0-89073

Utpøving og kalibrering av terskelfjordmodellen

\[
\frac{T_v}{T_o} = \frac{T_{v1}}{T_{o1}}
\]

\[
O = O_{\text{min}}
\]

\[
O_{\text{max}} > 0
\]
Rapportens titel:
Utprøving og kalibrering av terskelfjordmodellen

Forfatter(e):
Anders Stugebrandt (Ancylus)
Jan Aure (HI)
Jarle Molvær (NIVA)

Ekstrakt:
En metode (R-metoden) for beregning av vertikal fluks av organisk materiale og effekten på oksygenforhold i terskelfjorder er utprøvet på et antall fjorder i Nord-Norge og på Sørlandet. For fjorder som ikke mener ut mot åpent hav og som ikke er belastet med større antropogene utslipp, bör metoden kunne brukes i sin nåværende form.

I Nord-Norge hadde fjorder med dyp terskel mot åpent hav tildels mye større oksygenforbruk enn ventet. Årsaken til dette er ikke klarlagt, men kan bl.a. være import av løsrevet organisk materiale som driver forbi fjordmunningene i forbindelse med storm på kysten.

4 emneord, norske
1. Terskelfjorder
2. Organisk materiale
3. Oksygen
4. Modell

4 emneord, engelske
1. Sill fjords
2. Organic material
3. Oxygen
4. Model

ISBN 82-577-2059-3
UTPRØVING OG KALIBRERING AV TERSKELFJORDMODELLEN

Göteborg/Bergen/Oslo 26.2 1992
Anders Stigebrandt
Jan Aure
Jarle Molvær
FORORD

Prosjektet ble gjennomført i to faser. I fase 1 ble innsamlet og gjennomgått eksisterende datamateriale for terskeljfjorder på kyststrekkningen Oslo - Bergen og Trondheim - Tromsø med sikte på å finne fjorder med tilstrekkelig gode data for videre utprøving av metoden. Resultatet ble rapportert i form av et notat av Stigebrandt, Aure og Molvær (1990). Notatet utgjør vedlegg 1 i den foreliggende rapporten.

I prosjektets fase 2 ble det utført analyser og beregninger med data fra seks terskeljfjorder i Nordland og tre fjorder i Troms. Resultatene utgjør vedlegg 2 i denne rapporten som gir en sammenfattende vurdering av resultatene.

Stig Skreslet ved Høgskolesenteret i Nordland, Bodø og Salve Dahle, Akvaplan-niva, Tromsø, var ansvarlig for henholdsvis datainnsamling i fjordene i Nordland og i Troms, og begge takkes for godt samarbeid.

INNHOLDSFORTEGNELSE

FORORD ... 2

KONKLUSJONER .. 4

1. BAKGRUNN OG FORMÅL ... 5

2. TEORI ... 6
 2.1 Vertikal fluks av organisk materiale 6
 2.2 $O_{2\text{min}}$ og utskifting av bassengvann 7

3. BESTEMMELSE AV BASSENGVANNETS EGENSKAPER FRA
 MÅLEDATA .. 11

4. SAMMENFATTENDE DISKUSJON AV BEREGNINGSRESULTATER ... 15
 4.1 Vertikal fluks av organisk materiale, F_C 15
 4.2 Diffusjonens bidrag til oksygenbudsjettet 17
 4.3 Oksygenminimum, $O_{2\text{min}}$ 18

5. ANBEFALINGER OM VIDERE ARBEID 20

6. LITTERATUR .. 22

VEDLEGG 1: Notat fra fase 1
VEDLEGG 2: Resultater fra utprøving på fjorder i Nordland og Troms
KONKLUSJONER

Prosjektet har hatt som mål å tilpasse den såkalte R-metoden for beregning av vertikal fluks av organisk materiale og effekt på oksygenforhold til bruk på terskelfjorder langs Skagerrak-kysten og i Nord-Norge. Prosjektet har blitt gjennomført i to faser: fase 1 omfattet gjennomgåelse av eksisterende datamateriale fra terskelfjorder. I fase 2 inngikk et måleprogram i seks fjorder i Nordland og tre fjorder i Troms, samt en sammenfattende vurdering av metodens gyldighet for ulike typer terskelfjorder.

Sett i forhold til datamaterialet som R-metoden opprinnelig ble utviklet på (30 fjorder i Møre og Romsdal), har man hatt et relativt lite datamateriale til rådighet. Hovedkonklusjonene av prosjektet kan likevel ansees som rimelig sikre, og er som følger:

1. R-metoden i sin nåværende form er gyldig langs hele kyststrekkningen fra indre Skagerrak til og med Troms, for fjorder som ikke direkte munner ut mot åpent hav og som ikke er belastet av større antropogene utslipp. Spesiell forsiktighet må vises ved bruk av metoden på fjorder med dyp terskel.

2. I Nord-Norge fant man at fjorder med dyp terskel og med direkte kontakt til kystvann/åpent hav hadde vesentlig større oksygenforbruk enn modellen beregner. Årsaken til dette er ikke klarlagt, men kan bl.a. skyldes import av løsrevet organisk materiale under stormer på kysten.

3. Videre målrettede undersøkelser vil ytterligere forbedre metodens presisjon. Spesielt nevnes:

 - bedre beskrivelse av tetthetsfeltets variasjon i kystvannet.

Generelt trenger man et større datamateriale fra undersøkelser av den typen som ble utført i Nord-Norge.
1. BAKGRUNN OG FORMÅL

Prosjektets formål ble dermed:

* kalibriere R-metoden for bruk på terskelfjorder i andre landsdeler
* teste metodens følsomhet for usikkerhet i de valgte konstantene

I fase 1 av prosjektet ble det søkt etter passende data i Havforskningsinstituttets og NIVAs databaser, samt i tilgjengelige rapporter fra andre institusjoner. Utbyttet var mindre enn ventet, utenom noen datasett fra fjorder på Skagerrakkysten og for et basseng i Tromsøsundet (Stigebrandt, Aure og Molvær, 1990). Det ble derfor besluttet å gjennomføre fase 2 i 1990 med tyngdepunkt på Nordland og Troms hvor man vet lite om den naturlige fluksen av organisk materiale ned i terskelbassengene, og der brukten av R-metoden var høyt prioritert av Miljøverndepartementet.

Den foreliggende rapporten presenterer en sammenfattende vurdering av resultatene fra fase 1 og fase 2 i lys av prosjektets målsetting. Selve beregningene finnes i Vedlegg 1 og 2.
2. TEORI

2.1 Vertikal fluks av organisk materiale

Ved utviklingen av metoden for fjordene i Møre og Romsdal ble det konstatert at den naturlige vertikale transporten av organisk materiale avtar med dypet. Den naturlige vertikale fluksen F_c [gC m$^{-2}$ md$^{-1}$] av oksygenforbrukende organisk materiale som funksjon av dypet z [m] kan beskrives matematisk vha. en eksponentialfunksjon (Aure & Stigebrandt, 1990)

$$F_c = F_{cp} e^{-z/L}$$
(1)

Den vertikale fluksen er således størst ved havoverflaten og avtar nedover i vannsøylen grunnet nedbryting av organisk materiale i vannsøylen. Verdiene av de to koeffisientene F_{cp}, som gir amplituden ved havoverflaten, og L, som styrer reduksjonen med dypet, ble bestemt for terskelbassengene i Møre og Romsdal til henholdsvis $F_{cp}=5.5$ [gC m$^{-2}$ md$^{-1}$] og $L=50$ [m]. F_c er den del av nedsynkende organisk materiale som blir nedbrutt i terskelbassenget. Den virkelige vertikale transporten er litt større fordi en del organisk materiale blir enten lagret i bunnsedimentene eller eksportert ut av fjorden med dyr. Denne delen blir således ikke nedbrutt i terskelbassenget og gir derfor ikke opphav til oksygenforbruk. Når vi i det følgende omtaler den vertikale fluksen av organisk materiale mener vi kun den del som blir nedbrutt i et terskelbasseng.

Sammenhengen mellom tilførselen av organisk materiale og midlere oksygenforbruk,
dO₂/dt i et terskelbasseng ble beskrevet ved

\[
\frac{dO_2}{dt} = \frac{\mu F_c}{H_b}
\] \hspace{1cm} (2)

hvor \(\mu = 2.43 \text{ [ml O}_2\text{ (gC)}^{-1}] \) og \(H_b \) er terskelbassengets midlere dyp. Vi benevner denne formelen \textbf{Møreformelen} for midlere oksygenforbruk. Ingen av fjordbassengene i Møre og Romsdal var særlig påvirket av antropogene lokale utslipp av organisk materiale eller næringssalter. Hovedmålet med denne undersøkelsen er nettopp å bestemme oksygenforbruket i fjordbasseng utenfor Møre & Romsdal for å bestemme koeffisientene \(F_{CO} \) og \(L \) for andre deler av kysten.

\[\text{2.2 O}_{\text{min}} \text{ og utskifting av bassengvann}\]

I den opprinnelige R-metoden ingår en empirisk koeffisient \(R_e \) som er den tetthetsreduksjon i bassengvannet som må til før en kan påregne en ny fullstendig utskifting av bassengvannet. For fjordene i Møre & Romsdal ble \(R_e \) betraktet som konstant. I Stigebrandt et al. (1990) (vedlegg 1) diskuterte vi i forbindelse med analysen av data fra et basseng i Tromsøsundet (Nordbotn) at \(R_e \) (tidligere kalt \(R_0 \)) trolig varierer med amplituden på tetthetsvariasjonene i kystvannet. \(R_e \) bør således være knyttet til tetthetsfluktuaasjonene i kystvannet. Disse kan karakteriseres ved standardavviket \(\sigma_p \) fra midlere tetthet. Fra data fra Havforskningsinstituttets faste stasjoner bestemte Stigebrandt & Aure (1990) \(\sigma_p \) for dybdeintervallet 0 til 100 m for kyststrekningen Lista til Nordkapp. Verdiene er også gjengitt i en tabell i Stigebrandt (1992). For fjordene i Møre & Romsdal ser det ut til at sammenhengen mellom \(R_e \) og \(\sigma_p \) kan beskrives av \(R_e = 1.5 \sigma_p \) (=1.3). Denne relasjonen brukes foreløpig i Fjordmiljø. For Nordland er \(\sigma_p = 0.65 \) for 20 m dyp og 0.55 for 50 m dyp. For Troms er \(\sigma_p = 0.4 \) for 20 m dyp og 0.3 for 100 m dyp. For Nordland forventer vi derfor \(R_e \)-verdier mellom ca. 0.8 og 1.0 og for Troms mellom 0.4 og 0.6.

I Aure & Stigebrandt (1989) ble betydningen av munningstopografien for \(R_e \)-verdien
diskutert. Hvis et fjordbasseng har en meget trang munning vil denne forhindre en stor intransport av nytt dypvann og derved en hurtig utskifting av det gamle dypvannet. For Møre & Romsdal fant vi at munningen virker hemmende på vannutskiftningen hvis terskelbassengets volum dividert med munningens vertikale tverrsnittsareal er større enn ca. 70000 [m]. Vi synes nå at det er bedre å karakterisere en munnings transportkapasitet ved terskelbassengets volum dividert med midlere volumtransport gjennom munningen (beregnes av Fjordmiljø). En får ved denne divisjonen frem den tid det vil ta å fylle opp terskelbassenget (fyllingstiden), se Stigebrandt (1992). Hvis fyllingstiden er kortere enn den tid som potensielt "nytt" bassengvann befinner seg ovenfor terskelnivået utenfor fjorden vil en forvente en fullstendig utskifting av bassengvann ved slike tilfeller. Denne diskusjonen viser at det ikke bare er nok å relatere Rₐ til σ_p. Varigheten av tilfeller med høy tetthet over terskelnivået utenfor fjorden samt fyllingstiden for terskelbassenget må også tas hensyn til for å oppnå sikrere beregninger av et fjordbassengs Rₐ-verdi.

Oppholdstiden Tₑ for bassengvannet i en fjord er definert ved

$$Tₑ = \frac{Rₑ}{\frac{dp}{dt}}$$ \hspace{1cm} (3)

Denne ligningen viser at oppholdstiden er direkte proporsjonal mot Rₑ-verdien. Det er således meget viktig at en kan bestemme et fjordbassengs Rₑ-verdi med god nøyaktighet.

