Forsuring og tungmetallforurensning i grenseområdene Norge/Russland
Årsrapport for 1995
Rapportens tittel:

Dato: 10.02.1996
Trykket: NIVA 1996

Faggruppe: Sur nedbør
Geografisk område: Sør-Varanger
Antall sider: 21

Oppdragsgiver: Statens Forurensningstilsyn (SFT) (Statlig program for forurensningsovervåking)

Oppdragsg. ref.:

Ekstrakt:
Vannkjemisk overvåking av innsjøer i Sør-Varanger har de siste årene vist klar utvikling mot lavere konsentrasjoner av sulfat og labilt aluminium, og økende pH og ANC. Årsaken er redusert svovel-deposisjon som følge av reduserte utslipp fra Pechenganickel. Overvåkingen har vist at innsjøene i området viser en rask forbedring i vannkvalitet når svovelavsetningen reduseres. Konsentrasjonene av nikkel og kobber i innsjøene viser ingen klar endring. Det er sannsynlig at konsentrasjonene av Ni og Cu i innsjøsedimenter og jordsmonn stadig vil øke og at det er nødvendig med betydelige reduksjoner i avsetningene av disse elementene før denne tenden kan snus. Det er derfor viktig at tungmetallkontamineringen i området overvåkes i årene fremover.

4 emneord, norske
1. Forsuring
2. Tungmetaller
3. Svoveldeposisjon
4. Nikkel-smelteverk

4 emneord, engelske
1. Acidification
2. Heavy metals
3. Sulphur deposition
4. Nickel smelter

ISBN 82-577-2995-7
O-89187

FORSURING OG TUNGMETALLFORURENSNING
I
GRENSERÅDENE NORGE / RUSSLAND
Årsrapport for 1995.

Oslo, februar 1996

Prosjektleder: Tor S. Traaen, NIVA

Medarbeidere: Arne Henriksen, NIVA
 Sigurd Rognerud, NIVA
 Fjelltjenesten i Finnmark

Norsk Institutt for Vannforskning
INNHOLDSFORTEGNELSE

1. SAMMENDRAG OG KONKLUSJONER 3

2. VANNKJEMISK OVERVÅKING AV INNSJØER 4
 2.1 Forsuring 4
 2.2 Tungmetaller i vann 9

3. OVERVÅKNING AV TUNGMETALLAVSETNING I INNSJØSEDIMENTER 12
 3.1 Innledning 12
 3.2 Metoder 12
 3.3 Resultater 13
 3.4 Diskusjon 15

LITTERATUR 17

VEDLEGG 19
1. SAMMENDRAG OG KONKLUSJONER.

Undersøkelsene i 1986 viste at konsentrasjonen av sjøsaltkorrigeret sulfat i innsjøene øst for Kirkenes var mer enn fordoble siden 1966. Sulfatkonsentrasjonene lå på det samme nivå som de mest belastede innsjøene i Sør-Norge, og mange innsjøer hadde mistet det meste av motstandsksraften mot ytterlige forurensing. Det ble senere registrert en rekke småvann med pH under 5.0 og konsentrasjoner av labilt aluminium som er giftig for fisk. Den geografiske fordeling av sjøsaltkorrigeret sulfat i innsjøene viser klare graderinger ut fra smelteverkene og er i samsvar med de fremherskende vindretningene i området.

Det er godt samsvar mellom NILUs målinger av svoveldeposisjonen på Svanvik og konsentrasjoner av sulfat i innsjøene øst for Kirkenes. Sammenhengen er best mellom sulfatkonsentrasjon ett år og svoveldeposisjonen foregående år. Dette har trolig sin årsak i oppholdstiden til sulfat i nedbørfeltet og selve innsjøen. Av samme årsak reagerer småvannene på Jarfjordfjellet raskere på reduserte svoveldeposisjoner enn de store overvåkingssjøene i det samme området.

Det er klare indikasjoner på at konsentrasjonene av nikkel, kobber, arsen, kadmium og sink er økende i sedimentert materiale etter 1990. Dette har sannsynligvis en sammenheng med en økt konsentrasjon i materialet som tilføres innsjøene fra nedbørfeltet. Dette til tross for at deposisjonene synes å ha vært nær de samme siden slutten av 80-årene. Målinger og beregninger tyder på at mengden av akkumulerte tungmetaller i jordsmonn og sedimenter stadig øker. En fortsatt overvåkning vil vise om denne tenden vil holde seg i årene fremover.
2. VANNKJEMISK OVERVÅKING AV INNSJØER.

![Map of Norway, Finland, and Russia with innsjøer marked](image)

Figur 2.1 Beliggenhet av innsjøer i overvåkingsprogrammet i Sør-Varanger.

