0-92090
Miljøvirkninger av vegtrafikkens asfalt og dekkslitasje

Environmental Effects of Traffic Pollution Caused by Wear and Tear of Road Surfaces and Tyres
NIVA - RAPPORT

Norsk institutt for vannforskning

<table>
<thead>
<tr>
<th>Hovedkontor</th>
<th>Seriøsavdelingen</th>
<th>Østlandsavdelingen</th>
<th>Vestlandsavdelingen</th>
<th>Akvaplan-NIVA A/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postboks 60, Korsvoll</td>
<td>Televæn 1</td>
<td>Rule 866</td>
<td>Thommerhøst 55</td>
<td>Søndre Tollbugate 3</td>
</tr>
<tr>
<td>0808 Oslo Ø</td>
<td>4890 Grimstad</td>
<td>2312 Ottestad</td>
<td>5006 Bergen</td>
<td>9000 Tomra</td>
</tr>
<tr>
<td>Telefon (47) 22 18 51 03</td>
<td>Telefon (47 41) 43 033</td>
<td>Telefon (47 65) 76 752</td>
<td>Telefon (475) 32 58 40</td>
<td>Telefon (47 83) 85 280</td>
</tr>
<tr>
<td>Teletax (47) 22 18 52 00</td>
<td>Teletax (47 41) 44 513</td>
<td>Teletax (47 65) 76 653</td>
<td>Teletax (47 5) 32 88 33</td>
<td>Teletax (47 86) 80 509</td>
</tr>
</tbody>
</table>

Rapportens titel:
Miljøvirkninger av vegtrafikkens asfalt og dekkslitasje

Dato:
April

Trykket:
NIVA 1993

Faggruppe:
Samferdsel

Geografisk område:

Antall sider:
42

Oppdragsgiver:
Den Nordiske Trafikkgruppen, Nordisk Ministerråd

Oppdragsg. ref. (evt. NTNF-nr.):

Ekstrakt:

4 emneord, norske
1. Trafikkforurensning
2. Vegslitasje
3. Bildekkslitasje
4. Miljøvirkninger

4 emneord, engelske
1. Traffic pollution
2. Road surface wear
3. Tyre wear
4. Environmental effects

Prosjektleder:
Torleif Bækken

For administrasjonen:
Dag Berge

ISBN 82-577-2293-6
Miljøvirkninger av vegtrafikkens asfalt og dekkslitasje

Environmental Effects of Traffic Pollution Caused by Wear and Tear of Road Surfaces and Tyres

1993

Torleif Bækken
Forord

Den Nordiske Trafikkgruppen hos Nordisk Ministerråd har ønsket å få en sammenstilling av dagens kunnskap når det gjelder miljøvirkninger av vegtrafikkens asfalt og dekkslisasje. NIVA ble i den forbindelse forespurt om å lage en slik sammenstilling. NIVA har kompetanse fra tidligere og nåværende prosjekter på forurensning fra veg, samt kompetanse på effekter av partikler, tungmetaller og organiske miljøgifter i vannmiljø.

Rapporten er basert på informasjon hentet fra et utvalg litteratur fra NIVA's og andre norske instituttets bibliotek, fra forskjellige internasjonale litteratur-databaser og fra personlige kontakter i Norge og utlandet.

Kontaktperson for Den Nordiske Trafikkgruppen har vært dens sekretær, avdelingsdirektør Kjell Andersson, ved Statens Naturvårdsverk i Sverige.

NIVA
Oslo, April 1993

Torleif Bækken
Innholdsfortegnelse

Forord 3
Sammendrag 5
Summary 9
1. Innledning 13
2. Vegslitasje 14
 2.1 Slitasjeprodukter 14
 2.1.1 Fysisk karakterisering 15
 2.1.2 Kjemisk karakterisering 15
 2.1.3 Mengder 17
3. Bildekkslitasje 20
 3.1 Slitasjeprodukter 20
 3.1.1 Fysisk og kjemisk karakterisering 20
 3.1.2 Mengder 22
4. Miljøeffekter 23
 4.1 Spredning 23
 4.2 Terrestre økosystemer 26
 4.2.1 Jord og vegetasjon 27
 4.2.2 Fauna 30
 4.3 Akvatiske økosystemer 31
 4.3.1 Vann og sedimenter 31
 4.3.2 Vegetasjon og fauna 33
5. Forskningsbehov 36
6. Litteratur 37
Sammendrag

1) Problematikken omkring vegtrafikkforurensning er komplisert. Det kommer forurensninger fra flere kilder, fra drivstoffbrenning og fra slitasje av bildele, bildekk og vegbanen. De forurensende stoffene er av flere typer; ulike gasser, tungmetaller, salt, organiske mikroforurensninger og partikler. Forurensningene harv i ulike terrestre og akvatiske økosystemer der de kan få større eller mindre effekter.

2) Målsetningen i denne rapporten er å gi en oversikt over forurensningspotensialet i den vegslitasjen som foregår, først og fremst ved bruk av piggedekk, og å gi en oversikt over forurensningspotensialet som ligger i slitasjen av bildekk samt å gi en sammenfatning, med bruk av eksempler, på dokumenterte virkninger av vegforurensninger i vegnære terrestre og akvatiske miljøer. Dette vil i de aller fleste tilfeller også inkludere effekter av bly, selv om bly først og fremst kommer fra forbrenning av blyholdig bensin. Miljøvirkninger med utgangspunkt spesielt i slitasjeprodukter er ytterst lite undersøkt.

3) Årlig slites det vekk store mengder vegdekke fra det nordiske vegnettet. Utstrakt bruk av piggedekk i vintersesongen er den langt viktigste årsaken til denne slitasjen. Både på Island, i Sverige, Finland og Norge er bruken av piggedekk generelt sett stor (50-99%). På asfaltveger kan slitet lengest bestå av ca 90% stein, ca 5% filler (steinstøv) og ca 5% bindemidler (bitumen). Når kjøretøy med piggedekk kjører på dette, slites steinene ned til små partikler som sammen med filler og bitumenpartikler virves opp som støv. Innholdet av partikler i lufta avtar eksponentielt både vertikalt og horisontalt med avstanden fra vegen. Som en stadig repeterende prosess vil noe av støvet deponeres på vegoverflaten, resuspenderes, knuses ytterligere, spres ut i terrenget eller vaskes ut i grøfter og drensrør i regnværsperioder. Det typiske mønstret er at det aller mest av slitasjeprodukterne fra veg og bildekk med jeg ikke vaskes vekk i regnværsperioder deponeres innenfor ca 20m på begge sider av vegen. Enkelte av forurensningene kan imidlertid spores flere hundre meter fra vegen.

5) Den såkalte "Spesifikke piggedekkslitasjen" (SPS) angir hvor mye vegdekke som slites vekk på én kilometer veg av et kjøretøy med piggedekk. SPS varierer med typen og kvaliteten av vegdekken og med trafikkale og klimatiske variabler. SPS-verdi er omkring 20-25 g/pkm på vanlige asfalttyper. Ved bruk av mer slitesterke asfalttyper kan SPS- verdier reduseres betydelig (10-15g/pkm). Et grovt estimat på den potensielle forurensningsbelastningen fra vegslitasjen kan få ved å bruke gjennomsnitts verdier på trafikk sammen med gjennomsnittlig vegslitasje (SPS) og kjemisk sammensetning av vegens slitedekke. Dersom man lar en SPS på 25g/pkm være et gjennomsnittstall, så vil 1,25 g bitumen bli avslitt pr kilometer veg for hver bil. Høy trafikkerte vejer med ÅDT (ÅrsDøgnTrafikk) på for eksempel 30000 bilpasseringer vil da på én kilometer ha slitt vekk ca 124 tonn stein og ca 7 tonn bitumen i løpet av én sesong (ca 180 dager). Det aller meste av dette er partikkelbundet og faller ned innenfor
20 m på hver side av vegen. Det gjennomsnittlige nedfallet av bitumenpartikler blir da 175 g/m² pr år. Tilsvarende regnestykker for S, N, Ni, V, suPAH og TOCl (totalt organisk klor) med for eksempel en bitumentyper bestående av henholdsvis 4%, 0.5%, 50 mg/kg, 400 mg/kg, 40 mg/kg og 7 mg/kg, gir årlig et gjennomsnittlig nedfall på 7000mg/m², 880 mgN/m², 8.8 mgNi/m², 70 mgV/m², 7 mgPAH/m² og 1.25 mgTOCl/m². Alt basert på bitumensitasjen. Fra kalkfiller vil man få betydelige mengder Ca. Dersom det tilsettes 5% filler, gir det 2700 kgCa/kmår. Fordelt på 20m på hver side av vegen gir det et gjennomsnittlig nedfall på 67.5 g/m².

