Miljøgiftundersøkelser i

Indre Oslofjord

Delrapport 6

Eksperimentelle undersøkelser med forurensede sedimenter fra Oslo havnebasseng og bioakkumuleringsstudier med blåskjell, ål og eremittkreps.
NIVA - RAPPORT
Norsk institutt for vannforskning

<table>
<thead>
<tr>
<th>Hovedkontor</th>
<th>Sørlandsavdelingen</th>
<th>Østlandsavdelingen</th>
<th>Vestlandsavdelingen</th>
<th>Akveplan-NIVA A/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postboks 173, Kjelsås</td>
<td>Televæn 1</td>
<td>Rute 866</td>
<td>Thormehlensgt 55</td>
<td>Sandre Tollbugata 3</td>
</tr>
<tr>
<td>0411 Oslo</td>
<td>4890 Grimstad</td>
<td>2312 Ottestad</td>
<td>5008 Bergen</td>
<td>9000 Tromsø</td>
</tr>
<tr>
<td>Telefon (47) 22 18 51 00</td>
<td>Telefon (47) 37 04 30 33</td>
<td>Telefon (47) 62 57 64 00</td>
<td>Telefon (47) 55 32 56 40</td>
<td>Telefon (47) 77 68 52 80</td>
</tr>
<tr>
<td>Telex (47) 22 18 52 00</td>
<td>Telex (47) 37 04 45 13</td>
<td>Telex (47) 62 57 66 53</td>
<td>Telex (47) 55 88 33</td>
<td>Telex (47) 77 68 05 09</td>
</tr>
</tbody>
</table>

Rapportens titel: Miljøgiftundersøkelser i Indre Oslofjord.
Delrapport nr. 6. Eksperimentelle undersøkelser med forurensede sedimenter fra Oslo havnebasseng og bioakkumuleringssstudier med blåskjell, ál og eremittkreps.
(Overvåkningsrapport nr. 562/94). TA nr. 1074 /1994

Forfatter(e):
Jens Skei
Håkon Oen
Oddbjørn Pettersen
June Bryde, UiO
Lene Jacobsen Skuggevik, UiO

Dato: 10.05.94 Trykket: NIVA 1994
Faggruppe: Marinøkologisk
Geografisk område: Akershus
Antall sider: 46 Opplag: 150

Oppdragsgiver: Statens forurensningstilsyn (SFT)

Oppdragsg. ref.: P.E. Iversen

Ekstrakt:
Eksperimentelt arbeid med forurensede sedimenter fra Oslo havnebasseng utført ved NIVAs marine forskningsstasjon Solbergstrand viser at sedimentene "lekker" lite kvikksølv med mindre de blir oppvirvet. Resultatene tyder på utløsning av kvikksølv og/eller frigivelse av små partikler som inneholder kvikksølv og som kan holde seg svevende i vannmassen lenge etter en oppvirveling. Eremittkreps satt ut på forurensede sedimenter akkumulerte lite PCB, men kvikksølv tas opp og øker med en faktor på 1.5 etter 3 måneders eksponering. Utsetting av ál i bur viste ingen akkumulering av kvikksølv og svært liten akkumulering av PCB. Transplanterte blåskjell derimot viste kraftig akkumulering av PCB og PAH, mens kvikksølv ikke ble akkumulert.

4 emneord, norske
1. Indre Oslofjord
2. Miljøgifter
3. Eksperimenter
4. Bioakkumulering

4 emneord, engelske
1. Inner Oslofjord
2. Chemical pollutants
3. Experiments
4. Bioaccumulation

Prosjektleder
Jens Skei

For administrasjonen
Torgeir Bakke

ISBN 82-577-2527-7
O-921317

Miljøgiftundersøkelser i indre Oslofjord.

Deltapport nr.6
Eksperimentelle undersøkelser med forurensede sedimenter fra Oslo havnebasseng og bioakkumuleringsstudier med blåskjell, ål og eremittkreps

Oslo, 10. mai 1994

Prosjektleder: Jens Skei
Medarbeidere:

John Arthur Berge
June Bryde, UiO
Ketil Hylland
Einar Johannesen
Håkon Oen
Oddbjørn Pettersen
Lene J. Skuggevik, UiO
Forord

I tilknytning til miljøgiftundersøkelsen av indre Oslofjord er det gjort eksperimenter med havnesedimenter på NIVAs marine forskningsstasjon Solbergstrand, samt feltforsøk ved et av kaianleggene i Oslo havn. Dette er en del av grunnlaget for en tiltaksanalyse for miljøgifter. Statens forurensningsstilsyn har bidratt med ekstra midler utover det som var avsatt til tiltaksanalysen.

Ved NIVA har Håkon Oen, Oddbjørn Pettersen og Einar Johannesen ved NIVAs marine forskningsstasjon Solbergstrand hatt en stor del av ansvaret for innsamling av prøver, eksperimentell design og drift av både feltstudien og modellforsøkene. Innsamling, analyser og rapportering av miljøgiftninholdet i sedimentlevende dyr fra Oslofjorden er utført av hovedfagstudentene June Bryde og Lene Jacobsen Skuggevik, Universitetet i Oslo.

Oslo, 10 mai 1994

Jens Skei
prosjektleder
Innhold

Forord 3
Konklusjoner og sammendrag 5
1. Innledning 7
2. Målsetting 8
3. Materiale og metoder 8
 3.1. Modellforsøk - Solbergstrand 8
 3.1.1. Feltarbeide 8
 3.1.2. Forsøksbetingelser 10
 3.1.3. Vannprøvetakingsprogram 13
 3.2. Feltforsøk med ål og blåskjell fra Oslo havn (Sørenga) 13
 3.3. Analyser av bløtbunnfaunaprøver 16
 3.4. Analysemetodikk 17
4. Resultater og diskusjon 17
 4.1. Karakterisering av sedimentene 17
 4.2. Kvikksølv i vannprøver 18
 4.3. Kvikksølv og PCB i eremittkreps 19
 4.4. Kvikksølv og PCB i ål satt ut i bur 20
 4.5. Kvikksølv, PCB og PAH i transplanterte blåskjell 22
 4.6. Kvikksølv og PCB i sedimentlevende dyr 25
 4.6.1. Bioakkumuleringssfactorer for kvikksølv og PCB 28
5. Vurdering av sedimentene som kilde for forurensning 30
6. Litteratur 32
Vedlegg 34
Konklusjoner og sammendrag

I forbindelse med en vurdering av bunnsedimentenes betydning som sekundær forurensingskilde i indre Oslofjord ble det besluttet å gjennomføre eksperimentelle tester på sedimenter fra havnebassenget og feltmålninger. Hensikten var å kunne fastslå om sedimentene "lekker" miljøgifter når de ligger i ro eller blir oppvirvet og om miljøgifter som PCB og kvikksølv tas opp i eremitkrepes som utplasseres på sedimentene. Det ble også gjort tre måneders feltmålninger av opptak av PCB og kvikksølv i ål og blåskjell plassert i forskjellig avstand fra bunnen ved en av kaiene med stor skipstrafikk i Oslo havn (Sørenga).

Resultatene gir grunnlag for følgende konklusjoner:

- Sedimenter fra Oslo havneområde forurensset med kvikksølv avgir lite kvikksølv til vannmassen så fremt sedimentene ikke oppvirvles. Ved oppvirving (simulert propellerasjen) øker kvikksølvkonsentrasjonen i vannet over sedimentet i lang tid etter at oppvirvingen er opphørt. Det tyder på at det enten skjer en utløsning av kvikksølv fra sedimentene eller at kvikksølvet er bundet til orsmå svevepartikler ved lang oppholdstid i vannmassen. Skipstrafikk og mudring vil derfor bidra til at kvikksølv transporteres fra havnebassenget til andre deler av Oslofjorden.

- Eremittkrepes utplassert på de forurensede sedimentene fra Oslo havnebasseng viste liten akkumulering av kvikksølv og PCB i løpet av perioden på tre måneder som forsøket på Solbergstrand varte. Liten akkumulering av PCB kan skyldes dyrenes lave fettpinnhold. Kvikksølv ble noe mere akkumulert (1.5 ganger økning) etter 3 måneder, men kun på det mest forurensete sedimentet.

- Utsetting av ål i bur under kaia på Sørenga viste at ålen i løpet av en periode på 3 måneder ikke akkumulerte kvikksølv, til tross for at dette er i et område hvor man må anta at kvikksølforurensede sedimenter oppvirvles høyfug som følge av stor ferjertrafikk. Det kan derfor konkluderes med at ålen ikke akkumulerte kvikksølv fra vannmassen og kvikksølv i partikler. Opptaket skjer sannsynligvis via føden. Ålen fikk ikke mat i løpet av denne perioden og det ble registrert et betydelig vekttap og nedgang i fettprossent (11% fett-tap).

- Analyser av den samme ålen for PCB viste en nedgang i PCB-innholdet i forhold til utgangskonsentrasjonen. Selv om resultatene regnes om på fett-basis er det ingen indikasjon på akkumulering av PCB i løpet av 3 måneder. Dette kan indikere at PCB-opptaket i ål i større grad skjer via føde og ikke via vannmassen og partikler.

- Blåskjell som ble satt ut i bur under kaia på Sørenga viste ingen akkumulering av kvikksølv. Konsentrasjonene i blåskjell var de samme som i naturlig voksende blåskjell fra samme område. Konsentrasjonen i de transplanterte skjellene hadde ikke endret seg etter 3 måneder.

- Blåskjellene akkumulerte derimot betydelige mengder PCB og PAH under denne perioden. Konsentrasjonene av total PCB og total PAH øktes med en faktor på 5 i løpet av 3 måneder. Mesteparten av økningen skjedde i løpet av første måneden for PCB. Etter 3 måneder var nivået omtrent det samme som i naturlig voksende blåskjell fra området.

- Analyser av kvikksølv og PCB i bunna fauna fra området vest og nordøst for Nesodden viste høyere konsentrasjoner enn i naturlig voksende blåskjell fra indre Oslofjord. Det
er derfor grunn til å anta at bunnsfaunaen representerer et viktig ledd i overføringen av miljøgifter fra sedimenten til fisk ettersom opløpet i fisk i hovedsak kan skje via fødnen og ikke via vannet.

- Sedimentene i indre Oslofjord, og i havnebassenget i sørdeles høyhav, har et høyt organisk innhold. Dette medfører trolig at disse sedimentene representerer en mindre måleobjekt der de ligger, enn man skulle tro. Dette kan skyldes mindre biotilgjengelighet av miljøgifter på grunn av høyt organisk innhold i sedimentene og stedvis anokside forhold ("rått bunk").

Både eksperimentene på Solbergstrand og feltundersøkelsene i Oslo havn har gitt oss informasjon om forurensede sedimenters rolle i miljøsammenheng. Dette vil være et viktig bidrag i en tørringsanalyse for indre Oslofjord, hvor ulike forurensningskilder skal sammenlignes. De ulike delene av undersøkelsen kan oppsummeres på følgende måte:

1. Ved hjelp av bokscorer ble 0.5 x 0.5 m sedimentprøver tatt utenfor Sjursøya (st.1) og utenfor utstikker II på Vippetangen (st.2). Prøvene ble fraktet med minst mulig forstyrrelse til NIVAs marine forskningsstasjon Solbergstrand hvor vann fra 40 m dyp ble tilkoblet for å gi en vannstrøm over sedimentet. Det ble tatt 4 parallele bokscorere pr. stasjon.

2. Sedimentene inneholdt gjennomsnittlig 2.07 mg/kg Hg og 117 µg/kg total PCB (sum av 10 kongenerer) på stasjon 1 og 4.57 mg/kg Hg og 215 µg/kg total PCB på stasjon 2.

3. Det ble målt utekkning av kvikksølv til vann når sedimentene ikke ble forstyrret og ved daglig og ukentlig oppvirvling. Uten oppvirvling ble det bare registrert en liten økning av kvikksølv i vannmassen over sedimentet som hadde høyest kvikksølvinnhold (st.2). Ved oppvirvling (simulert propellersjø) ble det målt høye konsentrasjoner av kvikksølv i vannmassen selv 3 timer etter at oppvirvlingen var opphørt (maks. 50 - 70 ng/l mot normalt, 2 ng/l).

Det ble ikke registrert forskjeller i mobilisering av kvikksølv om oppvirvlingen foregikk daglig eller ukentlig.

4. Eremittkeps satt ut på overflaten av sedimentet fra stasjon 1 og 2 ute på Solbergstrand ble prøvetatt etter 1, 2 og 3 måneder i tillegg til 0-prøve (dvs. før utsetting) for å måle opløp av PCB og kvikksølv. Det ble registrert forholdvis lite opløp og liten systematikk med hensyn til opløp over tid. Lavt og varierende fettinnhold kan forklare PCB-dataene. Kvikksølv ble akkumulert i keps fra det mest forurensede sedimentet (1.5 ganger økning), men forøkspersiopen var sannsynligvis for kort for å se den fulle effekten av eksponeringen.

