Vannforurensning fra skytefelt

Delprosjekt 3

Forurensningsgrad av aktuelle tungmetaller fra 10 av Forsvarets skytefelter
NIVA - RAPPORT

Norsk institutt for vannforskning

Hovedkontor
Postboks 89, Korsvoll
0808 Oslo 8

Sørendesavdellingen
Telefon: 47 21 23 52 80
Telefax: 47 21 41 45

Østlandsavdellingen
Telefon: 47 65 78 752
Telefax: 47 65 78 402

Vestlandsavdellingen
Telefon: 47 65 78 522
Telefax: 47 65 78 402

Akveplan-NIVA A/S
Sørendesavdellingen
Telefon: 47 65 78 620
Telefax: 47 65 78 402

Rapportens tittel:
Vannforurensning fra skytefelt. Del 3.
Forurensning av aktuelle tungmetaller fra 10 av Forsvarets skytefelter.

Dato:
febr. 1992

Trykket:
NIVA 1992

Faggruppe:
ferskvann

Geografisk område:
hele landet

Antall sider:
Opplag:
41
200

Oppdragsgiver:
Forsvarets Bygningstjeneste, avd. Harnar

4 emneord, norske:
1. Tungmetaller i skytefelt
2. Vannforurensning
3. Bly, kobber, sink og kadmium
4. Bevegelse/biotilgiengelighet

4 emneord, engelske:
1. Heavy metals in shooting fields
2. Water pollution
3. Lead, copper, zinc and cadmium
4. Mobility/bioavailability

Prosjektleder
[Sigurd Rognerud]

For administrasjonen
[Jan Brov]

ISBN 82-577 -2051-8
Vannforurensning fra skytefelt

Delprosjekt 3

Forurensning av aktuelle tungmetaller fra 10 av Forsvarets skytefelter.

Ottestad februar 1992
Saksbehandler: Sigurd Rognerud
Medarbeidere: Bjørn Boye
 Gösta Kjellberg
FORORD

Rapporten er utarbeidet ved NIVA's Østlandsavdeling.

Innholdsfortegnelse

Sammendrag .. 1

1. Innledning .. 3

2. Måleprogram og resultater fra feltundersøkelsene ... 5
 2.1 Evjemoen ... 5
 2.2 Heistadmoen og Hengsvatn skytefelt ... 9
 2.3 Steinsjøfeltet .. 13
 2.4 Hjerkinn skytefelt .. 16
 2.5 Giskås skytefelt ... 18
 2.6 Sætermoen/Karlstadskogen/Mauken skytefelt ... 21
 2.7 Porsangermoen ... 25
 2.8 Høybuktmoen ... 29

3. Sammenfattende diskusjon .. 33
 3.1 Er det mulig å fremskaffe realitiske mål på mengden deponerte
 prosjekt Prior i skytefeltene? ... 33
 3.2 Hvorfor bruker vi vannmoser til å måle bly og kobberforurensning i
 bekker fra skytefelt, og hva viser resultatene av undersøkelsen? 33
 3.3 Hvorfor bruker vi sedimentter til å måle forurensningsgraden av
 tungmetaller i innsjøer, og hva viser disse analysene for
 undersøkelsen i skytefeltene? ... 34
 3.4 Biotilgjengeligheten av bly og kobber på skytebanen måler vi
 bl.a. ved opptak i vegetasjon. .. 39
 3.5 Sammenfatning av resultatene fra de ulike undersøkelsene 40

4. Litteraturliste .. 41
Sammendrag

Anrikningsgraden av kobber var beskjeden i terrestrisk vegetasjon på kulefangervollene og feltskytebanene, og variasjonen mellom de ulike vegetasjonstypene var relativt små. Når det gjelder bly var anrikningsgraden betydelig høyere (100-300x). På grunn av lave referanseverdier blir imidlertid ikke totalverdiene ekstremt høye, og de var i gjennomsnitt ikke vesentlig høyere enn konsentrasjonene i humussjiktet i de deler av landet som mottar mest blyforurenset nedbør. Vegetasjonen på feltskytebaner og kulefangervoller er også relativt sparsomt utviklet og utgjør begrensende arealer. Ut fra en total vurdering er det derfor neppe store betenkeligheter knyttet til dyr som beiter på skytebaner. Den største risikoen er sannsynligvis at de kan få i seg metallfragmener fra prosjektler. Kulefangervoller kan imidlertid gjordes inn slik at denne risikoen reduseres.