Ca. halvparten av et bildekk består av gummipolymerer. Stoff og elementsammensetningen viser ellers at det er registrert en lang rekke metaller i bildekk. Gummipartiklene som slites fra bildekkene inneholder ca.1.5-2.5 % sink samt en rekke andre sporstoff, blant annet kadmium og bly. En gjennomsnittlig slitasje av bildekk på ca 0.2 gpbkm vil gi nedfall av Zn, Cd og Pb på henholdsvis 1095 mgZn/m²år, 0.07 mgCd/m²år og 0.82 mgPb/m²år, fordelt på 20m på hver side av vegen. I tillegg kommer kjemiske komponenter, delvis fra andre kilder, som knytter seg til overflaten av partiklene. Mesteparten av de antatt mest miljøskadelige stoffene er partikkelbundne og det har, i det minste langs hovedvegane, i løpet av mange år samlet seg en betydelig mengde av disse stoffene. Vegrutasjon og bildekksitasjen representerer derfor et forurensnings-potensiale. Steinstøv kan utgjøre store mengder og invirke på jordstruktur og vegetasjon, gi økt partikkeltransport og sedimentasjon i vannresipienter. Den vedvarende tilførselen av miljøfarlige stoffer til det veggne økosystemet medfører oppbygging av en potensielt framtid forurensningskilde.

7) Mobiliteten til mange forurensningskomponenter fra veg er oftest begrenset fordi en stor del av stoffene er bundet til partikler som holdes igjen i jordsmonnet. Men fysiske og kjemiske variabler innvirker på bindingsforholdene. Derfor vil det totale input av stoffer påvirke bindingsforholdene til metallene og ionbyteprosessene i jordsmonn, sedimentere og biologiske overflater. Eksperimentelle undersøkelser antyder at salt (NaCl) øker mobiliteten til tungmetallene, for eksempel for kadmium, via dannelse av vannløsige kloridkomplekser, men også ved at organiske komplekser ødelegges og derved kan frigjøre vannløselige humuskomponenter med tungmetaller. Ved utstrakt bruk av salt til avising av vegbanen vil en sterk saltlösning tilføres områder som fra før er kraftig påvirket av tungmetaller. I tillegg til de fysisk/kjemiske spredningsmekanismene i jord og vann kan stoffene taes opp av

avrenningen og det kjemiske innholdet i avrenningsvannet kan derfor være høyst varierende og vannkvaliteten vanskelig å forutsi. Metallene som vanligvis finnes i avrenningsvann er bly, sink, jern, kobber, kadmium, krom og nikkel, der bly, jern og sink oftest utgjør den største mengden.

12) Tilførselen av forurensningskomponenter kan gi fôrhøyede konsentrasjoner av metaller og organiske mikroforurensninger, medføre restriksjoner i bruken av vannet og gi negative effekter på det biologiske systemet i resipienten. Partikkelbundne forurensninger vil etter hvert sedimentere og akkumulere i bunn sedimentene. Områdene som tilførselsstedet er ved avrenningen vil være spesielt utsatt for sedimentering av toksiske partikler. Den generelle vannkvaliteten påvirker effekten av forurensningene. Det innebærer at effekten på økosystemene vil være avhengig av systemenes tilstand i utgangspunktet. For eksempel er det sannsynlig at effekten vil være forskjellige i en liten sur innsjø og i en kalkrik innsjø.

14) Problematikken omkring vegtrafikkforurensninger er kompleks, og det er flere sider ved trafikkforurensningene en kjenner lite til. Spesielt gjelder dette virkningene i de vegnære økosystemene. Det finnes relativt mye informasjon om kjemisk karakterisering av f.eks. avrenningsvann fra veg. Hvordan dette spres seg i resipientene og hvilke miljøvirkninger dette gir vet man imidlertid lite om. En kjenner til de vanligste forurensningskomponentene utfra kjemiske målinger f. eks. i jordmonn langs vegene, fra analyser av vegstøv og eksos. Det er imidlertid mindre eksakt dokumentasjon tilgjengelig på hvilke kilder som gir hvilke forurensninger og i hvilke mengder, f.eks. hvilke stoffer og hvor stor del av totalforurensningene kommer fra veg og bildekslitasjon? Det er videre klart at det foregår en akkumulering av forurensninger langs vegene. Det er mindre klart hvor stor akkumuleringen er ved ulike typer veger, trafikkmengder og naturforhold, og derved hvor raskt det bygges opp "depoter" av forurensninger i resipientene. Det er angitt at en gjennomsnittlig trafikkmengden på ca 3000 kjøretøyer per døgn gir merkbare slitasjeproblemer og økonomiske uttellinger. 61% av trafikkarbeidet i Norge foregår på disse vegene. Er det mulig å gi tilsvarende grenser på virkninger i økosystemene? Generelt er det lite kunnskaper om virkningene av trafikkforurensninger i de biologiske systemene; på nedbrytningsprosessene i dødt organisk materiale (løv m.m.) og på plante og dyresamfunn, og dermed alt for liten kunnskap om virkninger i økosystemene til å knytte dem til trafikkmengder eller andre vegmessige forhold. Mulige forskningsområder er angitt i rapporten.
Summary

1) Problems arising from the road and highway pollution are complex. Combustion of gasoline as well as the wear and tear of engine parts, brake linings, tyres and road surfaces may be sources of pollutants. The pollutants are of different kinds; different gasses, heavy metals, salt, organic micro pollutants and particles. The pollution may cause effects in different kinds of terrestrial and aquatic ecosystems.

2) This report is meant to give an overview of the pollution potential of the road wear, in particular with the use of studded tyres, the pollution potential of the tyre wear, and to summarise with examples the effects of the pollution in road side terrestrial and aquatic ecosystems. This will in most cases also include effects from lead although this element is a combustion product of leaded gasoline. Studies regarding environmental effects of wear and tear products are very scarce.

3) In the Nordic countries great amounts of road surface are worn off every year due to the extensive use of studded tyres during the winter season. In these countries the proportion of vehicles using studded tyres is quite high, ranging between 50 and 99%. The top layer of asphalt roads may consist of about 90% stones, 5% filler (stone-dust) and 5% bitumen. Vehicles with studded tyres are wearing off small dust particles from the roads. The content of road dust in the air decreases exponentially both in the vertical and horizontal directions away from the road. As an ever repeating process some dust will deposit on the road surface, further crushed, resuspended, dispersed in the environment or washed into ditches and drainage pipes during heavy rain or snow melt periods. A typical pattern is that most road dust is deposited within 20 m from the road. Some pollutants may, however, be found several hundred meters from the road.

4) Bitumen is a complex mixture of a great number of organic compounds with high molecular weights. A small amount of these are organic toxins as PAH (polycyclic aromatic hydrocarbons) and organic chlorides. The sum PAH in the common bitumen B180 in 1992 samples was found to range between 6 and 66 ppm. However, the content varies between years and the kind of bitumen. Nickel and vanadium exist in relative high quantities in bitumen, ranging between 15-100 ppm and 50-600 ppm, respectively. These metals are however not usually considered a pollution problem.

5) The specific wear from studded tyres (SPS) is a number estimating the quantity of road surface being worn off during one kilometre by one vehicle with studded tyres. SPS varies with the kind and the quality of the road surface as well as traffical and climatic variables. In common road surfaces the SPS may be 20-25 g/km. High quality surfaces may have a SPS of 10-15 g/km. A rough estimate of the input of pollutants from the road wear to the environment may be calculated using the average traffic density (ADT), the SPS and the chemical composition of the road surface. Let SPS of 25 g/km be an representative average, then 1,25 g of bitumen is worn off every kilometre for each vehicle. Let ADT be 30,000 vehicles a day, then about 124 tons of stone dust and 7 tons of bitumen are lost for each kilometre in one season (about 180 days). Most are particles falling down within 20 m on each side of the road. The average deposition of bitumen may then be calculated to 175 g/m² year. Similar calculations for S, N, Ni, V, sumPAH and TOCl (total organic chlorides) in bitumen, with representative averages of 4 %, 0,5%, 50 mg/kg, 400 mg/kg, 40 mg/kg and 7 mg/kg respectively, give yearly deposition values of 7000 mgS/m², 880 mgN/m², 8,8 mgNi/m², 70
mgV/m², 7 mgPAH/m² and 1.25 mgTOCl/m². When 5% limestone filler is used, this will give about 2700 kgCa/km each year, and a yearly deposition of 67.5 g/m².

About one half of a tyre consists of rubber polymers. In addition there are small amounts of a long range of metals. Rubber particles that are worn off contain 1.5 - 2.5% zinc together with other trace elements as cadmium and lead. Assuming an average tyre wear to be 0.2 g/km pr vehicle, the average deposition within 20 m on each side of the road of Zn, Cd, and Pb will be 1095 mgZn/m², 0.07 mgCd/m² and 0.82 mgPb/m² for each year. Most elements and compounds arising from the road pollution are associated to particles and at least along the main roads great amounts have been accumulated during the last decades. Stone dust is released in big quantities and may affect the soil structure and the vegetation. It may give high particle transport and sedimentation in the aquatic environments. The continuing input of potentially toxic compounds to the road side ecosystems result in the building up of a potential, future pollution source.

