7.1)
- SO4: 0.48 (6.0)
- Ca: 5.3 (6.0)
- Mg: 1.78 (6.0)
- Fe: 0.04 (6.0)
- Cu: 0.15 (6.0)
- Zn: 0.15 (6.0)
- Co: 0.15 (6.0)
- Cr: 0.14 (6.0)
- Ni: 0.15 (6.0)
- Mn: 0.8 (6.0)
- V: 0.4 (6.0)
- Na: 0.8 (6.0)
- K: 0.4 (6.0)
- Sr: 1.66 (6.0)
- TOTN: 0.4 (6.0)
- TOC: 0.4 (6.0)
- TAP: 0.4 (6.0)
- FARC: 0.4 (6.0)
- FCl: 0.4 (6.0)
- FBr: 0.4 (6.0)
- FSO4: 0.4 (6.0)
- FPO4: 0.4 (6.0)
- F-: 0.4 (6.0)

Min. værdi:

- pH: 7.29 (4.0)
- Kond.: 0.27 (2.5)
- Turb.: 2.11 (7.1)
- SO4: 0.38 (5.6)
- Ca: 5.3 (6.0)
- Mg: 1.78 (6.0)
- Fe: 0.04 (6.0)
- Cu: 0.15 (6.0)
- Zn: 0.15 (6.0)
- Co: 0.15 (6.0)
- Cr: 0.14 (6.0)
- Ni: 0.15 (6.0)
- Mn: 0.8 (6.0)
- V: 0.4 (6.0)
- Na: 0.8 (6.0)
- K: 0.4 (6.0)
- Sr: 1.66 (6.0)
- TOTN: 0.4 (6.0)
- TOC: 0.4 (6.0)
- TAP: 0.4 (6.0)
- FARC: 0.4 (6.0)
- FCl: 0.4 (6.0)
- FBr: 0.4 (6.0)
- FSO4: 0.4 (6.0)
- FPO4: 0.4 (6.0)
- F-: 0.4 (6.0)
Vedlegg 3 (forts.)

Fysisk/kjemiske analyserresultater. Stasjon 2T Raubekken

| Dato | pH | Kond. mg/l | Turb. FTU | SO4 mg/l | Ca mg/l | Mg mg/l | Fe mg/l | Cu mg/l | Zn µg/l | Cd µg/l | Pb µg/l | Na mg/l | K µg/l | TOT-N mg/l | TOT-P µg/l | PO4-P µg/l | TOC mg/l | FARG-H mg/l | Cl mg/l | Vannf l/s |
|--------|------|------------|-----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|------------|------------|---------|------------|--------|----------|
| 16.01.95 | 6.08 | 26.1 | 22.0 | 159 | 41.9 | 10.0 | 7.96 | 0.54 | 2.04 | 4.39 | 0.5 | | | 8.0 | 4.0 | 520 | 470 | 1360 |
| 15.02.95 | 5.93 | 39.8 | 31.0 | 168 | 54.0 | 12.7 | 8.41 | 0.74 | 2.35 | 4.81 | <0.5 | | | 4.1 | 1.0 | 1110 |
| 17.03.95 | 5.89 | 27.1 | 34.0 | 98.9 | 29.6 | 7.3 | 5.89 | 0.49 | 1.60 | 3.51 | <0.5 | 5.2 | 0.72 | 548 | 10.1 | 14.3 | 3.8 | <1 | 5.9 | 1190 |
| 18.04.95 | 5.97 | 31.3 | 31.3 | 114 | 32.5 | 9.2 | 5.37 | 0.62 | 1.76 | 3.95 | <0.5 | | | 3.7 | <1 | 1360 | 1900 | 1190 |
| 15.05.95 | 5.47 | 23.3 | 9.6 | 85.3 | 22.8 | 4.8 | 4.65 | 0.68 | 1.51 | 3.83 | <0.5 | | | 3.9 | <1 | 1900 | 260 |
| 15.06.95 | 5.90 | 20.8 | 16.0 | 79.6 | 22.0 | 4.9 | 3.89 | 0.47 | 1.40 | 3.30 | <0.5 | 3.4 | 0.50 | 348 | 4.6 | 10.2 | 5.2 | <1 | 4.1 | 1190 |
| 17.07.95 | 5.00 | 48.0 | 11.0 | 213 | 48.3 | 13.1 | 9.46 | 0.89 | 3.01 | 6.67 | <0.5 | | | 3.6 | 1.0 | 260 | 570 | 170 |
| 15.08.95 | 5.75 | 30.7 | 26.0 | 126 | 32.8 | 8.5 | 6.35 | 0.52 | 1.66 | 3.80 | <0.5 | | | 4.3 | 4.0 | 170 | 230 | 520 |
| 18.09.95 | 4.37 | 82.3 | 18.0 | 398 | 83.0 | 23.5 | 18.60 | 1.49 | 5.87 | 12.00 | <0.5 | 9.1 | 2.41 | 580 | 23.5 | 48.1 | 2.8 | 4.0 | 6.9 | 170 |
| 16.10.95 | 5.34 | 55.2 | 18.0 | 243 | 62.0 | 16.3 | 11.20 | 0.80 | 3.38 | 7.62 | <0.5 | | | 3.7 | 4.0 | 230 | 520 | 1360 |
| 15.11.95 | 5.78 | 45.0 | 22.0 | 184 | 49.9 | 13.2 | 7.60 | 0.58 | 2.50 | 5.74 | <0.5 | | | 3.4 | 3.0 | 520 | 1360 |
| 15.12.95 | 6.38 | 30.6 | 7.6 | 120 | 33.2 | 8.5 | 2.91 | 0.30 | 1.43 | 3.27 | <0.5 | 6.1 | 0.65 | 620 | 16.4 | 4.7 | 4.6 | 10.0 | 5.1 | 1360 |