2.1 Forsuring.

Kjemiske analyseresultater fra 1994 er vist i vedlegg. Figur 2.1 og 2.2 viser de viktigste forsuringsparametrene for innsjøene hhv. øst (n=9) og vest (n=11) for Kirkenes som har vært prøvetatt siden 1989. Figur 2.3 viser tilsvarende data for småvann på Jarfjordfjellet.

Middelverdier for basekationer (CaMgNa*), sulfat (SO4*), ANC og pH.
Stjerne (*) angir sjøsaltkorrigerte verdier.
Middelverdier for basekationer (CaMgNa*), sulfat (SO4*), ANC og pH.
Stjerne (*) angir sjøsaltkorrigerte verdier.

![Figur 2.4. Svoveldeposisjon (våt + tørr) ved Svanvik for perioden 1987 til 1994. Data fra Norsk Institutt for Luftforskning, NILU.](image)

Det er godt samsvar mellom sulfatinnholdet i innsjøene og sulfatdeposisjonen. For småvannene på Jarfjordfjellet er dette illustrert i Figur 2.5, hvor midlere sulfatkonsentrasjoner (høstprøver) er plottet mot svoveldeposisjonen på Svanvik året før. Årsaken til at fjarårets sulfatdeposisjon ga en bedre korrelasjon med sulfatkonsentrasjonene i innsjøene enn samme årets deposisjon er trolig at det er en viss forsinkelse av svovelutvaskingen fra nedbørfeltet, og at innsjøenes oppholdstid forsinket reaksjonen. Selv om svoveldeposisjonen ved Svanvik ikke er helt lik deposisjonen ved Jarfjord-vannene, er det sannsynlig at deposisjonene har en god samvarsjon fordi hovedkilden til deposisjonen er den samme (Pechenganickel).
Figur 2.5. Sulfatkonsentrasjoner (middelverdier) for 6 småvann på Jarfjordfjellet som funksjon av svoveldeposisjonen på Svanvik foregående år.
Data for perioden 1987-1995. Deposisjonsdata fra NILU.

Tendensen mot en bedring i forsuringssituasjonen i de mest belastede innsjøene kan forklares med redusert svoveldeposisjon som følge av reduserte utslipp fra smelteverkene i Nikel og Zapolyarnij. Dette skyldes i stor grad redusert forbruk av den svovelrike Norilsk-malmen. I 1995 ble det ikke benyttet Norilsk-malm i Nikel (G. Kalabin, pers.medd.).

2.2 Tungmetaller i vann.

Figur 2.6. Konsentrasjoner av nikkel og kobber i innsjøer øst for Kirkenes.

Figur 2.7. Konsentrasjoner av nikkel og kobber i innsjøer vest for Kirkenes.

vest for Kirkenes lå gjennomgående under deteksjongrensen på 1 µg/l. Kobberkonsentrasjonene var noe høyere øst for Kirkenes enn vest for Kirkenes, men var gjennomgående lavere (ca 2 µg/l) i begge områdene.

På grunn av store mengder akkumulerte tungmetaller i jordsmonn og innsjøsedimenter (Rognerud m.fl.1993, Traaen m.fl. 1994) kan man ikke forvente like rask respons i innsjøene ved reduserte utslipp av tungmetaller som ved redusert svovelutslipp. For perioden 1.04.1990 til 31.03.1991 utarbeidet NILU et deposisjonsskred for tørravsetninger av nikkel (Sivertsen m.fl. 1991). Deposisjonen rundt Otervatn, den overvåkingssjøen på norsk side som har høyest nikkelkonsentrasjon, var ca. 20 mg/m² pr. år. Legger vi til en våtdeposisjon på anslagsvis 3 mg/m² pr. år, blir totaldeposisjonen ca. 23 mg/m² pr. år. Ved en avrenning i området på ca. 18 l/s/km² tilsvarer dette en nikkelkonsentrasjon på 41 µg/l hvis hele deposisjonen ble vasket ut. Målte konsentrasjoner av nikkel i Otervatn ligger rundt 20 µg/l. Dette tyder på at omtrent halvparten av tilført nikkel akkumulerer i nedbørfeltets jordsmonn og innsjøsedimenter. Deposisjonen av kobber er omlag like stor som for nikkel. Konsentrasjonene av kobber i Otervatn ligger rundt 4 µg/l. Dette tyder på at omtrent 90% av tilført kobber akkumulerer i nedbørfeltet. Den årlige tilvekst av organisk materiale i humussjiktet i nedbørfelt med spredt fjellbjørkeskog slik som i dette området, er svært liten. Derfor synes det rimelig å anta at konsentrasjonene av tungmetaller i området stadig øker. Dette er i god overensstemmelse med Steinnes sine undersøkelser av ombrogene myrer som hadde en meget høy anrikning av kobber og nikkel i de øverste få cm av torvprofilene (Traaen et al. 1994).

