RAPPORT LNR 3500-96

Farsund 1995

Undersøkelser av flora og fauna i strandsonen ved Østhasselneset og i Byfjorden

![Graph showing the distribution of species in Byfjorden and Østhasselneset.](image)
Rapportens tittel:

Dat.: 15/8-96
Trykket: NIVA 1996

Faggruppe:
Marinøkologisk

Geografisk område:
Vest-Agder

Antall sider: 37
Opplag:

Oppdragsgiver:
Farsund kommune, Teknisk etat, 4551 Farsund.

Oppdrag. ref.:

Ekstrakt:
Et begrenset område rundt utslippspunktet på Østhasseleneset preges av utslippet av kommunalt avløpsvann. Effekter på strandsonesamfunnet kan trolig spores østover til en avstand av ca. 500 m. Orienterende analyser av strandsnegl for innhold av metalter tyder på at utslippet ikke medfører nevneverdig metallbelastning på omgivelsene.

4 emneord, norske
1. Farsund
2. Kommunalt avløpsvann
3. Hardbunnsfisken
4. Forurensning

4 emneord, engelske
1. Farsund
2. Municipal sewage
3. Hard bottom communities
4. Pollution

ISBN 82-577-3042-4
O-95078
FARSUND 1995.
Undersøkelser av flora og fauna i strandsonen
ved Østhasselneset og i Byfjorden

Oslo, 15. august 1996.

Prosjektleder: Jarle Molvær

Medarbeidere: Tone Jacobsen
Jarle Håvardstun
Stanley Larsen, Farsund kommune

(g’lib)gruntrap
1
Forord

Den foreliggende rapport presenterer resultatene fra de biologiske undersøkelsene både ved Østhasselneset og i Byfjorden.

Tone Jacobsen ved NIVAs avdeling i Grimstad utførte undersøkelsen av flora og fauna i strandsonen og har skrevet denne delen av rapporten, mens Jarle Håvardstun og Stanley Larsen (Farsund kommune) har vært felt-assistenter. Jarle Molvær ved NIVA, Oslo, har ivaretatt prosjekt-ledelsen.

Oslo, 15. august 1996

Jarle Molvær
prosjektleder
Innhold

<table>
<thead>
<tr>
<th>Innhold</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORORD</td>
<td>2</td>
</tr>
<tr>
<td>SAMMENDRAG</td>
<td>4</td>
</tr>
<tr>
<td>1. INNLEDNING</td>
<td></td>
</tr>
<tr>
<td>1.1 Bakgrunn for undersøkelsen</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Formål med undersøkelsen</td>
<td>5</td>
</tr>
<tr>
<td>2. STRANDSONEUNDERSØKELSE I FARSUND (BYFJORDEN OG ØST-HASSELNESET)</td>
<td></td>
</tr>
<tr>
<td>2.1 Metoder</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Resultater og vurderinger</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Sammendrag og konklusjoner</td>
<td>17</td>
</tr>
<tr>
<td>3. ORIENTERENDE UNDERSOKELSE AV METALLER I STRANDSNEGL</td>
<td></td>
</tr>
<tr>
<td>3.1 Metoder</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Resultater og vurderinger</td>
<td>18</td>
</tr>
<tr>
<td>4. REFERANSE</td>
<td></td>
</tr>
<tr>
<td>VEDLEGG A: Fullstendig artsliste over arter registrert i Byfjorden og Østhasselneset (Farsund) 3. og 4. juli 1995</td>
<td>21</td>
</tr>
<tr>
<td>VEDLEGG B: Resultater fra strandsoneundersøkelser i Farsund i august 1990, oktober 1991 og juli 1995</td>
<td>23</td>
</tr>
<tr>
<td>VEDLEGG C: Stasjonsbilder fra strandsoneundersøkelsen</td>
<td>26</td>
</tr>
<tr>
<td>VEDLEGG D: Anvendelse og prinsipp for de kjemiske analysemetodene som benyttes ved NIVA</td>
<td>36</td>
</tr>
</tbody>
</table>
SAMMENDRAG

Et begrenset område rundt utslipspunktet på Østhasselneset preges av utslippet av kommunalt avløpsvann. Effekter på strandsonesamfunnet kan trolig spores østover til en avstand av ca. 500 m. Vestover fra utslippet er virkningsene klart mindre. Dette samsvarer med at strømmålingene tyder på en overveiende østlig strøm nær land (Molvær og Jacobsen, 1995).

Ved økning av utslippet - uten noen form for rensing - kan utbredelsen av området med nedsatt vannkvalitet, nedslamming av bunnen, samt biologiske effekter øke betydelig, spesielt i østlig retnings (se også Molvær og Jacobsen, 1995).

Orienterende analyser av strandsnegl for innhold av metaller viste lave konsentrasjoner, og tyder dermed ikke på noen nevneverdig metallbelastning på omgivelsene fra utslippet.