Gj.snitt: 5.66, 38.4, 20.5, 166, 42.7, 11.0, 7.69, 0.68, 2.38, 5.24, <0.5, 6.0, 1.07, 524, 13.7, 19.3, 4.3, 2.8, 5.5, 805
Maks.verdi: 6.38, 82.3, 34.0, 398, 83.0, 23.5, 18.60, 1.49, 5.87, 12.00, 0.5, 9.1, 2.41, 620, 23.5, 48.1, 8.0, 10.0, 6.9, 1900
Min.verdi: 4.37, 20.8, 7.6, 79.6, 22.0, 4.8, 2.91, 0.30, 1.40, 3.27, <0.5, 3.4, 0.50, 348, 4.6, 4.7, 2.8, <1, 4.1, 170
<table>
<thead>
<tr>
<th>År</th>
<th>pH</th>
<th>Kond</th>
<th>Turb</th>
<th>SO4</th>
<th>Ca</th>
<th>Mg</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>7.42</td>
<td>10.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.5</td>
<td>159</td>
<td>394</td>
</tr>
<tr>
<td>1975</td>
<td>7.33</td>
<td>9.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.8</td>
<td>138</td>
</tr>
<tr>
<td>1976</td>
<td>7.22</td>
<td>9.13</td>
<td>2.12</td>
<td>11.1</td>
<td>12.8</td>
<td>1.13</td>
<td>44.8</td>
<td>165</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>7.07</td>
<td>9.64</td>
<td>2.32</td>
<td>15.0</td>
<td>14.1</td>
<td>1.23</td>
<td>84.0</td>
<td>194</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>7.18</td>
<td>9.65</td>
<td>2.55</td>
<td>14.5</td>
<td>13.9</td>
<td>1.20</td>
<td>66.6</td>
<td>148</td>
<td>685</td>
<td>0.57</td>
</tr>
<tr>
<td>1979</td>
<td>7.09</td>
<td>9.76</td>
<td>2.47</td>
<td>14.7</td>
<td>14.5</td>
<td>1.19</td>
<td>68.2</td>
<td>164</td>
<td>492</td>
<td>0.62</td>
</tr>
<tr>
<td>1980</td>
<td>7.21</td>
<td>10.38</td>
<td>3.20</td>
<td>16.8</td>
<td>14.8</td>
<td>1.20</td>
<td>72.9</td>
<td>161</td>
<td>576</td>
<td>0.81</td>
</tr>
<tr>
<td>1981</td>
<td>7.30</td>
<td>10.39</td>
<td>3.42</td>
<td>14.2</td>
<td>15.4</td>
<td>1.19</td>
<td>74.7</td>
<td>128</td>
<td>506</td>
<td>0.65</td>
</tr>
<tr>
<td>1982</td>
<td>7.21</td>
<td>9.28</td>
<td>1.94</td>
<td>13.5</td>
<td>11.6</td>
<td></td>
<td>43.7</td>
<td>100</td>
<td>413</td>
<td>0.37</td>
</tr>
<tr>
<td>1983</td>
<td>7.21</td>
<td>8.92</td>
<td>1.58</td>
<td>8.2</td>
<td>11.6</td>
<td></td>
<td>31.0</td>