6) Road dust is deposited on road side vegetation and soil. Or in streets, walls and roofs in urban areas. During rain fall part of the dust is washed into the soil or into ditches and drainage pipes. In towns most runoff water are gathered in drainage pipes leading to recipients. During periods of snow, road pollution will accumulate in snow layers along the roads and not being adsorbed to the soil particles. The snow in this way makes the pollution more mobile. During snow melt periods the pollutants are released during a short period of time. Melt water with a high content of pollutants may result in negative consequences for the receiving ecosystem. When the pollution reaches the lake or river it may be further transported along the water ways and/or it settles. A special case of polluted snow is the dumping of heavily polluted snow gathered from urban streets into some terrestrial or aquatic environment.

7) The mobility of the majority of the road pollutants are restricted because of adsorption to particles. However, physical and chemical variables affect the chemical processes and ionic exchanges in soils, sediments and biological surfaces. Experiments have indicated that sodium chloride (NaCl) may increase the mobility of heavy metals, as for instance cadmium via formation of water soluble chloride complexes, but also through the destruction of organic complexes, and thereby increase the amount of water soluble humic compounds containing heavy metals. When sodium chloride are used for deicing purposes, great amounts of chloride solutions are washed into road ditches polluted by heavy metals.

In addition to the physical and chemical dispersal mechanisms in soil and water, elements and compounds may be absorbed by micro-organisms, plants and animals and circulated in a biological cycle through continuous accumulation and decomposition processes. Export of metals and organic micro pollutants from terrestrial deposition areas will be by airborne dust, but mostly by runoff to surface waters.

8) The road side soil develops a particular structure caused by road dust including great amounts of traffic generated pollution. The rate of accumulation varies according to traffic density. A long range of elements and compounds have been reported to increase in soil and vegetation (e.g. Br, Cd, Ce, Co, Cr, Cu, Mo, Mn, Ni, Pb, V and Zn). Increased pH-values, high content of basic cations as calcium and magnesium, and high values of heavy metals as lead, cadmium and zinc are characteristic features of traffic polluted soils. Besides, the use of deicing salt gives high content of Na and Cl. The content of macro nutrients tend to be unbalanced, often with low concentrations of phosphorous. In addition there will be inputs of
organic micro pollutants, mostly PAH. However, the PAHs are to a great extent adsorbed to
the soil particles, their water solubility is low and a continuous decomposition of the
compounds are taking place. On the other hand some of the PAH compounds are potentially
carcinogenic and toxic in low concentrations. Besides, the decomposition rate is dependent e.g.
on temperature, the kind of PAH and the kind of soil. For instance, the high molecular PAH
compound chrysen was only slowly decomposed in loamy sand even at 25°C. Only 30-40% disappeared after 180 days.

9) The micro organisms in soils are generally considered sensitive to pollution. Traffic
pollution therefor may affect road side vegetation via changes in the symbiotic relations
between micro-organisms and vegetation. Reduced development of tubers in alder (Alnus
incana) have been observed in traffic polluted soil indicating retarded growth of the N-fixing
symbiotic bacteria. There is also indications of retarded root growth and symbiotic mycorrhiza
growth in spruce (Picea abies) close to roads. In other investigations, however, no reduction
have been found in the microbial biomass in heavy metal polluted road sides. Considerable
reduced growth rates have been found when growing plants in polluted soils. When adding
peat material to the soil, however, the growth rate increases considerably. Certainly, the ability
of the peat material to absorb heavy metals and organic micro pollutants are the most
important reasons for the improved condition.

10) Informations about effects on invertebrates mostly concern insects, arachnids and
earthworms, and accumulation of heavy metals. The studies show increasing accumulation of
heavy metals, in particular lead, in organisms close to roads. Predators on earthworms and
insects, such as some birds and mammals, may be particularly exposed to heavy metal
pollution. There is, however, few cases of documented biomagnification. There is also limited
knowledge about the effects of accumulation on the survival, growth rate or reproduction in
populations of invertebrates, birds or mammals.

11) The pollution inputs to surface waters are often episodic, during rainfall or snowmelt
periods. Thus the timing of the episodes are unpredictable. The runoff water from roads and
ditches are often highly polluted, including silt, sand, salt, plant debris and animal waste,
pavement material, rubber particles, fuel, oil, and combustion products. The amount of runoff
water and its chemical content therefore may vary considerably and the water quality difficult
to predict. The metals usually found in runoff water are lead, iron, zinc, copper, cadmium,
chrome and nickel. Most often lead, iron and zinc are found in greatest amounts.

12) The input of pollutants to the recipient may result in increased concentrations of heavy
metals and organic micro pollutants which in turn may result in negative effects on the
biological communities in the recipients and in restrictions in the use of the water.
Contaminants adsorbed to particles settle. The water quality is important for the effects of the
pollution. Therefor the effects on the ecosystem depends on the initial water quality of the
recipient. For example it is highly possible that the effects of road pollution will be different in
a small acidic lake and in a lake rich in calcium.

13) Toxicological tests of runoff water from roads and investigations in the recipient have
shown damages to the biological systems, as direct toxic effects on tested species and as
changes in the biodiversity in the ecosystems. Some other investigations have, however, not
revealed any negative effects. It is difficult to estimate the effects of wear and tear of road
surfaces and tyres relative to the total road pollution. The road sides are environments with a
high number of pollutants from different sources, and with the possibility of synergistic and antagonistic interactions.

14) The problems concerning traffic pollution are complex, and there are aspects of these problems that we have little knowledge about. In particular this is the case for effects in the road side ecosystems. There are much information concerning chemical characterisation of e.g. runoff water from roads. We know less about how the pollutants are spread in the recipients and about effects in the environments. The most common pollutants are known from the chemical characterisation of soil, road dust and exhaust. There is however, less exact documentation available on the sources of each pollutant and the amount released, e.g. which pollutants come from the wear and tear of road surfaces and tyres, and what are their relative importance of the total traffic pollution? It is obvious that pollutants are accumulated along the road sides. However, there is little knowledge about the accumulation rates along different roads, at different traffic densities and at different environmental conditions; how fast is the building up of “depots” of pollutants in the recipients? It is estimated that an average traffic density of about 3000 vehicles a day will give noticeable wear problems. In Norway 61% of the traffic work are made on these roads. Will it be possible to give similar limits for serious effects in the environments? In general there is little knowledge about the effects of traffic pollution of the biological systems; on the decomposition of organic material (e.g. leaf litter) and on the plant and animal communities, and certainly too little knowledge about the effects in the ecosystems to relate them to traffic densities or other road related topics. Future research on environmental effects of road pollution are suggested in the present report.
1. Innledning.

Problematisken omkring vegtrafikkforurensning er komplisert. Det kommer forurensninger fra flere kilder, fra forbrenning og slitasje, og de forurensendestoffene er av flere typer, fra tungmetaller til organiske mikroforurensninger. Forurensningene havner i mange typer naturnmiljøer der de kan få større eller mindre effekter.

Vegslitasjen vil være svært forskjellig mellom områder med og uten bruk av pigge dekk. Svært lite er gjort for å se på miljøvirkninger av denne slitasjen. Selve svevestøvets helsemessige aspekter er det imidlertid gjort endel omkring. En litteraturstudie som blant annet omhandler disse sidene er nylig utgitt (Folkeson 1992).

Målsætningen i denne rapporten er å gi en oversikt over forurensningspotensialet i den vegslitasjen som foregår, først og fremst ved bruk av pigge dekk, og å gi en oversikt over forurensningspotensialet som ligger i slitasjen av bildekk samt å gi en sammenfatning, med bruk av eksempler, på dokumenterte virkninger av vegforurensninger i vegnære terrestre og akvatiske miljøer. Dette vil i de aller fleste tilfeller også inkludere effekter av bly, selv om bly først og fremst kommer fra forbrenning av bilbensin. Miljøvirkninger med utgangspunkt spesielt i slitasjeprodukter er ytterst lite undersøkt. Dekkslitasje bidrar til kontamineringen langs vegene, men studier omkring dekkenes forurensningsbidrag blir først og fremst en vurdering av bidraget til sink og kadmiumforurensningen.
2. Vegslitasje

2.1 Slitasjeprodukter.

På asfaltveger kan slitelaget bestå av ca 90% stein, ca 5% filer (steinstøv) og ca 5% bindemidler (bitumen). Når kjøretøy med pigdekk kjører på dette, slites steinene ned til små og større partikler som sammen med filer og bitumenpartikler virvels opp som støv. Innholdet av partikler i lufta avtar eksponentielt både vertikalt og horisontalt med avstanden fra vegen. Som en stadig repeterende prosess vil noe av støvet deponeres på vegoverflaten, resuspenderes, knuses ytterligere, spres ut i tetten eller vaskes ut i grøfter og drensrør i regnværperioder. Det ser ut til at de store partiklene resuspenderes i større grad enn små partikler noe som medfører en ytterligere knusing av de store partiklene (Nicholson & Branson 1990). Arealet av steinoverflater tilgjengelig for forvirringsprossesser vil øke betydelig under denne prosessen.