I lign. (3) er dp/dt tetthetsreduksjonsraten i bassengvannet. Denne beregnes teoretisk i Fjordmiljøprogrammet (se Stigebrandt, 1992) og beregningene kan kontrolleres vha. målinger av forandringer av tetthetsfeltet i bassengvannet under stagnante forhold. Hvordan dp/dt beregnes fra feltdata er beskrevet i kap. 3 nedenfor.

Gjennom at Rₑ-verdien er med å bestemme oppholdstiden Tₑ for bassengvannet er Rₑ-verdien viktig også for hvilken verdi på oksygenminimum, О₂min, et fjordbasseng vil få. О₂min beregnes fra formelen
\[O_{2\text{min}} = O_{2f} \left(1 - \frac{T_e}{T_0}\right) \] \hspace{1cm} (4)

hvor \(O_{2i} \) er oksygenkonsentrasjonen i innstrømmende "nytt" bassengvann og \(T_0 \) er tidsskalaen for oksygenforbruk i bassengvannet. Denne er definert ved

\[T_0 = \frac{O_{2f}}{\frac{dO_2}{dt}} \] \hspace{1cm} (5)

Sammenhengen mellom \(O_{2\text{min}} \) og \(T_0/T_e \) vises i Fig. 1. Et fjordbasseng vil ha en oksygenkonsentrasjon som ligger i det råstrerte området. Hvis vannets oppholdstid \(T_e \) er kortere enn tidsskalaen for oksygenforbruk \(T_0 \) (dvs. \(T_e/T_0 < 1 \)) vil \(O_{2\text{min}} \) være større enn 0. Hvis derimot \(T_e/T_0 > 1 \) vil oksygenet til tider bli helt forbrukt i større dyp og hydrogen sulfid (H\(_2\)S) vil utvikles (\(O_{2\text{min}} < 0 \)).

Ved hjelp av lign. (3), (4) og (5) kan en utlede følgende uttrykk for \(R_e \)

\[R_e = \frac{dp}{dt} \frac{O_{2f}}{\frac{dO_2}{dt}} \left(1 - \frac{O_{2\text{min}}}{O_{2f}}\right) \] \hspace{1cm} (6)

Av ligning (6) kan en bestemme \(R_e \) empirisk siden samtlige størrelser til høyre for likhetstegnet kan bestemmes fra gjentagne målinger i et fjordbasseng. Vi har benyttet anledningen å beregne empiriske \(R_e \)-verdier for terskelbassengene presentert i vedlegg 1 og 2.

En helt avgjørende forutsetning for muligheten å beregne oksygenforholdene i et terskelbasseng er at en kan forutsi den vertikale fluksen av organisk materiale, f. eks. ved hjelp av en empirisk formel (ligning 1). For å kunne bruke den opprinnelige metoden, og Fjordmiljøprogrammet, på terskelfjorder i andre landsdeler er det nødvendig å først bestemme verdiene av koefficientene \(F_0 \) og \(L \) for disse områdene. Det er også like viktig å finne fram til en god beskrivelse av sammenhengen mellom karakteristikken av tetthetsfluktualsjonene i kystvannet samt munningens og fjordens topografi (de topografiske faktorene bestemmer fyllingstiden for terskelbassenget) og \(R_e \).
Fig. 1 Oksygenkonsentrasjonen i en fjords bassengvann vil ligge i det rastrerte området. Hvert enkelt fjordbasseng er her karakterisert ved forholdet T_s over T_0. Oksygenkonsentrasjonen i et gitt terskelbasseng vil ligge på en vertikal linje som rekker fra linjen for O_{2i} og ned til linjen for $O_{2\text{min}}$. O_{2i}, som er oksygenkonsentrasjonen på innstrømmende "nytt" bassengvann, er den høyeste oksygenkonsentrasjonen i bassenget og $O_{2\text{min}}$ den laveste.
3. BESTEMMELSE AV BASSENGVANNETS EGENSKAPER FRA MÅLEDATA

Under stagnasjonsperioder forandres bassengvannets tetthet kun som et resultat av diffusiv vertikal utveksling med ovenforliggende vannmasser. En forutsetning for at dette skal være gyldig er at utvekslingen av salt og varme med bunnsedimentene kan neglisieres og at det ikke forekommer stråling av varme (lys) ned i terskelbassenget. Den siste betingelsen medfører at øvre grense for beregning av diffusiv tetthetsutveksling må settes til ca. 15-20 m under havoverflaten.

Mye av den vertikale blandingen i et terskelbasseng skjer formodentlig i et grenselag ved bunnen. Denne komplikasjonen kan unngås ved å midle bassengets varme- og stoffinnhold horisontalt. En annen fordel med å bruke horisontal midling er at effekten av et variabelt horisontalt tverrsnittsareal lettere kan håndteres. Ligningen for konservering av den horisontalt midlede tettheten, \(\rho = \rho(z,t) \), i bassengvannet i en stagnasjonsperiode er
\[
\frac{\partial \rho}{\partial t} = \frac{1}{A} \frac{\partial}{\partial z} \left(\kappa \frac{\partial \rho}{\partial z} \right)
\]

(7)

Her betegner t tid, z er den vertikale koordinaten, \(\kappa = \kappa(z) \) er den horisontalt midlere vertikale diffusiviteten (ofte kalt den vertikale turbulente diffusjonskoeffisienten) og A=A(z) er det horisontale arealet av bassenget. Lign. (7) uttrykker hva vi har forutsatt ovenfor, nemlig at tettheten endres med tiden kun som et resultat av vertikal blanding.

Gjennom å integrere lign. (7) fra det største dypet \(z=b \), hvor det ikke er noen diffusiv massetransport, til nivået \(z=u \) opp i vannmassen fåes følgende uttrykk for den vertikale diffusiviteten \(\kappa \) ved øvre integrasjonsgrense \(z=u \)

\[
\kappa_{z=u} = \frac{1}{(A \frac{\partial \rho}{\partial z})_{z=u}} \int_b^u \frac{\partial \rho}{\partial t} A dz
\]

(8)

Denne ligningen blir brukt for beregning av empiriske verdier av \(\kappa \) på nivået \(z=u \).
Integreerte verdier av \(\partial \rho/\partial t \) opp til nivået \(z=u \) (blir betegnet \(\varDelta \rho/\varDelta t \) i det følgende) samt midlere verdier av \(\partial \rho/\partial z \) på nivået \(z=u \) blir beregnet fra gjentatte målinger av saltholdighet og temperatur i terskelbassenget. Denne metoden for å beregne \(\kappa \) benevnes budsjettmetoden. Vi vil bruke størrelsen \(\varDelta \rho \) for å betegne midlere tetthetsreduksjon i bassengvannet pr. måned.

For å bestemme oksygenforbruket i et terskelbasseng benytter man en tilsvarende budsjettmetode. Oksygenbudsjettet ved stagnante forhold er

\[
\int_b^u \frac{\partial O_2}{\partial t} A dz + (\kappa \frac{\partial O_2}{\partial z})_{z=u} = F_C A_{z=u} \mu
\]

(9)

Her er \(O_2 = O_2(z,t) \) konsentrasjonen av oppløst oksygen på nivået \(z \) ved tiden \(t \),
(\(\partial O_2/\partial z \))_{z=u} er den vertikale gradienten av oksygenkonsentrasjonen på nivået \(z=u \), \(F_C \) er vertikal transport av organisk materiale [gC m^{-2} m d^{-1}] gjennom nivået \(z=u \) og \(\mu \) er oksygen-karbon forholdet ved en fullstendig oksidasjon av organisk materiale. Lign. (9)
forutsetter at oksygenproduksjon (gjennom fotosyntese) i bassengvannet ikke forekommer. Øvre grense for bassengvannet må derfor, som tidligere nevnt, legges under fotisk sone. Det første leddet i lign. (9) beskriver forandringer i lageret av oksygen pr. tidenhet. Det andre leddet beskriver utveksling av oksygen gjennom øvre begrensingsflate. Leddet til høyre for likhetsstegnet beskriver tilførselen av oksygenforbrukende organisk materiale. Det antas at oksygenforbruket hele tiden er i samsvar med tilførselen av organisk materiale.

Midlere verdi av det første leddet i ligning (9) kalles DEPL (eng. depletion) og gir det "tilsynelatende" oksygenforbruket som direkte kan bestemmes fra gjentatte oksygenmålinger. Dette fåes ved å dividere med volumet \(V_b \) av terskelbassenenget under \(z=u \). Bidraget DIFF er midlere bidrag fra det andre leddet i lign. (9), fåes etter divisjon med \(V_b \). DIFF er oksygentilførselen gjennom den vertikale diffusjonen, og kan omskrives slik: DIFF=\(\kappa(\partial O_2/\partial t)_{z=u}/H_b \), hvor \(H_b \) er midlere dyp av terskelbassenenget under nivået \(z=u \). Midlere tilførsel av "oksygenforbruk" gjennom organisk materiale (=\(F_c \mu/H_b \)) skal ifølge forutsetningene være lik midlere oksygenforbruk (konsumsjon) og vi kaller denne KONS. Lign. (9) kan således, etter divisjon med \(V_b \), skrives

\[
KONS = DEPL + DIFF
\]
(10)

Siden DIFF ofte er ca. 20\% av DEPL, se Aure & Stigebrandt (1989) samt diskusjon i kap. 4.2 nedenfor, demonstrerer lign. (10) at det virkelige oksygenforbruket (dvs, KONS) som oftest er større enn det tilsynelatende oksygenforbruket (DEPL). DEPL er direkte knyttet til den observerte reduksjonen i oksygenkonsentrasjonen.

DEPL og DIFF kan bestemmes fra gjentatte målinger av oksygenkonsentrasjonen i flere dyp i et terskelbasseng. For beregningen av DIFF må en først bestemme \(\kappa \) fra tettethetsbudsjetten som beskrevet ovenfor. Når DEPL og DIFF er blitt bestemt beregnes KONS fra lign. (10). Fra KONS fåes deretter direkte tilsvarende vertikale fluks av organisk materiale, som bli nedbrutt i terskelbassenenget, fra følgende ligning (\(F_C \))_{z=u} = KONS \(H_b/\mu \).
For beregning av integrerte verdier av $\partial p/\partial t$ og $\partial O_2/\partial t$ må terskelbassengets areal $A(z)$ på ulike dyp, den hypsografiske funksjonen, være kjent. $A(z)$ blir bestemt ved planimetriering av sjøkart.

I praksis er det ikke alltid enkelt å avgjøre om bassengvannet har vært i stagnasjon i tidsrommet mellom to målinger. Ved analysen av måledata i vedlegg 1 og 2 har vi forlangt at tettheten i bassengvannet skal avta samtidig som det har vært et netto oksygenforbruk. Et tegn på at det har forekommet en mindre (partiell) innstrømming i en periode er at beregnede verdier av både Δp og KONS er vesentlig mindre enn i andre, nærliggende perioder. Slike perioder med ekstremt lave verdier på Δp og KONS blir forkastet ved analysen.
4. SAMMENFATTENDE DISKUSJON AV BEREGNINGSRESULTATER

De utførte analysene av historiske data fra noen terskelbasseng på Sørlandet og et basseng i Tromsøsundet presenteres i vedlegg 1 og analysene av data fra 6 terskelbasseng i Nordland og 3 i Troms i vedlegg 2. Til sammenligning kan nevnes at utviklingen av R-metoden var basert på målinger i 30 fjorder med til sammen 47 terskelbasseng i Møre og Romsdal. Sammenlignet med dette er datamengden for kalibrering av R-metoden for bruk på terskelfjorder i andre landsdeler lite. Vi vil her gi en sammenfattende diskusjon av de utførte analysene. Diskusjonen er arrangert tematisk.