Vannanalysene fra sig som avvanker feltskytebaner varierer en del, og viste enkelte ganger svært høye konsentrasjoner av tungmetaller (over 100 mg/l). Vannet i disse sigene forynnes imidlertid raskt av tilkommende bekker. Analysene av vannmoser viste at anrikningsgraden av kobber i bekkene var beskjeden bortsett fra i bekkene fra feltskytebanene i Steinsjøfeltet og Ejvemoen der en klar anrikning ble registrert. For bly var forurensningen mer markert med klare utslag for de fleste feltene bortsett fra i Sæterelva (Sætermoen) og Svåni/Grisungbekken på Hjerkin. Selv om forurensningsutslagene var klare, så var ikke konsentrasjonene særlig høgere enn de en kan observere i elver og bekker som avvanker felter med høye naturlige blyverdier, eller områder som mottar mye atmosfæriske blyforurensninger. Moseanalysen viser at det ikke er særlig sannsynlig at metallavrenning fra skytefelt vil gi forgiftninger av økosystemer utenfor skytefeltene. Effektene er i hovedsak knyttet til de første hundre metrene nedstrøms skytebanene.
Sedimentanalysene viser at hvis nedslagsfeltet til prosjektile ne ligger nær vannkanten, registreres klare blyforurensninger i sedimentene. Dette var i første rekke tilfelle for Røyevatn i Porsanger, Lortjern på Sætermoen og i beskjedent omfang også for nedre Sætervatn (Sætermoen). Med unntak av Røyevatn var imidlertid ikke totalkonsentrasjonene i overflatesedimentene i noen av innsjøene høyere enn de en finner i områder med høy belastning av atmosfæriske blyforurensninger. Forurensningsgraden av kobber var ubetydelig for innsjøer knyttet til skytefeltene.

Kobber og bly er elementer som lett binder seg til humus og finfordelede uorganiske partikler i jorda. Selv en forsuring endrer lite på dette bildet. Den generelt lave forurensningsgraden av kobber og bly i de akvatiske økosystemene i skytefeltene må tyde på at korrosjonen av prosjektilene går meget seint, og at de frigjorte metallene bindes raskt til jordsmonnet og føres i liten grad ut i bekker og elver. Vannsystemene utenfor skytefeltenes grenser (nedstrøms) påvirkes praktisk talt ikke av forurensninger av kobber og bly fra feltene. Når det gjelder sink og kadmium er det ikke målt forurensninger av betydning på noe økosystemnivå. Vi kan derfor konkludere med at kobber, bly, sink og kadmiumforurensninger fra skytefelt i hovedsak er begrenset til plassen der de deponeres på skytebanen og i kulefangervollene. Korrosjonen av prosjektile er svært sein og mye seinere enn de årlig deponeringer. Mengdene av metaller i feltene vil derfor forsette å øke med årene så lenge feltene er i bruk. En overvåkningsundersøkelse på noen utvalgte felter vil avdekke eventuelle årlige variasjoner i metallavrenning og dessuten vise utviklingen over tid i metallavrenningen.

Mange av skytebanene ble av praktiske årsaker anlagt på "moer" med store løsavsetninger. Det man ikke viste da, var at de også ble gunstig plassert med hensyn til metallforurensning av vann som følge av deponerte prosjektile. Det er en forutsetning at massene fra kulefangervollene ikke flyttes evt. dumpes i vassdrag og at områdene fra nedslagsområdene på feltskytebanene ikke utsettes for unødig erosjon.