(gilib) gruntrap
1. INNLEDNING

1.1. Bakgrunn for undersøkelsen

Utslippet på Østhassleneset er på ca. 2600 pe (sommeren 1995), og avløpsvannet ledes ut i strandsonen uten noen form for rensing. Innen 30/6-97 vil utslippet øke til ca. 6500 pe ved at Vestbygda rensedistrikt kobles til. I tillegg vurderer kommunen overføring av alt avløpsvann fra Farsund - Lista området (ca. 16400 pe) til Østhassleneset. Også for dette alternativet vil utslippet foregå i strandsonen. Av den grunn ble undersøkelsen rettet inn mot nåværende tilstand og vurdering av forventede endringer i biologiske forhold og vannkvalitet i strandsonen.

1.2. Formål med undersøkelsen

Formålet med undersøkelsen av organismesamfunnene i strandsonen var:

- vurdere virkninger av det kommunale utslippet på Østhassleneset
2. Strandsoneundersøkelse i Farsund (Byfjorden og Østhasseleneset)

Fjell og stein i fjæresonen har vanligvis et stort utvalg av fastsittende alger (tang, tare og mindre arter) og fjæreryt. Mange arter er tilpasset denne sonen, men hvilke arter som er tilstede og deres mengdemessige fordeling er blant annet avhengig av naturlige faktorer som eksponeringsgrad, substrattype, ferskvannspåvirkning, geografisk beliggenhet og sesong. I tillegg er forurensningspåvirkninger (næringssalter, organisk materiale, partikler, miljøgifter, etc.) av betydning for fjæresamfunnets sammensetning.

Undersøkelser i fjæra er ofte brukt for å beskrive miljøtilstanden på grunn vann. Ved å se på artssammensetning, forholdet mellom ulike organismegrupper, diversitet, etc., kan man få inntrykk av vannkvaliteten i et område. Det kreves imidlertid at man også tar hensyn til de naturlige faktorene som kan påvirke organismsamfunnet.

2.1. Metoder

Stasjonsvalg

Byfjorden:

Østhasseleneset:
Strandsoneundersøkelse ble foretatt på tre stasjoner med ulik avstand til utslippet på Østasseleneset. Stasjonsplasseringen er vist i Figur 2. Utslippet går ut i strandsonen. Stasjonene ble lagt til lokaliteter med store, stabile stein i mangel på fast fjell. Ingen av stasjonene er tidligere undersøkt.

(glib) gruntrap
<table>
<thead>
<tr>
<th>Stasjon:</th>
<th>Stedsbeskrivelse:</th>
<th>Nordlig koordinat:</th>
<th>Østlig koordinat:</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 Urøy</td>
<td>Kontrollstasjon, ytre del av Byfjorden. Østvendt lokalitet på høyde med Risholmen. Fjell.</td>
<td>58°04.4'</td>
<td>6°50.5'</td>
</tr>
<tr>
<td>F3 Fisholmen</td>
<td>Midt i Byfjorden, mellom Lundeågen og Spindslandet. Østvendt lokalitet. Fra gammel brygge midt på holmens østsida og nordover. Fjell.</td>
<td>58°05.2'</td>
<td>6°49.1'</td>
</tr>
<tr>
<td>F4 Florida</td>
<td>Lundevågen. Sydvendt lokalitet på nes nedenfor Farsund Fjordhotell. Fra badetrapp/brygge og vestover. Lokalt utslipp. Fjell.</td>
<td>58°05.2'</td>
<td>6°47.9'</td>
</tr>
<tr>
<td>F7 Klubben</td>
<td>Lyngdalsfjorden. Sydvendt lokalitet. Fra brygge ved hytte i en liten bukt og vestover. Fjell.</td>
<td>58°06.0'</td>
<td>6°47.5'</td>
</tr>
<tr>
<td>Ø1 Steinsvika</td>
<td>Vestsida av Østhasseleneset, vestlig vendt stasjon. Ved stor, karakteristisk stein. Steinstrand.</td>
<td>58°04.7'</td>
<td>6°37.2'</td>
</tr>
<tr>
<td>Ø2 Utslippsted</td>
<td>Midtveis mellom Storestranda og Østhasseleneset, ca. 100 m vest for utslippsledningen. Sydvendt. Steinstrand.</td>
<td>58°04.2'</td>
<td>6°38.5'</td>
</tr>
<tr>
<td>Ø3 Østhasseleneset</td>
<td>Sydspissen av Østhasseleneset. Syd-sydvestlig vendt. Liten, lokalt beskyttet bukt. Fjell og store stein.</td>
<td>58°04.2'</td>
<td>6°38.8'</td>
</tr>
</tbody>
</table>

(gåløib) gruntrap
Feltarbeid

Organismesamfunnet i strandsonen (0 - 1 meter) ble undersøkt ved å registrere alle makroskopiske alger (større enn 1 mm) og de vanligste makroskopiske dyrene i et ca. 20 meter langt belte langs stranden. Metoden innebærer registrering ved fridykking i maksimalt 20 minutter ved hver stasjon. Registreringen er kvalitativ og dels kvantitativ ved at artenes forekomst ble angitt etter en subjektiv skala: enkeltfunn (e), spredt (s), vanlig (v) og dominerende (d).