4.1 Vertikal fluks av organisk materiale, \(F_c \)

Blant de undersøkte fire bassengene på Sørlandet (vedlegg 1) var det kun bassenget i Arendalsområdet som hadde et oksygenforbruk, og dermed \(F_c \)-verdi, i samsvar med Møreformelen, se Tabell 1. Et basseng i Tvedestrandsområdet og to i Grenlandsområdet (Langesundsfjorden og Håøyfjorden) viste forhøyet oksygenforbruk sammenlignet med Møreformelen. Formodentlig er det bare bassenget i Arendalsområdet som er representativt for et upåvirket område. De øvrige tre er trolig mer eller mindre påvirket av nåværende og tidligere antropogene utslipp, blant annet av trefiber. Grenlandsfjordene munner ut mot åpent hav. Dette kan medføre ekstra naturlig belasting på bassengvannet som diskutert nedenfor.

Tre av de undersøkte terskelbassengene i Nordland (vedlegg 2) hadde et oksygenforbruk i samsvar med Møreformelen mens de øvrige tre hadde et noe forhøyet oksygenforbruk.

Blant de undersøkte bassengene i Troms hadde bassenget i Tromsøsundet (Nordbotn, se vedlegg 1) oksygenforbruk i overensstemmelse med Møre-formelen. De tre kystnære fjordbassengene (vedlegg 2) hadde alle meget høyere oksygenforbruk enn hva Møreformelen tilsier.

En faktor som er felles for de fleste av de undersøkte fjorder med forhøyet
øksygenforbruk i bassengvannet er at fjordene munner direkte mot åpent hav. En annen faktor er at de fleste av disse fjordene har dype terskler, noe som medfører at fjordene også har større vannutskifting enn for øvrig like fjorder med grunnere terskler i samme område, se Stigebrandt & Aure (1990). Disse observasjonene peker i retning av at terskelbasseng i fjorder med munning mot åpent hav kan fungere som sluk for organisk materiale som driver forbi fjordmunningene. Blant annet kan det dreie seg om makroskopisk organisk materiale (tang og tare) som er blitt revet løs under storm på kysten.

Det kan finnes mange mulige forklaringer til at en fjord har en større vertikal transport av organisk materiale ned i terskelbassenget og dermed et høyere oksygenforbruk enn hva Møreformelen gir. Et antall mulige faktorer er listet nedenfor. Rekkefølgen er tilfeldig og uttrykker ikke vår oppfatning av de ulike faktorenes betydning.

1) større nettoproduksjon av organisk materiale enn i "normale" fjorder.
2) lengdeskalalen for pelagisk mineralisering (L) er større enn i "normale" fjorder. (eventuelt knyttet til stor forekomst av Phaeocystis, se Wassmann, 1991).
3) vårblomstringen utgjør en vesentlig andel av årlig nettoproduksjonen (organisk materialet fra vårblomstringen antas for en stor del å synke til bunns, se Wassmann, 1991).
4) resuspersion av organisk materiale fra grunnere områder som sedimenterer på dypere vann.
5) fjorden kan være påvirket av antropogene utslipp, død fisk eller ha en ekstremt stor bestand av levende fisk.
6) oksygenforbruket er ikke konstant med tiden, men kan ha et maksimum når målingene ble tatt. Målingene representerer derfor ikke det midlere oksygenforbruket.
7) fjorden munner mot åpent hav: kortvarig inntransport fra kystområdet av store mengder makroskopisk materiale som blir revet løs under storm på kysten.

Siden vi har konstatert spesielt stort oksygenforbruk i fjorder i direkte kontakt med åpent hav og med dype terskler, er vi på nåværende tidspunkt bøyd å tro at faktor 7 kan
være viktig. Faktor 6 har trolig betydning, kanskje spesielt i kombinasjon med faktorene 3, 4, 5 og 7. For kystnære fjorder nord for Lofoten kan formodentlig faktor 2 ha betydning. Ytterligere forskning trenges for å avdekke den kvantitative betydningen av samtlige faktorer.

Våre undersøkelser tyder foreløpig på at Møreformelen for oksygenforbruk er gyldig langs hele kyststrekningen fra indre Skagerrak til og med Troms for fjorder som ikke direkte munner ut mot åpent hav og som ikke er belastet av større antropogene utslipp.

4.2 Diffusjonens bidrag til oksygenbudsjettet

For Mørefjordene ble det funnet at midlere forhold mellom DIFF og KONS er ca. 0.2. Dette innebærer at ca 20% av forbrukt oksygen i terskelbassenget er tilført gjennom diffusjon, resten (80%) har kommet inn i bassenget i forbindelse med periodise utskifting av bassengvannet. For fjordbassengene på Sørlandskysten får vi et midlere ubetydelig bidrag fra DIFF siden en fjord med relativ mange observasjoner (Langesundsfjorden) har negativ DIFF (oksygen transporteres opp av terskel-bassenget ved diffusjon), se Tabell 1. For Nordlandsfjordene får vi et midlere forhold på 0.35 mens vi for Tromsfjordene (inkl. Nordbotn) får 0.17. Dette resultatet gjenspeiler hovedsakelig det faktum at bassengvannet i Nordlandsfjordene av topografiske og geografiske årsaker er de mest energirike av de fjorder som er undersøkt.

Oksygenforholdene i terskelbasseng påvirkes av den vertikale diffusjonen vanligvis slik at oksygen blandes ned i bassenget fordi oksygenkonsentrasjonen i dette er lavere enn over terskeldypet. Nedblanding av oksygen øker med økende blandingsenergi og økende forskjell i oksygenkonsentrasjon mellom bassengvannet og vannlaget ovenfor dette. En økt omblanding vil imidlertid også medføre en økt transport av næringsalter fra bassengvannet til vannlaget ovenfor dette. For fjorder med grunne terskler (<ca. 25 m) ligger dette vannlaget i fotisk sone (planterproduksjonsslaget) og den vertikale transporten av næringsalter vil i slike tilfeller gi opphav til en økt produksjon av organisk materiale og derved en økt vertikal transport av organisk materiale ned i
terskelbassenget.

Mht. oksygenforholdene i terskelbasseng finnes det således to innbyrdes motvirkende effekter av økt vertikal omblanding. Dels vil man få en økt nedovertransport av oksygen dels en økt nedovertransport av organisk materiale og dermed et økt oksygenforbruk. Det er mulig at disse effektene stort sett opphever hverandre i fjorder med grunne terskler. For dype terskler kommer ikke de opptransporterte næringssaltene opp i fotisk sone inne i fjorden, men vil bli transportert ut av fjorden under den fotiske sonen slik at en økt vertikal omblanding bare gir opphav til økt nedovertransport av oksygen, men ikke av organisk materiale.

4.3 Oksygenminimum, \(O_{2\text{min}} \)

For å observere et terskelbassengs oksygenminimum, \(O_{2\text{min}} \), trenges observasjoner av flere stagnasjonsperioder. Av denne grunn kan vi utgå fra at de fleste \(O_{2\text{min}} \)-verdier vi har observert er noe høyere enn absolutte minimumsverdier i fjordene. Teoretisk er \(O_{2\text{min}} \) en komplisert størrelse, se kap. 2, fordi både \(F_C \)-verdien og \(R_e \)-verdien ingår. Den sistnevnte er også komplisert og bestemmes av egenskapene til tetthetsfeltet utenfor fjordmunningen samt fjordens og munningens topografi. Dessuten ingår i \(O_{2\text{min}} \) tetthetsreduksjonsraten i bassengvannet som bestemmes av den vertikale lagdelingen, fjordens areal, munningens topografi og tidevannets amplitude.

Den foreløpig beste bruken av empiriske \(O_{2\text{min}} \)-data er å bruke disse sammen med data for \(\Delta \rho \) (dp/dt), KONS (Do/dt) og \(O_{2i} \) (oksygenkonsentrasjonen i innstrømmende nytt bassengvann) for å beregne empiriske \(R_e \)-verdier (se lign. 6). For Nordland og Troms (vedlegg 2) finner vi at den til Møredata tilpassede sammenhengen \(R_e=1.5\sigma_p \) ikke passer så godt, se Tabell 1. For Nordland og Troms passer sammenhengen \(R_e=\sigma_p \) bedre. En skal dog huske på at om man har observert altså høyere \(O_{2\text{min}} \)-verdier vil dette gi utslag i altså lave empiriske \(R_e \)-verdier. For Sørlandet kjenner vi foreløpig ikke \(\sigma_p \) og kan derfor ikke teste sammenhengen mellom \(R_e \) og \(\sigma_p \).

Som diskutert i kap. 2.2 er det viktig å få karakterisert tetthetsfluktusjonene i
tetthetsfeltet på ulike dyp langs kysten bedre enn ved standardavviket σ_p. Også
varigheten av tilfeller med høy tetthet må beskrives for å gi mulighet for å beregne
sikrere R_c-verdier for terskelbasseng.

Tabell 1 Midlere observerte og teoretiske størrelser for de undersøkte fjordene. OBS
er antallet observasjoner, H_i [m] er terskeldypet, H_b [m] er midlere bassengdyp under
terskelnivået, F_{co} og F_c [gC m$^{-2}$ md$^{-1}$] er henholdsvis midlere observert fluks av
organisk materiale og fluks ifølge Møreformelen. R_{co} og R_c [kg m$^{-3}$ md$^{-1}$] er henholdsvis
observert og teoretisk R_c-verdi. DIFF/KONS (%) er relative betydningen av vertikal
diffusjon for oksygentransporten til bassengvannet.

<table>
<thead>
<tr>
<th>Bassengets navn</th>
<th>OBS</th>
<th>H_i</th>
<th>H_b</th>
<th>F_{co}</th>
<th>F_c</th>
<th>R_{co}</th>
<th>R_c</th>
<th>DIFF/KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sørlandsfjorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trollnes (Arendal)</td>
<td>5</td>
<td>25</td>
<td>9</td>
<td>3.5</td>
<td>3.3</td>
<td>0.63</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td>Bjørnev. (Tvedestra)</td>
<td>1</td>
<td>15</td>
<td>19</td>
<td>6.9</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
<tr>
<td>Langesundsfjorden</td>
<td>7</td>
<td>50</td>
<td>38</td>
<td>3-40</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-0.13</td>
</tr>
<tr>
<td>Håøyfjorden</td>
<td>2</td>
<td>35</td>
<td>43</td>
<td>9</td>
<td>2.7</td>
<td>1.7</td>
<td>-</td>
<td>0.12</td>
</tr>
<tr>
<td>Nordlandsfjorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldefjorden</td>
<td>4</td>
<td>2-3</td>
<td>41</td>
<td>5.2</td>
<td>5.2</td>
<td>1.4</td>
<td>2.0</td>
<td>0.25</td>
</tr>
<tr>
<td>Fjellvika</td>
<td>1</td>
<td>55</td>
<td>29</td>
<td>8.0</td>
<td>1.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.18</td>
</tr>
<tr>
<td>Morsdalsfjorden</td>
<td>2</td>
<td>45</td>
<td>44</td>
<td>5.4</td>
<td>2.4</td>
<td>0.7</td>
<td>0.9</td>
<td>0.30</td>
</tr>
<tr>
<td>Nordfjorden</td>
<td>2</td>
<td>30</td>
<td>23</td>
<td>4.4</td>
<td>3.2</td>
<td>1.4</td>
<td>0.9</td>
<td>0.48</td>
</tr>
<tr>
<td>Sørøsfjordbotn</td>
<td>1</td>
<td>30</td>
<td>23</td>
<td>2.8</td>
<td>3.2</td>
<td>4.7</td>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Storvika</td>
<td>3</td>
<td>20</td>
<td>22</td>
<td>3.4</td>
<td>3.7</td>
<td>0.6</td>
<td>1.0</td>
<td>0.38</td>
</tr>
<tr>
<td>Tromsøfjorden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordbotn (Tromsø)</td>
<td>1</td>
<td>17</td>
<td>9</td>
<td>4.4</td>
<td>3.9</td>
<td>0.3</td>
<td>-</td>
<td>0.38</td>
</tr>
<tr>
<td>Sifjorden</td>
<td>2</td>
<td>80</td>
<td>28</td>
<td>12</td>
<td>1.1</td>
<td>0.01</td>
<td>0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>Selfjorden</td>
<td>2</td>
<td>25</td>
<td>30</td>
<td>10</td>
<td>3.3</td>
<td>0.3</td>
<td>0.7</td>
<td>0.17</td>
</tr>
<tr>
<td>Kattfjorden</td>
<td>1</td>
<td>45</td>
<td>26</td>
<td>9.5</td>
<td>2.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.29</td>
</tr>
</tbody>
</table>

19
5. ANBEFALINGER OM VIDERE ARBEID

Denne undersøkelsen har gitt økt kunnskap om prosesser og topografiske forhold som bestemmer vannutskifting og oksygenforbruk i terskelbasseng. Vi har også oppdaget nye problemstillinger som bør undersøkes for å oppnå forbedrede teoretiske beregninger av forholdene i terskelbasseng. Nedenfor har vi listet forslag til undersøkelser som vil øke forståelsen for vannutskifting og oksygenforhold i terskel-basseng.