5. Utsetting av oppdrettsåler i bur under en av kaiene på Sørenga, hvor sedimentene ofte oppvirvles som følge av stor ferjebryter, ble gjort for å måle opløp av kvikksølv og PCB. Det ble ikke registrert opløp av hverken kvikksølv eller PCB i løpet av 3 måneder. På grunn av matmangel mistet ålen både vekt og fett.

6. Transplantasjon av blåskjell fra Solbergstrand til Sørenga og målinger av kvikksølv-PAH- og PCB-opløp over en periode på 3 måneder viste ingen opløp av kvikksølv. Nivåene var de samme som i naturlig voksende blåskjell fra havnebassenget. Blåskjellene akkumulerte imidlertid PCB og PAH opp til nivåer som er vanlig i naturlig voksende skjell fra området (ca.145 µg/kg tørrvætsk PCB og ca. 800 µg/kg PAH). Denne akkumulasjonen skjer raskt og skjer trolig som følge av blåskjellenes frafiltrering av partikler.

7. Målinger av kvikksølv og PCB i bunnsfauna (sedimentlevende dyr) fra indre Oslofjord viste moderate konsentrasjoner. Det er likevel sanntatt at opløp av miljøgifter i bunnsfaunaen representerer et bindeled mellom bunnsedimenter og opløp i fisk som ernærer seg på sedimentlevende dyr.
1. Innledning

Bunnsedimentene i havneområder er ofte forurensset med miljøgifter som følge av utslipp fra industri, kommunal kloak og avrenning fra gater og veier. Dette er et typisk bilde i havner utenfor større byer, hvor det er mange forurensningskilder (f.eks Oslo, Bergen og Trondheim). I mange tilfeller er det behov for å fjerne sedimenter i kaiområdene for å opprettholde sellingsdyp og i og med at disse sedimentene er forurenset med et rekke spørsmål i miljøsammenheng (Skei, 1991a og b; 1993, Knutzen, 1992). Selv uten modring vil sedimentene i kaiområder være regelmessig utsatt for fysiske forstyrrelser (propellersjon) på grunn av skipstrafikken.

Sedimenter i havneområder er ofte finkornige og kan derfor transporterer langt hvis de virvles opp og strømforholdene bidrar til det. Det er derfor viktig å skalere dette problemet. Dette kan enten gjøres i felt ved å gjøre omfattende vannkjemiske undersøkelser i kaiområdene for å se på spredning av forurensning som følge av skipstrafikk eller modring. Alternativet er å gjøre eksperimentelt arbeid på sedimentene som tas i havneområdet og som frakttes til stedet hvor eksperimentene utføres. I dette prosjektet har man valgt det siste ved å gjøre eksperimenter ved NIVAs marine forskningstasjon Solbergstrand, utenfor Drøbak.

I tillegg til selve spredningen av forurensning som følge av oppvirveling er det også viktig å vite om de miljøgifterne som befinner seg i sedimentene er biologisk tilgjengelige, i første rekke for sedimentlevende dyr. Eremittkreps (*Pagurus bernhardus*) er et vanlig krepsdyr på bløtbunn i grunne partier av Oslofjorden og som kan være en del av bunnfiskens næringsgrunnlag. Vi må derfor anta at hvis eremittkreps som eksponeres overfor forurensede sedimenter akkumulerer miljøgifter er det stor sjansen for at det også skjer en akkumulering i den fisken som spiser eremittkreps. I så fall er det etablert en forbindelse mellom sedimentenes miljøgiftinnhold og observerte forhøyede nivåer i fisk (Green og Knutzen, 1993). Eremittkreps er her benyttet som en modell-organisme. En antar at dersom akkumulering finner sted i eremittkreps så er det stor sannsynlighet for at akkumulering også finner sted i andre organiser med tilsvarende levevis. Parallelt med dette bioakkumuleringensforsøket ble det gjort analyser av PCB og kvikksølv i sedimentlevende dyr på fire bløtbunnaunastasjoner i indre Oslofjord for å kunne beregne bioakkumulasjonsfaktorer.

Foruten opptak i organismer som er i direkte fysisk kontakt med forurensede sedimenter er det viktig å fastslå om fisk og blåskjell som befinner seg et stykke fra bunnen, men som påvirkes av oppvirvelde sedimenter, akkumulerer miljøgifter. Dette har også blitt undersøkt innenfor dette prosjektet ved å sette ut ål i bur og blåskjell i nett i forskjellig avstand fra bunnen ved en av de mest trafikkerte kaiene i Oslo havn (Sørenga). Tilsvarende forsøk er tidligere gjort i Gunnekleivfjorden (Berge og Knutzen, 1989).
2. Målsetting

Sedimentene i havnebassengen i Oslo er sterkt forurenet av miljøgifter (Konieczny, 1992; 1994). Det knytter seg derfor stor interesse til spørsmålet om sedimentene kan betraktes som en aktiv forurensningskilde og graden av sammenheng mellom sedimentforurensningen og påviste forhøyede nivåer av miljøgifter i fisk og skalldyr. Får å kunne belyse dette nærmere ble det besluttet å gjennomføre eksperimenter med sedimentene på NIVAs marine forskningsstasjon Solbergstrand og bioakkumuleringsforsøk i felt.

Målsettingen med denne delundersøkelsen har vært:

- å fastslå i hvilken grad sedimentene bidrar med kvikksølv når de ikke oppvirvelses
- å fastslå grad av mobilisering av kvikksølv når sedimentene blir utsatt for oppvirveling
 (simulert propellturbulens)
- å måle opptak av kvikksølv og PCB i eremittkreps som lever på havnesedimentene for å
 vurdere om dette kan gi en kobling mellom forurenset sediment og opptak i fisk
- å måle opptak av kvikksølv og PCB i ál og kvikksølv, PCB og PAH i blåskjell satt ut i
 bur under en av kaiene på Sørenega, hvor det er stor skipstrafikk
- sammenligne miljøgiftnivåene i sedimenter og sedimentlevende dyr fra indre Oslofjord
 for å beregne bioakkumuleringsfaktorer

3. Materiale og metoder

3.1. Modellforsøk - Solbergstrand

3.1.1. Feltarbeide

Sedimentprøver ble samlet inn fra Oslofjordens havnebasseng den 6.5.93. Det ble tatt prøver fra to
stasjoner (fig.1):
Stasjon 1: Utenfor Sjursøya, ca 18 m dyp
Stasjon 2: Utenfor utstikker II (kaia for danskeferja), ca 10 m dyp

Prøvene, fire paralleller fra hver stasjon, ble samlet inn med bokscomer med en indre boks av
pleksiglass, som prøvetar 0,5 x 0,5 m av sedimentflaten ned til ca 40 cm dyp (varierer fra 20 - 40
cm). "F/F Trygve Braarud", (UiO), ble brukt under innsamlingen. Sedimentprøvene ble
umiddelbart transportert til NIVAs marine forskningsstasjon Solbergstrand (MFS).
3.1.2. Forsøksbetingelser.

Sedimentene ble plassert i forskjellene på MFS. Forsøksoppsettet fremgår av prinsippskisse i figur 2.

Figur 2. Forsøksoppsettet på NIVAs marine forskningsstasjon, Solbergstrand (MFS). Øverste beholder viser inntaksvannet som fordeles på de 8 sedimentkassene under (4 paralleller på hver stasjon). De to nederste beholderne er blåskjellakvarier som utløpsvannet fra sedimentkassene passerer.

Sjøvann til fordelingstank ble pumpet inn fra 40 m dyp utenfor stasjonen. Fra fordelingstanken ble vannet ledet i separate slanger til hver sedimentkasse forsynt med horisontal vannspreder med åpning mot bakre kassevegg. Videre hadde hver kasse to horisontale skillevegger plassert henholdsvis ca 5 cm fra bakre og fremre kassevegg. Skilleveggens overkant stakk ca 0.5 cm over vannspeilet og nedre kant ca 1.5 cm over sedimentoverflaten. Tiltørselsvannet ble dermed ledet ned langs bakre kassevegg og videre fremover under skilleveggene til kassens fremre vegg og deretter opp mot utløpet som var plassert midt i vannoverflaten midt på femre kassevegg. Oppsettet medfører at vanntransporten foregår langs sedimentoverflaten. Vanntransporten var ikke så stor at sedimentene oppvirvel.

Figur 3 viser skjematisk vanntransporten i kassene og figur 4 viser at vannet beveger seg langs bunnen over sedimentet slik som tilsvaret (bildet er tatt i tilknytning til et tidligere utlekkingsprosjekt på Solbergstrand og rhodamin er brukt som farvestoff).
Figur 3. Skisse av vanntransporten i forsøkskassene

Figur 4. Inntaksvannet er tilsatt rhodamin for å vise at vannet beveger seg i en strøm over sedimentflaten.
Vannmengder (ml/min) og oksygennivåer (mg/l) i eksperimentkassene i forsøksperioden er gitt i vedleggstabel 1 og 2.

Temperatur og salt for inntaksvannet i forsøksperioden er gitt i vedleggsfigur 1.

Sedimentprøvene fra de to stasjonene ble brukt i et fastlagt eksperimentprogram hvor de ble utsatt for følgende behandling:

Kasse nr 1: daglig oppvirvling i 0.5 t, dersom 3 t sedimentering før prøvetaging. Ble utført i perioden 26.5- 28.6 1993.
Kasse nr 2: ukentlig (en gang pr. uke) oppvirvling i 0.5 t, videre som angitt over.
Kasse nr 3: ingen behandling av sedimentet (uforstyrret); ukentlige prøvetaging av utløpsvann.
Kasse nr 4: ble tilsatt eremittkreps for å se på eventuelt opptak i organismen (hepatopancreas).

Figur 5 viser skjematisk prinsippet for oppvirvling (simulering av båtpropeller.)

Figur 5. Skisse som viser oppvirvling av sedimenter.
Nedstrøms ved kasse 1 (begge stasjoner) ble det plassert kar med ca 150 blåskjell. Ca 50 skjell fra disse ble tatt ut hver måned (3 uttak + 0-prøve). 0-prøven representerer nivået i skjellene fra det studiet de ble innsamlet før utsett. Blåskjellprøvene ble frosset ned (analyser er ikke blitt utført på grunn av at dette opprinnelig ikke ble planlagt i prosjekten).

Kasse 4 (begge stasjoner) ble tilsatt eremitkreps, ca 15 stk. Det ble tatt ut ca 5 kreps hver måned for analyse av kvikksølv og PCB (3 uttak + 0-prøve). Krepsene ble tatt ut av skallene og frosset ned før analyse.

3.1.3. Vannprøvetakingsprogram

Etter at sedimentkassene var installert på MFS, stod de i ro med vanntilførsel en uke før første vannprøvetaking. Behandlingen de ulike kassene fikk er skissert i avsnittet foran. Datoer for prøvetagning er gitt i vedleggstabel 1. Samtlige vannprøver ble analysert for innhold av total mengde kvikksølv (ufiltert). Man valgte å analysere på ufilterte prøver fordi spredning både av løste og partikulære kvikksølvforbindelser har en miljømessig betydning. Etter hver oppvirvling ventet man 3 timer før prøve ble tatt, slik at de groveste partiklene allerede var sedimentert ut. Partikler som befinner seg i vannmassen etter 3 timer sedimentering antas å være meget små og forventes å holde seg svevende meget lenge.

Ved start og avslutning av forsøksperioden ble det tatt kjerneprøver av sedimentet i kassene (5 cm dybe kjerne, ca 2 cm diameter). Det ble tatt en blandprøve fra alle parallellene på hver stasjon ved start, og en prøve fra hver kasse ved avslutning. Alle prøvene ble analysert for innhold av kvikksølv, mens innholdet av PCB ble bare bestemt i en prøve fra hver stasjon tatt før forsøket startet.

Vannprøvene fra kassene 1 - 3 ble tatt etter hevertprinsippet, dvs. en plastslange ble stukket ca 2 cm ned i vannfasen over sediment og prøve tappet ut (0.5 l på spesialbehandlede glassflasker for kvikksølv-prøver.)

Fra kasse 3 (uten oppvirvling) ble det også tatt ”drypp-prøver” (se vedleggstabel 1). Dette forgikk ved at vannet ledes via en plastslange fra et huli på siden av sedimentkassene (se fig.2).

Inntaksvannet ble jevnelig analysert for kvikksølv-innhold.