I åpent terreng vil det mest av støvet, som ikke er vasket vekk i regnvær, etter hvert akkumulere på hver side av vegen. I trange gater vil støvet i større grad akkumulere i gatene og stadig på ny virvels opp. Men både vind og værforhold vil selvsagt innvirke på fordelingen
av støvet. Vegstøv som sådan vil imidlertid også inneholde partikler fra en lang rekke andre kilder som for eksempel bileksos, bildekk, jord m.m. For eksempel viste Larssen (1987) at ca. halvparten av luftens inhalerbare partikler (≤10 μm) hadde sin opprinnelse i vegslitasje og halvparten i bileksos.

2.1.1 Fysisk karakterisering

I følge norske undersøkelser er størsteparten, vektmessig, av partikler fra vegstøv >100μm (Larssen 1987). I samme undersøkelse var bare 2% (vektbasert) av partiklene mindre enn 36μm (tabell1). Det betyr at mesteparten av partikkelmengden består av partikler som gir støvnedfall innenfor 10-20μm fra vegbanen. De to prosentene med små partikler kan i større grad holde seg svingende og være viktige i helsemessig sammenheng. En økende nedslitasje av vegen øker andelen små partikler (Anda og Larsen 1982). Dette kan for en stor del tilskrives stadig resuspension og nykutting av de store partiklene.

| Tabell 1. Prosent fordeling av partikkelstørrelser i vegstøvdepoter fra enkelte gater i Oslo, gjennomsnittstall (Larssen 1987). Delt opp i 3 og 4 størrelselsfraksjoner. |
| --- | --- | --- | --- | --- |
| | <10μm | >100μm | 10-36μm | 36-100μm |
| 4 fraksjoner | 0,10 | 71,93 | 25,30 | 2,66 |
| 3 fraksjoner | 2,00 | 68,60 | 29,40 | |
vanadium (tabell 2). Av disse metallene er nikkel i gruppe 2 på SFTs prioriteringsliste, mens vanadium er i gruppe 4 og regnes ikke som et problem.

Ifølge Ward (1990) inneholder råbensin (bensin uten tilsetninger) og diesel en lang rekke andre elementer i målbare mengder, noe som reflekterer dens opprinnelse som råolje og senere raffineringsprosesser. Siden asfalt er sluttproduktet etter flere destillasjons og raffineringsprosesser, er det rimelig å anta at flere av disse elementene også finnes igjen i asfaltmassen.

Oftes brukes det kalkmøl som filler, f.eks. i form av dolomittkalk. Vegslitasje medfører at betydelige mengder kalsium samt noe magnesium tilføres de nærmeste omgivelsene. Kalsium utgjør 40% (vekt) av kalsiumkarbonat som er hovedbestanddelen i kalkstein.

Tabell 2. Elementsammensetningen i bitumen (Sporstø et al 1988, Berg et al 1992)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>85%</td>
</tr>
<tr>
<td>H</td>
<td>10%</td>
</tr>
<tr>
<td>N</td>
<td>0,3-0,5%</td>
</tr>
<tr>
<td>O</td>
<td>0,4-0,7%</td>
</tr>
<tr>
<td>S</td>
<td>3-5%</td>
</tr>
<tr>
<td>Ni</td>
<td>15-100 ppm</td>
</tr>
<tr>
<td>V</td>
<td>50-600 ppm</td>
</tr>
<tr>
<td>Fe</td>
<td>12-30 ppm</td>
</tr>
<tr>
<td>Na</td>
<td>40-70 ppm</td>
</tr>
<tr>
<td>Al</td>
<td><2,5-4 ppm</td>
</tr>
<tr>
<td>Si</td>
<td>7-15 ppm</td>
</tr>
</tbody>
</table>

størst i finere fraksjoner. En må anta at en betydelig del av både sink og kadmium kommer fra slitasjen av bilekk.

<table>
<thead>
<tr>
<th>Parameter, mg/kg</th>
<th>Ward 1992</th>
<th>Pedersen 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÅDT</td>
<td>80000</td>
<td>bakgrunn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ward1992)</td>
</tr>
<tr>
<td>Br</td>
<td>820</td>
<td>18</td>
</tr>
<tr>
<td>Ca</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td>Cd</td>
<td>204</td>
<td><200</td>
</tr>
<tr>
<td>Cu</td>
<td>260</td>
<td><50</td>
</tr>
<tr>
<td>Mg</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>840</td>
<td><500</td>
</tr>
<tr>
<td>Si</td>
<td>375</td>
<td><200</td>
</tr>
<tr>
<td>Pb</td>
<td>8600</td>
<td><100</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>3300</td>
</tr>
<tr>
<td>V</td>
<td>148</td>
<td><50</td>
</tr>
<tr>
<td>Zn</td>
<td>1745</td>
<td><600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
</tr>
</tbody>
</table>

2.1.3 Mengder

undersøkelser har antydet en middelsverdi på 24 g/pbkm på E4, på høystandard veger opp til 15 g/pbkm (Folkeson 1992), mens landet som helhet regnes å ha en middelverdi på 30 g/pbkm (Carlson et al. 1992).

Tabell 4. Spesifikk Piggekke Slitasje (SPS)-verdier funnet i laboratorietest (Steffensen 1990)

<table>
<thead>
<tr>
<th>Vegdekke</th>
<th>SPS g/pbkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanlig asfalt</td>
<td>20-25</td>
</tr>
<tr>
<td>Spesiell støpeasfalt</td>
<td>12,7</td>
</tr>
<tr>
<td>Betong</td>
<td>9,0</td>
</tr>
</tbody>
</table>

I Norge, Sverige og Finland slites det tilsammen hvert år bort ca 1 million tonn fra vegbanen på grunn av piggekkebruk. På de norske vegene gir en antatt gjennomsnittlig spesifikk piggekkeslitasje (SPS) på 25 g/pbkm og et transportarbeid på 12000 mill. kjørte kilometer i piggekkeensongen (av totalt 27650 mill) en total vegslitasje på 300.000 tonn i/år. Også i Finland regnes det med at ca 300.000 tonn slites av vegbanen hvert år. For Sverige er det angitt en slitasje på ca. 450.000 tonn hvert år (NVF 1992). En stadig utvikling av mer slitesterke vegdekker sammen med utvikling av pigger med mindre slitasjevirksomhet regnes imidlertid å gi langt mindre slitasje på vegnettet i framtid.

Vanligvis består ca 5% av asfalten av bitumen. Når det regnes med at 1,000.000 tonn hvert år slites av fra de nordiske vegene vil det inkludert i dette være 50.000 tonn bitumen.

Støvnedfallet avtar ekspONENTIELT med avstanden fra vegen slik at det meste av bitumenstøvet blir liggende nær vegen. Ca 2% av vegstøvet regnes som sveisestøv som kan transporterer over lengre avstander (Larssen 1987). Mengden av slitasjeprodukter langs forskjellige vegavsnitt er imidlertid avhengig av trafikkmengden og av flere andre faktorer nevnt tidligere.

Et grovt estimat på den potensielle forurensningsbelastningen fra vegslitasjen kan man få ved å bruke gjennomsnittsverdier på trafikk (ÅDT) sammen med gjennomsnittlig SPS og kjemisk sammensetning av vegens slitedekke. Den avslitte mengden av ulike stoffer kan derved angis pr. kilometer vegstreknings. Dersom man lar en SPS på 25g/pbkm være et gjennomsnittstall, så vil mengden avslitt, finknust stein være ca 23-24g pr kilometer (ca 90-95%), mens et innhold på 5% bitumen i vegbanen vil gi 1,25 g bitumen avslitt pr kilometer. Høyt trafikkerte veger med ÅDT (ÅrsDøgnTrafikk) på for eksempel 30000 kjøretøyer (begge veger) vil da på én kilometer ha slitt vekk ca 124 tonn stein og ca 7 tonn bitumen i løpet av en sesong (ca 180 dager). Gjennomsnittlig vil ca 4% av bitumen være svelv. Det gir 280 kg svelv pr km.

Anta at det aller meste av dette er partikkelbundet og faller ned innenfor 20 m på hver side av vegen (Lygren et al 1984, figur 1). Det blir et areal på 40000 m². Det gjennomsnittlige nedfallet av bitumenpartikler på denne flaten blir da 175 g/m². Det gjennomsnittlige svelvnedfallet med utgangspunkt i bitumenlitasje blir da 7000 mgS/m² år. Til sammenligning er den årlige våtavsetningen av svelv fra sulfat på norske bakgrunnstasjonerer er mellom 100
og 1000 mgS/m². Tilsvarende regnestykker for N, Ni, V, sumPAH og TOCl med for eksempel henholdsvis 0.5 %, 50 mg/kg, 400 mg/kg, 40 mg/kg og 7 mg/kg som representative verdier i bitumen, gir årlig et gjennomsnittlig nedfall på 880 mgN/m², 8.8 mgNi/m², 70 mgV/m², 7 mgPAH/m² og 1.25 mgTOCl/m². Alt basert på bitumenslitasjen. Den årlige våtavsetningen på norske bakgrunnsstasjoner for N i nitrat og ammonium er mellom 100 og 2000 mgN/m². Den totale avsetningen av nikkel på tre stasjoner i Øst-Finnmark ligger mellom 1 og 6 mg/m² (SFT 1991). For PAH vil det foregå en nedbrytning av de ulike komponentene slik at mengden av PAH vil avta. Nedbrytingshastigheten er blant annet temperaturavhengig og forskjellig for de ulike stoffene. Dette vil foregå i jordsmøn, men kanskje særlig i vann.