Konklusjonen om at det er knyttet små problemer til metallavrenning fra skytefelt, såfremt deponeringen av prosjektile ikke skjer i eller i nær tilknytning til vann, er også i god overensstemmelse med resultatene fra Terningmoen (delprosjekt 2), samt andre publiserte undersøkelser om emnet (se Rognerud et. al 1991). Skytefeltene i vår undersøkelse hadde stor variasjon i løsavsetningenes karakter, humusjikets mektighet, atmosfærisk belastning av syrer og metaller, vegetasjon og generell vannkvalitet. Det er derfor rimelig å tro at denne konklusjonen kan gjelde for de aller fleste skytebaner i landet (unntak lerduebaner).
1. Innledning

I undersøkelsen som presenteres her har vi studert dagens tilstand med hensyn vannforurensninger av bly og kobber fra følgende av Forsvarets 10 viktigste skytefelt:

<table>
<thead>
<tr>
<th>Evjemoen (Aust-Agder)</th>
<th>Giskås (Nord-Trøndelag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heistadmoen (Buskerud)</td>
<td>Sætermoen (Troms)</td>
</tr>
<tr>
<td>Hengsvatn (Buskerud)</td>
<td>Mauken (Troms)</td>
</tr>
<tr>
<td>Steinsjøfeltet (Oppland)</td>
<td>Porsangermoen (Finnmark)</td>
</tr>
<tr>
<td>Hjerkinn (Oppland)</td>
<td>Høybuktmoen (Finmark)</td>
</tr>
</tbody>
</table>

Målsetningen med undersøkelsen har vært å vurdere om deponerte tungmetaller etter militær øving i disse feltene har skapt et miljøproblem. Dernest å vurdere omfanget av eventuelle forurensninger og konsekvenser for berørte områder utenfor skytefeltene.

Betydningen av eventuelle påslag i forurensningene fra korrosjon av prosjektilene skal vurderes opp mot størrelsen av bidraget fra naturlige geokjemiske kilder og forurensninger fra atmosfæren. Vi vil også vurdere betydningen av kulefangervoller som miljøproblem for vann og vassdrag.
Nedenfor har vi vist skjematisk hva som kan skje med metallene fra de løses ut fra prosjekttilene til de kommer ut i vassdragene.

På bakgrunn av en detaljert gjennomgang i delrapport nr.1 (Rognerud et. al 1991) har vi valgt følgende fremgangsmåte for å løse målsetningen med undersøkelsen. De høgste konsentrasjonene av utløste metaller må vi forvente å finne i sig fra skytebanen og i vegetasjon som vokser på eller i umiddelbar nærhet av deponiene. Begge disse sider er belyst i undersøkelsen med vannprøver i sig og vegetasjonsprøver på kulefangervoller og feltskytebaner. Likevel er disse effektene svært lokale og metallkonsentrasjonene fortynnes videre i tilkomne bekk og elver før de havner i innsjøer. Unntaksvis ligger kulefangermassen i strandkanten på innsjøen. Fortyningseffektene og bindinger i jord og bekkesedimenter gjør at metallkonsentrasjonene i bekkene kan bli så lave at vannanalysene blir usikre og krever et omfattende prøvetakningsopplægg for å representere middelverdier. I stedet bruker vi vannmos som er gode bioindikatorer. Disse plantene oppkonsentrerer metallene (opptil 1000 ganger) i forhold til vannet og gir langt sikrere og mer representative prøver. Verdiene i vannmosene kan tilbakeregress til hva den gjennomsnittlige metallkonsentrasjonen har vært i eksponeringsperioden.

2. **Måleprogram og resultater fra feltundersøkelsene.**

I dette hovedkapitlet presenteres informasjoner om feltene, måleprogrammet og resultater av analysene. En samlet diskusjon om metodikk og vurderingsgrunnlag og økologiske konsekvenser er gjort i kap.3.