Arter som var vanskelige å identifisere i felt ble samlet inn og senere mikroskopert.

Tallbehandling

Ved tallbehandling ble forekomstangivelsene omgjort til tallmengder: enkeltfunn = 2, spredt = 4, vanlig = 8 og dominerende = 16.

Diversitet (H')

For å beregne diversiteten (= artsmangfold) ble en modifisert Shannon-Wiener indeks (H') brukt. Indeksen øker med økende antall arter og når individene er jevnt fordelt mellom artene. Lave verdier markerer dårlige forhold, mens høye verdier markerer normale til gode forhold. Shannon-Wiener indeks er basert på antall (n), men er her brukt på mengde. Indekser er gitt ved formelen:

$$H = -\sum_{i=1}^{n} \frac{n_i}{N} \log_2 \frac{n_i}{N}$$

hvor n_i er mengdeverdien (forekomstangivelsen) av art i, N er summen av mengdeverdiene for alle arter og s er antall arter.

Dominansindeks (I):

Denne indeksen er foreslått av Shaw et al. (1983) for å gi et enkelt tall som reflekterer dominansforholdet i et samfunn. Dominans defineres som mengdeverdien av den vanligste arten i prosent av hele prøven:

$$I = \frac{n_i}{N} \times 100$$

der n_i er forekomst av den vanligste arten og N er summen av alle artenes forekomst.

Høye indeksverdier indikerer et samfunn domineret av én art. I naturlige, uforstyrrede samfunn vil det være en jevne fordeling mellom artene, og dominansindeksen vil derfor være lav.

Forholdet mellom antall rød-, brun- og grønnalger:

På bakgrunn av flere undersøkelser fra norske fjorder og den svenske vestkyst, er det utarbeidet en fordelingsnøkkel for forholdet mellom antall rødalger, brunlager og grønnlager i uforurensede fjorder og kyststrøk. "Normalintervallene" er satt til R:B:G = 45%±10% : 35%±10% : 15%±5%. Forholdet mellom de tre algeklassene endres med milljøforholdene (Bokn 1978).

I områder med kloakk/og eller ferskvannspåvirkning vil andel grønnalger øke og rødalgens prosenten avta.
2.2. Resultater og vurderinger

Hovedresultatene er vist i Tabell 2 og figurene 3 - 5. Fullstendige artslister og bilder fra stasjonene er vist i vedlegg.

Dagens tilstand

Byfjorden:
Antall arter på stasjonene varierte fra 37 på stasjon Urøy til 22 arter på stasjon Klubb (Figur 3). Antall arter avtok innover fjorden, mens diversiteten gradvis økte.

Kontrollstasjonen på Urøy (stasjon F1) var den rikeste stasjonen med både flest antall arter og høyest diversitet (Figur 3, Figur 5). Den prosentvisse fordelen mellom rød-, brun- og grønnalger var 44:33:22, dvs. at grønnalgeprosenten var litt høyere enn "normalintervallet" tilsier (Figur 4). Det var imidlertid ikke andre tegn til uregelmessigheter, og stasjonen virket frisk og upåvirket. Fingertare, sagtang, blåskjell, vanlig grønnodsk og ulike rødalger dominerer stasjonen.

Fisholmen (stasjon F3) var i større grad preget av trådformete alger (rekeklo, brunsli, grønnodsk), og gav i felt inntrykk av næringssaltanrikning. Artene med størst forekomst på stasjonen var fingertare, perlesli, grønnodsk og blåskjell. Fordelingen mellom rød-, brun- og grønnalger var 41:32:27 som viser en litt høy andel grønnalger (Figur 4). Artsrikheten og diversiteten var lavere enn for Urøy. Saltholdigheten i overflatelaget var 26 - 31‰.

Ved Florida (stasjon F4) var strandsonen dominert av trådformete alger (perlesli, grønnodsk, tarmgrønne og rekeklo), mens sagtang og mosdyr og hydroider var vanlige. De trådformete algene dekket både fjell og de større algene. Stasjonen var nedslammet, hvilket tyder på stor partikkelbelastning. Det ble også registrert hvit bakteriebelegg enkelte steder. Prosentfordeling mellom rødalger, brunalger og grønnalger var 32:42:26, som viser at andelen grønnalger var høyere, og andelen rødalger lavere enn "normalintervallene". Resultatene viser tydelige tegn til overkonsentrasions av næringsalter. Saltholdigheten i overflatelaget var 26 - 28‰.