3.2. Feltforsøk med ål og blåskjell fra Oslo havn (Sørenga)

Blåskjell til forsøket ble samlet inn utenfor MFS, sortert, rengjort og fordelt på 6 nett. Blåskjellnettetene er vist i figur 6. Det ble plassert ca 70 skjell i hvert nett. Blåskjellnettetene ble oppbevart ett døgn i gjennomstrømmende sjøvann fra 40 m dyp før utsetting. 0-prøve av blåskjell (ca. 70 stk) ble frosset ned.

Den 14.5.93 ble 60 stk ål veid, lengdemålt og plassert i bur laget av perforerte PE-rør med perforerte muffer i enden. Rørburene var 0.8 m lange og diameteren var 75 mm. Perforeringshullene var 10 mm i diameter.
Burene med ål og nettene med blåskjell ble fraktet til Sørenga (fig. 1) hvor åleburene ble montert på rammer med klips, 5 rør på hver side av ramma (fig. 7).

Figur 6. Skisse av blåskjellnettene brukt ved Sørenga.

Figur 7. Skisse av åleburene brukt ved Sørenga.
Under kaia ble det strekt en stålwire mellom to kaipilarer. Til wiren ble det festet 3 wirer og en nylonline (vertikalt). På hver vertikale wire ble det påmontert 2 ålerammer, én ramme 0.5 m over bunnen og én ramme 1 m under overflaten. Til liningen ble det festet 6 blåskjellnatt, 3 nett 0.5 m over bunnen og 3 nett 1 m under overflaten. De vertikale enhetene ble holdt på plass ved moringer på bunnen. Enhetene ble nummerert fra 1 til 4. Avstanden mellom enhetene var 2 m. Figur 8 viser fôrsêksoppsettet.

Vanndybden ved fôrsêksoppsettet var 8-9 m. Ca. 3 skipsanløp i uka førte til kraftig turbulens rundt fôrsêksoppsettet da båtene ligger med akterenden mot oppsettet.

Temperatur, salinitet og oksygen i vannmassene ble registrert ved de fleste prôveuttakene. (Vedleggstabell 4.)

Åleburene og blåskjellnettene ble kontrollert og rengjort hver 14. dag i fôrsêksperioden.

Det ble tatt ut biologisk materiale (ål og blåskjell) for analyse av Hg, PCB og PAH (internt forskningsprosjekt på NIVA) 3 ganger i fôrsêksperioden, samt 0-prôve. Forsêket startet 14.5. Datoer for prôvetaking var 14.6, 14.7 og 24.8.93. Etter prôvetaking ble blåskjellene fraktet til MFS og plassert i rent sjøvann i løg dni før de ble fôsset for senere analyse. Se vedleggstabell 4.

Figur 8. Teknisk utfôrelse for utsetting av blåskjellnatt og ålebur ved Sôrenaga.
3.3. Analyser av bløtbunnsfaunaprøver.

I forbindelse med bløtbunnsfaunaundersøkelsen (delsrapport 5) ble det valgt ut fire stasjoner hvor den totale mengden av levende dyr i sedimentet ble analysert for kvikksølv og PCB. Stasjonenes posisjoner og dyp er som følger:

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Pos lat. N</th>
<th>Pos lat. E</th>
<th>Dyp (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp3-1</td>
<td>59° 52' 28"</td>
<td>10° 42' 04"</td>
<td>32</td>
</tr>
<tr>
<td>Bo2-2</td>
<td>59° 53' 15"</td>
<td>10° 40' 86"</td>
<td>20</td>
</tr>
<tr>
<td>Bo4-2</td>
<td>59° 52' 21"</td>
<td>10° 40' 78"</td>
<td>24</td>
</tr>
<tr>
<td>Cm4-1</td>
<td>59° 50' 23"</td>
<td>10° 37' 31"</td>
<td>35</td>
</tr>
</tbody>
</table>

Stasjonenes beliggenhet er vist på figur.9.

![Figur 9. Stasjoner for analyse av sedimentlevende dyr i indre Oslofjord.](image)

Innsamlingen ble foretatt fra "F/F Trygve Braarud" i mars 1993 ved hjelp av Day-grabb. Sedimentprøver ble tatt ut fra grabben med pleksiglass-rør og resten av sedimentet ble vasket gjennom 1 mm og 5 mm sikter. På laboratoriet ble prøvene vasket gjennom 0.5 mm sikt for å fjerne sedimentpartikler, og levende dyr ble plukket ut med pinsett og mikroskopiert før de ble overført til glass som på forhånd var glødet. De største skjellene ble dissikert før det ble laget en blandprøve av biomassen.
3.4. Analysemetodikk

Metoden for bestemmelse av Hg i sjøvannsprøvene er gulfelle/kalddamp atomabsorpsjonsteknikk (Bloom & Crebulius 1983). Hg-ionene reduseres til metallisk tilstand med tinn(II)klorid i surt miljø (HNO₃). Hg-dampen drives av med helium og føres via et tørkerør med magnesiumperklorat gjennom en gulfelle hvor Hg amalgerer. Hg frigjøres ved elektrotermisk oppvarming av gulfellen og drives videre gjennom en målecelle hvor signalet måles ved kalddamp atomabsorpsjon (tilpasset Perkin Elmer 1100B).

Analysene av kvikksølv i sedimentene, ål og blåskjell er utført på frysetørrt materiale, som autoklaveres med salpetersyre. Selve deteksjonsprinsippet er det samme som beskrevet ovenfor for vann.

Analyse av PCB i sedimentene, ål og blåskjell ble utført etter ekstraksjon med organiske løsningsmidler, rensing for interfererende stoffer og analyse av gasskromatograf utstyrt med elektroninnfangsdetektor (GC/ECD).

Analyse av kvikksølv i eremittkreps og i bunnaunapróver ble utført ved NIVA etter standard metode for analyse av biologisk materiale. Analyser av PCB i eremittkreps og bunnauna ble utført på Veterinærinstituttet. Prøvene ble ekstrahert ved bruk av ultralydsonikator etterfulgt av svovelsyreopprensning. Prøvene ble tilsatt PCB-155 som indre standard og analysert på kapillær GC.

4. RESULTATER OG DISKUSJON

4.1. Karakterisering av sedimentene

Sedimentene ble tatt på relativt grunt vann (< 20 m) og var oksiske i overflaten. Stasjon 1 (utenfor Sjursøya) viste organisk-holdige (4.4% TOC), finkornige (99% <63μm) sedimentene, typisk for indre Oslofjord. I de dypere deler av sedimentene luktet det av hydrogen sulfid. Oksygenmålinger i vannet fra eksempelkassene på Solbergstrand bekreftet at sedimentene fra stasjon 1 hadde et større oksygen-forbruk enn stasjon 2; tatt utenfor kaien på utstikker II. Her var sedimentene noe mere grovkornet, lysere i fargen og var mere typisk for sedimenter som stadig utsettes for fysiske forstyrrelser (oppvirling). Sedimentene på st.2 innholdt 4.3% total organisk karbon.

Sedimentenes innhold av kvikksølv ble målt før utlekkingsforskårene startet. Resultatene viser at sedimentet ved Sjursøya inneholdt 2.07 mg/kg kvikksølv, mens kvikksølvinnholdet i sedimentene utenfor utstikker II inneholdt mere enn dobbelt så mye kvikksølv (4.57 mg/kg), selv om sedimentene her var litt mere grovkornet og mindre organiskholdige. Dette stemmer rimelig godt overens med målinger gjort i sedimenter tidligere fra samme området (Konieczny, 1992). Sedimentene på stasjon 1 og 2 er for kvikksølvs vedkommende blant de mest forurensede overflatesedimentene i indre Oslofjord.

Etter at forskårene var slutt ble det tatt nye sedimentprøver fra kassene (8.9.93). Resultatene viste en konsentrasjon på 1.99 mg/kg (gjennomsnitt av prøver fra de fire kassene) på stasjon 1. Dette er omtrent det samme som nivået målt ved starten av eksperimentet. Gjennomsnittskonsentrasjonen av kvikksølv i kassene fra stasjon 2 viste 4.19 mg/kg etter at forskåket var avsluttet. Dette er en liten nedgang i forhold til utgangskonsentrasjonen.
Konsentrasjonene av total PCB (sum av 10 kongenerer) i testsedimentene fra Sjursøya (st.1) og utstikker II (st.2) var henholdsvis 117 og 215 μg/kg tørt sediment (beregnet som sum av syv kongenerer tilsvarende dette 107 og 195 μg/kg). Det er således omtrent dobbelt så mye PCB i prøven utenfor utstikker II sammenlignet med Sjursøya. PCB-mønsterer ser ut til å være nokså likt med kongenerene PCB-153, -101 og -138 som de mest fremtredende. Det er verd å merke seg at sedimentprøven tatt utenfor utstikker II hadde et overraskende høyt innhold av HCB (61 μg/kg). I forhold til eksisterende data fra indre Oslofjord ligger PCB - nivåene noe høyere enn gjennomsnittet for indre Oslofjord.

4.2. Kvikksolv i vannprøver.

Resultatene fra Hg-analysene av avløpsvannet fra sedimentkassene finnes i vedleggstabell 3.

Den normale konsentrasjonen av kvikksolv i fjordvann er 1-2 ng/l (Rygg og Thellin, 1993). Samtlige målinger av kvikksolv i inntaksvannet på Solbergstrand viste verdier < 2 ng/l (vedleggstabel 3). Det kan derfor slås fast at kvikksolv-konsentrasjonen i vannet brukt i eksperimentet var normal.

Eksempelkasse 3, hvor det ikke foregikk oppvirkning på noe tidspunkt, viste ingen forhøyede verdier i avløpsvannet fra stasjonen nær Sjursøya (st.1) i løpet av perioden 12.5.93 til 16.8.93 da målingene pågikk. Dette tyder på at sedimentene på dette stedet, selv om de inneholder 2 mg/kg kvikksolv, ikke avgir kvikksolv til vannfasen når de ikke oppvirvelses. Det betyr at kvikksolvet er sterkt bundet til partikler, noe som stemmer med tidligere eksperimenter (Skei et al., 1987; 1989).

Sedimentene tatt utenfor utstikker II på Vippetangen (fig.1), hvor danskebåtene legger til, hadde et kvikksolvinnhold på mere enn 4 mg/kg. Avløpsvannet fra forsøkskassen som ikke ble oppvirklet (nr.3) viste litt forhøyede verdier i starten av eksperimentet (maks 5.5 ng/l). Dette tyder på en viss utlekking i begynnelsen, sannsynligvis på grunn av forhøyede porevannskonsentrasjoner. Diffusiv transport av kvikksolv fra porevann til vannet over sedimentet vil avhenge av konsentrasjonsgradienten. Ved eksperimentet på Solbergstrand fornyes det bunn-nære vannet kontinuerlig. På den måten vil konsentrasjonsgradienten mellom porevann og vannet over være større enn i det naturlige systemet i Oslofjorden. Gjennomstrømming av vann i denne kassen i starten av eksperimentet var 230 ml/min.. Hvis vi sier at forhøyelsen av kvikksolv i dette vannet som skyldtes utlekking fra sedimentene var 3 ng/l, tilsvarende dette en tablaks på 1.4 mg/m²/år, dvs. at 1 m² bunn avgir 1.4 mg kvikksolv på årsbasis. Dette vil defor være et maksimumsangslag ettersom vannutskiftingen er mindre effektiv i havnebassenget enn under eksperimentet. Sammenlignet med tidligere målinger på sedimenter fra ytre deler av Oslofjorden, som ble brukt som kontroll ved et annet eksperiment (Skei et al., 1987), så er disse flukserne bare noe forhøyet.

Det ble gjort daglig oppvirkning på forsøkskasse nr. 1 og oppvirkling en gang i uken på forsøkskasse nr. 2 fra begge stasjonene. Årsaken til at man valgte å måle kvikksolv i vannet etter oppvirkling av sedimentene med forskjellig frekvens var at man ønsket å se om hyppig oppvirkning førte til lavere konsentrasjoner. I så fall ville dette skyldes at det skjer en økning av kvikksolvinnholdet i porevannet etterhvert som det nærmer seg en likevekt mellom kvikksolv bundet til partikler og løst kvikksolv i vann.Variasjonene fra uke til uke i kassene kan skyldes forskjeller i sedimentet som er virvlet opp. For at det ikke skulle dannes for store groper i kassene, ble propellen flyttet rundt i kassene fra dag til dag.
Resultatene viser at ved daglig oppvirvling på stasjon 1 (Sjursøya) ble det målt en gjennomsnittskonsentrasjon på 5.7 ng/l i vannet over sedimentet 3 timer etter at oppvirvlingen var opphørt. Visuelt så det ikke ut til å være mye partikler i vannprøvene, men ettersom analysene omfatter både partikulære og løste kvikksølvforbindelser, vil små partikler som kan holde seg svevende i vannmassen 3 timer etter at oppvirvlingen opphørte, bidra i analysen. Vanntilførselen til kassene ble stoppet i denne tre-timers perioden.