I tillegg til luftutslipp av tungmetaller, er det også betydelige utslipp av tungmetaller, spesielt nikkel, direkte til vann fra gruveområdene rundt Nikkel. Det er identifisert 5 ulike kilder:
3. OVERVÅKNING AV TUNGMETALLAVSETNING I INNSJØSEDIMENTER.

3.1 Innledning

Innsjøene på i Jarfjordområdet utsettes for atmosfæriske avsetninger av syrer og metaller fra metallverkene på Russisk side. De høyeste middelkonsentrasjonene i nedbør av kadmium, nikkel, arsen, kobolt, kopper og krom i landet måles på stasjonene Svanvik og Karpdalen (SFT 1995). Metallene er grunnstoffer som ikke brytes ned, men akkumuleres i humussjiktet og i innsjøenes sedimenter. Derfor behøver ikke eventuelle reduksjoner i avsetningene føre til reduserte konsentrasjoner i de ovennevnte deler av økosystemet. Hoveddelen av metaller som tilføres innsjøene fra nedbørfeltet, og de som er avsatt direkte på overflaten, knyttes til partikulært materiale som sedimenterer. Hensikten med undersøkelsen er derfor å følge utviklingen i konsentrasjonen av metaller i sedimenterende materiale, som vil gi et uttrykk for metallbelastningen av de akvatisk økosystemene.

Sedimentene i Dalvatn og Durvatn er tidligere godt undersøkt (Rognerud et al.1993). Innsjøene ligger eksponert til med hensyn til fremherskende vindretning fra verkene i Russland (Fig.3.1). Vi valgte derfor å overvåke utviklingen i disse innsjøene. I 1993 og 1995 ble sedimentfeller satt ut i slutten av juni og tatt opp like før islegging i slutten av september. I 1994 ble det ikke gjennomført undersøkelser. Innsjøene med nedbørfelt er vist i Fig.3.2. En del innsjøspesifikke egenskaper er gitt i Tab.3.1.

Tab. 3.1. Innsjøspesifikke data. $A_n =$ nedbørfeltets areal inkl. innsjøen). $A_0 =$ arealet av innsjøen, $Z_{\text{max}} =$ innsjøens dypeste punkt, $Z =$ innsjøens middeldyp, $q_s =$ vannets oppholdstid.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>A_n</th>
<th>A_0 (km2)</th>
<th>Z_{max} (m)</th>
<th>Z (m)</th>
<th>q_s (år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalvatn</td>
<td>2,33</td>
<td>0,25</td>
<td>20</td>
<td>9,4</td>
<td>1,9</td>
</tr>
<tr>
<td>Durvatn</td>
<td>6,05</td>
<td>0,40</td>
<td>16</td>
<td>4,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Begge innsjøene er dype nok til å inneholde akkumulasjonsediment. Durvatn har større grunntområder, kortere oppholdstid og er mer vindeksponert enn Dalvatn. Dette fører til at Durvatn er mer utsatt for resuspensjon av sedimenter i grunntområdene. Dette er videre med på å gi en høyere sedimentasjons-hastighet for sedimentene i de dypeste områdene enn f.eks. tilfelle er for Dalvatn.

3.2 Metoder

Detaljerte informasjoner om fellenes plassering og konstruksjon er gitt i Traaen et al. 1994. I 1995 sto fellene ute i perioden 26/6-95 til 20/9-95, 1 m over bunnen på innsjøenes dypeste punkt. Materialet i fellene ble brukt til laboratoriet for videre bearbeiding. Det meste av vannet ble fjernet ved vakumavugs (inkl.filter) og resten tørket i plastbeger ved 60° C. Materialet ble veil og sendt til analyse ved Svensk GrundemnesAnalys AB.
3.3 Resultater

Analysene av sedimentert materiale i fellene fra 1995 er gitt i Tab.3.2.

Tab.3.2. Analyser av sedimentert materiale i 1995.

Analyser merket E og M er analysert med henholdsvis ICP-AES og ICP-MS. Alle konsentrasjoner er gitt som μg/g tørrvekt, untatt Al, Fe og Mn som gis i %.