Østhasselneset:
Steinsvika (stasjon Ø1) hadde frisk tangvegetasjon og var preget av flerårige arter. Stasjonen lå ca. 1,5 km vest for utslippet. Det ble registrert tette bestander av blæretang og sagtang, mens skorreforme rødalger, sjøris, tanglo, skolmetang, strandsnegl og sjøroser var vanlige. Lite partikkelsedimentering og klart vann ga et godt inntrykk av stasjonen. Fordelingen mellom antall rød-, brun og grønnalger var normal (42:42:16), men diversiteten og artsantallet var relativ lav i forhold til stasjonen på Urøy (Figur 3, Figur 4, Figur 5). Dette kan trolig forklares av ulik eksponering mot bølgeslag. Stasjon Ø1 er svært eksponert. Det var ingen synlige effekter av avløpsvannet fra Østhasselneset.

(glib) gruntrap

Området i umiddelbar nærhet av utslippsrøret var tydelig preget av utslippet med kraftig kloakklukt, gråfarget vann (null sikt) og mye løse, døde algerester i vannet (se bilder i vedlegg). Utslippspunktet var godt synlig i stranden. Ved tidspunktet for undersøkelsen ble utslippsvannet ført østover med vind og strøm. Fortynnet avløpsvann ble observert minst et par hundre meter øst for utslippet og 50 - 100 meter vest for utslippet.

I Fuglevika øst for Østhasselsneset, ble det observert mye løsrevne, råtende alger. Det var også svært mye strandsnøgl i området. Området gav inntrykk av å være et sedimenteringssted for drivende algerester og annet. Det ble ikke gjort systematiske registreringer i dette området.
Tabell 2. De vanligste artene registrert i byfjorden i Farsund og på Østhasselneset i juli 1995.
Tegnforklaring: d= dominerende, v= vanlig, s= spredt, e= enkeltfunn, * = kun registr. i mikroskop. Se vedlegg for fullstendige artslister.

<table>
<thead>
<tr>
<th>Stasjonsnr.</th>
<th>Urøy</th>
<th>Fisholmen</th>
<th>Klubben</th>
<th>Florida</th>
<th>Steinsvika</th>
<th>Østhassel - utslipp</th>
<th>Østhasselneset</th>
<th>Norske navn</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHODOPHYCEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahnfeltia plicata</td>
<td>v s s</td>
<td>v e v</td>
<td>Sjøris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium rubrum</td>
<td>d v v v</td>
<td>* d</td>
<td>Vanlig rekkelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corallina officinalis</td>
<td>s s-v v</td>
<td>s d d</td>
<td>Kraling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coralliniaeae inedet.</td>
<td>d v d</td>
<td>v d</td>
<td>Kalkalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoclionum</td>
<td>v s * v</td>
<td>Fiskeløk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpureum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hildenbrandia rubra</td>
<td>v s s</td>
<td>v d s</td>
<td>Fjæreblod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybuiltia spp.</td>
<td>s s v *</td>
<td>s * v</td>
<td>-dokke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyra umbilicalis</td>
<td>v s</td>
<td>Fjærhine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAEOPHYCEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpales</td>
<td>v d v</td>
<td>v v</td>
<td>Brunsliperlesli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elachista fucicola</td>
<td>v v s</td>
<td>v v</td>
<td>Tanglo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>d v d v</td>
<td>d v d</td>
<td>Sagtang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucus vesiculosus</td>
<td>s s v v</td>
<td>d d d</td>
<td>Bløretang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halidrys siliquosa</td>
<td>v e v</td>
<td>v e</td>
<td>Skolmetang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminaria digitata</td>
<td>d d s</td>
<td>s-v s s</td>
<td>Fingetare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROPHYCEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora rupestris</td>
<td>v-d v-d v</td>
<td>* s</td>
<td>Vanlig grønndusk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>s s v d v</td>
<td>s v v</td>
<td>Grønndusk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteromorpha spp.</td>
<td>s s s v</td>
<td>s v v</td>
<td>Tarmgrønse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td>s s</td>
<td>s v v</td>
<td>Havsalat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAUNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinide</td>
<td>v s s</td>
<td>v s s</td>
<td>Sjøsøse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asterias rubens</td>
<td>v s e</td>
<td>e</td>
<td>Sjøstjerne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanus sp.</td>
<td>v s s</td>
<td>s</td>
<td>Rur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryozoa inedet.</td>
<td>v v s v</td>
<td>v v v</td>
<td>Mosdyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroida</td>
<td>v v v v</td>
<td>v v v</td>
<td>Hydroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina sp.</td>
<td>e v d v</td>
<td>v d v</td>
<td>Strandsnegl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>v-d v-d</td>
<td>e v s</td>
<td>Albuensnegl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patella vulgata</td>
<td>s v</td>
<td>s v</td>
<td>Blåskjell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirotrichos sp.</td>
<td>v</td>
<td>v</td>
<td>Posthornmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 5. Diversitet (H') og dominans på stasjonene i Byfjorden og Østhasselneset.
Utvikling i Byfjorden fra 1990 - 1995

![Antall arter](image)

Figur 8. Utvikling i diversitet og dominans på fire stasjoner i Byfjorden.
2.3. Sammendrag og konklusjoner

Byfjorden

Tilstanden i ytre del av Byfjorden (Uroty) var god, mens det var tegn til overkonsentrasjoner i midtre Byfjorden (Fisholmen) og ytre del av Lundevågen (Florida). Stasjonen i Lyngdalsfjorden viste tegn til påvirkning av ferskvann og/eller overkonsentrasjoner av næringssalter.