Ved ukentlig oppvirvling av sedimentet fra stasjon 1 ble det gjennomsnittlig målt 6.4 ng/l kvikksølv i vannfasen over sedimentet. Dette viser at det er liten forskjell mellom daglig og ukentlig oppvirvling av dette sedimentet. Dette tyder på at forholdet mellom den mengde kvikksølv som har sin opprinnelse i porevannet og den mengde som kommer fra små partikler er det samme og uavhengig av oppvirvlingsfrekvens.

Daglig og ukentlig oppvirvling av sedimentere tatt utenfor utstikker II (stasjon 2) viste betydelig høyere konsentrasjoner av kvikksølv enn oppvirvling av sedimentere fra stasjon 1. Det ble gjennomsnittlig målt henholdsvis 29.4 og 24.4 ng/l ved daglig og ukentlig oppvirvling, med maksverdier på henholdsvis 70 og 46.5 ng/l. Det er ingen statistisk forskjell mellom resultater fra daglig og ukentlig oppvirvling. Årsaken til at gjennomsnittsnivåene er ca. 5 ganger høyere i vannfasen på stasjon 1 må være at sedimentene ved utstikker II er betydelig mere forurenset (2.2 ganger). I tillegg må kvikksølvet i sedimentene på stasjon 2 være betydelig mere mobilt. Dessuten kan man ikke se bort fra at sedimentene utenfor utstikker II lettere lar seg oppvirve ettersom de stadig utsettes for fysiske forstyrrelser. I så fall er en av forklaringene på forskjellen i mobilisering av kvikksølv på stasjon 1 og 2 at det er mere partikler i vannprøvene fra stasjon 2.

Ettersom stasjon 2 befinner i nærheten av et ferjeleie med stor skipstrafikk og hvor det er forholdsvis grunn er det grunn til å tro at vannmassen i dette området svært ofte er betydelig forurenset av kvikksølv på grunn av oppvirvling. I tillegg indikerer resultatene at dette området er en kilde for spredning av kvikksølv til omgivelsene. Ettersom sedimentene i dette området også er forurenset av andre tungmetaller og av organiske miljøgifter er det grunn til å tro at andre miljøgifter også spres på denne måten.

4.3. Kvikksølv og PCB i eremittkreps

Det ble gjort analyser av eremittkreps ved utsetting på sedimentere fra stasjon 1 og 2 etter 1 måned, 2 måneder og 3 måneder (kun st.2). Hensikten var å måle opptak av PCB og kvikksølv. Nivåene av PCB og kvikksølv i sedimentene var omtrent dobbelt så høye på stasjon 2 (utstikker II) i forhold til stasjon 1 (Sjursøya).

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Prøveuttak</th>
<th>% fett</th>
<th>Hg (ng/g, w.w.)</th>
<th>PCB-153 (ng/g, w.w.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - prøve</td>
<td>0.8</td>
<td>25</td>
<td>12.09</td>
<td></td>
</tr>
<tr>
<td>1 (Sjursøya)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 måned</td>
<td>3.8</td>
<td>22</td>
<td>66.80</td>
<td></td>
</tr>
<tr>
<td>2 måned</td>
<td>0.9</td>
<td>23</td>
<td>14.28</td>
<td></td>
</tr>
<tr>
<td>2 (utstikker II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 måned</td>
<td>2.7</td>
<td>30</td>
<td>21.81</td>
<td></td>
</tr>
<tr>
<td>2 måned</td>
<td>1.3</td>
<td>26</td>
<td>16.93</td>
<td></td>
</tr>
<tr>
<td>3 måned</td>
<td>1.2</td>
<td>38</td>
<td>21.08</td>
<td></td>
</tr>
</tbody>
</table>

Ettersom det ikke er de samme PCB-kongenerne som er analysert i alle prøvene har man valgt å se spesifikt på noen av de mest dominerende kongenerne (f.eks. PCB-138 og PCB-153). Som det
framgår av tabellen ovenfor er det ingen klare opptakstrender. Fett-innholdet i krepsten varierer betydelig og det er derfor mere riktig å beregne PCB-konsentrasjonene på fettbasis. Dette er gjort for kongenerene PCB - 138 og - 153 nedenfor.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Prøveuttak</th>
<th>% fett</th>
<th>PCB-153 (ng/g, fettbasis)</th>
<th>PCB-138 (ng/g, fettbasis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Sjursøya)</td>
<td>0 - prøve</td>
<td>0.8</td>
<td>1511</td>
<td>1048</td>
</tr>
<tr>
<td></td>
<td>1 måned</td>
<td>3.8</td>
<td>1758</td>
<td>1887</td>
</tr>
<tr>
<td></td>
<td>2 måned</td>
<td>0.9</td>
<td>1586</td>
<td>1561</td>
</tr>
<tr>
<td>2 (ustikker II)</td>
<td>1 måned</td>
<td>2.7</td>
<td>808</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2 måned</td>
<td>1.3</td>
<td>1302</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>3 måned</td>
<td>1.2</td>
<td>1757</td>
<td>1302</td>
</tr>
</tbody>
</table>

Resultatene viser at opptaket i eremittkrepser ikke reflekterer forskjellene i konsentrasjoner i de sedimentene eremittkrepst i har vært eksponert for. Det innebærer at totalkonsentrasjonen av PCB i sediment er lite om biotilgjengelighet. Beregning av resultatene på våtvektbasis indikerer at det er en viss bioakkumulering i forhold til 0-prøven, men at trenen ikke er klar.

Fettbestemmelser ved lave konsentrasjoner er behøftet med stor usikkerhet. Selv om det er mere riktig å uttrykke resultatene på fettbasis vil omregningen kunne medføre feil. Likevel kommer trenden med oppkonsentrasjon over tid bedre fram når resultatene beregnes på fettbasis, spesielt på stasjon 2 hvor konsentrasjonene i sedimentene er høyest. Det bør imidlertid påpekes at det er få krepser i hver blandprøve (3-5) og at variabiliteten kan være meget stor. I forhold til 0-prøven øker fettpsonen i krepset den første måneden. Det som trolig skjer er at krepset ermer er seg på den fødene som binker seg i overflate-sedimentene så lenge det er noe. Når føden tar slutts reduserer fettninhoddet i krepset. Dette har også konsekvenser for akkumuleringen av PCB. Det bør bemerktes at eremittkrepsem som ble analysert som 0-prøve først hadde gått 3 måneder i fangen på Solbergstrand. Erneringsgrunnlaget har således vært noe annerledes enn om krep fra en naturlig sjøbunn hadde vært brukt til 0-prøve. Dette kan forklare det lave fettinhoddet i denne prøven.

Målingene av kvikksølv i eremittkrepser viste verdier mellom 22 og 38 ng/g våtvekt. 0-prøven viste 25 ng/g, mens den høyeste konsentrasjonen ble målt etter 3 måneder i kontakt med sediment på stasjon 2, hvor mengden kvikksølv i sedimentet var høyest. Det ble ikke registrert noe akkumulering i eremittkrepser fra stasjon 1 i løpet av to måneder, mens det var indikasjoner på akkumulering etter 3 måneder på stasjon 2 (basert på kun en blandprøve). Det kan derfor tyde på at det tar litt tid før akkumuleringen skjer.

Konsentrasjonene av kvikksølv i eremittkrepser var 2-3 ganger lavere enn i "naturlig" bløtbunnfauna fra indre Oslofjord (se kap. 5). Det kan enten tyde på at eremittkrepser i liten grad akkumulerer kvikksølv eller at akkumulasjonen er så langsom at at testperioden på 3 måneder har vært for kort.

4.4. Kvikksølv og PCB i ål satt ut i bur

Konsentrasjonen av kvikksølv i ålefilet målt før fisken ble satt ut var 0.17 mg/kg (våtvekt). Dette representerer 0-prøven. Forsøk gjort med utsetting av opbdretns i Gunneklevfjorden ved Hørøya i 1988 viste en 0-prøve på 0.06 mg/kg (Berge og Knutzen, 1989). I utgångspunktet inneholdt altså ålen som ble satt ut ved Sørenga nesten 3 ganger så mye kvikksølv.
Prøver av ålen ble tatt ut med 1 måneds mellomrom for analyse (blandprøve av ca. 10 ål). Etter en måned ble det registrert 0.1 mg/kg kvikksølv, altså en nedgang i forhold til 0-prøven. På de etterfølgende månedene økte konsentrasjonen noe og etter 3 måneder var konsentrasjonen i ål satt ut nær overflaten 0.15 mg/kg. Dette er fortsatt lavere enn 0-prøven. Det ble ikke registrert noen forskjell på ål i bur nær overflaten og ål nær bunnen.

Det kan derfor konkluderes med at det i løpet av tre måneder som forsøket varte ble det ikke registrert noen akkumulering av kvikksølv i ålefilet som kan kobles til oppvirving av forurensede sedimenter i kaiområdet, under de forhold som eksperimentet ble utført under. Så lenge ålen befinner seg i bur vil fødeopptaket være minimalt. Dette gjør seg også utslag i et vekttap under forsøksperioden. Vedleggstabel 5 viser et vekttap på ca 10-20 % i løpet av tre måneder. Ved forsinkene med utsetting av ål i Gunnekleivfjorden ble det registrert en viss akkumulering av kvikksølv fra vann, men beskjeden med hensyn til mengde fordi at sluttnivåene var langt under det som ble målt i vill ål fra samme lokalitet (Berge og Knutzen, 1989). Dette betyr at oppskaffer av kvikksølv fra vann i Gunnekleivfjorden langt fra kunne forklare den totale akkumuleringen som må finne sted i vill ål fra samme sted.

Rådata fra analysene av kvikksølv og PCB i ål og blåskjell befinner seg vedleggstabel 6-8.

Det bør også bemerkes at i tillegg til et vekttap hos ålen ble det også registrert et fett-tap (se nedenfor). 0-prøven hadde et fettinhold på 32.5%, men etter en måned var fettprosenten redusert til 21.6%. Hvis kvikksølvkonsentrasjonene omregnes på fettbasis får vi følgende:

<table>
<thead>
<tr>
<th>Prøveuttak</th>
<th>Vanndyb</th>
<th>Fett-</th>
<th>Hg (mg/kg,</th>
<th>Hg (mg/kg,</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.93</td>
<td>1.5</td>
<td>32.5</td>
<td>0.17</td>
<td>0.52</td>
</tr>
<tr>
<td>(0-prøve)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td>7.0</td>
<td>21.6</td>
<td>0.09</td>
<td>0.42</td>
</tr>
<tr>
<td>14.06.93</td>
<td>1.5</td>
<td>22.5</td>
<td>0.10</td>
<td>0.44</td>
</tr>
<tr>
<td>13.07.93</td>
<td>1.5</td>
<td>25.9</td>
<td>0.12</td>
<td>0.46</td>
</tr>
<tr>
<td>13.07.93</td>
<td>7.0</td>
<td>26.6</td>
<td>0.14</td>
<td>0.53</td>
</tr>
<tr>
<td>24.8.93</td>
<td>1.5</td>
<td>21.8</td>
<td>0.15</td>
<td>0.69</td>
</tr>
<tr>
<td>24.8.93</td>
<td>7.0</td>
<td>27.1</td>
<td>0.13</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Av dette framgår at basert på fettinhold var kvikksølvkonsentrasjonene i ål relativt konstant i løpet av testperioden.