<td>59</td>
<td>413</td>
<td>0.09</td>
</tr>
<tr>
<td>1984</td>
<td>7.28</td>
<td>6.84</td>
<td>1.19</td>
<td>7.3</td>
<td>10.4</td>
<td>0.85</td>
<td>26.2</td>
<td>52</td>
<td>297</td>
<td>0.13</td>
</tr>
<tr>
<td>1985</td>
<td>7.25</td>
<td>6.05</td>
<td>1.52</td>
<td>7.6</td>
<td>9.0</td>
<td>0.76</td>
<td>19.3</td>
<td>39</td>
<td>342</td>
<td>0.11</td>
</tr>
<tr>
<td>1986</td>
<td>7.32</td>
<td>6.57</td>
<td>1.03</td>
<td>7.3</td>
<td>10.2</td>
<td>0.80</td>
<td>22.8</td>
<td>38</td>
<td>323</td>
<td>0.11</td>
</tr>
<tr>
<td>1987</td>
<td>7.28</td>
<td>5.77</td>
<td>0.87</td>
<td>5.5</td>
<td>7.8</td>
<td>0.65</td>
<td>15.1</td>
<td></td>
<td>260</td>
<td>0.08</td>
</tr>
<tr>
<td>1988</td>
<td>7.35</td>
<td>6.07</td>
<td>1.07</td>
<td>5.3</td>
<td>7.5</td>
<td>0.67</td>
<td>22.3</td>
<td>40</td>
<td>291</td>
<td>0.08</td>
</tr>
<tr>
<td>1989</td>
<td>7.22</td>
<td>5.82</td>
<td>1.24</td>
<td>5.2</td>
<td>8.0</td>
<td>0.70</td>
<td>21.9</td>
<td>35</td>
<td>396</td>
<td>0.07</td>
</tr>
<tr>
<td>1990</td>
<td>7.27</td>
<td>6.04</td>
<td>1.73</td>
<td>5.0</td>
<td>8.8</td>
<td>0.83</td>
<td>16.1</td>
<td>30</td>
<td>351</td>
<td>0.10</td>
</tr>
<tr>
<td>1991</td>
<td>7.36</td>
<td>6.22</td>
<td>0.65</td>
<td>4.7</td>
<td>8.6</td>
<td>0.81</td>
<td>13.0</td>
<td>29</td>
<td>221</td>
<td>0.06</td>
</tr>
<tr>
<td>1992</td>
<td>7.33</td>
<td>6.23</td>
<td>0.68</td>
<td>4.8</td>
<td>9.8</td>
<td>0.78</td>
<td>11.8</td>
<td>29</td>
<td>217</td>
<td>0.06</td>
</tr>
<tr>
<td>1993</td>
<td>7.39</td>
<td>6.86</td>
<td>0.35</td>
<td>5.2</td>
<td>8.7</td>
<td>0.78</td>
<td>7.2</td>
<td>33</td>
<td>180</td>
<td>0.06</td>
</tr>
<tr>
<td>1994</td>
<td>7.46</td>
<td>7.00</td>
<td>0.50</td>
<td>5.8</td>
<td></td>
<td></td>
<td>7.9</td>
<td>26</td>
<td>162</td>
<td>0.05</td>
</tr>
<tr>
<td>1995</td>
<td>7.47</td>
<td>6.65</td>
<td>0.52</td>
<td>5.5</td>
<td></td>
<td></td>
<td>7.4</td>
<td>23</td>
<td>151</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Vedlegg 4 (forts.)