2.1 Evjemoen

Områdebeskrivelse

En oversikt over skytefeltet og de viktigste banene er gitt i Fig.1.

![Image](image.png)

Fig.1 Oversikt over Evjemoen skytefelt. Skytebanene er rasterlagt.

er også Evje Tekniske verksted stasjonert i området. IØ2 er organisert med ledelse og administrasjon, et skolekompani og tre utdanningskompanier. I alt representerer forsvaret noe over 200 arbeidsplasser i området.

Måleprogram

b) Sedimentprøver fra Bigtjern (avrenning fra felttskytebane), lille Skjebbetjern (avrenning fra gammel søppellass) og store Skjebbetjern (referanse).

c) Prøver av vegetasjon fra banevollen ved 200m banen (Steinsfjellet) og fra felttskytebanen samt referanser fra området ved Skjebbetjern.

d) Prøver fra selve kulefangervollen på 200m banen og referansemasser.

Resultater (Tab.1)

a) Mosene nedstrøms skytebanene (St.A, C og D) hadde noe høyere konsentrasjoner av kobber og bly enn referanseprøven, men totalt sett var det likevel relativt lave verdier. Påvirkningen av sink fra skytefeltene var ubetydelig. Konsentrasjonene i Bjoråa nedstrøms hele feltet (st.E) var nær naturlige bakgrunnsverdier.

På bakgrunn av moseanalysene er det rimelig å anta at avrenningen av metaller fra skytebanene på Evjemoen er relativt liten og i allefall begrenset til et lite område nedstrøms banen. Perioden mosene sto ute var svært tørr med liten vannføring i bekkene. En kan forvente at mer normale avrenningsforhold vil gi større transport av metaller og følgelig høyere konsentrasjon i vannmosen.

b) Konsentrasjonsmålingene i sedimentene (Tab.1) viser at den atmosfæriske belastningene av bly og kobber antagelig er hovedårsaken til konsentrasjonsøkningene mot toppen av sedimentkjernene. Målingene i sediment fra Bigtjern tyder ikke på at eventuelle forhøyde bly og kobber verdier som følge av avrenning fra felttskytebanen har hatt noen avgjørende betydning for vannkvaliteten i noen tidsperioder fra banen ble tatt i bruk.
Lille Skjebbetjern er noe forurensnet av kadmium og sink fra avfallsplassen, men verdien er ikke så høge at dette er noe alvorlig problem.

c) Analysene av vegetasjon på feltskytebanen (Tab.1) viser at konsentrasjonene var ubebydelig høgere enn referansene for kobber, men betydelig høyere enn referansene for bly. Størst konsentrasjonsøkning var det for bly i blåbær og tyttebærblad (ca.100x), men søknningen i gras og bjørkeblad var mer beskjeden. Resultatene viser at vegetasjonen på feltskytebanen var forurenset av bly, men ubetydelig av kobber.

d) Det er samlet prøver av samme type masse som kulefangervollen på 200m er bygd opp av (blindprøve), og det er tatt prøver av banevollens masser (uten synelige prosjekttilfragmenter).

Blindprøvens konsentrasjon var: Cu: 1878 ppm, Pb: 3ppm.
Banevollens konsentrasjoner var: Cu: 3280 ppm, Pb: 25000 ppm.

Dette viser at det særlig er bly som skaper den største anrikningen i banevollen.

Konklusjon.