Resultatene fra analysene av PCB i ål er vist i vedleggstabel 7. Konsentrasjonen i 0-prøven var 78 µg/kg våtevekt PCB (sum av syv kongenerer). Etter en måned sank PCB-innholdet til 22 µg/kg for så å øke igjen mot slutten forsøksperioden. Resultatene må sees i lys av endringer i fiskens fettinhold, ettersom PCB er lipidløs og derfor oppkonsentreres i fett. Hvis resultatene omregnes på fettbasis får man følgende:
<table>
<thead>
<tr>
<th>Prøveuttak</th>
<th>Vanndyp (m)</th>
<th>Fett-prosent</th>
<th>ΣPCB₇ (μg/kg, våtvekt)</th>
<th>ΣPCB₇ (μg/kg, fettbasis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.93 (0-prøve)</td>
<td>32.5</td>
<td>78</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td>1.5</td>
<td>21.6</td>
<td>22</td>
<td>102</td>
</tr>
<tr>
<td>14.06.93</td>
<td>7.0</td>
<td>22.5</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>13.07.93</td>
<td>1.5</td>
<td>25.9</td>
<td>37</td>
<td>143</td>
</tr>
<tr>
<td>13.07.93</td>
<td>7.0</td>
<td>26.6</td>
<td>56</td>
<td>211</td>
</tr>
<tr>
<td>24.08.93</td>
<td>1.5</td>
<td>21.8</td>
<td>22</td>
<td>101</td>
</tr>
<tr>
<td>24.08.93</td>
<td>7.0</td>
<td>27.1</td>
<td>69</td>
<td>255</td>
</tr>
</tbody>
</table>

Disse resultatene viser at selv om konsentrasjonene regnes om på fettbasis skjer det en nedgang i PCB den første måneden. Deretter skjer det en økning i ål som har stått nærmest bunnen (fra 67 μg/kg PCB på fettbasis etter 1 måned til 255 μg/kg etter 3 måneder). Dette kan tyde på et visst optak som følge av oppvirvling av PCB-forurensede sediment. Resultatene viser at forsøket burde ha hatt lengere varighet. Nedgangen i PCB-innhold i startfasen tyder på at vekttap og nedgang i fettnæring som følge av underernæring spiller stor rolle. Når fettnæringen i ål som var utplassert nærmere bunnen økte mere enn i ål høyere opppe i vannmassen kan det tyde på en viss néringstilgang fra bunnen. Dette medførte høyere PCB-konsentrasjoner i disse prøvene. Det bør imidlertid presiseres at konsentrasjonene som ble målt ikke var høyere enn utgangskonsentrasjonen i ålen.

4.5. Kvikksølv, PCB og PAH i transplanterte blåskjell.

Det er tidligere gjort transplantasjonsforsøk med blåskjell i Oslofjorden og måling av PCB-opptak (Bokn, 1976). Resultatene den gang viste et raskt optak av PCB, hvor konsentrasjonene økte med en faktor på 8 etter 2 uker i Bekkelagsbassenget.

Blåskjell som ble uthegnet i nett under kaia på Sørenga viste ingen akkumulering av kvikksølv i løpet av tre måneder. Dette gjaldt blåskjell plassert nær overflaten og nær bunnen. Nivåene i 0-prøven var 0.01 mg/kg våtvekt og nivåene endret seg ikke under forsøksperioden. Man ville forvente at blåskjellene akkumulerte kvikksølv, ettersom de ble utplassert i et område med mye oppvirvling av kvikksølvforurensede sediment. Det bør imidlertid bemerkes at det ble gjort analyser av stasjoner blåskjell fra samme område og heller ikke disse hadde nivåer over 0.01 mg/kg. Resultatene er i samsvar med andre undersøkelser av kvikksølv i blåskjell fra indre Oslofjord som viser konsentrasjoner tilnærmet bakgrunnsnivå (Green og Knutzen, 1993).

Analyser av PCB i blåskjell viste en utgangskonsentrasjon (0-prøve) på 3.4 μg/kg PCB våtvekt (sum av syv kongenerer). Etter en måned hadde konsentrasjonene i blåskjell satt ut nær bunnen og nær overflaten økt til henholdsvis 15.1 og 12.4 μg/kg PCB (vedleggstabel 8). Ettersom tørrstoffprosenten varierer en god del vil det være riktigere å beregne PCB-verdiene på tørrstoffbasis. Dette er vist nedenfor:
<table>
<thead>
<tr>
<th>Prøveuttak</th>
<th>Vanndyp (m)</th>
<th>Fett-prosent</th>
<th>ΣPCB$_7$ (µg/kg, tørrvekt)</th>
<th>Tørrvekt-prosent</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.93</td>
<td>0.5 m over bunnen</td>
<td>1.5</td>
<td>26.3</td>
<td>12.9</td>
</tr>
<tr>
<td>14.06.93</td>
<td>1m under overflaten</td>
<td>2.5</td>
<td>59.0</td>
<td>21.0</td>
</tr>
<tr>
<td>14.06.93</td>
<td>0.5 m over bunnen</td>
<td>1.7</td>
<td>102.7</td>
<td>14.7</td>
</tr>
<tr>
<td>13.07.93</td>
<td>1m under overflaten</td>
<td>1.8</td>
<td>125.6</td>
<td>17.2</td>
</tr>
<tr>
<td>13.07.93</td>
<td>0.5 m over bunnen</td>
<td>2.2</td>
<td>126.9</td>
<td>10.4</td>
</tr>
<tr>
<td>24.8.93</td>
<td>1m under overflaten</td>
<td>1.6</td>
<td>84.6</td>
<td>18.2</td>
</tr>
<tr>
<td>24.8.93</td>
<td>0.5 m over bunnen</td>
<td>1.5</td>
<td>146.5</td>
<td>15.5</td>
</tr>
</tbody>
</table>

I tillegg til analyser av transplanterte blåskjell ble det også tatt en prøve av stasjonær blåskjell som vokste i nærheten av det området hvor blåskjellene ble satt ut. Disse skjellene inneholdt 123.4 µg/kg ΣPCB$_7$ (tørrvekt). Resultatene viser en klar trend. Transplanterte blåskjell akkumulerte PCB raskt, i samsvar med tidligere undersøkelser (Bokn, 1976). Etter en måned er konsentrasjonen fordoblei i blåskjell nær overflaten og firedoblei i blåskjell utplasert nær bunnen. Dette tyder på at opptaket skjer raskt og at oppvirkning av bunnsedimenter influerer på opptaket. Etter 3 måneder var konsentrasjonen i blåskjell nær bunnen 5.5 ganger høyere enn i 0-prøven (tørrvektsbasis).

Resultatene viser også at nivået i transplanterte blåskjell var omtrent det samme som i naturlige blåskjell fra området nær Sørenja. Det er derfor grunn til å tro at en tre-måneders testperiode var tilstrekkelig for å belyse maksimal akkumulasjon. Hvis man antar at ΣPCB$_7$ utgjør halvparten av "total" PCB vil blåskjell som har vært utplasert på Sørenja i 3 måneder bli klassifisert i tilstandsklasse III ("nokså dårlig", Rygg og Thelin, 1993).

I tillegg til analyser av PCB ble det også gjort analyser av PAH (internt forskningsprosjekt ved NIVA). Foruten i 0-prøven ble PAH-innholdet bestemt i blåskjell etter 3 måneder på Sørenja utplasert like over bunnen og nær overflaten. Naturlig voksende blåskjell fra samme området ble også analysert. Resultatene er vist i vedleggstabell 10. Totalkonsentrasjonene er gjengitt nedenfor, sammen med %KPAH (potensielt kreftframkallende egenskaper som prosent av totalen).

<table>
<thead>
<tr>
<th>Blåskjellprøve</th>
<th>Tot. PAH µg/kg våtvekt</th>
<th>Tot. PAH µg/kg tørrvekt</th>
<th>KPAH %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-prøve 14.5.93</td>
<td>22.6</td>
<td>175.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Overflaten 24.8.93</td>
<td>92.4</td>
<td>507.6</td>
<td>16.7</td>
</tr>
<tr>
<td>Nært bunnen 24.8.93</td>
<td>128.6</td>
<td>824.4</td>
<td>32.6</td>
</tr>
<tr>
<td>Naturlig voksende</td>
<td>148.9</td>
<td>792.0</td>
<td>20.3</td>
</tr>
<tr>
<td>24.8.93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Av dette fremgår at det er en kraftig akkumulering av PAH i de transplanterte blåskjellene i løpet av en eksponeringsperiode på 3 måneder (en faktor på 5 i forhold til 0-prøven). Nivåene etter 3 måneder tilsvarer nivåene i viltvoksende blåskjell fra havnebassenget (på tørrvektsbasis). Det er også verd å merke seg at mengden potensielt kreftframkallende PAH-forbindelser øker i de transplanterte blåskjellene fra 7% til mer enn 32%. Ettersom konsentrasjonene av PAH i blåskjellene er høyest i skjell utplassert nærmest bunnen er det grunn til å tro at bunnsedimenter som oppvirves står for en god del av bidraget av PAH i blåskjellene. Grensen mellom tilstandsklasse I og II for PAH i blåskjell går ved 100 μg/kg våtvekt. Det bør imidlertid påpekes at tidligere anslag for høyt bakgrunnsnivå av PAH i blåskjell (Rygg og Thèlin, 1993) bør nedjusteres til i hvert fall 50 μg/kg våtvekt. 0-prøven som representerer blåskjell samlet ved Solbergstrand viste 22 μg/kg PAH våtvekt.

Sedimentenes beskaffenhed varierte noe mellom stasjonene. Sedimentet på stasjon Bp3-1 var mest finkornig (97 % < 63 µm) og hadde høyest innhold av organisk karbon (4.4%), mens stasjon Bo-4-2 hadde grovest sedimenter (71 % < 63µm) og et organisk karboninnhold på 2.4%.

Dyrene som ble plukket ut av grabben og artsbestemt viste følgende dominante arter (basert på 4 grabber pr. stasjon):

<table>
<thead>
<tr>
<th>ARTER</th>
<th>Bp3-1</th>
<th>Bo2-2</th>
<th>Bo4-2</th>
<th>Cm4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediomastus fragilis</td>
<td>161</td>
<td>23</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>Chaetozozone setosa</td>
<td>134</td>
<td>34</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td>Thyasira spp.</td>
<td>91</td>
<td>24</td>
<td>54</td>
<td>17</td>
</tr>
<tr>
<td>Polydora spp.</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeppelinina monostyla</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllis spp.</td>
<td>32</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Nereimyra punctata</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteromastus filiformis</td>
<td>23</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Cirriatulus spp.</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirriatulus cirratus</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudopolydora paucibranchiata</td>
<td>2320</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohiura affinis</td>
<td>208</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampharetidae fimnarchiaca</td>
<td>222</td>
<td>216</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Nuculoma tenuis</td>
<td>21</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinocardium cordatum</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macoma calcarea</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholoe spp.</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniada maculata</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Bivalvia unidentifisert</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemertini</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceria alba</td>
<td>16</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabellidae spp.</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pista cristata</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Philomedes globosus</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Lumbrineris fragilis</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Ampharetidae spp.</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

| Totalt antall arter | 39 | 51 | 30 | 43 |

Sedimentenes kvikksølvinnhold varierte mellom 0.8 mg/kg (Cm4-1) og 3.62 mg/kg på stasjon Bp3-1. Konsentrasjonene av sum-PCB i sedimentene varierte mellom 36 og 174 ng/g.

Figur 10. Fordeling av kvikksølv og ΣPCB$_{21}$ i sediment fra de fire bløtbunnfaunastasjonene i indre Oslofjord. Resultatene er også normalisert til organisk karbon.
Innholdet av kvikksølv og PCB i biomassen er fremstilt på figur 11.

Figur 11. Kvikksølv og ΣPCB$_{21}$ i sedimentlevende dyr fra fire stasjoner i indre Oslofjord uttrykt både som våtvekt, tørrvekt og på fettbasis (PCB).
Resultatene viser at kvikksølv i sedimentlevende dyr varierte mellom ca. 0.05 og 0.09 mg/kg (våtvekt). Til sammenligning er det målt 0.13± 0.05 mg/kg kvikksølv (våtvekt) i torskefilet fra Vestfjorden i 1992 (Green og Knutzen, 1993). Konsentrasjonen av PCB (sum av 21 kongenerer) i bunnaunaen på våtvektbasis viste konsentrasjoner mellom 13.4 og 31.1 ng/g . I lever av torsk fra indre Oslofjord er det målt ca. 2000 - 3000 ng/g PCB (sum av 7 kongenerer) og fra 10 - 20 ng/g PCB våtvekt i torskefilet (upubliserte JMG-data). Det bør bemerkes at fettinnholdet i de sedimentlevende dyra bare er 0.4 - 0.7 % (av samme størrelsesorden som i torskefilet), i motsetning til torsklevor som i gjennomsnitt inneholder 40-50 % fett. Til tross for at nivåene av kvikksølv og PCB i de sedimentlevende dyra er forholdvis lave vil de kunne bidra til oversperring av miljøgifter fra sedimenter til fisk dersom disse dyra inngår i fiskens næringsgrunnlag.

4.6.1. Bioakkumuleringsfaktorer for kvikksølv og PCB

Hensikten med å analysere biomassen og sedimentet for kvikksølv og PCB var å kunne beregne bioakkumuleringsfaktoren i sedimentlevende dyr og sammenligne denne med bioakkumuleringsfaktoren i eremittkreps eksponert for forurensede sedimenter på Solbergstrand.

Bioakkumulasjonsfaktoren, BAF, er beregnet på følgende måte:

\[\text{BAF} = \frac{\text{konsentrasjon av Hg eller PCB i sedimentlevende dyr (våtvekt)}}{\text{konsentrasjon av Hg eller PCB i sedimentet (våtvekt)}} \]

Bioakkumuleringsfaktoren (BAF) for kvikksølv og PCB er framstilt grafisk på figur 12.