1) Flere undersøkelser av den type som er presentert i denne rapporten. Dette skulle øke databasen og gi sikrere bestemmelser av F_c, dP/dt, O_{2min} og R_e.

2) For å bedre kunne bestemme et fjordbassengs R_e-verdi må en ha en bedre kjennskap til tetthetsfeltets variasjon utenfor fjordens munning. Selv om beregningen av tetthetsfeltets standardavvik σ_p (Stigebrantd & Aure, 1990) innebar et stort skritt fremover må en forfime beskrivelsen av tetthetsvariasjonene. En nøkkelstørrelse er varigheten av enkelte tilfeller med høy tetthet. For å bestemme denne trenges hyppige målinger av kystvannets tetthet over lang tid.

3) En trenger å utvikle metoden å bestemme en fjords R_e-verdi. Fremst trenger en å teoretisk undersøke innflytelsen av fyllingstiden som diskutert i kap. 2.2. Forhåpentlig kan en bruke den databank som nå finnes for terskelbasseng for å teste metoden. Denne undersøkelsen bør vente til etter den som er foreslått under 2) ovenfor.

4) Vi har fremmet en hypotese om at terskelbasseng i fjorder som er åpne mot storhavet kan importere store mengder organisk materiale, som er blitt revet løs i forbindelse med storm på kysten. Spesielt gjelder dette fjorder med dype tersklar og stor vannutskifting med kystvannet. Det organiske materielet som rives løs i kystsonen og holdes suspendert i vannsøylen pga. høyt turbulensnivå, kan bli transportert inn i fjordene hvor det pga. roligere strømforhold og mindre turbulens synker ned under terskelnivå.

Denne transporten av organisk materiale inn i fjorder ved åpen kyst må kvantifiseres
gjennom et måleprogram. Det burde f.eks. være mulig å sette ut nett (fiskegarn) på strategisk valgte plasser i munningen av en slik fjord for å studere inntransporten av slik materiale gjennom ett år.
6. LITTERATUR

Stigebrandt, A., 1992: Beregning av miljøeffekter fra menneskelige aktiviteter - Lærebok for brukere av vannkvalitetsmodellen "Fjordmiljø". (under utarbeidelse)

VEDLEGG 1

NOTAT

0-89073

VIDereføring av methode for bestemmelse av effekter av fiskeoppdrett på oksygenforhold i terskelfjorder

Fase 1.

Bergen/Oslo, 5.1.1990

Anders Stigebrandt
Jan Aure
Jarle Molvar
INNHOLDSFORTEGNELSE

<table>
<thead>
<tr>
<th>Kapittel</th>
<th>SIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INNLEDNING</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Bakgrunn og formål</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Prosjektbeskrivelse</td>
<td>2</td>
</tr>
<tr>
<td>2. BESKRIVELSE AV ANALYSER UTFØRT I 1989</td>
<td>3</td>
</tr>
<tr>
<td>3. RESULTATER OG DISKUSJON</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Tromsøområdet</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Arendalsområdet</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Tvedestrandsområdet</td>
<td>7</td>
</tr>
<tr>
<td>3.4 Grenlandsfjordene</td>
<td>9</td>
</tr>
<tr>
<td>4. AVSLUTTENDE KOMMENTARER</td>
<td>12</td>
</tr>
<tr>
<td>5. REFERANSLER</td>
<td>13</td>
</tr>
</tbody>
</table>
1. INNLEDNING.

1.1. BAKGRUNN OG FOREMÅL.

Mange av elementene i metoden er av generell karakter, f.eks. sammenheng mellom oksygenforbruk i fjordbassenget, terskeldep og midlere bassengdep. Metoden vil derfor ikke bare kunne brukes på miljøproblem knyttet til akvakultur, men også generelt på miljøproblem knyttet til antropogene utslipp av planenæringssalter og organisk stoff.

For å kunne bruke metoden på terskelfjorder i andre landsdeler er det imidlertid nødvendig å først undersøke om verdiene av to koeffisienter som ble bestemt for fjordene i Møre og Romsdal er gyldige også for andre deler av landet. Disse koeffisientene er knyttet til en beskrivelse av den naturlige vertikale fluksen av oksygenforbrukende organisk materiale.

Det er også aktuelt å etterprøve den nåværende metoden på mer omfattende datasett. Særlig gjelder det datasett som gir bedre bestemmelser av størrelsene $O_{2\text{min}}$, T_{O} og R.

Et forslag om videreføring av metodeutviklingen ble derfor utarbeidet og oversendt Miljøverndepartementet (Aure, Molvaer og Stigebrandt, 1989). Klarsignal for arbeidet på projektet ble gitt av Miljøverndepartementet i brev av 6.4.89.
Foremålet med dette prosjektet er følgelig å:

- kalibrere metoden mot data fra terskelfjorder i andre landsdeler.
- teste metodens følsomhet for usikkerhet i valgte konstanter.

1.2. PROSJEKTBESKRIVELSE.

Prosjektet er inndelt i to faser. For **fase 1**, som blir rapportert her, har det vært to hovedoppgaver. Den ene hovedoppgaven har vært innsamling og gjennomgang av eksisterende datamateriale fra terskelfjorder på kyststrekningene Oslo-Bergen og Trondheim-Tromsø, med sikte på å finne fjorder med tilstrekkelig gode data for videre utprøvning av metoden. Det gjelder opplysninger om topografiske forhold, belastning av organisk stoff og plantenæringssalter samt hydrografiske og hydrokjemiske målinger (spesielt temperatur, saltholdighet og oksygenforhold i dypvannet).

Metoden skal anvendes på fjorder som er ulike mht disse karakteristika. For hver strekning er det ønskelig å kunne bestemme verdiene av koeffisientene på minst 5 fjordbasseng. Når det gjelder oksygenforhold er det spesielt viktig å fremkalle tidsserier som gir grunnlag for beregning av oksygenforbruk pr tidsenhet, og best mulig bestemmelse av laveste oksygenverdi. Vi håpet allerede i fase 1 å finne data for å gjøre innledende tester av metoden.

Den andre hovedoppgaven for inneværende år har vært å planlegge **prosjektfase 2** som går ut på at få frem de data som trengs for en mer fullstendig test av metoden.
2. BESKRIVELSE AV ANALYSER UTFØRT I 1989.

Analysen av målte data går ut på dels å bestemme oksygenforbruket i terskelbasseng og dels på, så langt mulig, å teste R-metoden. Oksygenforbruk og tetthetsreduksjon i terskelbasseng samt den vertikale diffusjonskoeffisienten κ liker under terskeldypet er bestemt etter beskrivelser i Aure & Stigebrandt (1989). Vi presenterer resultatene av analysene i en tabell for hvert område. I denne presenterer vi totale oksygenforbruket i terskelbassenget, KONS, og de to bidragene til denne, DEPL (som er det "tilsynelatende" oksygenforbruk en kan bestemme direkte fra oksygenmålingene) samt DIFF (som er det diffusive bidraget).

Vi vil for hvert område sammenligne KONS med oksygenforbruket bestemt fra formelen på side 42 i Aure & Stigebrandt (1989). Terskelbassengets empiriske R-verdi kan beregnes utfra de observerte verdiene av oksygenforbruk og tetthetsreduksjon. For de fleste basseng i denne undersøkelsen har det ikke vært mulig å beregne den teoretiske tetthetsreduksjonen siden de ikke egentlig er fjordbasseng, men basseng i skjærgårdsområder hvor tidevannshastigheter ikke kan beregnes på en enkel måte.

Vi vil også oppgi den laveste observerte oksygenverdi i hvert terskelbasseng. Hvis observasjoner foreligger fra største dyp (ca 10 m over bunnen), kan vi sammenligne målt verdi med oksygenminimum beregnet fra den empiriske R-verdien for bassenget. Sammenligningen gir da et test på hvor godt R_0-verdien bestemt for Møre og Romsdal, stemmer for bassengene i denne undersøkelsen.
3. RESULTATER OG DISKUSJON.

3.1. TROMSØOMRÅDET.

I årene 1983-84 ble det gjennomført en resipientundersøkelse i Nordbotn, Kvaløya (Fig. 1). Vertikale profiler av saltholdighet, temperatur og oksygen ble observert ved 16 tilfeller. Målinger ble tatt for hver 5-te meter i dypet. Data er presentert i Oug & Holte (1985). Rapporten angir også hvordan det horisontale arealet av Nordbotn varierer med dypet. Terskeldypet er ca. 17 m og maksimalt dyp er ca. 57 m. Middeldypet av bassenget under terskelnivået er ca. 9 m.

Fig. 1. Kart over området omkring Nordbotn.

I vinterhalvåret er vannet stort sett homogent ned til største dyp. Ut på våren skaper ferskvannsavrenning og oppvarming et lettere

Målingene i 1983 tyder på at det var en stagnasjonsperiode mellom målingene 29/7 og 12/9. I 1984 derimot synes det å ikke ha vært noen stagnasjonsperiode.

Tabell 1. Resultat fra analysen av data fra Nordbotn (st. N3). Start og slutt er dato (år mån dag) for de benyttede profilene.
\(\Delta \rho \) er midlere tetthetsreduksjon i bassengvannet (kg/m\(^3\)/mån),
\(\kappa \) er vertikale diffusiviteten rett under terskeldypet (cm\(^2\)/s).
KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene (ml/l/mån).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta \rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>830729</td>
<td>830912</td>
<td>0.19</td>
<td>0.05</td>
<td>0.73</td>
<td>0.45</td>
<td>1.18</td>
</tr>
</tbody>
</table>

"Møreformelen" for oksygenforbruk gir 1.13 ml/l/mån.

Forholdene nede i terskelbassengeret er nokså homogene grunnet svak lagdelning (og/eller god omblanding). Observert oksygenminimum er ca. 3.9 ml/l. Selv om bassengets empiriske R-verdi kun er ca. 1.2 ser det slik ut at det er hyppige vannutskiftninger. Dette kan tyde på at \(R_0 \) i dette området er lavere enn lenger sør i landet. En lavere \(R_0 \) innebærer en mindre variabilitet i tettheten i kystvannet. Dette vil bli undersøkt i et annet prosjekt.
3.2. ARENDALSMRÅDET.

I perioden fra januar 1975 til november 1979 gjennomførte Havforskningsinstituttets Biologiske Stasjon i Flødevigen en resipientundersøkelse i Arendalsområdet (Dahl & Danielsen, 1986). Målinger ble utført 46 ganger i et basseng (stn. nr. 4, Trollnes, bredde 58°28,7'N, lengde 8°50,9'E, se Fig. 2). Bassenget har et største dyp på ca 56 m og terskeldypet er 25 m. Målinger ble som regel utført bl.a. på dypene 25, 30 og 35 m. Ved noen tilfeller ble det kun målt på et dyp i terskelbassenget (30 m). Disse målingene er ikke brukt i foreliggende analyse. Analyseresultatene er gjengitt i Tab. 2.

Fig. 2. Kart over Arendalsområdet.

Terskelbassenget er planimetrellt fra presisjonskart fra Norges Sjøkartverk. Volumet under 25 m er ca 7400000 m³ og arealet på dette dyp er ca 825000 m². Dette gir bassengets middeldyp til ca 9 m.