Orkla ved Rønningen. Tidsveide middelverdier

<table>
<thead>
<tr>
<th>År</th>
<th>pH</th>
<th>Kond</th>
<th>Turb</th>
<th>SO4</th>
<th>Ca</th>
<th>Mg</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mS/m</td>
<td>FTU</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>μg/l</td>
<td>μg/l</td>
<td>μg/l</td>
<td>μg/l</td>
<td>μg/l</td>
</tr>
<tr>
<td>1975</td>
<td>7.61</td>
<td>7.19</td>
<td>4.6</td>
<td>10.60</td>
<td>0.89</td>
<td>20.9</td>
<td>18.8</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>7.24</td>
<td>7.45</td>
<td>0.77</td>
<td>5.1</td>
<td>11.58</td>
<td>1.03</td>
<td>8.5</td>
<td>11.1</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>7.09</td>
<td>7.98</td>
<td>0.62</td>
<td>5.4</td>
<td>11.45</td>
<td>1.00</td>
<td>7.9</td>
<td>7.8</td>
<td>101</td>
<td>0.35</td>
</tr>
<tr>
<td>1978</td>
<td>7.24</td>
<td>7.92</td>
<td>0.76</td>
<td>6.7</td>
<td>13.49</td>
<td>1.08</td>
<td>7.0</td>
<td>18.4</td>
<td>80</td>
<td>0.26</td>
</tr>
<tr>
<td>1979</td>
<td>7.72</td>
<td>8.17</td>
<td>0.94</td>
<td>5.5</td>
<td>11.55</td>
<td>0.97</td>
<td>4.5</td>
<td>11.2</td>
<td>104</td>
<td>0.36</td>
</tr>
<tr>
<td>1980</td>
<td>7.42</td>
<td>8.38</td>
<td>1.49</td>
<td>5.6</td>
<td>12.60</td>
<td>1.04</td>
<td>6.8</td>
<td>12.6</td>
<td>97</td>
<td>0.24</td>
</tr>
<tr>
<td>1981</td>
<td>7.34</td>
<td>7.03</td>
<td>0.87</td>
<td>4.4</td>
<td>9.13</td>
<td>1.8</td>
<td>5.8</td>
<td>108</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>7.31</td>
<td>6.57</td>
<td>0.63</td>
<td>4.1</td>
<td>8.77</td>
<td>0.63</td>
<td>2.5</td>
<td>9.0</td>
<td>152</td>
<td>0.12</td>
</tr>
<tr>
<td>1983</td>
<td>7.46</td>
<td>7.32</td>
<td>0.56</td>
<td>4.7</td>
<td>10.42</td>
<td>0.84</td>
<td>2.1</td>
<td>12.5</td>
<td>118</td>
<td><0.10</td>
</tr>
<tr>
<td>1984</td>
<td>7.38</td>
<td>6.75</td>
<td>1.36</td>
<td>4.6</td>
<td>10.44</td>
<td>0.83</td>
<td>2.2</td>
<td>7.8</td>
<td>182</td>
<td><0.10</td>
</tr>
<tr>
<td>1985</td>
<td>7.44</td>
<td>6.43</td>
<td>0.59</td>
<td>4.8</td>
<td>9.55</td>
<td>0.81</td>
<td>3.4</td>
<td>10.1</td>
<td>152</td>
<td><0.10</td>
</tr>
<tr>
<td>1986</td>
<td>7.45</td>
<td>6.55</td>
<td>0.61</td>
<td>4.0</td>
<td>9.56</td>
<td>0.67</td>
<td>5.1</td>
<td>5.0</td>
<td>121</td>
<td><0.10</td>
</tr>
<tr>
<td>1987</td>
<td>7.49</td>
<td>7.39</td>
<td>0.43</td>
<td>4.6</td>
<td>10.62</td>
<td>0.81</td>
<td>2.6</td>
<td>6.0</td>
<td>80</td>
<td><0.10</td>
</tr>
<tr>
<td>1988</td>
<td>7.33</td>
<td>6.12</td>
<td>0.56</td>
<td>4.0</td>
<td>9.53</td>
<td>0.82</td>
<td>3.5</td>
<td>7.5</td>
<td>140</td>
<td><0.10</td>
</tr>
<tr>
<td>1989</td>
<td>7.42</td>
<td>6.46</td>
<td>1.18</td>
<td>4.0</td>
<td>8.23</td>
<td>0.76</td>
<td>2.4</td>
<td>5.5</td>
<td>144</td>
<td><0.10</td>
</tr>
<tr>
<td>1990</td>
<td>7.56</td>
<td>7.68</td>
<td>0.49</td>
<td>4.6</td>
<td>10.06</td>
<td>1.04</td>
<td>2.7</td>
<td>8.4</td>
<td>128</td>
<td><0.10</td>
</tr>
<tr>
<td>1991</td>
<td>7.48</td>
<td>7.70</td>
<td>0.36</td>
<td>4.1</td>
<td>11.91</td>
<td>1.00</td>
<td>2.4</td>
<td>6.7</td>
<td>83</td>
<td><0.10</td>
</tr>
<tr>
<td>1992</td>
<td>7.52</td>
<td>7.61</td>
<td>0.25</td>
<td>4.3</td>
<td>9.64</td>
<td>0.80</td>
<td>1.5</td>
<td>2.4</td>
<td>83</td>
<td><0.10</td>
</tr>
<tr>
<td>1993</td>
<td>7.38</td>
<td>5.70</td>
<td>0.42</td>
<td>3.5</td>
<td>7.09</td>
<td>0.69</td>
<td>2.0</td>
<td>1.4</td>
<td>126</td>
<td>0.01</td>
</tr>
<tr>
<td>1994</td>
<td>7.33</td>
<td>5.28</td>
<td>0.41</td>
<td>3.5</td>
<td>6.86</td>
<td>0.68</td>
<td>1.7</td>
<td>2.0</td>
<td>84</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Vedlegg 4 (forts.)