Disse resultatene viser at det er relativt stor innbyrdes forskjell mellom de fire stasjonene, spesielt for kvikksølv. For kvikksølvs og PCBs vedkommende øker BAF omtrent omvendt proporsjonal med konsentrasjonen i sedimentet og i dyrene. Hvis BAF hadde vært den samme på samtlige stasjoner ville det indikere at opptaket i sedimentlevende dyr følger konsentrasjonen i sedimentet. Når dette ikke er tilfelle, må dette bero på at biotilgjengeligheten av kvikksølv og PCB i sedimentene varierer. Innholdet av organisk karbon var lavt (2.5% TOC) på stasjonen hvor BAF var høyest (st. Cm4) og høyt (4.4%TOC) på stasjonen med lav BAF (st. Bp3). Det ser derfor ut til at organisk materiale kan spille en vesentlig rolle for biotilgjengeligheten av både kvikksølv og PCB i sedimentet. Det bør også bemerkes at BAF er betydelig lavere for kvikksølv enn for PCB, noe som kan indikere at tilgjengeligheten av PCB på sediment i generelt er større enn for kvikksølv.

Akkumuleringsfaktoren (AF) kan også beregnes ved at PCB i dyr normaliseres til fettinnhold og PCB i sediment til organisk karbon (Lake et al, 1990):

\[\text{AF} = \frac{\text{konsentrasjonen av PCB i sedimentlevende dyr (fettbasis)}}{\text{konsentrasjonen av PCB i sedimentene (TOC-basis)}} \]

Følgende AF-verdier fås for disse 4 stasjonene:

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp3-1</td>
<td>1.12</td>
</tr>
<tr>
<td>Bo2-2</td>
<td>1.21</td>
</tr>
<tr>
<td>Bo4-2</td>
<td>1.74</td>
</tr>
<tr>
<td>Cm4-1</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Alle AF-verdiene er >1, dvs. at når vi normaliserer PCB-konsentrasjonene i dyr og sedimenter til henholdsvis fett og TOC er det en større anerkjennelse i dyr enn i sedimentet. AF-verdiene varierer mindre enn BAF-verdiene. I tillegg ble den laveste AF-verdien funnet på den stasjonen hvor sedimentet var mest forurenset. Dette er i overenstemmelse med Lake et.al (1990).

Det bør imidlertid påpekes at artssammensetningen på de fire stasjonene varierer og at dette kan spille en rolle for bioakkumuleringsfaktoren. Det mest riktige ville ha vært å studere en enkelt art på hver av stasjonene. Dette gjøres nå i forbindelse med to hovedoppgaver ved Universitetet i Oslo (June Bryde og Lene Jacobsen Skuggevik).

Akkumuleringsfaktoren kan også beregnes for PCB i eremittkreps som er eksponert for testsedimentene på Solbergstrand. Konsentrasjonen av PCB-153 (på fettbasis) i eremittkreps, etter 3 måneders eksponering for sedimenter fra stasjon 2 (utstikker II), gir en akkumuleringsfaktor (AF) på 1.9 (konsentrasjonen av PCB-153 i sedimentet er normalisert til organisk karbon). Dette viser at akkumulasjonsfaktoren for eremittkreps ikke skiller seg vesentlig fra akkumuleringsfaktoren i "naturlig" sedimentlevende dyr fra indre Oslofjord.

Figur 12. Bioakkumuleringsfaktorene for kvikksølv og PCB i levende dyr fra sedimenter i indre Oslofjord.
5. Vurdering av sedimentene som kilde for forurensning

En av årsakene til at tester på havnesedimenter på Solbergstrand og felforsøk med organismer på Sørenga ble gjennomført var behovet for å vite noe om sedimentene som potensiell forurensningskilde for vann og organismer i Oslofjorden. Dette skal igjen brukes som et underlag for tiltaksanalysen.

Det er i hovedsak tre måter sedimentene kan påvirke omgivelsene på:

- direkte utlekkning av miljøgifter (dvs. overføring av miljøgifter bundet i partikler til løst form)
- mobilisering av miljøgifter i partikuler form (dvs. frigjøring av miljøgifter bundet i sedimentene til suspenderte partikler og transport bort fra det opprinnelige deponeringsstedet)
- oppgjør av miljøgifter i sedimentlevende dyr, i bunnskikk og i organismer som filtrerer partikler (feks. blåskjell)

Oppvirvlingsforsøkene på Solbergstrand viste at nivået av kvikksølv i vannmassen var høyt selv tre timer etter at en oppvirvling opphørte. Det innebærer at det kan skje en transport av miljøgifter fra de mest forurensede sedimentene i havnebassenget til andre deler av Oslofjorden, spesielt hvis partiklene virvles helt opp i overflaten og partiklene kan transporteres med overflatestrømmen. Blåskjell som filtrerer partikler kan på den måten bli eksponert for forurensede partikler langt unna selve kilden for partikkelforurensningen. Forsøk med ål og blåskjell satt ut ved Sørenga viste imidlertid ingen akkumulering av kvikksølv i løpet av tre måneder i et område med forurensede sedimenter og stor oppvirvling som følge av skipstrafikk. Årsaken til dette er ikke uten videre klar. Når det gjelder ål kan mangelen på akkumulering av kvikksølv være at ålen ikke har hatt tilgang på føde under testperioden. Vektvæk og nedgang i fettpersen viser dette. Andre undersøkelser har imidlertid vist at fisk også tar opp miljøgifter fra vann (Berge og Knutzen, 1989).

Når det gjelder blåskjell var resultatene mere overraskende. Mangel på akkumulering av kvikksølv kan skyldes at kvikksølv er bundet til partikler som enten er for små til at blåskjell frafiltrerer partiklene eller at kvikksølvet er i en form som ikke er tilgjengelig for blåskjell. Det bør forsvare påpekes at nivåene i de transplanterte blåskjellene var de samme som i naturlig voksende blåskjell i området.
Bioakkumuleringsforsøkene med ål og blåskjell på Sørenga viste andre resultater for PCB. I likhet med kvikksølv ble det ikke registrert en økt akkumulering i ål. Tvert i mot avtok konsentrasjonene av PCB i startfasen, selv når resultatene normaliseres til fettinnholdet i fischen. Helt mot slutten av forsøket er det en svak indikasjon på akkumulering, men forsøket var antagelig for kortvarig til å kunne registrere maksimal akkumulering. Det var også en svak tendens til at ål som ble utplassert nærmest bunnen akkumulerte mest PCB. Dette bidraget kan i så fall kobles til sedimentene.

En av de største trusselene som forurensede sedimenter generelt representere er opptak i sedimentlevende dyr og videre transport opp i næringskjeden (f.eks. til fisk). Undersøkelser av innholdet av kvikksølv og PCB i sedimentlevende dyr fra indre Oslofjord viste at bioakkumuleringssfaktorene var høyest i sedimenter med lavest innhold av henholdsvis kvikksølv og PCB. Disse sedimentene hadde også lavest innhold av organisk karbon. Det er derfor grunn til å tro at organisk materiale i sedimentene spiller en nøkkelrolle vedrørende biotilgjengelighet for miljøgifter i marine sedimenter (Decho og Luoma, 1994), hvertfall for kvikksølv og PCB. Sedimentene i indre Oslofjord og i havnebassenget har et høyt organisk innhold. Dette medfører trolig at disse sedimentene representerer en mindre miljørisiko der de ligger, enn man skulle tro, på grunn av sitt organiske innhold.

Opptaksstudier i eremitkreps utført på Solbergstrand viser at det er et visst opptak av PCB, men at resultatene på ingen måte er entydige. Det kan være flere årsaker til det, bl.a. det lave innholdet av fett i krepsen og umøyaktighet i fettbestemmelsene.

Det ble registrert en antydning til akkumulering av kvikksølv i eremitkreps i forhold til 0-prøven. Konsentrasjonen økte fra 25 til 38 ng/g våtvekt i løpet av 3 måneder når krepsen ble eksponert for et sediment med et kvikksølvinnhold på ca. 4 μg/g tørt materiale. Det er sannsynlig at forsøket var for kortvarig for å se den fulle effekten av eksponeringen.
6. Litteratur

Vedlegg
Tabell 1. Målinger av vannmengder (flow) i eksperimentkassene på Solbergstrand.

<table>
<thead>
<tr>
<th>Dato</th>
<th>1-I</th>
<th>1-II</th>
<th>1-III</th>
<th>1-IV</th>
<th>2-I</th>
<th>2-II</th>
<th>2-III</th>
<th>2-IV</th>
<th>Kommentarer</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.05.93</td>
<td>230</td>
<td>240</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>210</td>
<td>230</td>
<td>220</td>
<td>Startet forsøk</td>
</tr>
<tr>
<td>19.05.93</td>
<td>230</td>
<td>250</td>
<td>170</td>
<td>220</td>
<td>250</td>
<td>200</td>
<td>230</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>26.05.93</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>230</td>
<td>225</td>
<td>180</td>
<td>200</td>
<td>225</td>
<td>St. oppv. (0,5 t); Hg prø. etter 3 t</td>
</tr>
<tr>
<td>27.05.93</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.05.93</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.06.93</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02.06.93</td>
<td>240</td>
<td>235</td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>240</td>
<td>210</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>03.06.93</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.06.93</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.06.93</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.06.93</td>
<td>230</td>
<td>250</td>
<td>225</td>
<td>230</td>
<td>240</td>
<td>230</td>
<td>220</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>10.06.93</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.06.93</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.06.93</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.06.93</td>
<td>210</td>
<td>235</td>
<td>245</td>
<td>240</td>
<td>225</td>
<td>170</td>
<td>240</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>17.06.93</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.06.93</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.06.93</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.06.93</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.06.93</td>
<td>230</td>
<td>255</td>
<td>240</td>
<td>245</td>
<td>240</td>
<td>235</td>
<td>250</td>
<td>240</td>
<td>Sluttet oppvirkning</td>
</tr>
<tr>
<td>30.06.93</td>
<td>215</td>
<td>225</td>
<td>240</td>
<td>232</td>
<td>235</td>
<td>200</td>
<td>240</td>
<td>240</td>
<td>Ingen prøvetagning</td>
</tr>
<tr>
<td>07.07.93</td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingen prøvetagning</td>
</tr>
<tr>
<td>14.07.93</td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drypprøve</td>
</tr>
<tr>
<td>21.07.93</td>
<td>200</td>
<td>240</td>
<td>235</td>
<td>240</td>
<td>210</td>
<td>240</td>
<td>255</td>
<td>250</td>
<td>Drypprøve</td>
</tr>
<tr>
<td>28.07.93</td>
<td>210</td>
<td>240</td>
<td>220</td>
<td>255</td>
<td>225</td>
<td>230</td>
<td>250</td>
<td>230</td>
<td>Drypprøve</td>
</tr>
<tr>
<td>04.08.93</td>
<td>215</td>
<td>240</td>
<td>220</td>
<td>240</td>
<td>190</td>
<td>200</td>
<td>250</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>11.08.93</td>
<td>210</td>
<td>230</td>
<td>225</td>
<td>200</td>
<td>205</td>
<td>210</td>
<td>235</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>18.08.93</td>
<td>210</td>
<td>245</td>
<td>250</td>
<td>240</td>
<td>245</td>
<td>260</td>
<td>250</td>
<td>250</td>
<td>Slutt!</td>
</tr>
</tbody>
</table>
Tabell 2. Målinger av oksygen i vannet over sedimentene i eksperimentkassene på Solbergstrand.