Østhasselneset

Et begrenset område rundt utslipspunktet på Østhasselneset var tydelig preget av fortynnet avløpsvann. Effekter av utslippet på strandsonesamfunnet ble påvist ved selve utslipspunktet (stasjon Ø2) og det var tegn til noe anrikete forhold ved den sørøstlige tuppen av Østhasselneset (Ø3). Ca. 1.5 km vest for utslippet viste strandsonesamfunnet ingen tegn til påvirkninger fra avløpsvann.

Avløpsvannet fra Østhasselneset blir ført ut i overflatesvannet, og både vind og strømforhold vil derfor ha invirkning på hvilken retning avløpsvannet føres. Den dominerende vindretningen i Skagerrak er fra sørvest, som tilviser at avløpsvannet fra Østhasselneset ofte kan bli ført mot øst/nordøst. En østgående strøm på innsiden av den vestgående kyststrømmen er vanlig mange steder langs kysten.
3. Orienterende undersøkelse av metaller i strandsnegl

Kommunalt avløpsvann vil inneholde begrensete mengder av metaller og organiske miljøgifter. Formålet med denne delundersøkelsen var å beskrive tilstanden omkring utslipspunktet med hensyn på metaller i biologisk materiale.

Under etablering av prosjektet ble det planlagt å utføre metallanalyse på blåskjell (*Mytilus edulis*), den vanligste testorganismen på grunn vann. Det ble imidlertid funnet svært få eller ingen blåskjell på de aktuelle stasjonene, og det ble derfor analysert på strandsnegl (*Littorina littorea*). Analysene er vurdert etter SFTs veiledningshefte: Klassifisering av miljøkvalitet i fjorder og kystfarvann. Virkninger av miljøgifter (Knutzen et al., 1993).

3.1. Metoder

Alle prøvene ble analysert for metallene bly (Pb), kobber (Cu), kadmium (Cd), krom (Cr) og kvikksølv (Hg). Analysene ble utført etter standard metoder (se vedlegg).

3.2. Resultater og vurderinger

Analyseresultatene er gitt i Tabell 3. Analysene er basert på våtvekt, mens SFTs klassifiseringssystem er basert på tørvekt. Alle analysene er derfor også omregnet til tørvekt ved å bruke en omregningsfaktor på 0,18 g tørvekt (Mance et al., 1984).

Analysene viser forholdsvis lave metaller i strandsnegl fra Østhasselsneset. Alle verdiene med unntak av krom er under det som regnes som bakgrunnsnivå (tilstandsklasse I). Det ble funnet noe høyere kromverdier, men det er her snakk om bare moderate overkonsentrasjoner (tilstandsklasse II).

Det var ingen nevneverdige forskjeller i metallinnholdet ved utslippsstedet og referansestasjonen på Tjørveneset.

Det konkluderes med at metallbelastningen ved Østhasselsneset var lav, og i hovedsak innenfor det man regner for bakgrunnsnivå.
<table>
<thead>
<tr>
<th></th>
<th>Kadmium CD µg/g</th>
<th>Krom Cr µg/g</th>
<th>Kobber Cu µg/g</th>
<th>Kvikksølv Hg µg/g</th>
<th>Bly Pb µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Våtvekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. 1 Utslipp</td>
<td>0.104</td>
<td>0.97</td>
<td>19.3</td>
<td>0.022</td>
<td>0.07</td>
</tr>
<tr>
<td>St. 2 300 m øst</td>
<td>0.176</td>
<td>0.30</td>
<td>17.8</td>
<td>0.010</td>
<td>0.07</td>
</tr>
<tr>
<td>St. 3 300 m vest</td>
<td>0.231</td>
<td>0.49</td>
<td>18.5</td>
<td><0.005</td>
<td>0.06</td>
</tr>
<tr>
<td>St. 4 Tjørveneset (ref.)</td>
<td>0.191</td>
<td>0.43</td>
<td>17.7</td>
<td><0.005</td>
<td>0.03</td>
</tr>
<tr>
<td>Tørvekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. 1 Utslipp</td>
<td>0.577</td>
<td>5.388</td>
<td>107.2</td>
<td>0.122</td>
<td>0.39</td>
</tr>
<tr>
<td>St. 2 300 m øst</td>
<td>0.977</td>
<td>1.666</td>
<td>98.88</td>
<td>0.055</td>
<td>0.39</td>
</tr>
<tr>
<td>St. 3 300 m vest</td>
<td>1.28</td>
<td>2.722</td>
<td>102.8</td>
<td><0.027</td>
<td>0.33</td>
</tr>
<tr>
<td>St. 4 Tjørveneset (ref.)</td>
<td>1.06</td>
<td>2.388</td>
<td>98.3</td>
<td><0.027</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Antall øvre grense for naturlig bakgrunnsverdi (tørvekt)

< 5 < 3 < 150 < 0.5 < 10

(ɡlib) gruntrap

19
4. Referanser

Vedlegg A

Tegnforklaringer: e = enkeltføtt, s = spredt, v = vanlig, d = dominerende.