6.
Tabell 2. Resultat fra analysen av data fra Trollnes (st. 4). Start og slutt dato er år (mån dag) for de benyttede profilene. \(\Delta \rho \) er midlere tetthetsreduksjon i bassengvannet (kg/m\(^3\)/mån), \(\kappa \) er vertikale diffusiviteten rett under terskeldypet (cm\(^2\)/s). KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene (ml/l/mån).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta \rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>750515</td>
<td>750620</td>
<td>0.097</td>
<td>0.027</td>
<td>0.80</td>
<td>0.15</td>
<td>0.95</td>
</tr>
<tr>
<td>750620</td>
<td>750806</td>
<td>0.127</td>
<td>0.016</td>
<td>0.80</td>
<td>0.13</td>
<td>0.93</td>
</tr>
<tr>
<td>760621</td>
<td>760806</td>
<td>0.076</td>
<td>0.021</td>
<td>0.85</td>
<td>0.04</td>
<td>0.89</td>
</tr>
<tr>
<td>761011</td>
<td>761123</td>
<td>0.076</td>
<td>0.010</td>
<td>0.81</td>
<td>0.08</td>
<td>0.89</td>
</tr>
<tr>
<td>770623</td>
<td>770826</td>
<td>0.241</td>
<td>0.017</td>
<td>1.01</td>
<td>0.06</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Middelverdien for KONS er 0.94 med et standardavvik på 0.07. Møreformelen for oksygenforbruk gir 0.99 ml/l/mån.

Middelverdien av \(\Delta \rho \) er 0.123. Den empiriske R-verdien er da lik 0.91. Dette skulle tilsi at det tidvis kan være anoksiske forhold på største dyp. Oksygenminimum målt på 35 m dyp, ca 20 m over største dyp, var 1.2 ml/l. Dette dyp ligger volummessig stort sett mitt i terskelbassenget. Det trenges målinger på større dyp (f.eks. 45-50 m) for å teste R-metoden på dette punkt.

3.3. TVEDESTRANDSOMRÅDET.

I perioden 1983 - 1985 gjennomførte Biologisk Stasjon i Flødevigen en resipientundersøkelse i Tvedestrandsområdet (Dahl, Dahl & Danielsen, 1984, 1985). Stasjon 1 (Bjørnevikken, bredde 58°36,6'N, lengde 8°57,0'E) er beliggende i fjorden (Fig. 3). Største dyp er ca. 85 m og terskeldypet er 15 m. Middeldypet av terskelbassenget er 19.2 m. Stasjon 3 (Hestø, bredde 58°35,5'N, lengde 8°57,5'E) er beliggende i et basseng med største dyp 64 m og med terskeldypet 30 m. I det siste bassenget ble det kun målt i ett dyp nede i terskelbassenget (50 m). Dette er volummessig ikke representativt for bassenget og vi har derfor ikke tatt med dette bassenget i denne analysen.
Fig. 3. Kart over Tvedestrandsområdet.

Tabell 3. Resultat fra analysen av data fra Bjørneviken (st.1). Start og slutt er dato (år mån dag) for de benyttede profilene. $\Delta \rho$ er midlere tettettsreduksjon i bassengvannet (kg/m3/mån), κ er vertikale diffusiviteten rett under terskeldypet (cm2/s). KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene (ml/l/mån).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>840425</td>
<td>841211</td>
<td>0.018</td>
<td>0.010</td>
<td>0.85</td>
<td>0.03</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Møreformelen for oksygenforbruk gir 0.55 ml/l/mån. Det ser ut at Tvedestrandsfjorden har et forhøyet oksygenforbruk. Dette skyldes trolig at det tidligere har vært treforedlingsindustri i området. Det ligger igjen store mengder organisk materiale i fjordsedimentene (fiber) som vil øke oksygenforbruket (Wikander, 1978).

Fra Tab. 3 fremgår at \(\Delta \rho \) er 0.018. Den empiriske \(R \)-verdien er da kun 0.12. Dette innebærer at en kan forvente hydrogen sulfid høyt opp i terskelbassenget i lange perioder, noe som er i samsvar med observasjonene.

3.4. GRENLANDSFJORDENE.

Eidangerfjorden - Brevikfjorden - Langesundsfjorden har et sammenhengende terskelbasseng med største dyp 120 m og terskeldyp 50 m (Fig. 4). Terskelbassengets middeldyp er 38 m. Vi har brukt NIVAs målinger fra Langesundsfjorden (stasjon FGI) i 1974 og 1988. Resultatene av analysen er presentert i Tabell 4.

Et annet sammenhengende terskelbasseng har sentrum i Håøyfjorden. Største dyp er ca 210 m og terskeldypet er ca 35 m. Terskelbassengets middeldyp er 43 m. Igjen har vi brukt målinger fra NIVA (stasjon GII) fra 1988. Resultatene av analysene er gjengitt i Tabell 5.
Fig. 4. Kart over Grenlandsfjordene.

Tabell 4. Resultat fra analysen av data fra Langesundsfjorden (st. FG1). Start og slutt er dato (år mån dag) for de benyttede profilene. $\Delta \rho$ er midlere tetthetsreduksjon i bassengvannet ($\text{kg/m}^3/\text{mån}$), κ er vertikale diffusiviteten rett under terskeldypet (cm^2/s). KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene ($\text{ml/l}/\text{mån}$).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>740421</td>
<td>740620</td>
<td>0.299</td>
<td>1.870</td>
<td>0.92</td>
<td>-0.19</td>
<td>0.73</td>
</tr>
<tr>
<td>740620</td>
<td>740718</td>
<td>0.286</td>
<td>0.867</td>
<td>0.22</td>
<td>-0.02</td>
<td>0.20</td>
</tr>
<tr>
<td>740815</td>
<td>740925</td>
<td>0.131</td>
<td>0.634</td>
<td>0.29</td>
<td>-0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>880421</td>
<td>880525</td>
<td>0.046</td>
<td>1.378</td>
<td>0.24</td>
<td>-0.02</td>
<td>0.22</td>
</tr>
<tr>
<td>880615</td>
<td>880714</td>
<td>0.115</td>
<td>0.665</td>
<td>0.23</td>
<td>-0.02</td>
<td>0.21</td>
</tr>
<tr>
<td>880810</td>
<td>880907</td>
<td>0.209</td>
<td>0.365</td>
<td>0.59</td>
<td>-0.05</td>
<td>0.54</td>
</tr>
<tr>
<td>880907</td>
<td>881006</td>
<td>0.400</td>
<td>0.840</td>
<td>2.61</td>
<td>0.03</td>
<td>2.63</td>
</tr>
</tbody>
</table>
Tabell 5. Resultat fra analysen av data fra Håøyfjorden (st. GI1). Start og slutt er dato (år mån dag) for de benyttede profilene. $\Delta \rho$ er midlere tetthetsreduksjon i bassengvannet (kg/m3/mån), κ er vertikale differusiviteten rett under terskeltypet (cm2/s). KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene (ml/l/mån).

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>880615</td>
<td>880714</td>
<td>0.122</td>
<td>0.224</td>
<td>0.32</td>
<td>0.08</td>
<td>0.40</td>
</tr>
<tr>
<td>880810</td>
<td>880907</td>
<td>0.153</td>
<td>0.191</td>
<td>0.70</td>
<td>0.04</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Møreformelen for oksygenforbruk gir for Langesundsfjorden og Håøyfjorden henholdsvis 0.12 og 0.17 ml/l/mån hvilket slik er mye lavere enn hva som er beregnet fra observasjonene. Videre er det fra analysen klart at oksygenforbruket varierer mye i tiden. En årsak til dette kan være at organisk materiale som er blitt deponert på bunnen i grunne områder kan eroderes av f.eks. vindbølger ved sterk vind. Den resuspenderte materialen kan deretter sedimentere i dypere liggende lag.

Hvis vi bortser fra det uforståelig høye oksygenforbruket i Langesundsfjorden i september - oktober 1988 er midlere oksygenforbruk i dette bassenget ca. 0.30 ml/l/mån. Med et midlere verdi 0.21 for $\Delta \rho$ fåes den empiriske R-verdien til ca. 3.5. Hvis R_0 var samme verdi på Skagerrakkysten som i Møre og Romsdal (1.3) innebærer den relativt høye R-verdien at en skulle forvente relativt gode oksygenforhold i dette terskelbassenget. I dette bassenget måles imidlertid ofte oksygenkonsentrasjoner ≤ 2.5 mlO$_2$/l om høsten.

For Håøyfjordbassenget får vi midlere oksygenforbruk til 0.57 og midlere $\Delta \rho$ til 0.14. Dette gir en R-verdi lik omtrent 1.5 og en kan forvente at oksygenkonsentrasjonen i største dyp vil kunne være helt ned mot null. Dette stemmer med observasjonen tatt i forbindelse med Statlig Program for Forurensningsøvervåking i 1988-89 (upub. data).
4. AVSLUTTENDE KOMMENTARER.

De datasett vi har behandlet har ikke gitt svar på de spørsmål vi hadde stilt. Fra analyseresultatene presentert her kan vi ikke med sikkerhet si om "Møreformelen" for oksygenforbruk kan brukes på Skagerrakkysten. Formodentlig er det bare terskelbassenget fra Arendalsområdet som er representativt for et påvirket område. De øvrige terskelbasseng som er blitt undersøkt er trolig påvirket av nåværende og tidligere antropogene utslipp.

I fase 2 av prosjektet må vi fortsette å søke etter bra data fra påvirkete terskelfjorder på Sørlandet. Det er sannsynlig at et måleprogram må opprettes for å få innsamlet de data som trenges. En må være oppmerksom på hvor tett i vertikalen en bør måle. Måledypene bør velges etter volumfordelingen i bassenget og ikke etter noen etablert standard.

For Nord-Norge fant vi kun 1 basseng med brukbare målinger. Et måleprogram i et utvalg av fjorder som utføres av Akvaplan med støtte fra LENKA er underveis. Disse målingene skal utføres slik at de kan benyttes også for det foreliggende prosjekt.
5. REFERENSER.

VEDLEGG 2

UTPRØVING OG KALIBRERING AV TERSKELFJORDMODELLEN

VEDLEGG 2: RESULTATER FRA UTPRØVING PÅ FJORDE I NORDLAND OG TROMS

Göteborg/Bergen/Oslo 25.2 1992
Anders Stigebrandt
Jan Aure
Jarle Molvær
INNHOLDSFORTEGNELSE

1. BAKGRUNN ... 3
2. ANALYSER UTFØRT I 1991 4
3. RESULTATER FOR NORDLAND 5
 3.1 Elvefjorden ... 6
 3.2 Fjellvika ... 7
 3.3 Morsdalsfjorden .. 8
 3.4 Nordfjordbotn ... 10
 3.5 Sørarfjordbotn ... 12
 3.6 Storvika ... 13
4. RESULTATER FOR TROMS 14
 4.1 Sifjorden ... 15
 4.2 Selifjorden .. 16
 4.3 Kattfjorden .. 18
5. SAMMENDRAG .. 20
 5.1 Fjordene i Nordland 20
 5.2 Fjordene i Troms 22
6. REFERANSEN .. 23
APPENDIKS: Topografisk informasjon om fjordene 24
1. BAKGRUNN

For å kunne bruke den opprinnelige metoden, og Fjordmiljø-programmet, på terskelfjorder i andre landsdeler er det nødvendig å først bestemme verdiene av noen koeffisienter for disse områdene, se kap. 2 i foreliggende rapport.

I dette vedlegget presenteres resultater fra analysene av måledata fra Nordland og Troms.
2. ANALYSER UTFØRT I 1991

Beregningene av midlere oksygenforbruk og tetthetsreduksjon i terskelbassengene samt den vertikale diffusiviteten like under terskeldypet blir bestemt etter beskrivelser i kap. 3 i foreliggende rapport. En benytter seg herved av tilstandsforandringen i bassengvannet under såkalte stagnasjonsperioder. Under slike skjer ingen innstrømning av "nytt" bassengvann.

Vi presenterer resultatene av analysene i en tabell for hvert fjordbasseng. I tabellene presenterer vi for hver enkelt stagnasjonsperiode midlere tetthetsreduksjonsrate $\Delta \rho$, vertikale diffusiviteten κ like under terskeldypet samt midlere oksygenforbruket i terskelbassenget, KONS, og de to bidragene til denne, DEPL (som er det "tilsynelatende" oksygenforbruk som en kan bestemme direkte fra oksygenmålingene) samt DIFF (som er det diffusive bidraget), se kap. 3 i foreliggende rapport.