St. 2T. Raubekken. Tidsveide middel verdier.

<table>
<thead>
<tr>
<th>År</th>
<th>pH</th>
<th>Kond</th>
<th>SO₄</th>
<th>Ca</th>
<th>Mg</th>
<th>Al</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>Cd</th>
<th>Vannf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mS/m</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>µg/l</td>
<td>l/s</td>
</tr>
<tr>
<td>1975</td>
<td>3.66</td>
<td>53.5</td>
<td>275</td>
<td>23.0</td>
<td>10.02</td>
<td>2.27</td>
<td>6.01</td>
<td>15.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>3.34</td>
<td>87.6</td>
<td>387</td>
<td>43.6</td>
<td>10.62</td>
<td>3.96</td>
<td>10.40</td>
<td>23.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>3.28</td>
<td>118.3</td>
<td>378</td>
<td>58.6</td>
<td>9.67</td>
<td>3.35</td>
<td>7.40</td>
<td>23.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>3.41</td>
<td>118.5</td>
<td>387</td>
<td>81.3</td>
<td>10.15</td>
<td>3.78</td>
<td>7.92</td>
<td>30.40</td>
<td>33.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>3.51</td>
<td>83.2</td>
<td>374</td>
<td>122.5</td>
<td>9.12</td>
<td>3.43</td>
<td>7.52</td>
<td>27.02</td>
<td>23.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>3.36</td>
<td>81.4</td>
<td>329</td>
<td>62.9</td>
<td>7.94</td>
<td>3.55</td>
<td>6.87</td>
<td>28.02</td>
<td>25.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>3.40</td>
<td>80.2</td>
<td>373</td>
<td>117.4</td>
<td>11.15</td>
<td>3.03</td>
<td>5.34</td>
<td>20.70</td>
<td>18.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>3.42</td>
<td>92.7</td>
<td>483</td>
<td>109.5</td>
<td>8.85</td>
<td>3.48</td>
<td>6.08</td>
<td>28.05</td>
<td>18.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>3.86</td>
<td>54.8</td>
<td>242</td>
<td>49.0</td>
<td>3.97</td>
<td>2.22</td>
<td>3.49</td>
<td>19.55</td>
<td>9.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>3.41</td>
<td>81.7</td>
<td>338</td>
<td>70.3</td>
<td>8.90</td>
<td>2.98</td>
<td>4.99</td>
<td>21.18</td>
<td>16.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>3.36</td>
<td>82.4</td>
<td>428</td>
<td>91.4</td>
<td>8.20</td>
<td>2.19</td>
<td>3.73</td>
<td>24.56</td>
<td>12.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>3.26</td>
<td>88.3</td>
<td>411</td>
<td>98.0</td>
<td>8.27</td>
<td>2.37</td>
<td>3.84</td>
<td>26.76</td>
<td>11.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>3.57</td>
<td>64.9</td>
<td>323</td>
<td>62.1</td>
<td>6.69</td>
<td>1.89</td>
<td>3.40</td>
<td>23.70</td>
<td>6.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>3.43</td>
<td>57.8</td>
<td>234</td>
<td>47.1</td>
<td>6.94</td>
<td>2.15</td>
<td>3.73</td>
<td>24.27</td>
<td>9.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>3.65</td>
<td>46.1</td>
<td>150</td>
<td>22.0</td>
<td>4.61</td>
<td>3.82</td>
<td>1.55</td>
<td>2.52</td>
<td>18.83</td>
<td>7.31</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>3.66</td>
<td>38.6</td>
<td>141</td>
<td>29.2</td>
<td>5.66</td>
<td>1.52</td>
<td>2.66</td>
<td>13.57</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>4.00</td>
<td>35.9</td>
<td>142</td>
<td>24.9</td>
<td>4.87</td>
<td>1.52</td>
<td>2.90</td>
<td>17.00</td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>4.13</td>
<td>41.0</td>
<td>159</td>
<td>42.0</td>
<td>9.10</td>
<td>3.23</td>
<td>1.15</td>
<td>2.88</td>
<td>12.77</td>
<td>5.60</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>5.03</td>
<td>39.5</td>
<td>168</td>
<td>36.3</td>
<td>12.1</td>
<td>2.27</td>
<td>0.83</td>
<td>2.92</td>