<table>
<thead>
<tr>
<th>Arter</th>
<th>F1</th>
<th>F3</th>
<th>F4</th>
<th>F7</th>
<th>Ø1</th>
<th>Ø2</th>
<th>Ø3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rødalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahnfeltia plicata</td>
<td>v</td>
<td>s</td>
<td>s</td>
<td></td>
<td>v</td>
<td>e</td>
<td>v</td>
</tr>
<tr>
<td>Audouinia sp.</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium rubrum</td>
<td>d</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>e</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>Ceramium strictum</td>
<td>e</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrus crispus</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Corallina officinalis</td>
<td>e</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Coralliniacea indet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoclonium purpureum</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Dumontia contorta</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furcellaria lumbricalis</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hildenbrandia rubra</td>
<td>e</td>
<td>s</td>
<td>s</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membranoptera alata</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmaria palmata</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phycodrys rubens</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllophora pseudocer.</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllophora truncata</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyides rotundus</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia brodiae</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia cf. hemispherica</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia nigrescens</td>
<td>e</td>
<td>v</td>
<td></td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia urceolata</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td>e</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Polysiphonia violacea</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyra umbilicalis</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaria esculenta</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascophyllum nodosum</td>
<td>e</td>
<td>s</td>
<td>s</td>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chorda filum</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordaria flagelliformis</td>
<td>e</td>
<td>e</td>
<td>s</td>
<td></td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmarestia aculeata</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmarestia viridis</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus siliculosus</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus sp.</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elachista fucicola</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>d</td>
<td>v</td>
<td>v</td>
<td>d</td>
<td>d</td>
<td>v</td>
<td>d</td>
</tr>
<tr>
<td>Fucus vesiculosus</td>
<td>s</td>
<td>s</td>
<td>v</td>
<td>v</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Halidrys siliquosa</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminaria digitata</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminaria saccharina</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vedlegg A forts.

(glib) gruntrap

21
<table>
<thead>
<tr>
<th>Arter</th>
<th>F1</th>
<th>F3</th>
<th>F4</th>
<th>F7</th>
<th>Ø1</th>
<th>Ø2</th>
<th>Ø3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilayella littoralis</td>
<td>d</td>
<td>d</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>e</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grønnalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blidingia minima</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td>s-v</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Chaetomorpha melagonium</td>
<td></td>
<td></td>
<td>s</td>
<td>s</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>Cladophora cf. sericea</td>
<td>s</td>
<td></td>
<td>s</td>
<td></td>
<td>e</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Cladophora rupestris</td>
<td>v-d</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td>e</td>
<td>s</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>s</td>
<td></td>
<td>v</td>
<td></td>
<td>s</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Enteromorpha cf. linza</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Enteromorpha intestinalis</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td>s</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Spongormorpha sp.</td>
<td></td>
<td></td>
<td></td>
<td>s</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td>s</td>
<td></td>
<td>s</td>
<td></td>
<td>s</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Blågrønnalge/lav</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calothrix</td>
<td>d</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asterias rubens</td>
<td>v</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Balanus sp.</td>
<td>v</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>Bryozoa indet.</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinus maenas</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Clava squamata</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>Dynamena pumila</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halichondria panicea</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laomedea sp.</td>
<td>v</td>
<td>s</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina littorea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina saxatilis</td>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Littorina sp.</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>v-d</td>
<td>v-d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patella vulgata</td>
<td>s</td>
<td></td>
<td></td>
<td>e</td>
<td>v</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Spirorbus sp.</td>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stasjoner</th>
<th>F1</th>
<th>F3</th>
<th>F4</th>
<th>F7</th>
<th>Ø1</th>
<th>Ø2</th>
<th>Ø3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall arter</td>
<td>36</td>
<td>29</td>
<td>27</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>34</td>
</tr>
</tbody>
</table>

(glib) gruntrap

22

Vedlegg B

RESULTATER FRA STRANDSONEUNDERSØKELSER I FARSUND I AUGUST 1990, OKTOBER 1991 OG JULI 1995.

Tegnforklaringer: e = enkeltfunn, s = spredt, v = vanlig, d = dominerende. * = identifisert fra innsamlet materiale.