<table>
<thead>
<tr>
<th>Dato</th>
<th>1-I</th>
<th>1-II</th>
<th>1-III</th>
<th>1-IV</th>
<th>2-I</th>
<th>2-II</th>
<th>2-III</th>
<th>2-IV</th>
<th>Kommentarer</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.05.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.05.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.05.93</td>
<td>7,6</td>
<td>8,1</td>
<td>7,2</td>
<td>6,9</td>
<td>8,6</td>
<td>8,8</td>
<td>8,7</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>27.05.93</td>
<td>7,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,4</td>
</tr>
<tr>
<td>28.05.93</td>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,5</td>
</tr>
<tr>
<td>01.06.93</td>
<td>7,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,2</td>
</tr>
<tr>
<td>02.06.93</td>
<td>7,3</td>
<td>7,3</td>
<td>7,1</td>
<td>6,4</td>
<td>8,1</td>
<td>7,9</td>
<td>8</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>03.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.06.93</td>
<td>5,7</td>
<td>6,8</td>
<td>6,9</td>
<td>6,7</td>
<td>6,5</td>
<td>6,3</td>
<td>6,4</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>10.06.93</td>
<td>6,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,9</td>
</tr>
<tr>
<td>11.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.06.93</td>
<td>6,5</td>
<td>6,4</td>
<td>7</td>
<td>6,7</td>
<td>6,9</td>
<td>6,9</td>
<td>6,8</td>
<td>6,4</td>
<td></td>
</tr>
<tr>
<td>17.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.06.93</td>
<td>7,6</td>
<td>7,9</td>
<td>7,9</td>
<td>7,5</td>
<td>7,6</td>
<td>7,5</td>
<td>8</td>
<td>7,1</td>
<td></td>
</tr>
<tr>
<td>30.06.93</td>
<td>7,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,9</td>
</tr>
<tr>
<td>07.07.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.07.93</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,4</td>
</tr>
<tr>
<td>21.07.93</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,2</td>
</tr>
<tr>
<td>28.07.93</td>
<td>6,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,9</td>
</tr>
<tr>
<td>04.08.93</td>
<td>7,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,2</td>
</tr>
<tr>
<td>11.08.93</td>
<td>7,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>18.08.93</td>
<td>6,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
Figur 1. Temperatur og saltholdighet i inntaksvannet (40 m dyp) på Solbergstrand.
Tabell 3. Kvikksolv (løst + partikulært) målt i vannprover i utløpsvannet fra eksperimentkassene på Solbergstrand.

O-921317 Oslofjorden - Utlekkning av Hg

<table>
<thead>
<tr>
<th>Dato</th>
<th>St. 1-3</th>
<th>St. 2-3</th>
<th>St. 1-1</th>
<th>St. 2-1</th>
<th>St. 1-2</th>
<th>St. 2-2</th>
<th>Vann inn Komm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kun utl.</td>
<td>kun utl.</td>
<td>dagl. oppv</td>
<td>dagl. oppv</td>
<td>ukentl. oppv</td>
<td>ukentl. oppv</td>
<td></td>
</tr>
<tr>
<td>12.05.93</td>
<td><2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.05.93</td>
<td><2</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.05.93</td>
<td>2,5</td>
<td>3</td>
<td>4,5</td>
<td>30</td>
<td>6,5</td>
<td>26</td>
<td>St. oppv</td>
</tr>
<tr>
<td>27.05.93</td>
<td>9</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.05.93</td>
<td>4</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.06.93</td>
<td>4,5</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02.06.93</td>
<td><2</td>
<td><2</td>
<td>4</td>
<td>20,5</td>
<td>6,5</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>03.06.93</td>
<td>8,5</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingen prøve</td>
</tr>
<tr>
<td>07.06.93</td>
<td>2,5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.06.93</td>
<td>6,5</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.06.93</td>
<td><2</td>
<td><2</td>
<td>4,5</td>
<td>18</td>
<td>7,5</td>
<td>18,5</td>
<td><2</td>
</tr>
<tr>
<td>10.06.93</td>
<td>3</td>
<td>10,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.06.03</td>
<td>3,5</td>
<td>20,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td>4,5</td>
<td>25,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.06.93</td>
<td>4</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.06.93</td>
<td><2</td>
<td><2</td>
<td>9,5</td>
<td>37</td>
<td>5,5</td>
<td>26,5</td>
<td></td>
</tr>
<tr>
<td>17.06.93</td>
<td>4,5</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.06.93</td>
<td>8,5</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.06.93</td>
<td>12</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.06.93</td>
<td>5,5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.06.93</td>
<td><2</td>
<td><2</td>
<td>5</td>
<td>11,5</td>
<td>6</td>
<td>46,5</td>
<td><2</td>
</tr>
<tr>
<td>30.06.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingen prøve</td>
</tr>
<tr>
<td>07.07.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingen prøve</td>
</tr>
<tr>
<td>14.07.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.07.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.07.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.08.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.08.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.08.93</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gj.snitt</td>
<td><2</td>
<td>4,2</td>
<td>5,7</td>
<td>29,4</td>
<td>6,4</td>
<td>24,4</td>
<td><2</td>
</tr>
<tr>
<td>Min</td>
<td><2</td>
<td><2</td>
<td>2,5</td>
<td>5</td>
<td>5,5</td>
<td>4,5</td>
<td><2</td>
</tr>
<tr>
<td>Max</td>
<td><2</td>
<td>5,5</td>
<td>12</td>
<td>70</td>
<td>7,5</td>
<td>46,5</td>
<td><2</td>
</tr>
</tbody>
</table>
Tabell 4. Temperatur, saltholdighet og oksygen i vannmassene ved kaia på Sørenga hvor årleurene og blåskjellnetten ble satt ut.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Utsak (antall)</th>
<th>Temp (øC)</th>
<th>Salt (ø/ø)</th>
<th>Oksygen (mg/l)</th>
<th>Kommentarer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,5 m</td>
<td>8,0 m</td>
<td>1,5 m</td>
<td>8,0 m</td>
</tr>
<tr>
<td>14.5</td>
<td>0-prøve: 20 øl/70 skjell;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td></td>
<td>15,2</td>
<td>21,5</td>
<td>8,7</td>
<td>Ettersyn! Fint oppsett</td>
</tr>
<tr>
<td>14.6</td>
<td>Øi: 20 (10 + 10); St. 1 Skjell:130 (64 + 66); St. 2</td>
<td>16,2</td>
<td>12,8</td>
<td>20,3</td>
<td>24,0</td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td>17,2</td>
<td>10,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>Øi: 18 (8 + 10); St. 4 Skjell:139 (69 + 70); St. 2</td>
<td>15,0</td>
<td>11,1</td>
<td>24,3</td>
<td>28,5</td>
</tr>
<tr>
<td>27.7</td>
<td></td>
<td>17,0</td>
<td>15,2</td>
<td>23,2</td>
<td>26,0</td>
</tr>
<tr>
<td>24.8</td>
<td>Øi: 20 (10 + 10); St. 3 Skjell:140 (70 + 70); St. 2</td>
<td>16,5</td>
<td>15,8</td>
<td>23,0</td>
<td>24,5</td>
</tr>
</tbody>
</table>
Tabell 5. Vektendringer hos ål satt ut i bur på Sørenga, Oslo havn.

<table>
<thead>
<tr>
<th>Fisk nr.</th>
<th>Lengde</th>
<th>Vekt 14/5</th>
<th>Vekt 14/6</th>
<th>Vekt 14/7</th>
<th>Vekt 24/8</th>
<th>Vekt red. (gr)</th>
<th>Utløpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ål nr 1</td>
<td>60</td>
<td>500</td>
<td></td>
<td></td>
<td>464</td>
<td>36</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 2</td>
<td>50</td>
<td>280</td>
<td></td>
<td></td>
<td>234</td>
<td>46</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 3</td>
<td>60</td>
<td>460</td>
<td></td>
<td></td>
<td>384</td>
<td>76</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 4</td>
<td>50</td>
<td>270</td>
<td></td>
<td></td>
<td>228</td>
<td>42</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 5</td>
<td>62</td>
<td>540</td>
<td></td>
<td></td>
<td>442</td>
<td>98</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 6</td>
<td>60</td>
<td>360</td>
<td></td>
<td></td>
<td>308</td>
<td>52</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 7</td>
<td>56</td>
<td>400</td>
<td></td>
<td>361</td>
<td></td>
<td>36</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 8</td>
<td>57</td>
<td>370</td>
<td></td>
<td>357</td>
<td></td>
<td>13</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 9</td>
<td>60</td>
<td>420</td>
<td></td>
<td>390</td>
<td>30</td>
<td>30</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 10</td>
<td>56</td>
<td>340</td>
<td></td>
<td>296</td>
<td></td>
<td>44</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 11</td>
<td>58</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>tapt</td>
</tr>
<tr>
<td>Ål nr 12</td>
<td>55</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td>tapt</td>
</tr>
<tr>
<td>Ål nr 13</td>
<td>52</td>
<td>300</td>
<td></td>
<td></td>
<td>260</td>
<td>40</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 14</td>
<td>58</td>
<td>480</td>
<td></td>
<td>378</td>
<td>82</td>
<td>82</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 15</td>
<td>58</td>
<td>400</td>
<td></td>
<td>336</td>
<td>64</td>
<td>64</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 16</td>
<td>60</td>
<td>470</td>
<td></td>
<td>406</td>
<td>64</td>
<td>64</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 17</td>
<td>55</td>
<td>350</td>
<td></td>
<td>290</td>
<td>60</td>
<td>60</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 18</td>
<td>59</td>
<td>430</td>
<td></td>
<td>372</td>
<td>56</td>
<td>56</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 19</td>
<td>57</td>
<td>400</td>
<td></td>
<td>353</td>
<td>47</td>
<td>47</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 20</td>
<td>53</td>
<td>330</td>
<td></td>
<td>273</td>
<td>57</td>
<td>57</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 21</td>
<td>70</td>
<td>640</td>
<td></td>
<td>564</td>
<td>86</td>
<td>86</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 22</td>
<td>58</td>
<td>430</td>
<td></td>
<td>384</td>
<td>46</td>
<td>46</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 23</td>
<td>60</td>
<td>480</td>
<td></td>
<td>406</td>
<td>74</td>
<td>74</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 24</td>
<td>50</td>
<td>240</td>
<td></td>
<td>218</td>
<td>22</td>
<td>22</td>
<td>St.3 topp</td>
</tr>
<tr>
<td>Ål nr 25</td>
<td>53</td>
<td>350</td>
<td></td>
<td>300</td>
<td>50</td>
<td>50</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 26</td>
<td>58</td>
<td>420</td>
<td></td>
<td>379</td>
<td></td>
<td>41</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 27</td>
<td>52</td>
<td>340</td>
<td></td>
<td>278</td>
<td>65</td>
<td>65</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 28</td>
<td>55</td>
<td>400</td>
<td></td>
<td>352</td>
<td>48</td>
<td>48</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 29</td>
<td>60</td>
<td>500</td>
<td></td>
<td>441</td>
<td>50</td>
<td>50</td>
<td>St.4 topp</td>
</tr>
<tr>
<td>Ål nr 30</td>
<td>58</td>
<td>360</td>
<td></td>
<td>310</td>
<td>50</td>
<td>50</td>
<td>St.3 bunn</td>
</tr>
<tr>
<td>Ål nr 31</td>
<td>52</td>
<td>370</td>
<td></td>
<td>322</td>
<td></td>
<td>48</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 32</td>
<td>52</td>
<td>280</td>
<td></td>
<td></td>
<td>254</td>
<td>26</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 33</td>
<td>52</td>
<td>300</td>
<td></td>
<td></td>
<td>255</td>
<td>45</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 34</td>
<td>55</td>
<td>380</td>
<td></td>
<td></td>
<td>329</td>
<td>51</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 35</td>
<td>58</td>
<td>500</td>
<td></td>
<td></td>
<td>437</td>
<td>63</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 36</td>
<td>55</td>
<td>400</td>
<td></td>
<td></td>
<td>348</td>
<td>52</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 37</td>
<td>54</td>
<td>360</td>
<td></td>
<td></td>
<td>277</td>
<td>83</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 38</td>
<td>63</td>
<td>510</td>
<td></td>
<td></td>
<td>449</td>
<td>61</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 39</td>
<td>55</td>
<td>310</td>
<td></td>
<td>292</td>
<td></td>
<td>18</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 40</td>
<td>62</td>
<td>430</td>
<td></td>
<td>410</td>
<td></td>
<td>20</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 41</td>
<td>55</td>
<td>400</td>
<td></td>
<td></td>
<td>359</td>
<td>41</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 42</td>
<td>56</td>
<td>420</td>
<td></td>
<td></td>
<td>324</td>
<td>96</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 43</td>
<td>52</td>
<td>310</td>
<td></td>
<td>286</td>
<td></td>
<td>24</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 44</td>
<td>58</td>
<td>430</td>
<td></td>
<td>374</td>
<td></td>
<td>56</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 45</td>
<td>58</td>
<td>440</td>
<td></td>
<td>366</td>
<td></td>
<td>54</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 46</td>
<td>63</td>
<td>560</td>
<td></td>
<td>476</td>
<td></td>
<td>84</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 47</td>
<td>64</td>
<td>550</td>
<td></td>
<td>492</td>
<td></td>
<td>56</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 48</td>
<td>65</td>
<td>420</td>
<td></td>
<td>408</td>
<td></td>
<td>12</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 49</td>
<td>55</td>
<td>340</td>
<td></td>
<td>330</td>
<td></td>
<td>12</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 50</td>
<td>58</td>
<td>530</td>
<td></td>
<td>466</td>
<td></td>
<td>64</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 51</td>
<td>65</td>
<td>690</td>
<td></td>
<td>592</td>
<td></td>
<td>98</td>
<td>St.4 bunn</td>
</tr>
<tr>
<td>Ål nr 52</td>
<td>58</td>
<td>360</td>
<td></td>
<td>302</td>
<td></td>
<td>58</td>
<td>St.1 Topp</td>
</tr>
<tr>
<td>Ål nr 53</td>
<td>53</td>
<td>360</td>
<td></td>
<td>330</td>
<td></td>
<td>30</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 54</td>
<td>55</td>
<td>370</td>
<td></td>
<td>318</td>
<td></td>
<td>52</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 55</td>
<td>52</td>
<td>310</td>
<td></td>
<td>264</td>
<td></td>
<td>46</td>
<td>St.1 topp</td>
</tr>
<tr>
<td>Ål nr 56</td>
<td>57</td>
<td>400</td>
<td></td>
<td>362</td>
<td></td>
<td>38</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 57</td>
<td>54</td>
<td>340</td>
<td></td>
<td>314</td>
<td></td>
<td>26</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 58</td>
<td>59</td>
<td>470</td>
<td></td>
<td>428</td>
<td></td>
<td>44</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 59</td>
<td>52</td>
<td>350</td>
<td></td>
<td>316</td>
<td></td>
<td>34</td>
<td>St.1 bunn</td>
</tr>
<tr>
<td>Ål nr 60</td>
<td>53</td>
<td>430</td>
<td></td>
<td>424</td>
<td></td>
<td>6</td>
<td>St.1 bunn</td>
</tr>
</tbody>
</table>

Kvikksølv i ål satt ut ved Sørenga kai, Oslo Havn.