Med dataprogrammet Fjordmiljø blir beregninger foretatt av teoretiske forhold i fjordbassengene, bl.a. beregnes oksygenforbruk etter Møre-formelen, oksygenminimum og tetthetsreduksjonsrate. Resultatene presenteres sammen med resultatene av analysene av feltdata. En kort oppsummering fylkesvis av resultater presenteres i kap. 5 i dette vedlegg. En fyldigere diskusjon av resultatene er gitt i kap. 4 i foreliggende rapport.

For beregningene trenger en å ha kjennskap til noen topografiske egenskaper til fjordene. Arealet på ulike dyp, planimetert fra sjøkart, samt terskelens bredde på ulike dyp, estimert fra sjøkart, for de forskjellige fjordbassengene i denne undersøkelsen er presentert i tabeller i et Appendiks til dette vedlegget.
3. RESULTATER FRA NORDLAND

Vi har analysert data fra målingene i de seks terskelbassengene Elvefjorden, Fjellvika, Morsdalsfjorden, Nordfjorden, Sørkjordbotn og Storvika, se Skreslet (1991) for en nærmere beskrivelse av måleprogram og data. Fjordenes beliggenhet fremgår av Fig. 3.1. Resultatene av våre analyser for hvert enkelt basseng presenteres nedenfor. Et sammendrag av resultater gis i kap. 5 i dette vedlegg.

Undersøkelsesområdet i Salten, med stasjoner i Sørkjordbotn (sfbt), ytre del av Sørkjorden (srfj), Morsdalsfjorden (mofj), Elvefjorden (elfj), Fjellvika (fjvk), Saltenfjorden (safj), Storvika (stvk), Nordfjorden (nofj) og midtre del av Mistfjorden (mifj).

Fig. 3.1 Kart som viser Nordlandsfjordenes beliggenhet (fra Skreslet, 1991).
3.1 Elvefjorden.

Fjordens areal er ca 4.4 km² og største dyp er ca 100 m, se Tabell A3.1a i Appendiks bakerst i dette vedlegg. Terskeldypet H_c er ca 2.5 m (Tabell A3.1m) og midlere dyp under terskelen H_b er 41 m. På grunn av den meget trange og grunne munningen er Elvefjorden en såkalt strålefjord med beregnet (Fjordmiljø) maksimal strømhastighet i munningen på omtrent 3 m s⁻¹.

Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til største dyp. Målestasjonen (Fig. 3.2) ble besøkt 6 ganger (omtrent månedlig) i perioden 30/4 - 11/10 1990, se Skreslet (1991) for en detaljert beskrivelse av målingene.

Fig. 3.2 Fjellvika og Elvefjorden med hydrografiske stasjoner og dybdekoter fo 50 og 100 m (fra Skreslet, 1991).

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 15 m dyp. Det var mindre innstrømninger til bassengvannet mellom målingene i juni og juli og de tilhørende tidsrommene er derfor utelatt fra beregningene. Midlere observert oksygenforbruk i bassengvannet var 0.31 ml l⁻¹ md⁻¹, se Tabell 3.1, hvilket er det samme som beregnes fra Møreformelen. Oksygenminimunm er ifølge Fjordmiljø 4.7 ml l⁻¹ mens laveste observerte verdi var 4.2. Observert midlere tetthetsreduksjon i bassengvannet er 0.24 kg m⁻³ md⁻¹ mens Fjordmiljø
beregnet 0.49. Denne forskjellen i tetthetsreduksjon skyldes formodentlig at vi ikke har hatt tilgang til tilstrekkelig nøyaktige sjøkartfor bestemmelse av munningstopografien. Basert på målresultatene får en $R_p=1.4$, noe som er lavere enn forventet verdi (1.98).

Tabell 3.1 Resultat fra analysen av data fra Elvefjorden. Start og slutt er data (år måned dag) for de benyttede profilene. $\Delta \rho$ er midlere tetthetsreduksjon i bassengvannet [kg m$^{-3}$ md$^{-1}$], κ er vertikale diffusiviteten rett under terskeldypet [cm2 s$^{-1}$] KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l$^{-1}$ md$^{-1}$].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900430</td>
<td>900605</td>
<td>0.229</td>
<td>1.673</td>
<td>0.17</td>
<td>0.03</td>
<td>0.20</td>
</tr>
<tr>
<td>900704</td>
<td>900806</td>
<td>0.367</td>
<td>1.643</td>
<td>0.25</td>
<td>0.20</td>
<td>0.45</td>
</tr>
<tr>
<td>900806</td>
<td>900907</td>
<td>0.110</td>
<td>0.937</td>
<td>0.19</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>900907</td>
<td>901011</td>
<td>0.259</td>
<td>0.541</td>
<td>0.25</td>
<td>0.10</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Middelverdi 0.24 0.31

3.2 Fjellvika.

Fjordens areal er ca 9.6 km2 og største dyp er ca 130 m, se Tabell A3.2a i Appendiks bakerst i dette vedlegg. Terskeldypet H_t er ca 55 m (Tabell A3.2m) og midlere dyp under terskelen H_b er ca 29.1 m. Dette er slik en fjord med et terskeldyp som går utenfor det område som Møreformelen ble bestemt for. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til 120 m dyp. Målestasjonen (Fig. 3.2) ble besøkt 9 ganger (omtrent månedlig) i perioden 30/4 1990 - 8/1 1991, se Skreslet (1991) for en detaljert beskrivelse av målingene.

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 65 m dyp. Det var bare i en periode om høsten at bassengvannet var stagnant. KONS ble da bestemt til 0.67 mens Møreformelen gir 0.15 ml l$^{-1}$ md$^{-1}$. Oksygenminimum er lik 5.6 ifølge Fjordmiljø mens laveste observerte verdi var 4.8 ml l$^{-1}$. Observert midlere tetthetsreduksjon $\Delta \rho$ i
bassengvannet er 0.32 mens Fjordmiljø beregner 0.33 kg m\(^{-3}\) md\(^{-1}\). Ved beregningene med Fjordmiljø har vi tatt hensyn til at Elvefjorden ligger innenfor Fjellvika slik at fjordareal til innenfor Fjellvikas munning er 9.6+4.4 km\(^{2}\) (basseng i serie). Ut fra måleresultatene får en \(R_s=0.57\), noe som er litt lavere enn forventet verdi (0.78). Siden det kun foreligger en stagnant periode er beregningene naturligvis noe usikre.

Tabell 3.2 Resultat fra analysen av data fra Fjellvika. Start og slutt er data (år måned dag) for de benyttede profilene. \(\Delta \rho\) er midlere tetthetsreduksjon i bassengvannet kg [m\(^{-3}\) md\(^{-1}\)], \(\kappa\) er vertikale diffusiviteten rett under terskel-dypet [cm\(^2\) s\(^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) md\(^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta \rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900903</td>
<td>901011</td>
<td>0.320</td>
<td>0.901</td>
<td>0.55</td>
<td>0.12</td>
<td>0.67</td>
</tr>
</tbody>
</table>

3.3 Morsdalsfjorden.

Fjorden er egentlig et langt sund og har følgelig to åpninger (markert med I og II i Fig. 3.3). Dette utelukker beregninger med Fjordmiljø som foreløpig ikke kan brukes på åpne sund. Vi kan imidlertid bruke Møreformelen for å se hva denne gir mht. oksygenforbruk i terskel-bassenget.

Fjordens areal er ca 16.7 km\(^{2}\) og største dyp er ca 145 m, se Tabell A3.3a i Appendiks bakerst i dette vedlegg. Terskeldypet \(H_t\) ut mot Sørfjorden er ca. 45 m (åpning I i Fig. 3.3) mens maksimumsdypet i åpning II er ca 60 m (Tabell A3.3m). Midlere dyp under terskelen (45 m), \(H_b\), er ca 43.6 m. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til største dyp. Målestasjonen (Fig. 3.3) ble besøkt 9 ganger (omtrent månedlig) i perioden 3/5 1990 - 8/1 1991, se Skreslet (1991) for en detaljert beskrivelse av målingene.
Fig. 3.3 Morsdalsfjorden og Sørfjordbotn med hydrografiske stasjoner og dybdekoter for 50, 100 og 200 m (fra Skreslet, 1991).
Ved analysen av målingene valgte vi øvre grense for bassengvannet til 75 m dyp. Bassengvannet var i stagnasjon i perioden august til ut i oktober. Midlere observert oksygenforbruk KONS er 0.30 mens Møreformelen gir 0.12 ml l\(^{-1}\) md\(^{-1}\). Som allerede nevnt kan vi foreløpig ikke bruke Fjordmiljø for å beregne \(\Delta \rho\) og derfor ikke heller \(O_{2\text{min}}\) for dette bassenget. Observert \(O_{2\text{min}}\) er 4.7 ml l\(^{-1}\). Fra observerte størrelser beregner vi \(R_o=0.65\), noe som er litt lavere enn forventet verdi (0.85).

Tabell 3.3 Resultat fra analysen av data fra Morsdalsfjorden. Start og slutt er data (år måned dag) for de benyttede profilene. \(\Delta \rho\) er midlere tetthetsreduksjon i bassengvannet [kg m\(^{-3}\) md\(^{-1}\)], \(\kappa\) er vertikale diffusiviteten rett under terskeldypet [cm\(^2\) s\(^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) md\(^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta \rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900801</td>
<td>900903</td>
<td>0.115</td>
<td>4.148</td>
<td>0.24</td>
<td>0.05</td>
<td>0.29</td>
</tr>
<tr>
<td>900903</td>
<td>901009</td>
<td>0.192</td>
<td>1.129</td>
<td>0.17</td>
<td>0.13</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Middelverdi

3.4 Nordfjorden.

Fjordens areal er ca 2.6 km\(^2\) og største dyp er ca 75 m, se Tabell A3.4a i Appendiks bakerst i dette vedlegg. Terskeldypet \(H_o\) er ca 30 m (Tabell A3.4m) og midlere dyp under terskelen \(H_b\) er ca 22.8 m. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til største dyp. Målestasjonen (Fig. 3.4) ble besøkt 9 ganger (omtrent månedlig) i perioden 2/5 1990 - 9/1 1991, se Skreslet (1991) for en detaljert beskrivelse av målingene.

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 35 m dyp. Bassengvannet var i stagnasjon i perioden juli til ut i september. Midlere observert oksygenforbruk KONS er 0.46 mens Møreformelen gir 0.31 ml l\(^{-1}\) md\(^{-1}\). Oksygenminimum er ifølge Fjordmiljø 2.9 mens laveste oksygenobservasjon er 2.2 ml l\(^{-1}\). \(\Delta \rho\) fra
observasjonene varierte mye (0.014 og 0.325) mens Fjordmiljø gir 0.09 kg m\(^{-3}\) md\(^{-1}\). Fra observerte størrelser kan en beregne \(R_s = 1.4\), noe som er litt større enn forventet verdi (0.91).

Tabell 3.4 Resultat fra analysen av data fra Nordfjorden. Start og slutt er data (år måned dag) for de benyttede profilene. \(\Delta \rho\) er midlere tettethetsreduksjon i bassengvannet [kg m\(^{-3}\) md\(^{-1}\)], \(\kappa\) er vertikale diffusiviteten rett under terskel-dypet [cm\(^2\) s\(^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) md\(^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta \rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900703</td>
<td>900802</td>
<td>0.014</td>
<td>0.033</td>
<td>0.32</td>
<td>0.06</td>
<td>0.38</td>
</tr>
<tr>
<td>900802</td>
<td>900904</td>
<td>0.325</td>
<td>0.402</td>
<td>0.16</td>
<td>0.38</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Middelverdi 0.17 0.46

Fig. 3.4 Nordfjorden og Storvika med hydrografiske stasjoner og dybdekoter for 50, 100 og 200 m (fra Skrealet, 1991).
3.5 Sørkjordbotn.

Fjordens areal er ca. 4.6 km² og største dyp er ca. 75 m, se Tabell A3.5a i Appendiks bakerst i dette vedlegg. Terskeldypet H_t er ca. 30 m (Tabell A3.5m) og midlere dyp under terskelen H_b er ca. 23 m. Rent topografisk er denne fjorden forholdsvis lik Nordfjord. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til største dyp. Målestasjonen (Fig. 3.3) ble besøkt 7 ganger (omtrent månedlig) i perioden 3/5 - 15/11 1990, se Skreslet (1991) for en detaljert beskrivelse av målingene.