<table>
<thead>
<tr>
<th>Stasjonsnavn</th>
<th>Usøy</th>
<th>Fisholmen</th>
<th>Florida</th>
<th>Klubben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rødalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahnfeltia plicata</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Audouinella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callith. corymbosum</td>
<td>s-v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium rubrum</td>
<td>y</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Ceramium strictum</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrus crispus</td>
<td>s</td>
<td>s</td>
<td>v</td>
<td>e</td>
</tr>
<tr>
<td>Coralliniaeae indet.</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>v</td>
</tr>
<tr>
<td>Cruraria pellita</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoclonium purpureum</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dumontia contorta</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furcellaria lumbricalis</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hildenbrandia rubra</td>
<td>d</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Membranoptera alata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmaria palmata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phycodrys rubens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllophora</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>s</td>
</tr>
<tr>
<td>Pseudoceranoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllophora truncata</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyides rotundus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia brodiaei</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia cf. hemispherica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>s-v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia nigrescens</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia urceolata</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia violacea</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphrya purpurea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyra umbilicalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunalger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascothyrum nodosum</td>
<td>s</td>
<td>s</td>
<td>e</td>
<td>s</td>
</tr>
<tr>
<td>Chorda filum</td>
<td>v</td>
<td>s</td>
<td>e</td>
<td>s</td>
</tr>
<tr>
<td>Chordaria flagelliformis</td>
<td>v</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus siliculosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus/Pilayella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elachistra fucicola</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Fucus vesiculosus</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>Halidrys siliquosa</td>
<td></td>
<td></td>
<td>s-v</td>
<td></td>
</tr>
<tr>
<td>Laminaria digitata</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

(glib) gruntrap

23
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilayella littoralis</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Ralfsia sp.</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td></td>
</tr>
<tr>
<td>Spermatochnus paradoxus</td>
<td></td>
</tr>
<tr>
<td>Grønnalger</td>
<td></td>
</tr>
<tr>
<td>Blidingia minima</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Chaetomorpha melagonium</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha linum</td>
<td></td>
</tr>
<tr>
<td>Cladophora cf. sericea</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora rupestris</td>
<td>v</td>
<td>v</td>
<td>v-d</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v-d</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>s</td>
<td>v-d</td>
<td></td>
</tr>
<tr>
<td>Enteromorpha cf. linza</td>
<td></td>
</tr>
<tr>
<td>Enteromorpha intestinalis</td>
<td></td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td>d</td>
<td>s</td>
<td>s</td>
<td>v</td>
<td>s</td>
<td>v-d</td>
<td>s</td>
<td>v</td>
<td>s</td>
<td>v</td>
<td>s-v</td>
<td>s</td>
</tr>
<tr>
<td>Spongomorpha sp.</td>
<td></td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td>v</td>
<td>s</td>
<td>s</td>
<td>v</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blågrønnalge/lav</td>
<td></td>
</tr>
<tr>
<td>Verrucaria/Calothrix</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAUNA</td>
<td></td>
</tr>
<tr>
<td>Filtrerere</td>
<td></td>
</tr>
<tr>
<td>Actinide</td>
<td></td>
</tr>
<tr>
<td>Alcyonidium sp.</td>
<td></td>
</tr>
<tr>
<td>Balanus sp.</td>
<td>+</td>
<td>s</td>
<td>v</td>
<td>+</td>
<td>s</td>
<td>s</td>
<td>+</td>
<td>s</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryozoa indet.</td>
<td>+</td>
<td>v</td>
<td>v</td>
<td>+</td>
<td>v</td>
<td>v</td>
<td>+</td>
<td>s</td>
<td>v</td>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Clava squamata</td>
<td></td>
</tr>
<tr>
<td>Dynamena pumila</td>
<td>+</td>
<td>s-v</td>
<td>v</td>
<td>+</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halichondria panicea</td>
<td>s-v</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laomedea sp.</td>
<td>+</td>
<td>v-d</td>
<td>v</td>
<td>+</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s-v</td>
<td>v</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>+</td>
<td>v-d</td>
<td>v-d</td>
<td>v-d</td>
<td>v-d</td>
<td>+</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomatoceros triqueter</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera</td>
<td>s</td>
<td>v</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagartiidae</td>
<td></td>
</tr>
<tr>
<td>Spirorbis sp.</td>
<td>s-v</td>
<td>s-v</td>
<td>+</td>
<td>d</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubularia sp.</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Utricularia felina</td>
<td></td>
</tr>
<tr>
<td>Beitere</td>
<td></td>
</tr>
<tr>
<td>Acmea sp.</td>
<td>s</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina saxatilis</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Littorina sp.</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>e</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakensnegl</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Patella vulgata</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Rovdyr/øtseletere</td>
<td></td>
</tr>
<tr>
<td>Carcinus maenas</td>
<td>+</td>
<td>+</td>
<td>s</td>
<td>+</td>
<td>s</td>
<td></td>
<td>e</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asterias rubens</td>
<td>+</td>
<td>s</td>
<td>v</td>
<td>+</td>
<td>s</td>
<td>s</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(glib) gruntrap