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>As</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Hg</th>
<th>Mn</th>
<th>Ni</th>
<th>Pb</th>
<th>Sb</th>
<th>V</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalv</td>
<td>E</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>0.40</td>
<td>0.1</td>
<td>318</td>
<td>69</td>
<td>0.6</td>
<td>18</td>
<td>271</td>
</tr>
<tr>
<td>Durv</td>
<td>0.8</td>
<td>29</td>
<td>2.0</td>
<td>478</td>
<td>51</td>
<td>483</td>
<td>12</td>
<td>0.26</td>
<td>1.6</td>
<td>652</td>
<td>110</td>
<td>0.3</td>
<td>73</td>
<td>146</td>
</tr>
</tbody>
</table>

Tab. 3.3. Konsentrasjoner (μg/g tørrvekt) av metaller i sedimentert materiale i 1993 og 1995 samt i overflate- (0-1 cm) og referanse-sedimentet (30-32 cm). Tidsepoker disse er avsat er også gitt. I kolommen merket Sedim. er gjennomsnittlig sedimentert mengde (μg tørrvekt/cm² døgn) gitt for den tiden fellene har stått ute, sammen med daglige sedimentasjonsrater i sedimentene basert på dateringer (Norton et al 1992).

<table>
<thead>
<tr>
<th>Dalvatn</th>
<th>Ni</th>
<th>Cu</th>
<th>Pb</th>
<th>Co</th>
<th>Zn</th>
<th>Hg</th>
<th>Cd</th>
<th>Sedim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedim. mat. 1995</td>
<td>318</td>
<td>436</td>
<td>69</td>
<td>160</td>
<td>271</td>
<td>0,40</td>
<td>6,7</td>
<td>10,6</td>
</tr>
<tr>
<td>Sedim. mat. 1993</td>
<td>301</td>
<td>615</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,7</td>
</tr>
<tr>
<td>O.fl. sed.(1980-90)</td>
<td>201</td>
<td>252</td>
<td>92</td>
<td>100</td>
<td>126</td>
<td>0,18</td>
<td>1,3</td>
<td>6,6</td>
</tr>
<tr>
<td>Ref. sed.(ca.1550)</td>
<td>37</td>
<td>134</td>
<td>7</td>
<td>60</td>
<td>122</td>
<td><0,05</td>
<td>1</td>
<td>3,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durvatn</th>
<th>Ni</th>
<th>Cu</th>
<th>Pb</th>
<th>Co</th>
<th>Zn</th>
<th>Hg</th>
<th>Cd</th>
<th>Sedim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedim. mat. 1995</td>
<td>652</td>
<td>483</td>
<td>110</td>
<td>478</td>
<td>146</td>
<td>0,26</td>
<td>2,0</td>
<td>27,2</td>
</tr>
<tr>
<td>Sedim. mat. 1993</td>
<td>273</td>
<td>250</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,1</td>
</tr>
<tr>
<td>O.fl. sed.(1980-90)</td>
<td>221</td>
<td>257</td>
<td>30</td>
<td>44</td>
<td>107</td>
<td>0,2</td>
<td>1,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Ref sed.(ca.1600)</td>
<td>24</td>
<td>32</td>
<td>5</td>
<td>8</td>
<td>88</td>
<td><0,05</td>
<td>0,20</td>
<td>5,2</td>
</tr>
</tbody>
</table>
3.4 Diskusjon

Sedimentert mengde.

Daglig sedimentert mengde var større i 1995 enn i 1993 i begge innsjøene. Vi mener dette skyldes unormalt mye regn og vind i 1995 i forhold til 1993. Dette har betinget en større tilrenning av partikulært materiale fra nedbørfeltet og en større grad av resuspensjon i 1995. Den økningen som ble observert i Dalvatn virker derfor å ligge innenfor det en kan forvente av naturlige svingninger. Økningen i Durvatn er derimot langt større enn det som kan forventes ut fra naturlige svingninger. Årsaken var bl.a. at dypvannet antagelig ble anoksisk under sommerstagnasjonen med påfølgende utløsning av Fe/Mn-forbindelser fra sedimentet. Disse oksiderte senere i sirkulasjonen og fellene ble anriket på disse oksidene. Fallene står 1m over bunnen og de var klart farvet av jernavsetningene. Oksidene avsettes på hele sedimentrøret og gir for høge verdier for sedimentert materiale. Denne red-oks avhengige prosessen vil også medvirke til at konsentrasjonene av elementer som er sterkt assosiert mot Fe/Mn slik som kobolt vil opptre i langt høgere konsentrasjoner enn det som ville vært tilfelle uten et anoksisk miljø.

Kopper, nikkel og bly

For bly var konsentrasjonene nær de samme. Bly er det elementet der andelen avsetninger på innsjøoverflaten betyr mest. Tidligere beregninger viser at over halvparten av den total årlige belastning avsettes direkte på innsjøoverflaten for dette elementet (Traaen el al 1994). Da konsentrasjonene ved nedbørstasjonen har vært relativt konstant siden 1988 er derfor utviklingen mot små endringer for blykonsentrasjonen i innsjøene forklarlig. For de andre elementene, der største delen av belastningen til innsjøenes kommer fra nedbørfeltet, kan konsentrasjonene synes å være stigende.