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 35 m dyp. Bassengvannet var i stagnasjon kun i en periode. Midlere observerte oksygenforbruk KONS var 0.30 mens Møreformelen gir 0.32 ml l⁻¹ md⁻¹. Oksygenminimum er ifølge Fjordmiljø 4.1 mens laveste oksygenobservasjon er 3.3 ml l⁻¹. Midlere $\Delta \rho$ fra observasjonene er 0.52 mens Fjordmiljø beregner denne til 0.15 kg m⁻³ md⁻¹. Fra observerte størrelser beregner vi R_e=4.7, noe som er mye større enn forventet verdi (0.91). En skal dog bemerke seg at beregningene er meget usikre siden det foreligger kun en stagnasjonsperiode.

Tabell 3.5 Resultat fra analysen av data fra Sørkjordbotn. Start og slutt er data (år måned dag) for de benyttede profilene. $\Delta \rho$ er midlere tetthetsreduksjon i bassengvannet [kg m⁻³ md⁻¹], κ er vertikale diffusiviteten rett under terskeldypet [cm² s⁻¹]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l⁻¹ md⁻¹].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900903</td>
<td>901009</td>
<td>0.517</td>
<td>0.620</td>
<td>0.12</td>
<td>0.18</td>
<td>0.30</td>
</tr>
</tbody>
</table>
3.6 Storvika.

Fjordens areal er ca 2.5 km² og største dyp er ca 85 m, se Tabell A3.6a i Appendiks bakerst i dette vedlegg. Terskeldypet \(H_t\) er ca 20 m (Tabell A3.6m) og midlere dyp under terskelen \(H_b\) er ca 21.7 m. Storvika har slik litt grunnere terskel enn de to foregående. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort med 10 m mellomrom fra havoverflaten og ned til største dyp. Målestasjonen (Fig. 3.4) ble besøkt 9 ganger (omtretn månedlig) i perioden 2/5 1990 - 9/1 1991, se Skreslet (1991) for en detaljert beskrivelse av målingene.

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 25 m dyp. Bassengvannet var stagnant i tre perioder. Midlere observert oksygenforbruk KONS var 0.38 mens Møreformelen gir 0.40 ml l\(^{-1}\) md\(^{-1}\). Oksygenminimum er ifølge Fjordmiljø 3.9 mens laveste oksygenobservasjon er 2.7 ml l\(^{-1}\). Midlere \(\Delta\rho\) fra observasjonene er 0.07 mens Fjordmiljø beregner denne til 0.19 kg m\(^{-3}\) md\(^{-1}\). Fra obseverte størrelser beregner vi \(R_o=0.61\), noe som er litt lavere enn forventet verdi (0.96).

Tabell 3.6 Resultat fra analysen av data fra Storvika. Start og slutt er data (år måned dag) for de benyttede profilene. \(\Delta\rho\) er midlere tetthetsreduksjon i bassengvannet [kg m\(^{-3}\) md\(^{-1}\)], \(\kappa\) er vertikale diffusiviteten rett under terskel-dypet [cm\(^2\) s\(^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) md\(^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>(\Delta\rho)</th>
<th>(\kappa)</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900502</td>
<td>900606</td>
<td>0.052</td>
<td>0.239</td>
<td>0.17</td>
<td>0.26</td>
<td>0.43</td>
</tr>
<tr>
<td>900703</td>
<td>900802</td>
<td>0.050</td>
<td>0.074</td>
<td>0.21</td>
<td>0.09</td>
<td>0.30</td>
</tr>
<tr>
<td>900802</td>
<td>900904</td>
<td>0.113</td>
<td>0.109</td>
<td>0.33</td>
<td>0.08</td>
<td>0.41</td>
</tr>
<tr>
<td>Middelverdi</td>
<td></td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
</tr>
</tbody>
</table>

13
4. RESULTATER FOR TROMS

Vi har analysert målingene i de tre terskelbassengene Sifjorden, Selfjord og Kattfjord, se Dahle & Larsen (1991) for en nærmere beskrivelse av måleprogrammet. Fjordenes beliggenhet fremgår av Fig. 4.1. Resultatene av våre analyser for hvert enkelt basseng presenteres nedenfor. Et sammendrag av resultater gis i kap. 5 i dette vedlegg.

Fig. 4.1 Kart som viser Tromsfjordenes beliggenhet (fra Dahle & Larsen (1991)).
4.1 Sifjorden.

Fjordens areal er ca. 4.8 km² og største dyp er ca. 135 m, se Tabell A4.1a i Appendiks bakerst i dette vedlegg. Terskeldypet H_t er ca. 80 m (Tabell A4.1m) og midlere dyp under terskelen H_b er ca. 28.3 m. Denne terskelen er langt dypere enn terskelen i de undersøkte fjordene i Møre & Romsdal og Nordland. Målinger av saltholdighet, temperatur og oppløst oksygen ble gjort på 0, 30, 50, 80, 100, 110 og 120 m dyp. Målestasjonen (Fig. 4.2) ble besøkt 4 ganger (omtrent månedlig) i perioden 14/8 - 14/11 1990, se Dahle & Larsen (1991) for en detaljert beskrivelse av målingene.

\[\text{\textbf{SIFJORDEN}} \]

\[\text{\textcircled{0}} = \text{Under 0.5 m dyp ved lavvann} \]

Fig. 4.2 Sifjorden (fra Dahle & Larsen, 1991).

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 90 m dyp. Bassengvannet var stagnant i to perioder. Observert oksygenforbruk KONS var i de to periodene 0.42 og 1.61 mens Møreformelen gir 0.10 ml 1⁻¹ md⁻¹. Oksygenminimum er ifølge Fjordmiljø 4.5 mens
laveste oksygenobservasjon er 4.7 ml l⁻¹. Δρ fra observasjonene er 0.003 og 0.017 mens Fjordmiljø beregner denne til 0.03 kg m⁻³ md⁻¹. Fra observerte størrelser beregner vi $R_e=0.013$, noe som er mye mindre enn forventet verdi (0.52).

Tabell 4.1 Resultat fra analysen av data fra Sifjorden. Start og slutt er data (år måned dag) for de benyttede profilene. Δρ er midlere tetthetsreduksjon i bassengvannet [kg m⁻³ md⁻¹], κ er vertikale diffusiviteten rett under terskel-dypet [cm² s⁻¹]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l⁻¹ md⁻¹].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>Δρ</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900814</td>
<td>900925</td>
<td>0.003</td>
<td>0.026</td>
<td>0.42</td>
<td>0.01</td>
<td>0.42</td>
</tr>
<tr>
<td>901024</td>
<td>901114</td>
<td>0.017</td>
<td>0.048</td>
<td>1.61</td>
<td>0.00</td>
<td>1.61</td>
</tr>
<tr>
<td>Middelverdi</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Selfjorden.

Fjordens areal er ca 3.6 km² og største dyp er ca 95 m, se Tabell A4.2a i Appendiks bakerst i dette vedlegg. Terskel-dypet H_t er ca 25 m (Tabell A4.2m) og midlere dyp under terskelen H_b er ca 29.9 m. Denne fjorden er ut fra topografien lik Nordlandsfjordene. Målinger av salttholdighet, temperatur og oppløst oksygen ble gjort på 0, 15, 25, 40, 50, 60, 75 og 90 m dyp. Målestasjonen (Fig. 4.3) ble besøkt 4 ganger (omtrent månedlig) i perioden 14/8 - 14/11 1990, se Dahle & Larsen (1991) for en detaljert beskrivelse av målingene.

Ved analysen av målingene valgte vi øvre grense for bassengvannet til 35 m dyp. Bassengvannet var stagnant i to perioder. Midlere observert oksygenforbruk KONS var 0.84 (Tab. 4.2) mens Møreformelen gir 0.25 ml l⁻¹ md⁻¹. Oksygenminimum er ifølge Fjordmiljø 3.8 mens laveste oksygenobservasjon er 3.7 ml l⁻¹. Midlere Δρ fra observasjonene er 0.09 mens Fjordmiljø beregner denne til 0.08 kg m⁻³ md⁻¹. Fra observerte størrelser beregner vi $R_e=0.25$, noe som er mindre enn forventet (0.66).
Tabell 4.2 Resultat fra analysen av data fra Selfjorden. Start og slutt er data (år måned dag) for de benyttede profilene. $\Delta \rho$ er midlere tetthetsreduksjon i bassengvannet [kg m\(^{-3}\) md\(^{-1}\)], κ er vertikale diffusiviteten rett under terskel-dypet [cm\(^2\) s\(^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) md\(^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>$\Delta \rho$</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900814</td>
<td>900925</td>
<td>0.119</td>
<td>0.349</td>
<td>0.68</td>
<td>0.16</td>
<td>0.84</td>
</tr>
<tr>
<td>901022</td>
<td>901114</td>
<td>0.067</td>
<td>0.209</td>
<td>0.72</td>
<td>0.13</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Middelverdi 0.09 0.84

Fig. 4.3 Selfjorden (fra Dahle & Larsen, 1991).
4.3 Kattfjorden.

Fjordens areal er ca 6,6 km² og største dyp er ca 95 m, se Tabell A4.3a i Appendiks bakerst i dette vedlegg. Terskedypet H_a er ca 45 m (Tabell A4.3m) og midlere dyp under terskelen H_b er ca 25,7 m. Målinger av saltholdighet, temperatur og oppstått oksygen ble gjort på 0, 20, 40, 50, 60, 70 og 80 m dyp. Målestasjonen (Fig. 4.4) ble besøkt 4 ganger (omtrent månedlig) i perioden 16/8 - 13/11 1990, se Dahle & Larsen (1991) for en detaljert beskrivelse av målingene.

Fig. 4.4 Kattfjorden (fra Dahle & Larsen, 1991).

Ved analyses av målingene valgte vi øvre grense for bassengvannet til 55 m dyp. Bassengvannet var stagnant kun i en periode. Observert oksygenforbruk KONS var 0.89 mens Møreformelen gir 0.24 ml l⁻¹ md⁻¹. Oksygenminimum er ifølge Fjordmiljø 4,5 mens laveste oksygenobservasjon er 2.8 ml l⁻¹. Midlere $Δρ$ fra observasjonene er 0.16 mens Fjordmiljø beregner denne til 0.10 kg m⁻³ md⁻¹. Fra observerte størrelser beregner vi R_0 = 0.58, noe som er lik forventet verdi (0.60).
Tabell 4.3 Resultat fra analysen av data fra Kattfjorden. Start og slutt er data (år måned dag) for de benyttede profilene. Δρ er midlere tetthetsreduksjon i bassengvannet [kg m\(^{-3}\) \(\text{md}^{-1}\)], κ er vertikale diffusiviteten rett under terskeldypet [\(\text{cm}^2 \text{s}^{-1}\)]. KONS er totale oksygenforbruket i bassengvannet og DEPL og DIFF de to komponentene [ml l\(^{-1}\) \(\text{md}^{-1}\)].

<table>
<thead>
<tr>
<th>Start</th>
<th>Slutt</th>
<th>Δρ</th>
<th>κ</th>
<th>DEPL</th>
<th>DIFF</th>
<th>KONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>900816</td>
<td>900926</td>
<td>0.166</td>
<td>0.222</td>
<td>0.63</td>
<td>0.26</td>
<td>0.89</td>
</tr>
</tbody>
</table>
5. SAMMENFATTENDE VURDERING

Det var en høy del spredning i beregnede verdier av KONS og Δρ for flere av fjordbassengene. Dette kan dels skyldes naturlige variasjoner og dels direkte feil som årsak til unøyaktighet i målingene. Generelt er spredningen i Δρ noe større enn i KONS. For fjordene i Troms foreligger det lite data, noe som gjør beregningene for disse fjordene usikre. At vi har lite data til rådighet for hver fjord innebærer også at vi troligvis ikke har observert de virkelige oksygenminimumsverdiene. For dette trenges flere måledata. Et sammendrag av resultatene av analysene i de to tidligere kapitlene gies nedenfor. Resultatene diskuteres også i kap. 4 i foreliggende rapport.