Skytefeltet på Evjemoen er slik anlagt at forurensningen av tungmetaller i bekker og elver fra skytebanene får liten betydning. I kulefangervoller og på feltskytebanen var konsentrasjonene i jordsmonnet høge spesielt for bly. Dessuten var vegetasjonen også anriket på bly (ca. 100x). Vegetasjonsprøvene ble tatt på de lokaliteter (måleområder) hvor vi antok at belastningen var størst (eks. på "stormål" i feltskytebanene). Resultatene viser at de store deponeringene av prosjektter i skytefeltet kun gir svært lokal forurensning, mens vannsystemene noen hundre meter nedstrøms skytebanene var nesten upåvirket. Dette skyldes forynning av tilkommende bekker og binding av metall i nedbørfeltet. Kvantitativt må utsiget ha liten betydning og spesielt i forhold til de prosjekttilmengder som årlig deponeres.
Tab. 1 Kjemiske og biologiske målinger i Evjemoen skytelfelt. Undersøkelsene er gjort i juli 1991. GT=glødetap, OC=organisk materiale, Kf=konc./ref.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Cd</th>
<th>Fe</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
</tr>
<tr>
<td>store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skjebbetj.</td>
<td>0-1</td>
<td>38</td>
<td>105</td>
<td>11,5</td>
<td>104</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>(6m)</td>
<td>1-2</td>
<td>37</td>
<td>199</td>
<td>19,9</td>
<td>119</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>36</td>
<td>222</td>
<td>22,2</td>
<td>152</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>16</td>
<td>10</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>lille</td>
<td>0-1</td>
<td>69</td>
<td>59</td>
<td>1,4</td>
<td>53</td>
<td>2,0</td>
<td>750</td>
</tr>
<tr>
<td>Skjebbetj.</td>
<td>1-2</td>
<td>62</td>
<td>70</td>
<td>1,7</td>
<td>78</td>
<td>3,0</td>
<td>964</td>
</tr>
<tr>
<td>(3m)</td>
<td>2-3</td>
<td>64</td>
<td>55</td>
<td>1,3</td>
<td>61</td>
<td>2,3</td>
<td>922</td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>81</td>
<td>41</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bigtjern</td>
<td>0-1</td>
<td>58</td>
<td>42</td>
<td>3,2</td>
<td>69</td>
<td>1,5</td>
<td>64</td>
</tr>
<tr>
<td>(6m)</td>
<td>1-2</td>
<td>59</td>
<td>39</td>
<td>3,0</td>
<td>64</td>
<td>1,4</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>60</td>
<td>38</td>
<td>3,0</td>
<td>74</td>
<td>1,6</td>
<td>61</td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>43</td>
<td>13</td>
<td>-</td>
<td>46</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.A</td>
<td></td>
<td>22</td>
<td>2,7</td>
<td>9,9</td>
<td>1,3</td>
<td>60</td>
<td><1</td>
</tr>
<tr>
<td>st.B</td>
<td></td>
<td>34</td>
<td>4,2</td>
<td>13,0</td>
<td>1,7</td>
<td>53</td>
<td><1</td>
</tr>
<tr>
<td>st.C</td>
<td></td>
<td>30</td>
<td>3,7</td>
<td>9,0</td>
<td>1,2</td>
<td>95</td>
<td>1,5</td>
</tr>
<tr>
<td>st.D</td>
<td></td>
<td>55</td>
<td>6,9</td>
<td>32,8</td>
<td>4,3</td>
<td>87</td>
<td>1,4</td>
</tr>
<tr>
<td>Bjørnåi (E)</td>
<td>8</td>
<td>-</td>
<td>7,5</td>
<td>-</td>
<td>64</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rosseland (ref.) F</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>79</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vegetasjon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gras feltskyteb.</td>
<td>7</td>
<td>2,3</td>
<td>40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blåbærris</td>
<td>ref.</td>
<td>45</td>
<td>3,7</td>
<td>416</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørkeblad</td>
<td>ref.</td>
<td>18</td>
<td>1,2</td>
<td>116</td>
<td>5,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyttebærris</td>
<td>ref.</td>
<td>23</td>
<td>3,2</td>
<td>295</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment dam</td>
<td></td>
<td>7,4</td>
<td>398</td>
<td>50</td>
<td>133</td>
<td><0,5</td>
<td></td>
</tr>
<tr>
<td>Blindpr. sand</td>
<td></td>
<td>1878</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Skytevoll</td>
<td></td>
<td>3280</td>
<td>25000</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannprøver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bigtj.</td>
<td>pH</td>
<td>5,7</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørnåi</td>
<td></td>
<td>6,2</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lille Skjebbetj</td>
<td></td>
<td>6,5</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>store Skjebbetj</td>
<td></td>
<td>4,6</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Heistadmoen og Hengsvatn skytefelt.