Fra kalkfiller vil man få betydelige mengder Ca. Dersom det tilsettes 5% filler, utgjør dette en slitasjemengde, i følge samme basistall som ovenfor, på 1,25 g/pbkm. Ca. 40% av dette er Ca, altså 0.5 g/pbkm. Dette gir 2700 kg/kmår. Fordelt på et antatt nedslagsfelt på 40000m², blir nedfallet 67.5 g/m². Det må imidlertid igjen påpekes at nedfall av kjemiske komponenter fra vegslitasje stort sett er bundet opp i relativt store partikler, og derfor på kort sikt mindre tilgjengelig for det biologiske systemet enn kjemiske komponenter som kommer via nedbøren.

I tillegg kommer kjemiske komponenter, delvis fra andre kilder, som knytter seg til overflaten av partiklene. Selv om mesteparten av de antatt mest miljøskadelige stoffene er partikkelbundne har det i det minste langs hovedvegene i løpet av mange år samlet seg en betydelig mengde av disse stoffene. Betydelige mengder har også funnet vejen til vannresipienter.

3.1 Slitasjeprodukter

Bildekkenes stadige friksjon mot asfalten medfører at slitebanen i bildekkene litt etter litt males i stykker til mikroskopiske gummibiter som spres i omgivelsene. Her utsettes de for fysiske, kjemiske og biologiske nedbrytningskrefter. Tilsvarande vil også piggene i piggedekk litt etter litt slites ned og gi metallstøv, nye piggyperplastmaterialer.

3.1.1 Fysisk og kjemisk karakterisering.

Tabell 5. Stoffsammensetningen i bildekk (fra Eriksson 1987).

<table>
<thead>
<tr>
<th></th>
<th>Hele bildekk, vekt %</th>
<th>Raspestøv fra slitebanen, vekt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gummipolymerer</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Sot</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Mykningsmiddel</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Sinkoksid</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Stearinsyre</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Svovel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aksellerator (kan være Cu, Zn og Pb-stoffer)</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Antioksidanter</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Andre tilsetninger</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Kord og kanttråd</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Gummipartiklene som slites fra bildekken vil i følge disse undersøkelsene innehølde ca.1-2 % svovel, ca.1.5-2.5 % sink samt en rekke andre sporstoffe, blant annet kadmium og bly som forurensning i sinkoksid. Undersøkelser av vegforurensning, som tar seg tungmetaller, finner alltid høyt sinkinnhold, men også betydelige mengder kadmium. En undersøkelse i Hamburg viste at innholdet av sink var fem ganger høyere i aerosoler fra biltunen enn i den omliggende urbane luften (Dannecker et al 1990). Det er sannsynlig at en stor del av disse stoffene kommer fra bildekken.

<table>
<thead>
<tr>
<th></th>
<th>Reforsk 1985</th>
<th>Dufton 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hele dekk</td>
<td>Tørr, wire fri</td>
</tr>
<tr>
<td>C</td>
<td>68,3%</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5,8%</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6,5%</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0,39%</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1,4%</td>
<td>11000-23000 ppm</td>
</tr>
<tr>
<td>Cl</td>
<td>0,74%</td>
<td>ca 0 ppm</td>
</tr>
<tr>
<td>F</td>
<td>0,04%</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0,02%</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>12,0%</td>
<td>2320 ppm*</td>
</tr>
<tr>
<td>Hg</td>
<td>0,38 ppm</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1,0%</td>
<td>400 ppm*</td>
</tr>
<tr>
<td>Al</td>
<td>0,12%</td>
<td>1800 ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>1,8%</td>
<td>26000 ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>0,08%</td>
<td>15 ppm**</td>
</tr>
<tr>
<td>Cd</td>
<td><7 ppm</td>
<td>1,25 ppm**</td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td>17300 ppm</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>3570 ppm</td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td>3900 ppm</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>900 ppm*</td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td>870 ppm*</td>
</tr>
</tbody>
</table>

*fra wire rester som er blitt igjen i gummipróven
**urenheter i ZnO.
3.1.2 Mengder

Bildek er i Norge beregnet å være opphav til ca 6000 tonn gummi som slites av dekkene og tilføres omgivelsene som gummistøv hvert år (Syversen 1989). I tillegg kommer slitasjeprodukter fra piggene i piggedekk. Finske beregninger antyder at 50 tonn stål og 7 tonn hardmetall tilføres omgivelsene fra piggslitasje hvert år (NVF 1992). Samme størrelsesorden er det sannsynligvis i Norge, mens svenske tall antakelig ligger ca 50% over med henholdsvis 75 tonn og 10 tonn per år.

Basert på størrelsens på bildekkslitasjen samt stoff og elementsammensetningen, kan forurensningspotensialet estimeres. Det totale norske "trafikkarbeidet" er ca 27650 mill.kj.km/år. Når gummislitasjen fordeles over antall kjørte kilometer får vi en slitasje på ca 0.2 g/pbkm. Nordiske beregninger fra 1980 har anslått dekkslitasjen til ca 0.1 g/pbkm (NVF 1980). I USA regner man dekkslitasjen til å være mellom 0.1 og 0.25 g/pbkm (Shaheen 1975), mens Cadle & Williams (1978) under tester fant en dekkslitasje på 90 mg/km pr dekk (ca 0.360 g/pbkm).

Den totale svolvelandelen i bildekene synes å være omkring ca 1.5%. Dersom en antar at det slites vekk ca 0.2 g/pbkm vil svovel utgjøre 0.003 gS/km. Med en trafikk på ÅDT 30000 (begge veger), gir det en svovel "slitasje" fra bildek på 90 gS/km. I løpet av ett år blir det 32.8 kg. Anta at dette stort sett fordeler seg innenfor 20m på hver side av vegen. Det gir et areal på 40000m² med et gjennomsnittlig nedfall på 0.82 gS/m²år (i tillegg kommer ca 7 gS/m² fra bitumen). Tilsvarende tall for Zn, Cd og Pb vil være henholdsvis 1095 mgZn/m²år, 0.07 mgCd/m²år og 0.82 mgPb/m²år. Til sammenligning er det årlige nedfallet på bakgrunnsstasjoner i Norge mellom ca 1 og 14 mgZn/m² og mellom ca 0.02 og 0.13 mgCd/m² og mellom ca 0.4 och 6.5 mgPb/m². Når det gjelder Pb vil bidraget fra blybensinen være langt større enn bidraget fra bildekene.

Det må imidlertid igjen påpekes at nedfall fra dekkslitasje (og vegslitasje) stort sett er bundet til partikler med derfor på kort sikt mindre tilgjengelig for det biologiske systemet enn elementer som kommer via nedbøren.
4. Miljøeffekter

Det finnes en stor mengde litteratur som omhandler den akutte giftigheten for hvert av de vanligste metallene fra vegforurensningen på enkelarter, særlig gjelder dette for Cd, Zn og Ni (se f.eks. Mance 1987). Det er imidlertid liten kunnskap om de spesifikke effektene fra vegforurensning på kort og lang sikt under naturlige forhold, ved forskjellige fysiske og kjemiske forhold i jord og vann, ved ulike vannkvaliteter, både når det gjelder hvert enkelt stoff og den samlede "forurensningpakken" som tilføres de vegnære økosystemene.

4.1 Spredning.

Partikkelmengden som genereres av asfalt og bildekkslitasjen vil i stor grad virvles opp på grunn av trafikken. Grove partikler faller raskt ned igjen, kanskje i vegbanen, kanskje like utenfor, mens de mer finkustete partiklene lettere kan transportereres vekk fra vegen og deponeres lengre unna. De aller minste partiklene kan holde seg som svevestøv og transporteres over lengre avstander. Undersøkelser antyder at ca 2% er svevestøv som kan forflytte seg lengre av gårde (Larssen 1987, tabell 1). Men spredningen av vegforurensning er også i sterk grad påvirket av andre faktorer; blant annet klimatiske forhold, bebyggelse langs vegene, vegnære vannforekomster, topografi og vegetasjonsstruktur langs vegene (Larssen og Tønnesen 1986, Pedersen 1990), men også av konstruksjonsmessige forhold omkring dreneringssystemer laget for å ta seg av avrenningsvann fra veger og vegkanter. Ved sterk vind vil mer av støvet virvles opp og spres, mens regnvær reduserer støvmengden i luften og bidrar til å vaske vekk vegstøv fra vegbanen. Det er viktig at forurensningen avtar langt raskere med økende avstand til veg i skog enn i åpent terreng (Keller 1974). Det typiske mønsteret er imidlertid at det allerede mest av slitasjeproduktene fra veg og bildek som ikke vaskes vekk i

![Diagram](image_url)

Figur 1. Spredning av bly og sink fra motorveg viser det generelle spredningsmønsteret for partikkelbundne stoffer/elementer (etter Lygren et al 1984). Mengden både av bly (stort sett fra motoravgasser) og sink (stort sett fra bildekk) i snø avtar raskt med økende avstand fra vegen.