<td>8.58</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5.60</td>
<td>42.8</td>
<td>191</td>
<td>46.5</td>
<td>14.2</td>
<td>2.13</td>
<td>0.73</td>
<td>2.93</td>
<td>9.90</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>5.66</td>
<td>38.3</td>
<td>166</td>
<td>42.6</td>
<td>11.0</td>
<td>0.67</td>
<td>2.37</td>
<td>7.67</td>
<td>5.23</td>
<td>805</td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 5

Tabell Begroingsorganismer i Orkla 1995

<table>
<thead>
<tr>
<th>Organisme, latinsk navn</th>
<th>St. 1</th>
<th>St. 1t</th>
<th>St. 2</th>
<th>St. 3</th>
<th>St. 4</th>
<th>St. 5</th>
<th>St. 6</th>
<th>St. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLÅGRØNNALGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calothrix fusca</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>Calothrix ramenskii</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaesiphon confervicola</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>Chamaesiphon cf. fuscus</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clastidiurn setigerum</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gloeothecia cf. confluens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homoeothrix varians</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyngbya spp.</td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>Merismopedia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Oscillatoria sp. (8-9µ)</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phormidium autumnale</td>
<td></td>
<td>5</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phormidium sp. (4-5µ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>Rivularia biasolettiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Tolypothrix penicillata</td>
<td>xx</td>
<td>3</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>GRØNNALGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulbochaete sp.</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closterium spp.</td>
<td></td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Cosmarium spp.</td>
<td></td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draparnalidium glomerata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microspora amoena</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>1</td>
<td>xx</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>Microspora pachyderma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mougeotia a (6-12µ)</td>
<td>xx</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>xxx</td>
<td>xx</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>Mougeotia d/e (27-36µ)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Oedogonium a (5-11µ)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oedogonium b (13-18µ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>Oedogonium c (23-28µ)</td>
<td>2</td>
<td>x</td>
<td></td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oedogonium d (29-32µ)</td>
<td>x</td>
<td>5</td>
<td>1</td>
<td></td>
<td>xxx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenedesmus spp.</td>
<td></td>
<td>xx</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirogyra sp. (15-18µ, 1KL)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirogyra sp. (34-40µ, 1K, L)</td>
<td></td>
<td>xx</td>
<td>xx</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulolothrix zonata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygnema b (22-25µ)</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Ubest. Chaetophorales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Vedlegg 5 (forts.)