<table>
<thead>
<tr>
<th>Prøveuttak</th>
<th>Vanndyp (m)</th>
<th>Fettprosent</th>
<th>Hg (mg/kg, våtvekt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.93</td>
<td>32.5</td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td>14.06.93</td>
<td>1.5</td>
<td>21.6</td>
<td>0.09</td>
</tr>
<tr>
<td>14.06.93</td>
<td>7.0</td>
<td>22.5</td>
<td>0.1</td>
</tr>
<tr>
<td>13.07.93</td>
<td>1.5</td>
<td>25.9</td>
<td>0.12</td>
</tr>
<tr>
<td>13.07.93</td>
<td>7.0</td>
<td>26.6</td>
<td>0.14</td>
</tr>
<tr>
<td>24.8.93</td>
<td>1.5</td>
<td>21.8</td>
<td>0.15</td>
</tr>
<tr>
<td>24.8.93</td>
<td>7.0</td>
<td>27.1</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Kvikksølv i blåskjell satt ut ved Sørenga kai, Oslo Havn.

<table>
<thead>
<tr>
<th>Prøveuttak</th>
<th>Vanndyp (m)</th>
<th>Tørrstoff (%)</th>
<th>Hg (mg/kg, våtvekt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05.93</td>
<td>12.9</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>14.06.93</td>
<td>21.0</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>14.06.93</td>
<td>14.7</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>13.07.93</td>
<td>17.2</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>13.07.93</td>
<td>10.4</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>24.08.93</td>
<td>18.2</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>24.08.93</td>
<td>15.5</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Stasjonær skjell</td>
<td>18.8</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 7. Klororganiske forbindelser i ål satt ut ved Sørenga kai, Oslo havn.

<table>
<thead>
<tr>
<th>Parameter/prøve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-CB</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>a-HCH</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HCB</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>g-HCH</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PCB 28</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>PCB 52</td>
<td>3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td>3</td>
<td><3</td>
</tr>
<tr>
<td>OCS</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>PCB 101</td>
<td>8</td>
<td><3</td>
<td><3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>27</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>PCB 118</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>9</td>
<td>3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>PCB 153</td>
<td>25</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>PCB 105</td>
<td>6</td>
<td><3</td>
<td><3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>PCB 138</td>
<td>20</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>PCB 156</td>
<td>3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>PCB 180</td>
<td>7</td>
<td>3</td>
<td><3</td>
<td>3</td>
<td>4</td>
<td><3</td>
</tr>
<tr>
<td>PCB 209</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
</tbody>
</table>

SUM PCB	87	22	15	41	61	25
SUM SEVEN DUTCH PCB	78	22	15	37	56	22
%Fett	32.5	21.6	22.5	25.9	26.6	21.8
%Tørrstoff	49.6	42.9	44.0	44.1	43.3	43.3
Tabell 8. Klororganiske forbindelser i blåskjell satt ut ved Sørenga kai, Oslo havn.

NORSK INSTITUTT FOR VANNFORSKNING

<table>
<thead>
<tr>
<th>Navn/lokalitet</th>
<th>MILPLA / MILGANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppdragsnr.</td>
<td>921317</td>
</tr>
<tr>
<td>Prøver mottatt</td>
<td>13.10.93</td>
</tr>
<tr>
<td>Lab kode</td>
<td>YUY7-12</td>
</tr>
<tr>
<td>Jobb nr.</td>
<td>93/197</td>
</tr>
<tr>
<td>Prøvetype</td>
<td>Biol.mat.</td>
</tr>
<tr>
<td>Kons. 1</td>
<td>Ug/kg våtvekt</td>
</tr>
<tr>
<td>Dato</td>
<td></td>
</tr>
<tr>
<td>Analytiker</td>
<td>EMB</td>
</tr>
</tbody>
</table>

1: YUY7,ÅL,24.08.93,7m 4: YUY10,Blåskjell,14.06.93,bunn
2: YUY8,Blåskjell,14.05.93,0-pr. 5: YUY11,Blåskjell,13.07.93,topp
3: YUY9,Blåskjell,14.06.93,topp 6: YUY12,Blåskjell,13.07.93,bunn

<table>
<thead>
<tr>
<th>Parameter/prøve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-CB</td>
<td><3</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>a-HCH</td>
<td>4</td>
<td><0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>HCB</td>
<td>13</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>g-HCH</td>
<td>5</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>PCB 28</td>
<td><3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>PCB 52</td>
<td>4</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>OCS</td>
<td>3</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>PCB 101</td>
<td>6</td>
<td>0.6</td>
<td>2.7</td>
<td>3.3</td>
<td>4.7</td>
<td>2.9</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>16</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>PCB 118</td>
<td>15</td>
<td>0.5</td>
<td>2.2</td>
<td>2.6</td>
<td>3.8</td>
<td>2.5</td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td><3</td>
<td>0.6</td>
<td>1.7</td>
<td>2.6</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td>PCB 153</td>
<td>21</td>
<td>0.9</td>
<td>2.6</td>
<td>3.2</td>
<td>4.7</td>
<td>2.7</td>
</tr>
<tr>
<td>PCB 105</td>
<td>6</td>
<td>0.2</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td>Mask</td>
</tr>
<tr>
<td>PCB 138</td>
<td>18</td>
<td>0.6</td>
<td>2.1</td>
<td>2.8</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>PCB 156</td>
<td><3</td>
<td><0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>PCB 180</td>
<td>5</td>
<td><0.1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>PCB 209</td>
<td><3</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>SUM PCB</td>
<td>75</td>
<td>3.6</td>
<td>13.4</td>
<td>16.4</td>
<td>22</td>
<td>13.4</td>
</tr>
<tr>
<td>SUM SEVEN DUTCH PCB</td>
<td>69</td>
<td>3.4</td>
<td>12.4</td>
<td>15.1</td>
<td>21.6</td>
<td>13.2</td>
</tr>
<tr>
<td>%Fett</td>
<td>27.1</td>
<td>1.5</td>
<td>2.5</td>
<td>1.7</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>%Terrstoff</td>
<td>44.5</td>
<td>12.9</td>
<td>21.0</td>
<td>14.7</td>
<td>17.2</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Tabell 8 forts.

NORSK INSTITUTT FOR VANNFORSKNING

Navn/lokalisitet : MILPLA / MILGANA
Oppdragsnr. : 921317
Prøver mottatt : 13.10.93
Lab.kode : YUY13-15
Jobb.nr. : 93/197
Prøvetype : Biol.mat.
Kons. i : Ug/kg våtvekt
Dato : 18.11.93
Analytiker : EMB

1: YUY13, Blåskjell, 24.08.93, topp
2: YUY14, Blåskjell, 24.08.93, bunn
3: YUY15, Blåskjell, 24.08.93, stasjoner

<table>
<thead>
<tr>
<th>Parameter/prøve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-CB</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-HCH</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCB</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g-HCH</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 28</td>
<td>0.5</td>
<td>0.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 52</td>
<td>2.2</td>
<td>2.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCS</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 101</td>
<td>3.4</td>
<td>4.9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 118</td>
<td>3.1</td>
<td>4.2</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>1.7</td>
<td>2.5</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 153</td>
<td>3</td>
<td>4.9</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 138</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.7</td>
<td>4.6</td>
</tr>
<tr>
<td>PCB 156</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>PCB 180</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>PCB 209</td>
<td></td>
<td></td>
<td></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

SUM PCB | 15.7| 22.7| 23.6| 0 | 0 | 0 |
SUM SEVEN DUTCH PCB | 15.4| 22.3| 23.2| 0 | 0 | 0 |
%Fett | 1.6 | 1.5 | 2.2 | | | |
%Tørrstoff | 18.2| 15.5| 18.8| | | |
Tabell 9. Klororganiske forbindelser i testsedimentene (st. 1 og 2) brukt på Solbergstrand.

<table>
<thead>
<tr>
<th>Parameter/prøve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-CB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-HCH</td>
<td><1</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCB</td>
<td>4</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g-HCH</td>
<td><1</td>
<td></td>
<td></td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 28</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 52</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCS</td>
<td><1</td>
<td></td>
<td><1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 101</td>
<td>19</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 118</td>
<td>17</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 153</td>
<td>22</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 105</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 138</td>
<td>22</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 156</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 180</td>
<td>12</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 209</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM PCB</td>
<td>117</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM SEVEN DUTCH PCB</td>
<td>107</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%Fett
%Tørrstoff
Tabell 10. Polysykliske aromatiske hydrokarboner (PAH) i transplanterte og naturlig voksne blåskjell fra havnebassenget i indre Olsofjord.

NORSK INSTITUTT FOR VANNFORSKNING

Navn/lokalitet : MILGANA/MILPLA
Oppdragsnr. : 91412 (921317)
Prøver mottatt : 13.10.93
Lab.kode : YUY 8,13,14 og 15
Jobb nr. : 93/197
Prøvetype : Biologisk materiale
Kons. 1 : Ug/kg våtvekt
Dato : 28.1.94
Analytiker : Brg

1: Ø-prøve 14.5.93
2: Topp 24.8.93
3: Bunn 24.8.93
4: Stasjonært 24.8.93
5:
6:

<table>
<thead>
<tr>
<th>Parameter/prøve</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphalen</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-M-Naf.</td>
<td>2.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-M-Naf.</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifenyl</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dimetyl-naphalen</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaftyleten</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acenafsten</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>2,3,5-Trimetyl-naphalen</td>
<td>0.7</td>
<td>1.2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Fenantren</td>
<td>4</td>
<td>5</td>
<td>3.5</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antracen</td>
<td>2</td>
<td>1.4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Metyl-fenantren</td>
<td>1.1</td>
<td>3.4</td>
<td>1.7</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>3.9</td>
<td>22</td>
<td>19</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyren</td>
<td>1.6</td>
<td>19</td>
<td>22</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benz(a)antracen*</td>
<td>0.7</td>
<td>4.1</td>
<td>10</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysen/trifenyleten</td>
<td>2</td>
<td>9.2</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranten*</td>
<td>0.9</td>
<td>7</td>
<td>18</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(j,k)fluoranten*</td>
<td>1.5</td>
<td>4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(e)pyren</td>
<td>1.1</td>
<td>9</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyren*</td>
<td>1.3</td>
<td>5.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perylen</td>
<td>1.8</td>
<td>3.7</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind.(1,2,3cd)pyren*</td>
<td>1.5</td>
<td>4</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenz.(a,c/a,h)ant.* 11</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(ghi)perylen</td>
<td>3.1</td>
<td>5.3</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzopyrene*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUM	22.6	92.4	128.6	148.9
Derav KPAH(*)	1.6	15.4	41.9	30.3
%KPAH	7.1	16.7	32.6	20.3
%Torrsetoff	12.9	18.2	15.6	18.8

Deteksjonsgrense 0.5 ug/kg våtvekt
* markerer potensielt kreftfremkallende egenskaper overfor mennesker etter IARC (1987), dvs. tilhørende IARC's kategorier
2A+2B (sannsynlige+trolige cancerogene).

Sum av * utgjør KPAH.

1) Bare (a,h)-isomeren.