I perioder med snø vil forurensningene fra vegtrafikken akkumulere i snøen langs vegene. Når forurensninger avsettes i snødekket, forhindres i stor grad adsorpsjon av forbindelsene til jordsmonnet. Snøen bidrar på den måten til å gjøre forurensningene mer mobile slik at de lettere når fram til vannforekomster. Under snøsmeltningen blir stoffene frigitt over en kort periode, og en stor del av forurensningene vil følge smeltevannet. Dette kan gi et kraftig forurensningsstøt i respirentene. Et spesialtilfelle av dette er dumping av til dels sterkt forurenset snø hentet fra veger i byer og andre tettbygde strøk.
Vel ute i resipientene kan forurensningene føres videre langs vannvegene og/eller sedimentere og akkumulere på bunnen av vannforekomstene.

Tabell 7. Estimater på mengde forurensninger i avreningssvann fra vegbane, avreningssvann fra veggrøft (basert på nedfall i snø intil 7m fra veggen) basert på data fra Lygren & Gjessing (1984), og estimator på total mengde slitasjeprodukter fra vegdekket og bildekk. Forurensningsproduksjonen er antatt å være lineært avhengig av trafikkmengden. Vegslitasjen SPS er antatt å være 25 g/pbkm. Enhetene er kg/km.

<table>
<thead>
<tr>
<th></th>
<th>Avrenning fra vegbane.</th>
<th>Avrenning fra veggrøft. Basert på akkumulering i snø</th>
<th>Sum</th>
<th>Estimert mengde fra slitasje. V. veg B: bildekk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÅDT</td>
<td>8000</td>
<td>30000</td>
<td>8000</td>
<td>30000</td>
</tr>
<tr>
<td>TOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>240</td>
<td>500</td>
<td>310</td>
<td>1200</td>
</tr>
<tr>
<td>Cd</td>
<td>0,09</td>
<td>0,3</td>
<td>0,03</td>
<td>0,1</td>
</tr>
<tr>
<td>Cr2)</td>
<td>0,8</td>
<td>3</td>
<td>0,8</td>
<td>3</td>
</tr>
<tr>
<td>Cu</td>
<td>1,8</td>
<td>6,8</td>
<td>1,3</td>
<td>4,9</td>
</tr>
<tr>
<td>Hg2)</td>
<td>0,05</td>
<td>0,2</td>
<td>0,05</td>
<td>0,2</td>
</tr>
<tr>
<td>Ni</td>
<td>0,9</td>
<td>3,4</td>
<td>0,6</td>
<td>2,3</td>
</tr>
<tr>
<td>Pb</td>
<td>4,4</td>
<td>17</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Zn</td>
<td>3,6</td>
<td>13</td>
<td>2,8</td>
<td>11</td>
</tr>
<tr>
<td>PAH3)</td>
<td>0,09</td>
<td>0,3</td>
<td>0,3</td>
<td>1,1</td>
</tr>
</tbody>
</table>

1) Beregnet som 10% av total vegslitasje
2) Antatt like store mengder fra veggrøft som fra vegbanen
3) Antatt 3 ganger større nedfall av PAH i grøft enn i vegbane
Mobiliteten til forurensningskomponentene, først og fremst i vannfase, er viktig for den fysiske spredningen av stoffene i jord- og vannmiljøet, men også for eventuelle effekter i det biologiske systemet. Andersen og Vethe (1992) undersøkte forurensningen i avrenningsvann fra tunnellvasking. Resultatene indikerte at en liten del av den deponerte blymengden ble lett mobilisert, mens de andre tungmetallene begynte å lekke etter at Na⁺ poolen var tømt. Det ble registrert høye verdier for sink, men bare små mengder av andre tungmetaller.

Mobiliteten til mange forurensningskomponenter er oftest begrenset fordi en stor del av stoffene er bundet til partikler som holdes igjen i jordsmonnet. Man regner at bly er relativt immobilt i jord i forhold til andre metaller. Generelt antar en at mobiliteten til metaller i jord avtar i følgende rekkefølge: V>Zn>Ni>Cd>Mn>Cu>Cr>Pb (Martin & Coughtrey 1982). Viktige metaller i forbindelse med veg og dekkslitasje er her satt opp som de mest løselige. Det er imidlertid satt opp flere ulike rekkefølger av mobiliteten til tungmetallene avhengig av den fysiske og kjemiske sammensetningen av jordsmonnet. For organiske mikroforurensninger som PAH, er det vist eksperimentelt at det aller meste holdes tilbake i jorda, og at jord med mye organisk materiale holder tilbake langt mer enn jord fattig på organisk materiale (Gjessing et al. 1984b). Både uorganiske og organiske partikler blir imidlertid stadig utsatt for kjemiske og biologiske prosesser som kan endre mobiliteten til de kjemiske elementene og sammensetningen av stoffene.

I tillegg til den fysiske spredningen av forurensningskomponentene i jord og vann kan stoffene taes opp av mikroorganismer, planter og dyr og gå inn i det biologiske kretsløpet. Derved kan en få en ytterligere spredning samt en akkumulering og en biomagnifisering i næringskjedene. De vanligste forurensningene fra veg og bildekkslitasje synes imidlertid ikke å oppkonsentreres i næringskjeden.

4.2 Terrestre økosystemer.

4.2.1 Jord og vegetasjon

![Bly og sink i jordprofil i veikant](image)

Figur 2. Bly og sink i jordprofil langs vegkant i Oslo (etter Pedersen 1990)

<table>
<thead>
<tr>
<th>ppm</th>
<th>SSE</th>
<th>pH</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forurenset jord 0-4 cm</td>
<td>0,5</td>
<td>8,0</td>
<td>18,6</td>
<td>118,3</td>
<td>233</td>
<td>21762</td>
<td>83,7</td>
</tr>
<tr>
<td>8-12 cm</td>
<td>0,6</td>
<td>8,0</td>
<td>27,3</td>
<td>72,8</td>
<td>182</td>
<td>16626</td>
<td>255</td>
</tr>
<tr>
<td>16-20 cm</td>
<td>1,3</td>
<td>7,7</td>
<td>6,7</td>
<td>53,6</td>
<td>100</td>
<td>5796</td>
<td>33,5</td>
</tr>
<tr>
<td>Kontr., uforurens.min.jord</td>
<td>0,4</td>
<td>5,0</td>
<td>168</td>
<td>189</td>
<td>42</td>
<td>798</td>
<td>42</td>
</tr>
<tr>
<td>planteskoletorv</td>
<td>1,9</td>
<td>5,4</td>
<td>47,5</td>
<td>72,5</td>
<td>52,5</td>
<td>823</td>
<td>7,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ppm</th>
<th>Mn</th>
<th>Pb</th>
<th>Cu</th>
<th>Zn</th>
<th>B</th>
<th>Mo</th>
<th>Fe</th>
<th>Cd_i</th>
<th>Cd_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forurenset jord 0-4 cm</td>
<td>0,93</td>
<td>243</td>
<td>8,4</td>
<td>107</td>
<td>0,77</td>
<td>0,28</td>
<td>30,7</td>
<td>1,03</td>
<td>0,34</td>
</tr>
<tr>
<td>8-12 cm</td>
<td>0,64</td>
<td>210</td>
<td>8,6</td>
<td>72,8</td>
<td>0,86</td>
<td>0,22</td>
<td>8,19</td>
<td>0,83</td>
<td>0,24</td>
</tr>
<tr>
<td>16-20 cm</td>
<td>0,87</td>
<td>69,7</td>
<td>4,0</td>
<td>28,1</td>
<td>0,88</td>
<td>0,11</td>
<td>2,01</td>
<td>0,52</td>
<td>0,23</td>
</tr>
<tr>
<td>Kontr., uforurens.min.jord</td>
<td>21,1</td>
<td>22,1</td>
<td>3,15</td>
<td>25,2</td>
<td>0,36</td>
<td>0,88</td>
<td>102</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>planteskoletorv</td>
<td>4,5</td>
<td>1,5</td>
<td>1,5</td>
<td>3</td>
<td>0,44</td>
<td>0,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Vestgjøvets mutagene egenskaper ble undersøkt av Larssen (1987)(Ames test på Salmonella-bakterier og SHE-celletransformasjonstest på hamsterceller) som konkluderte med at
oppvirvet vegstøv ga et relativt lite bidrag til støvets mutagene egenskaper og evne til celle-
transformasjoner utover det som bileksosen gir. Saitoh et al (1990) antydet imidlertid at
mutageniteten i vegstøv (luft) hadde sammenheng med innholdet av l- nitropyren (PAH-
komponent) som igjen viste seg å øke i piggedekk sesongen.