<table>
<thead>
<tr>
<th>KISELALGER</th>
<th>St. 1</th>
<th>St. 1t</th>
<th>St. 2</th>
<th>St. 3</th>
<th>St. 4</th>
<th>St. 5</th>
<th>St. 6</th>
<th>St. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthes minutissima</td>
<td>xxx</td>
<td>xx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Amphora sp.</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratoneis arcus</td>
<td>xxx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Cymbella spp.</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Diatoma hiemae v. mesodon</td>
<td></td>
<td></td>
<td>xx</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatoma vulgare</td>
<td></td>
<td></td>
<td>xx</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didymosphenia geminata</td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>xx</td>
<td>4</td>
<td>xx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucocconeis lapponica</td>
<td>xx</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragilaria sp.</td>
<td></td>
<td>xxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphonema spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridion circulare</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synedra ulna</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Tabellaria fiocculosa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>Ubest. pennate kiselalger</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
</tbody>
</table>

| RØDALGER | | | | | | | | |
| Batrachospermum sp. | | | | | | | | |

MOSER								
Blindia acuta	2	1	4	1	2			
Fontinalis antipyretica								
Hygrohypnum ochraceum	1							
Hygrohypnum sp.								
Scapania sp.								
Schistidium alpicola var. rivulare	2							
Ubestemt levermose								

NEDBRYTERE								
Jernbakterier	xxx							
Bakterieaggregat	x	x						

Tall angir organismenes prosentvise dekning av elveleiet:
1=5% 2=5-12% 3=12-25% 4=25-50% 5=50-100%
organismer som vokser bland disse er angitt ved: xxx=vanlig xx=sparsom x=liten forekomst
Vedlegg 6

<table>
<thead>
<tr>
<th>Stasjon Dyregruppe</th>
<th>1 Yset</th>
<th>1T Ya</th>
<th>2 Stai</th>
<th>3 Brattset</th>
<th>4 Hol</th>
<th>5 Meldal</th>
<th>6 Rønningen</th>
<th>7 Vormstad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Børstemark Igler</td>
<td>20</td>
<td>30</td>
<td></td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>Snegl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Døgnfluer</td>
<td>2090</td>
<td>10</td>
<td>2820</td>
<td>620</td>
<td>1150</td>
<td>1030</td>
<td>1570</td>
<td>350</td>
</tr>
<tr>
<td>Steinfluer</td>
<td>170</td>
<td>20</td>
<td>150</td>
<td>20</td>
<td>670</td>
<td>270</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>Vårfluer</td>
<td>90</td>
<td>30</td>
<td>260</td>
<td>150</td>
<td>140</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Biller</td>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stankelbein</td>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svinmygg</td>
<td>450</td>
<td>80</td>
<td>670</td>
<td>470</td>
<td>250</td>
<td>180</td>
<td>270</td>
<td>130</td>
</tr>
<tr>
<td>Fjærmygg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knott</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>2820</td>
<td>140</td>
<td>3970</td>
<td>1300</td>
<td>2350</td>
<td>1540</td>
<td>2320</td>
<td>950</td>
</tr>
<tr>
<td>Antall grupper</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Norsk institutt for vannforskning

Postboks 173 Kjelsås
0411 Oslo

Telefon: 22 18 51 00
Telefax: 22 18 52 00

Ved bestilling av rapporten, oppgi lepenummer 3533-96
ISBN 82-577-3079-3