Den sterke bindingsgraden metallene har i humussjiktet gjør at mengden i nedbørfeltene vil øke med årene. Dersom vi forutsetter en tilnærmet konstant transport av uorganisk materiale til innsjøene og ingen endret forurensningstilstand, så vil tilveksten i organisk materiale i humussjiktet være viktig for konsentrasjonene av materialet som tilføres innsjøen. Dersom andelen av metallene som avsettes direkte på innsjøoverflaten ikke har endret seg nevneverdig de siste 10 årene (rimelig å anta ut fra målingene i nedbør) så kan resultatene indikere at
tilveksten av organisk materiale i humusjiktet er for liten i forhold til metalldeposisjonene. Konsentrasjonene i materialet fra nedbørfeltet vil derfor bli økende.

Sink og kadmium
Konsentrasjonene i sedimentert materiale i 1995 var klart høyere enn verdiene i overflatesedimentet som er avsatt på 80-tallet. Det er imidlertid rimelig å anta at en del av mengden kadmium og sink som var assosiert til dette sedimenterende materialet vil løses ved avsetning på sedimentoverflaten da begge er relativt mobile elementer. Likevel kan resultatene gi indikasjoner på at konsentrasjonen også er stigende for disse elementene, og en forsuring i nedbørfeltet kan ha økt bidraget til innsjøene betydelig for slike mobile elementer.

Arsen, kobolt og krom

Kvikksølv og vanadium.
Disse elementene er generelt anriket i områder som er utsatt for stort nedfall av langtransporterte forurensninger. Generelt har Finnmark lave konsentrasjoner i innsjøsedimenter av disse elementene. De konsentrasjoner som er observert i sedimenterende materiale i 1995 er høyere enn dette. Årsaken er at metallverkene i Russland og annen aktivitet knyttet til disse, også har gitt økte utslipp til luft for disse elementene. Dette forholdet er også tidligere dokumentert for kvikksølv i regionale sedimentundersøkelser (Rognerud et al. 1993).

Konklusjon
Selv om vi må forvente at noe av metallene som er knyttet til sedimenterende materiale vil tilbakeføres til vannfasen når dette materialet danner sedimenter, så er konsentrasjonene så høye at vi mener det er klare indikasjoner på at konsentrasjonene av nikkel, kobber, arsen, kadmium og sink er økende i sedimentert materiale etter 1990. Dette har sannsynligvis en sammenheng med en økt konsentrasjon i materialet som tilføres innsjøene fra nedbørfeltet, slik som vist i beregninger i kapitel 2.2. Dette til tross for at deposisjonene synes å ha vært nær de samme siden slutten av 80-årene. En fortsatt overvåkning vil vise om denne trenden vil holde seg i årene fremover.
LITTERATUR.

VEDLEGG

<table>
<thead>
<tr>
<th>Titel</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvåkingssjøer i Sør-Varanger</td>
<td>20</td>
</tr>
<tr>
<td>Kjemiske analyseresultater fra overvåkingssjøene i 1995</td>
<td>21</td>
</tr>
</tbody>
</table>
Overvåkingssjøer i Sør-Varanger med årlig prøvetaking.