5.1 Fjordene i Nordland.

Analysen viser at oksygenforbruk, og således vertikal transport av organisk materiale, har omtrent samme amplitude i Nordlandsfjordene som lenger syd i landet (Tab. 5.1). Muligens finnes en tendens til litt høyere oksygenforbruk, dette gjelder spesielt bassengene med terskler dybere enn ca. 30 m. Antallet undersøkte fjordbasseng er dog altfor lite for at en skal kunne si noe helt bestemt om dette.

Teoretiske oksygenminimumsverdier, fra Fjordmiljø, er systematisk høyere enn observerte verdier. Virkelige oksygenminimumsverdier vil, som diskutert ovenfor, trolig være enda lavere enn de som ble observert. Dette kan tyde på dels at fluksen av organisk materiale ned i fjordene er noe større enn hva Møreformelen gir, dels at teoretisk tetthetsreduksjonsrate Δρ er noe større enn hva som ble observert. Begge disse årsaker ser ut å kunne ha en viss betydning, se Tab. 5.1.

Den teoretiske Δρ-verdien er følsom for bl.a. hvor godt munningstopografien er beskrevet. Med de grove sjøkart vi har hatt til rådighet kan det ikke utelukkes at en del av avvikene har sin årsak i dette. Empiriske og teoretiske Rₚ-verdier er omtrent like store men spredningen er relativ stor.

Selv om det altså finnes indikasjoner på at det er et noe forhøyet oksygenforbruk kan en foreløpig regne med at Møreformelen for
Oksygenforbruk gjelder også for Nordlandsfjordene. Dette betyr at en kan bruke samme verdier for F_c og L som for Møre & Romsdal.

Tabell 5.1 Analyseresultater for Nordlandsfjordene. OBS er antallet observasjoner, KONS er midlere observert oksygenforbruk og dO_2/dt er beregnet fra Møreformelen [ml l$^{-1}$ md$^{-1}$]. $O_{2 \text{mino}}$ er observert oksygenminimum og $O_{2 \text{min}}$ er beregnet fra Fjordmiljø [ml l$^{-1}$]. $\Delta \rho_c$ er midlere observert tetthetsreduksjon og $\Delta \rho_f$ er beregnet fra Fjordmiljø [kg m$^{-3}$ md$^{-1}$]. H_c [m] er terskeldypet. H_b [m] er midlere dyp av terskelbassenget.

<table>
<thead>
<tr>
<th>OBS</th>
<th>KONS</th>
<th>dO_2/dt</th>
<th>$O_{2 \text{mino}}$</th>
<th>$O_{2 \text{min}}$</th>
<th>$\Delta \rho_c$</th>
<th>$\Delta \rho_f$</th>
<th>H_c</th>
<th>H_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elvefjorden</td>
<td>4</td>
<td>0.31</td>
<td>0.31</td>
<td>4.2</td>
<td>4.7</td>
<td>0.24</td>
<td>0.49</td>
<td>2.5</td>
</tr>
<tr>
<td>Fjellvika</td>
<td>1</td>
<td>0.67</td>
<td>0.15</td>
<td>4.8</td>
<td>5.6</td>
<td>0.32</td>
<td>0.33</td>
<td>55</td>
</tr>
<tr>
<td>Morsdalsfj.</td>
<td>2</td>
<td>0.30</td>
<td>0.12</td>
<td>4.6</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>Nordfjorden</td>
<td>2</td>
<td>0.46</td>
<td>0.31</td>
<td>2.2</td>
<td>2.9</td>
<td>0.17</td>
<td>0.09</td>
<td>30</td>
</tr>
<tr>
<td>Sørwjordbotn</td>
<td>1</td>
<td>0.30</td>
<td>0.32</td>
<td>3.3</td>
<td>4.1</td>
<td>0.52</td>
<td>0.15</td>
<td>30</td>
</tr>
<tr>
<td>Storvika</td>
<td>3</td>
<td>0.38</td>
<td>0.40</td>
<td>2.7</td>
<td>3.9</td>
<td>0.07</td>
<td>0.19</td>
<td>20</td>
</tr>
</tbody>
</table>
5.2 Fjordene i Troms.

De undersøkte fjordene i Troms synes definitivt å ha et større oksygenforbruk (Tab. 5.2) og dermed også større vertikal transport av organisk materiale enn fjordene lenger sør langs kysten. Møreformelen for oksygenforbruk kan således ikke brukes for fjordene ytterst på kysten i Troms. Dette kan være forårsaket av flere faktorer som blir diskutert i kap. 4 i foreliggende rapport. For Tromsfjordene er overensstemmelsen mellom beregnet og observert minimumskonsentrasjon forb奥斯ende god. Dette må skyldes tilfeldigheter. Sammenhengen mellom observert og beregnet tetthetsreduksjon i bassengvannet $\Delta \rho$ er temmelig god.

Tabell 5.2 Analyseresultater for Tromsfjordene. OBS er antallet observasjoner, KONS er midlere observert oksygenforbruk og dO_2/dt er beregnet fra Møreformelen [ml 1$^{-1}$ md$^{-1}$]. $O_{2\text{ming}}$ er observert oksygenminimum og $O_{2\text{minf}}$ er beregnet fra Fjordmiljø [ml 1$^{-1}$]. $\Delta \rho_o$ er midlere observert tetthetsreduksjon og $\Delta \rho_f$ er beregnet fra Fjordmiljø [kg m$^{-3}$ md$^{-1}$]. H_t [m] er terskeldypet. H_b [m] er midlere dyp av terskelbassenget.

<table>
<thead>
<tr>
<th>Fjorden</th>
<th>OBS</th>
<th>KONS</th>
<th>dO_2/dt</th>
<th>$O_{2\text{ming}}$</th>
<th>$O_{2\text{minf}}$</th>
<th>$\Delta \rho_o$</th>
<th>$\Delta \rho_f$</th>
<th>H_t</th>
<th>H_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sifjorden</td>
<td>2</td>
<td>1.02</td>
<td>0.10</td>
<td>4.7</td>
<td>4.5</td>
<td>0.01</td>
<td>0.03</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>Selfjorden</td>
<td>2</td>
<td>0.84</td>
<td>0.25</td>
<td>3.7</td>
<td>3.8</td>
<td>0.09</td>
<td>0.08</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Kattfjorden</td>
<td>1</td>
<td>0.89</td>
<td>0.24</td>
<td>2.8</td>
<td>4.5</td>
<td>0.16</td>
<td>0.10</td>
<td>45</td>
<td>26</td>
</tr>
</tbody>
</table>
6. REFERANSE

Stigebrandt, A., 1992: Beregning av miljøeffekter fra menneskelige aktiviteter - Lærebok for brukere av vannkvalitetsmodellen "Fjordmiljø". (under preparering)

Appendiks

Topografisk informasjon om fjordene.

Tabell A3.1a Elvelfjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.40</td>
</tr>
<tr>
<td>20</td>
<td>2.89</td>
</tr>
<tr>
<td>50</td>
<td>1.89</td>
</tr>
<tr>
<td>70</td>
<td>1.13</td>
</tr>
<tr>
<td>80</td>
<td>0.25</td>
</tr>
<tr>
<td>99</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.1m Elvelfjordens munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2.5</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabell A3.2a Fjellvikas areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.57</td>
</tr>
<tr>
<td>10</td>
<td>8.20</td>
</tr>
<tr>
<td>20</td>
<td>6.90</td>
</tr>
<tr>
<td>30</td>
<td>6.17</td>
</tr>
<tr>
<td>55</td>
<td>4.40</td>
</tr>
<tr>
<td>70</td>
<td>2.90</td>
</tr>
<tr>
<td>90</td>
<td>1.90</td>
</tr>
<tr>
<td>100</td>
<td>0.88</td>
</tr>
<tr>
<td>115</td>
<td>0.37</td>
</tr>
<tr>
<td>125</td>
<td>0.06</td>
</tr>
<tr>
<td>130</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell A3.2m Fjellvikas munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>280</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>10</td>
<td>170</td>
</tr>
<tr>
<td>30</td>
<td>165</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>55</td>
<td>145</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.3a Morsdalsfjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.70</td>
</tr>
<tr>
<td>45</td>
<td>13.00</td>
</tr>
<tr>
<td>70</td>
<td>9.45</td>
</tr>
<tr>
<td>100</td>
<td>4.40</td>
</tr>
<tr>
<td>130</td>
<td>1.00</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.3m Morsdalsfjordens munningsbredde på ulike dyp (2 åpninger).

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1300</td>
</tr>
<tr>
<td>10</td>
<td>990</td>
</tr>
<tr>
<td>20</td>
<td>880</td>
</tr>
<tr>
<td>30</td>
<td>530</td>
</tr>
<tr>
<td>45</td>
<td>140 (0)</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>61</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell A3.4a Nordfjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.64</td>
</tr>
<tr>
<td>10</td>
<td>2.26</td>
</tr>
<tr>
<td>30</td>
<td>1.76</td>
</tr>
<tr>
<td>50</td>
<td>1.13</td>
</tr>
<tr>
<td>60</td>
<td>0.63</td>
</tr>
<tr>
<td>65</td>
<td>0.37</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.4m Nordfjordens munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>10</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>170</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.5a Sørfjordbotns areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.66</td>
</tr>
<tr>
<td>10</td>
<td>3.90</td>
</tr>
<tr>
<td>20</td>
<td>3.15</td>
</tr>
<tr>
<td>30</td>
<td>2.39</td>
</tr>
<tr>
<td>50</td>
<td>1.51</td>
</tr>
<tr>
<td>60</td>
<td>0.75</td>
</tr>
<tr>
<td>70</td>
<td>0.12</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.5m Sørfjordbotns munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell A3.6a Storvikas areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.50</td>
</tr>
<tr>
<td>10</td>
<td>2.10</td>
</tr>
<tr>
<td>20</td>
<td>1.50</td>
</tr>
<tr>
<td>30</td>
<td>1.10</td>
</tr>
<tr>
<td>40</td>
<td>0.88</td>
</tr>
<tr>
<td>50</td>
<td>0.50</td>
</tr>
<tr>
<td>60</td>
<td>0.06</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A3.6m Storvikas munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>425</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A4.1a Sifjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.75</td>
</tr>
<tr>
<td>30</td>
<td>2.31</td>
</tr>
<tr>
<td>60</td>
<td>2.31</td>
</tr>
<tr>
<td>80</td>
<td>1.68</td>
</tr>
<tr>
<td>100</td>
<td>1.12</td>
</tr>
<tr>
<td>120</td>
<td>0.50</td>
</tr>
<tr>
<td>130</td>
<td>0.12</td>
</tr>
<tr>
<td>135</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A4.1m Sifjordens munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1250</td>
</tr>
<tr>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>81</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell A4.2a Selfjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.64</td>
</tr>
<tr>
<td>10</td>
<td>2.98</td>
</tr>
<tr>
<td>20</td>
<td>2.20</td>
</tr>
<tr>
<td>25</td>
<td>1.99</td>
</tr>
<tr>
<td>30</td>
<td>1.77</td>
</tr>
<tr>
<td>50</td>
<td>1.25</td>
</tr>
<tr>
<td>70</td>
<td>0.56</td>
</tr>
<tr>
<td>80</td>
<td>0.32</td>
</tr>
<tr>
<td>85</td>
<td>0.17</td>
</tr>
<tr>
<td>95</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A4.2m Selfjordens munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>540</td>
</tr>
<tr>
<td>10</td>
<td>480</td>
</tr>
<tr>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell A4.3a Kattfjordens areal på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.56</td>
</tr>
<tr>
<td>30</td>
<td>3.87</td>
</tr>
<tr>
<td>40</td>
<td>3.06</td>
</tr>
<tr>
<td>60</td>
<td>1.93</td>
</tr>
<tr>
<td>70</td>
<td>1.25</td>
</tr>
<tr>
<td>80</td>
<td>0.62</td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
</tr>
<tr>
<td>95</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabell A4.3m Kattfjordens munningsbredde på ulike dyp.

<table>
<thead>
<tr>
<th>dyp (m)</th>
<th>bredde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>675</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
</tr>
<tr>
<td>20</td>
<td>450</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
</tbody>
</table>

c:\wp51\fjordtes