Vokseforholdene langs trafikkå rer er generelt vanskelige. Både næringsmangel, vannmangel,
nedstøvning og jordkomprimering gir problematiske vokseforhold (Pedersen 1990). I tillegg
utgjør forurensnings-problemen en ekstra stressfaktor. Langtidsbelastninger på jordmonnet
fører til spesielle edafiske forhold med høy pH og høyt innhold av salt og tungmetaller.
Alkalisk jord kan gi betydelige vekstforsterkelser. Vekstreduksjon og mistrivsel hos planter kan
være forårsaket av en rekke enkeltfaktorer eller en kombinasjon av disse. I flere undersøkelser
er det derfor forsøkt å relatere helsetilstanden hos urbane trær til ulike fysisk/kjemiske
Vegetasjonen langs vegene inneholder forhøyede verdier av tungmetaller, men innholdet avtar
i jord og vegetasjon på forskjellige årstider. Det ble påvist sesongsvariasjoner med mulige
årsaker i klima, vekst og trafikkmenge. Tilførselen av trafikkgenererte forurensnings-
komponenter ble antatt å utgjøre et signifikant forurensningspress på både jord og vegetasjon.

Det kan være vanskelig å skille mellom vekstforsterkelser som skyldes jordforurensninger og
luftforurensninger. Vegetasjon langs veier fanger opp mange typer forurensninger som kan gi
betydelige skadevirkninger (Folkeson 1976, Hasselrot & Grennfelt 1987, Pedersen 1990,
Ekstrand 1991). En "review" artikkelen angående støvnedfall på vegetasjon viser at vegetasjonen,
særlig i arktiske områder blir negativt berørt (Farmer 1993). Sphagnum arter og lavarter nær
veger syntes å være spesielt utsatte (Spatt & Miller 1981, Walker & Everett 1987 (i Farmer
1993)). Rühling (1992) fant imidlertid at vegetasjonen langs vegene, unntatt i veggrøftene, ble
lite påvirket av vegforurensninger.

I følge Pedersen (1990) synes det å foreligge få entydige bevis for at tungmetall-
forurensningen langs traffikkå rer har forårsaket vekstforsterkelser hos planter. Mye tyder likevel
på at høye konsentrasjoner av tungmetaller langs vegene påvirker vegetationen. Det er
dessuten vist at enkelte tungmetaller har sterkere virkning på planter når de finnes i blanding
nen når de foreligger hver for seg (Carlson & Bazzaz 1977, Hasset et al. 1976). Redusert vekst
er påvist hos planter i jord langs traffikkå rer (Majdi & Persson 1989) og ved dyrking i
vannekstrakt av vegstøv (Wong et al 1984). I de to sistnevnte undersøkelsene antas høyt
tungmetallinnhold å være årsaken til vekstreduksjonen. Pedersen (1990) fant en betydelig
vekstreduksjon ved dyrking i forurenet jord. Innblanding av torv i forurenet dyrkingsjord
økte veksten betydelig og reduserte innholdet av bly og jern i bladene. Trolig er
torv materialets evne til å binde tungmetaller en viktig årsak til den bedrede tilstanden.

Trafikkforurensninger synes altså å påvirke jordmonnet og vegetasjonen negativt. Det er
derimot vanskelig å skille ut vegslitasjens og bildekkslitasjens andel av den totale
forurensnings-belastningen. Dersom bly er den viktigste faktor vil bliholdig bensin være
viktigste årsak, dersom kadmium og sink er betydningsfulle faktorer, vil bildekkslitasje
sannsynligvis være viktig, dersom nikkel eller alkaliske forhold har betydning er sannsynligvis
slitasjen av vegen viktig, dersom natrium og klorid-ioni spiller en rolle er vegsaltingen viktig.
Det man imidlertid alltid står ovenfor er et jordmonnet og et miljø med et komplekt
forurensningsbilde og mange stoffer med mulige synergistiske og antagonistiske egenskaper.
4.2.2 Fauna

Alle veger har nærøringer med en eller annen form for fauna. På begge sider av vegen blir det lange korridorer med et spesielt miljø. Det finnes lite informasjon som omhandler effekter av veg og bildekkslitasje på dyresamfunnene.

<table>
<thead>
<tr>
<th>Art</th>
<th>ÅDT</th>
<th>avstand fra veg</th>
<th>konsentrasjoner, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>Cd</td>
</tr>
<tr>
<td>Meitemark</td>
<td>25000</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48</td>
<td>6</td>
</tr>
</tbody>
</table>

Det er også forhøyede konsentrasjoner av tungmetaller i små pattedyr langs veger. Insekthvile dyr akkumulerer mer bly, sink og kadmium enn herbivore som i sin tur har høyere konsentrasjoner enn frokostere (Scanlon 1991). Tilsvarende er det også funnet forhøyede konsentrasjoner av tungmetaller i fugler som holder til i nærheten av sterkt trafikkerte veger. Watanabe et al. (1990) fant blant annet forhøyede blyverdier i lunger og blod hos duer i bystrøk, noe som sannsynligvis skyttes innakt av blyforurensset grus.

Predatorer på meitemark og insekter, slik som enkelte fuglearter og pattedyr, kan bli spesielt utsatt for tungmetallforurensningen. Det er imidlertid få dokumenterte tilfeller av biomagnifikasjon. Det er begrenset kunnskap om i hvilken grad dokumentert akkumulering av tungmetaller medfører redusert overlevelse, vekst eller reproduksjons-forstyrrelser på populasjoner av invertebrater, fugler eller pattedyr.
Det vil foregå en viss resirkulering av metallene i det vegnære økosystemet ved stadige
akkumulering- og nedbrytningsprosesser. Utførsel av metaller og organiske mikro-
forurensninger fra terrestre deponeringsområder vil blant annet skje ved lufttransport av støv,
men kanskje først og fremst ved avrenning til vann.

4.3 Akvatiske økosystemer

Avrenningsvann fra vegbanen og veggrøtter er ofte svært forurenet (Gjessing et al 1984b).
Denne forurensningstilførselen til vannresipienter kan påvirke vannkjemien, akkumulere i
sedimentene og være til skade i det biologiske systemet.

Den generelle vannkvaliteten påvirker den toxikologiske effekten av forurensningene. Det
innebærer at effektene på økosystemene vil være avhengig av systemenes tilstand i
utgangspunktet. For eksempel er det sannsynlig at effektene vil være forskjellige i en liten sur
innkjørsel og i en ione- og kalsiumrik innsjø.

4.3.1 Vann og sedimenter

Forurensningstilførsler fra veg til vann skjer oftest som episoder i samband med regnvær eller i
forbindelse med snøsmeltingsperioder. Det betyr at tidspunkt for episodene stort sett er
uførtsigbare. Etter regnskyl blir en lang rekke stoffer transportert med avrenningsvannet
inkludert silt, sand, plante- og dyrerester, produkter fra veg og dekkslitasje og fra bileksos.
Størrelsen på avrenningen og det kjemiske innholdet i avrenningsvannet kan derfor være
høyst varierende og vannkvaliteten vanskelig å forutsi (Bellinger et al. 1982).

Metallene som vanligvis finnes i avrenningsvann er bly, sink, jern, kobber kadmium, krom og
nikkel, der bly, jern og sink oftest utgjør den største mengden (Gjessing et al 1984b, Hvitved-
Jacobsen & Yousef 1991). Metallenes virkning i resipientene er avhengig av hvilken tilstand
metallene befinner seg i. Avhengig av fysikkjemiske faktorer i veggrøtter, avrenningsvann og
resipient kan metallene oppvre i organiske eller utorganiske komplekser, bundet til overflaten
av partikler eller i ioneform. Den sistnevnte antas å være den mest giftige formen.

Yousef et al (1986) angir løste fraksjoner av metaller i avrenningsvann (tabell 10). Disse tallene
gjelder ikke for vejer med utstrakt bruk av piggedekk, men antyder likevel at en betydelig del
av forurensningene kan finnes i suspensjon eller i løyst form etter at de når resipienten. Andelen
av løselige komponenter ligger imidlertid langt over det som er registrert i enkelte norske
undersøkelser (Bøkkken upubl.). Årsaken til de store forskjellene i løste komponenter kan være
helt forskjellige fysisk/kjemiske forhold langs vegene eller ulike typer prøvetakingssteder.

<table>
<thead>
<tr>
<th>Metall</th>
<th>USA (Florida)</th>
<th></th>
<th></th>
<th></th>
<th>Norge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>løst µg/l</td>
<td>total µg/l</td>
<td>løst µg/l</td>
<td>total µg/l</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>33,5</td>
<td>163</td>
<td>11</td>
<td>1580</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>40,4</td>
<td>71</td>
<td><10</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>26,4</td>
<td>37,5</td>
<td>7,7</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>2,6</td>
<td>3,4</td>
<td>6</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>2,6</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>1,8</td>
<td>2,5</td>
<td><0,1</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>93,4</td>
<td>341</td>
<td>89</td>
<td>90300</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>90</td>
<td></td>
<td>436</td>
<td></td>
</tr>
</tbody>
</table>

I områder med snø akkumuleres forurensningene i snødekket over en lengre periode (Gjessing et al 1984b). Detaller mest av piggdekkgenereert PAH fra bitumen havner der. Tilsvarende lagres de organiske komponentene i snøen i og langs veggrøftene. Smeltevannet vil derfor inneholde større konsentrasjoner av forurensninger enn avrenningsvann etter rennav. Selv om tilførselen av forurensninger fra snøsmelting bare skjer noe få ganger i året, er den viktig fordi den i en kort periode kan utsette resipienten for en ekstrem forurensningsbelastning.