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Vann.nr.</th>
<th>Navn</th>
<th>Kartblad</th>
<th>UTM-ØV</th>
<th>UTM-NS h.o.h.(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>501</td>
<td>BÅRJASJAVRI</td>
<td>24343</td>
<td>6093</td>
<td>77198</td>
</tr>
<tr>
<td>2030</td>
<td>502</td>
<td>FISKVATN</td>
<td>24343</td>
<td>6019</td>
<td>77248</td>
</tr>
<tr>
<td>2030</td>
<td>503</td>
<td>SKAIDEJAVRI</td>
<td>23341</td>
<td>5809</td>
<td>77594</td>
</tr>
<tr>
<td>2030</td>
<td>504</td>
<td>RÅTJERN</td>
<td>23341</td>
<td>5840</td>
<td>77535</td>
</tr>
<tr>
<td>2030</td>
<td>603</td>
<td>OTERVATNET</td>
<td>25343</td>
<td>4134</td>
<td>77178</td>
</tr>
<tr>
<td>2030</td>
<td>607</td>
<td>ST.VALVATNET</td>
<td>25343</td>
<td>4093</td>
<td>77360</td>
</tr>
<tr>
<td>2030</td>
<td>612</td>
<td>L.DJUPVATNET</td>
<td>24342</td>
<td>4067</td>
<td>77350</td>
</tr>
<tr>
<td>2030</td>
<td>614</td>
<td>LANGVATNET</td>
<td>24342</td>
<td>3913</td>
<td>77383</td>
</tr>
<tr>
<td>2030</td>
<td>619</td>
<td>FØLVATNET</td>
<td>23331</td>
<td>5762</td>
<td>76839</td>
</tr>
<tr>
<td>2030</td>
<td>621</td>
<td>ST.ABBORVATN</td>
<td>23331</td>
<td>5874</td>
<td>76988</td>
</tr>
<tr>
<td>2030</td>
<td>622</td>
<td>ABBORVATNET</td>
<td>24334</td>
<td>4958</td>
<td>77097</td>
</tr>
<tr>
<td>2030</td>
<td>624</td>
<td>ULEKRISTAJAVRI</td>
<td>24343</td>
<td>5955</td>
<td>77156</td>
</tr>
<tr>
<td>2030</td>
<td>625</td>
<td>HOLMVATNET</td>
<td>24343</td>
<td>6053</td>
<td>77355</td>
</tr>
<tr>
<td>2030</td>
<td>630</td>
<td>VEGVATNET</td>
<td>23342</td>
<td>5878</td>
<td>77294</td>
</tr>
<tr>
<td>2030</td>
<td>701</td>
<td>SERDIVATN</td>
<td>24342</td>
<td>3981</td>
<td>77242</td>
</tr>
<tr>
<td>2030</td>
<td>702</td>
<td>VIERRAJAVRI</td>
<td>25343</td>
<td>4092</td>
<td>77205</td>
</tr>
<tr>
<td>2030</td>
<td>703</td>
<td>L.VALVATNET</td>
<td>25343</td>
<td>4093</td>
<td>77299</td>
</tr>
<tr>
<td>2030</td>
<td>704</td>
<td>FIGENSCHOUV.</td>
<td>25343</td>
<td>4151</td>
<td>77307</td>
</tr>
<tr>
<td>2030</td>
<td>705</td>
<td>F.HØGFJELLV.</td>
<td>25343</td>
<td>4154</td>
<td>77371</td>
</tr>
<tr>
<td>2030</td>
<td>706</td>
<td>NAMAHISJAVRI</td>
<td>23341</td>
<td>5850</td>
<td>77438</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-05</td>
<td>NAVNLOS</td>
<td>24342</td>
<td>4076</td>
<td>77328</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-06</td>
<td>NAVNLOŚ</td>
<td>24342</td>
<td>4075</td>
<td>77338</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-07</td>
<td>NAVNLOŚ</td>
<td>25343</td>
<td>4084</td>
<td>77349</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-08</td>
<td>NAVNLOŚ</td>
<td>25343</td>
<td>4090</td>
<td>77352</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-12</td>
<td>NAVNLOŚ</td>
<td>25343</td>
<td>4124</td>
<td>77338</td>
</tr>
<tr>
<td>2030</td>
<td>JAR-13</td>
<td>NAVNLOŚ</td>
<td>25343</td>
<td>4116</td>
<td>77328</td>
</tr>
</tbody>
</table>
Kjemiske data for overvåkingssjøer i Sør-Varanger (kommune 2030) i 1995.