24
Vedlegg B forts.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall arter</td>
<td>34 35 36</td>
<td>30 30 29</td>
<td>26 31 27</td>
<td>20 21 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall brunalger</td>
<td>8 5 9</td>
<td>6 6 7</td>
<td>7 9 8</td>
<td>3 5 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall grønnalger</td>
<td>4 4 6</td>
<td>3 4 6</td>
<td>4 4 5</td>
<td>4 2 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall rødalger</td>
<td>11 12 12</td>
<td>11 10 9</td>
<td>7 8 6</td>
<td>7 7 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum antall alger</td>
<td>23 21 27</td>
<td>20 20 22</td>
<td>18 21 19</td>
<td>14 14 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall filterere</td>
<td>7 11 7</td>
<td>6 9 6</td>
<td>6 6 6</td>
<td>4 5 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall beitere</td>
<td>2 2 1</td>
<td>2 1 0</td>
<td>1 2 1</td>
<td>0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall rovdyr</td>
<td>2 1 1</td>
<td>2 0 1</td>
<td>1 2 1</td>
<td>2 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum antall dyr</td>
<td>11 14 9</td>
<td>10 10 7</td>
<td>8 10 8</td>
<td>6 7 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(glib) gruntrap
25
Vedlegg C

STASJONSBILDER FRA STRANDSONEUNDERSØKELSEN

(gulib) gruntrap

(glib) gruntrap
Vedlegg D

ANVENDELSE OG PRINSIPP FOR DE KJEMISKE ANALYSEMETODENE SOM BENYTTES VED NIVA

E 2. METALLER, ATOMABSORPSJON GRAFITTOVN

Denne metoden skal benyttes når metallkonsentrasjonene i løsningene er så lave at de ikke kan bestemmes ved atomisering i flamme uten oppkonsentrering. Atomisering i grafittovn omfatter bestemmelse av sølv, aluminium, kadmium, kobolt, krom, kobber, jern, mangan, molybden, nikkel, bly, sink, strontium og vanadium. Prøvene kan være naturlig vann, ekstrakter eller oppslutninger av slam, sedimenter og biologisk materiale. Denne forskriften skal brukes sammen med NIVAs bruksanvisning for Perkin-Elmer 2380/HGA-500. Eventuelt forbehandling av prøvene er beskrevet i egne forskrifter. Tabell E-2 nedenfor angir nedre og øvre grense (μg/l) for bestemmelse av de enkelte metaller med grafittovn når det injiseres et prøvevolum på 20 μl direkte i grafittovn.

Tabell E-2. Nedre og øvre grense (μg/l) for bestemmelse av metall i vandige løsninger når prøven injiseres direkte i grafittovn.

<table>
<thead>
<tr>
<th>Metall</th>
<th>Nedre grense</th>
<th>Øvre grense</th>
<th>Metall</th>
<th>Nedre grense</th>
<th>Øvre grense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.5</td>
<td>50</td>
<td>Mn</td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>Al</td>
<td>5.0</td>
<td>1000</td>
<td>Mo</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>Cd</td>
<td>0.1</td>
<td>5</td>
<td>Ni</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>Co</td>
<td>5.0</td>
<td>100</td>
<td>Pb</td>
<td>0.5</td>
<td>200</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>50</td>
<td>V</td>
<td>5.0</td>
<td>500</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>50</td>
<td>Zn</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>Fe</td>
<td>5.0</td>
<td>200</td>
<td>Sr</td>
<td>0.5</td>
<td>100</td>
</tr>
</tbody>
</table>

Prinsipp:

E 4-2. KVIKKSOŁV, KALDDAMP ATOMABSORPSJON, SLAM etc.

Denne metoden skal anvendes til avløpsvann, slam, sedimenter og biologisk materiale. Kvikksølv analyseres i våt prøve så raskt som mulig etter prøvetaking eller i homogenisert, frysetørret prøve. Tøring i varmeskap bør unngås pga. tap av flyktige organiske kvikksølv-forbindelser og fordamping av metallisk kvikksølv. Dersom man allikevel velger denne metoden, må temperaturen...
ikke overstige 80°C. Deteksjonsgrensen for avløpsvann er 0.1 μg/l, og for faste prøver ved innveiing av 1 g tørket materiale 0.01 μg/g.

Prinsipp:

En nøyaktig innveid mengde prøve oppsluttes ved autoclaving med salpetersyre. Organisk bundet kvikksølv oksideres til toverdig kvikksølv i ioneform (Hg²⁺). Deretter reduseres kvikksølvet til elementær tilstand med tinnklorid og drives ut som damp ved hjelp av helium som bæregass. Kvikksølvet amalgamerer på gullfellen og blir senere frigjort ved elektrotermisk oppvarming av denne. Bæregassen fører kvikksølvdampen gjennom kvarts-kvetten hvor absorbansen måles ved 253.7 nm ved kalddamp atomabsorpsjon.
Norsk institutt for vannforskning

Postboks 173 Kjelsås
0411 Oslo

Telefon: 22 18 51 00
Telefax: 22 18 52 00

Ved bestilling av rapporten,
oppgi løpenummer 3500-96

ISBN 82-577-3042-4