I byer og tettsteder foregår det i perioder oppsamling av snø fra gater og fortau. Denne snøen kan være meget forurenset. Snøen blir dumpet i terrestre eller akvatish resipienter og kan ha et betydelig forurensningspotensiale.

I snødekket på vegnære innsjøer kan konsentrasjonen av forurensende stoffer være mer enn ti ganger større enn i selve innsjøen (tabell 11). Enkelte undersøkelser indikerer også at biotilgjengeligheten er større for elementer i smeltevann enn fra avrenning etter rennav (Morrison et al 1986).

Størrelsefordelingen av partikler er viktig for fordelingen av de kjemiske komponentene. De fleste undersøkelser viser at en stor del av forurensningene er bundet til partikler og at små partikler har større konstresjon enn store partikler. Dette har betydning for hvor lenge de kan holde seg i suspensjon. Mens partikler på ca 2 μm under visse forutsetninger synker med er en gjennomsnittlig hastighet på 1 cm/time vil partikler på ca 90 μm synke med en hastighet på 20 m/time (Hvitved- Jacobsen & Yousef 1991).

Senere målinger i samme innsjø har også vist forhøyede verdier av kadmium i vannfasen. Disse undersøkselser viste også at konsentrasjonene av kobber, bly og sink i vannfasen lå over normale bakgrunnsverdier (Bækken upubl.).

4.2.2 Vegetasjon og fauna.

En stor partikkeltransport fra vegslitasjen ut i resipientene medfører en tildekking og nedslamming av bunnssubstratet som kan endre leveforholdene for organismene som oppholder seg der. Bunnslevende vegetasjon kan dekkelses. I bekkere, elver og i innsjøenes strandsoner vil små hudrom mellom stein og grus tettes til. Dette er viktige oppholdssteder for bunnaunaen. I tillegg til bunnslevende alger vil også andre næringsemner for bunnaunaen tildekkes. I flere tilfeller har partikkeltransport fra anleggssarbeid medført en drastisk, om enn forbigående,

Tester av avrenningsvann fra høyttraffikerte veger i USA på alger, zooplankton og fisk viste at alger og zooplankton ble kraftig skadet av den løste delen av avrenningen, mens hurd innhold av suspendert stoff ga stor dødelighet på yngel av regnbueøret (Portele et al. 1982).

Samme undersøkelse viste at innhold av de fleste tungmetaller var lavt og innenfor normale variasjoner i abbor. Det ble imidlertid funnet forhøyde konsentrasjoner av bly. Det ble også funnet 3-5 ganger så høye konsentrasjoner av PAH i abborkjøtt i påvirket påvirket resipient som i referenseresipient. En stor del av PAH komponentene besto imidlertid av naftalener som
ikke regnes for potensielt kreftframkallende stoffer. Andre undersøkelser har påvist at innholdet av PAH i sedimenter samvarierte med hyppigheten av leversykdommer hos bunnlevende fisk (Malins et al 1987).

Tabell 12. Relativ mengde av bunndyr på en strandsonelokalitet nær avrenningsutløp fra veg og fra tre sammenlignbare referanselokaliteter (etter Bækken 1992)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>nær avrenning</th>
<th>referanse 1</th>
<th>referanse 2</th>
<th>referanse 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snegl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Viviparus viviparus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Physa fontinalis</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Lymnaea peregra</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lymnaea stagnalis</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Gyraulus acronicus</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Armiger crista</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Batymalthus contortus</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Småmuslinger</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Krepsdyr</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Gammarus lacustris</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

I en trafikkforurensset elv fant Ney & Van Hassel (1983) at akkumuleringen av bly, kadmium og nikkel i fisk økte med fiskens alder (White sucker), men med ulikt forløp i ulike organer. Bly økte i beinsubstanse, kadmium økte i bein og nyrer og nikkel økte i beinsubstanse. For sink ble det registrert en nedgang i konsentrasjonen i begge disse organene. Metallkonsentrasjonene i prøver fra hele fisker var tilnærmet konstant eller svakt avtagende for alle metallene unntatt for sink der nedgangen var stor.

Akutt-tester på avrenningsvann fra veg viste imidlertid ingen negative effekter på lakserogn eller ett år gamle lakseunger (Gjessing et al 1984b).

Innholdet av metaller og organiske mikroforurensninger er av stor betydning for strukturen og funksjonen av akvatisk økosystem. Metallene kan akkumuleres i sedimentene, plankton, bunnslevende organismer og fisk. Diversiteten kan bli redusert og følsomme arter bli erstattet av mer tolerante arter. Forurensningene kan i mange tilfeller akkumulere i biologisk material og medføre endringer i det akvatiske økosystemet.

Det er foretatt en lang rekke undersøkelser for å karakterisere den kjemiske sammensetningen av avrenningsvann fra veg. De økologiske konsekvensene vet vi imidlertid lite om. Det synes klart at vegetrafikken kan ha negative effekter på akvatisk økosystemer. Det er imidlertid vanskelig å skille ut miljøproblemer forårsaket av veg- og bildekkslitasjen fra annen forurensning. Disse kommer i tillegg til de øvrige forurensningene. I det komplekse miljøet et akvatisk økosystem representerer kan det oppstå synergistiske og antagonistiske effekter som vi i dag kjenner lite til konsekvensene av. Vi kjenner en del til de ulike emnenes gittighet i rendyrket tilstand under laboratorieforhold, men lite til de samlede effektene under naturlige forhold både på individnivå og på populasjons- og samfunnsnivå.
5. Forskningsbehov

Problematikken omkring vegtrafikkforurensninger er kompleks, og det er flere sider ved trafikkforurensningene en kjenner lite til. Spesielt gjelder dette virkninger i de vegnære økosystemene. Det finnes relativt mye informasjon som gir kjemisk karakterisering av f.eks. avrenningsvann fra veg. Hvordan dette sprer seg i resipientene og hvilke miljøvirkninger dette gir vet man imidlertid lite om. En kjenner til de vanligste forurensningskomponentene utifra kjemiske målinger f. eks. i jordmøn langs vegene, fra analyser av vegstøv og eksos. Det er imidlertid mindre eksakt dokumentasjon på hvilke kilder som gir hvilke forurensninger og i hvilke mengder, f.eks. hvilke stoffer og hvor stor del av totalforurensningene kommer fra veg og bildekksitasjen? Det er videre klart at det foregår en akkumulering av forurensninger langs vegene. Det er mindre klart hvor stor akkumuleringen er ved ulike typer veger, trafikkmengder og naturforhold, og derved hvor raskt det bygges opp "depot" av forurensninger i resipientene. Det er angitt at en gjennomsnittlig trafikkmengde på ca 3000 kjøretøyer per døgn gir merkbare slitasjeproblemer og økonomiske uttelinger. 61% av trafikkarbeidet i Norge foregår på disse vegene. Er det mulig å gi tilsvarende grenser på virkninger i økosystemene? I dag er det alt for liten kunnskap om virkninger i økosystemene til å knytte dem til trafikkmengde eller andre vegmessige forhold. Generelt er det lite kunnskaper om virkningene i de biologiske systemene; på nedybningens prosessene i dødt organisk materiale (løv m.m.) og på plante og dyresamfunn. Mye av forskningen omkring disse forholdene må baseres på undersøkelser i felt, men det vil alltid være fordelaktig å supplerre med eksperimentelle undersøkelser under kontrollerte betingelser for å kunne rendyrke enkelte problemstillinger.

I naturmiljøer som påvirkes av trafikkforurensninger vil effektene fra veg og bildekksitasje være vanskelige å skille fra den øvrige forurensningen. Det er nedenfor angitt enkelte områder som peker seg ut som mulige forskningsområder når det gjelder forurensninger fra slitasjeprodukter, men som i stor grad også må gjelde den totale forurensningen fra vegene.

II. Akkumuleringsrate av forurensninger i jord og sediment. Hvor raskt bygges depotene opp. Hvor store er de og vil de bli i fremtiden. Tungmetaller, organiske mikroforurensninger.

IV. Spredning av forurensningskomponenter langs vannveier.

V. Biotilgjengeligheten av forurensninger ved ulike fysiske og kjemiske betingelser.

VI. Kortsiktige og langsiktige virkninger av vegforurensninger på plante og dyrepopulasjoner og samfunn i ulike terrestre og akvatiske økosystemer. Dødlighet, akkumulering, biomagnifikasjon, vekst, reproduksjon, biodiversitet, endringer i struktur og funksjon, nedybning av organisk materiale. Effekter i sør og nøytrale miljøer.
6. Litteratur

Mance, G. 1987. Pollution threat of heavy metals in aquatic environments. - Pollution monitoring series. Elsevier applied science