<table>
<thead>
<tr>
<th>Vann</th>
<th>Navn</th>
<th>pH</th>
<th>Kond.</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Cl</th>
<th>Sulfat</th>
<th>Nitrat</th>
<th>Alkalitet</th>
<th>TOC</th>
<th>Al/r</th>
<th>Al/l</th>
<th>Al/l</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mS/m</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>µg N/l</td>
<td>µekv/l</td>
<td>mg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>BÅRJASJAVRI</td>
<td>6.49</td>
<td>2.01</td>
<td>1.09</td>
<td>0.41</td>
<td>1.73</td>
<td>0.16</td>
<td>2.6</td>
<td>2.7</td>
<td>< 1</td>
<td>37</td>
<td>2.0</td>
<td>10</td>
<td>< 10</td>
<td>0</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>502</td>
<td>FISKVATN</td>
<td>6.49</td>
<td>2.15</td>
<td>1.30</td>
<td>0.43</td>
<td>1.81</td>
<td>0.14</td>
<td>3</td>
<td>2.7</td>
<td>4</td>
<td>36</td>
<td>1.6</td>
<td>39</td>
<td>22</td>
<td>17</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>503</td>
<td>SKAIDEJAVRI</td>
<td>5.89</td>
<td>1.74</td>
<td>0.67</td>
<td>0.33</td>
<td>1.72</td>
<td>0.10</td>
<td>3</td>
<td>2.2</td>
<td>26</td>
<td>12</td>
<td>0.7</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>< 1</td>
<td>< 0.5</td>
</tr>
<tr>
<td>504</td>
<td>RÅTJERN</td>
<td>5.89</td>
<td>1.88</td>
<td>0.72</td>
<td>0.35</td>
<td>1.78</td>
<td>0.14</td>
<td>3.1</td>
<td>2.5</td>
<td>4</td>
<td>15</td>
<td>0.9</td>
<td>10</td>
<td>11</td>
<td>-1</td>
<td>< 1</td>
<td>0.5</td>
</tr>
<tr>
<td>603</td>
<td>OTERVATNET</td>
<td>6.26</td>
<td>2.75</td>
<td>1.35</td>
<td>0.77</td>
<td>2.22</td>
<td>0.19</td>
<td>3</td>
<td>5.4</td>
<td>< 1</td>
<td>34</td>
<td>2.9</td>
<td>10</td>
<td>11</td>
<td>-1</td>
<td>20</td>
<td>4.4</td>
</tr>
<tr>
<td>607</td>
<td>ST.VALVATNET</td>
<td>6.44</td>
<td>3.23</td>
<td>1.36</td>
<td>0.73</td>
<td>3.03</td>
<td>0.28</td>
<td>4.9</td>
<td>4.8</td>
<td>22</td>
<td>31</td>
<td>1.2</td>
<td>13</td>
<td>< 10</td>
<td>3</td>
<td>6</td>
<td>2.0</td>
</tr>
<tr>
<td>612</td>
<td>L.DJUPVATNET</td>
<td>5.39</td>
<td>3.17</td>
<td>1.02</td>
<td>0.64</td>
<td>2.98</td>
<td>0.20</td>
<td>5.1</td>
<td>5.1</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>29</td>
<td>< 10</td>
<td>19</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>614</td>
<td>LANGVATNET</td>
<td>6.11</td>
<td>3.22</td>
<td>1.31</td>
<td>0.70</td>
<td>3.27</td>
<td>0.20</td>
<td>5.4</td>
<td>4.3</td>
<td>4</td>
<td>24</td>
<td>2.8</td>
<td>37</td>
<td>27</td>
<td>10</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>619</td>
<td>FØLVATNET</td>
<td>6.54</td>
<td>1.74</td>
<td>1.23</td>
<td>0.38</td>
<td>1.13</td>
<td>0.22</td>
<td>1.5</td>
<td>3.2</td>
<td>< 1</td>
<td>44</td>
<td>2.1</td>
<td>< 10</td>
<td>< 10</td>
<td>0</td>
<td>< 1</td>
<td>0.6</td>
</tr>
<tr>
<td>621</td>
<td>ST.ABBORVATN</td>
<td>6.54</td>
<td>1.58</td>
<td>1.00</td>
<td>0.40</td>
<td>1.09</td>
<td>0.30</td>
<td>1.3</td>
<td>2.5</td>
<td>< 1</td>
<td>49</td>
<td>2.6</td>
<td>< 10</td>
<td>< 10</td>
<td>0</td>
<td>< 1</td>
<td>0.7</td>
</tr>
<tr>
<td>622</td>
<td>ABBORVATNET</td>
<td>6.60</td>
<td>1.87</td>
<td>1.33</td>
<td>0.43</td>
<td>1.33</td>
<td>0.28</td>
<td>1.9</td>
<td>2.5</td>
<td>< 1</td>
<td>61</td>
<td>2.8</td>
<td>10</td>
<td>< 10</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>624</td>
<td>ULEKRISTAJAV</td>
<td>6.29</td>
<td>1.64</td>
<td>1.01</td>
<td>0.33</td>
<td>1.28</td>
<td>0.15</td>
<td>1.8</td>
<td>2.6</td>
<td>4</td>
<td>27</td>
<td>1.7</td>
<td>15</td>
<td>< 10</td>
<td>5</td>
<td>< 1</td>
<td>0.8</td>
</tr>
<tr>
<td>625</td>
<td>HOLMVATNET</td>
<td>6.30</td>
<td>2.56</td>
<td>1.22</td>
<td>0.51</td>
<td>2.43</td>
<td>0.22</td>
<td>4.2</td>
<td>3.3</td>
<td>10</td>
<td>28</td>
<td>1.3</td>
<td>15</td>
<td>< 10</td>
<td>5</td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>630</td>
<td>VEGVATNET</td>
<td>6.72</td>
<td>2.48</td>
<td>1.66</td>
<td>0.59</td>
<td>1.98</td>
<td>0.20</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>66</td>
<td>2.2</td>
<td>20</td>
<td>< 10</td>
<td>10</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>701</td>
<td>SERDIVTEN</td>
<td>6.27</td>
<td>3.59</td>
<td>2.01</td>
<td>0.80</td>
<td>2.84</td>
<td>0.33</td>
<td>4.3</td>
<td>7.3</td>
<td>< 1</td>
<td>25</td>
<td>1.3</td>
<td>< 10</td>
<td>< 10</td>
<td>0</td>
<td>13</td>
<td>2.7</td>
</tr>
<tr>
<td>702</td>
<td>VIERRAJAVRI</td>
<td>6.98</td>
<td>3.62</td>
<td>2.29</td>
<td>1.00</td>
<td>2.99</td>
<td>0.32</td>
<td>3.8</td>
<td>4.9</td>
<td>< 1</td>
<td>125</td>
<td>1.0</td>
<td>< 10</td>
<td>< 10</td>
<td>0</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>703</td>
<td>L.VALVATNET</td>
<td>6.15</td>
<td>2.84</td>
<td>1.16</td>
<td>0.63</td>
<td>2.81</td>
<td>0.21</td>
<td>4.4</td>
<td>4.5</td>
<td>4</td>
<td>16</td>
<td>1.1</td>
<td>10</td>
<td>< 10</td>
<td>0</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>704</td>
<td>FIGENSCOUV.</td>
<td>6.51</td>
<td>2.82</td>
<td>1.35</td>
<td>0.65</td>
<td>2.64</td>
<td>0.19</td>
<td>3.9</td>
<td>4.6</td>
<td>< 1</td>
<td>38</td>
<td>1.6</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>705</td>
<td>F.HØGFJELLV.</td>
<td>5.59</td>
<td>3.19</td>
<td>0.95</td>
<td>0.66</td>
<td>3.24</td>
<td>0.22</td>
<td>5.6</td>
<td>4.7</td>
<td>< 1</td>
<td>4</td>
<td>0.7</td>
<td>29</td>
<td>< 10</td>
<td>19</td>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>706</td>
<td>NAMAHISJAVRI</td>
<td>6.64</td>
<td>2.39</td>
<td>1.49</td>
<td>0.48</td>
<td>2.13</td>
<td>0.35</td>
<td>3.4</td>
<td>2.7</td>
<td>21</td>
<td>54</td>
<td>2.2</td>
<td>15</td>
<td>< 10</td>
<td>5</td>
<td>1</td>
<td>3.1</td>
</tr>
<tr>
<td>JAR-05</td>
<td>NAVNLØS</td>
<td>5.41</td>
<td>2.41</td>
<td>0.80</td>
<td>0.46</td>
<td>2.25</td>
<td>0.15</td>
<td>3.8</td>
<td>4.1</td>
<td>< 1</td>
<td>0</td>
<td>1.0</td>
<td>34</td>
<td>< 10</td>
<td>24</td>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>JAR-06</td>
<td>NAVNLØS</td>
<td>4.90</td>
<td>2.70</td>
<td>0.61</td>
<td>0.44</td>
<td>2.41</td>
<td>0.15</td>
<td>4.1</td>
<td>3.9</td>
<td>< 1</td>
<td>0</td>
<td>0.8</td>
<td>74</td>
<td>< 10</td>
<td>64</td>
<td>11</td>
<td>2.1</td>
</tr>
<tr>
<td>JAR-07</td>
<td>NAVNLØS</td>
<td>5.73</td>
<td>2.45</td>
<td>0.93</td>
<td>0.48</td>
<td>2.37</td>
<td>0.22</td>
<td>3.7</td>
<td>4.1</td>
<td>< 1</td>
<td>8</td>
<td>1.0</td>
<td>15</td>
<td>< 10</td>
<td>5</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>JAR-08</td>
<td>NAVNLØS</td>
<td>5.34</td>
<td>3.02</td>
<td>1.10</td>
<td>0.58</td>
<td>2.82</td>
<td>0.21</td>
<td>4.7</td>
<td>5.1</td>
<td>4</td>
<td>0</td>
<td>0.3</td>
<td>52</td>
<td>< 10</td>
<td>42</td>
<td>11</td>
<td>1.5</td>
</tr>
<tr>
<td>JAR-12</td>
<td>NAVNLØS</td>
<td>4.97</td>
<td>2.85</td>
<td>0.77</td>
<td>0.49</td>
<td>2.55</td>
<td>0.17</td>
<td>4.4</td>
<td>4.4</td>
<td>< 1</td>
<td>0</td>
<td>0.6</td>
<td>89</td>
<td>< 10</td>
<td>79</td>
<td>12</td>
<td>2.1</td>
</tr>
<tr>
<td>JAR-13</td>
<td>NAVNLØS</td>
<td>6.15</td>
<td>2.71</td>
<td>1.34</td>
<td>0.58</td>
<td>2.41</td>
<td>0.19</td>
<td>3.5</td>
<td>5.2</td>
<td>< 1</td>
<td>20</td>
<td>1.4</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Norsk Institutt for Vannforskning
Norsk institutt for vannforskning

Postboks 173 Kjelsås
0411 Oslo

Telefon: 22 18 51 00
Telefax: 22 18 52 00

Ved bestilling av rapporten, oppgi løpenummer 3458-96

ISBN 82-577-2995-7