Områdebeskrivelse

En oversikt over skytefeltene og de viktigste banene er gitt i Fig.2.

Fig.2 Oversikt over Hengsvatn og Heistadmoen skytefelt. Skytebaner er rasterlagt eller angitt med pil.

Etter krigen ble plassen først nyttet til rekruttutdanning for Tysklandsbrigadene (1947-53). Etter denne perioden ble Infanteriets øvingsavdeling nr.1 (lØ1) etablert bl.a. for rekruttutdanning til Nord-Norge avd.

Måleprogram

a) Eventuelt forurensning av tungmetaller fra skyteaktiviteten ble studert ved 2 sedimentprøver i Hengsvatn, en fra et basseng nær nedslagsfeltet for granater, og en fra innsjøens dypeste område. Villingbutjern ble brukt som referanse på en innsjø som bare mottar atmosfærisk belastning (Fig.2).

Effekter av skyteaktivitet i deler av Heistadmoen skytefelt antas å bli samlet opp i Ertstjern. Det ble derfor tatt sedimentprøver også fra dette tjernet (se Fig.2).

b) Vegetasjonsprøver ble tatt fra feltskytebanene og referanseprøver fra feltet utenfor.

c) Det ble også samlet sedimenter fra en liten dam (st. A, Fig.2) i en bekk som drenerer ned i Ertstjern.
Resultater (Tab.2).

a) Villingbutjernen er kun utsatt for atmosfæriske forurensninger. Vi ser at konvéntrasjonene i sedimentet i denne innsjøen er noe høyere enn i Hengsvatn. Dette skyldes i hovedsak et noe høyere innhold av organisk materiale i sedimentene i Villingbutjern. For øvrig er referanseverdier, prøvetakingsdyp og vannkjemi svært lik for begge innsjøene. Alle disse forhold tatt i betrakning viser at skyteaktiviteten rundt Hengsvatn ikke har gitt utslag i forhøyde tungmetallverdier i sedimentet. Vi kan med andre ord fastslå at økningen i metallkonsentrasjoner i de øvre sedimentlag i Hengsvatn i tidsperioden etter 1940 skyldes økte atmosfæriske deponeringer og ikke avrenning fra skyteaktiviteten. Dette resultatet var for øvrig som ventet, da feltet omkring Hengsvann bare i meget begrenset grad nyttes for våpen med bly/kobber-prosjektler.

Nedbørfeltet til Erstjernen kommer bl.a. fra Kisgruveåsen i tillegg til at det avvanner flere av skytebanene. Vi ser at konvéntrasjonen av kobber, sink og kadmium var betydelig høyere i dette tjernet enn i de to overnevnte. Dette gjelder også referanseverdierne, slik at de naturlig forhøyede bakgrunnsverdier er geologisk betinget, og at noe påslag av forurensninger fra skyteaktivitet ikke ble registrert.

b) Analysene av vegetasjon fra feltskytebanen (Tab.2) viser at den var 3-9 ganger anriket på kobber og 38-153 ganger anriket på bly i forhold til referanseverdierne utenfor feltet. Dette viser at forurensningen i skytefeltet på Heistadmoen i hovedsak er begrenset til selve skytebanene.

c) Sedimentene i en dam (st.A) som ligger et stykke opp i nedbørfeltet til Erstjern viser også lave verdier for tungmetaller (Tab.2). Påslaget i det øverste sedimentlaget i forhold til referansen var ikke høyere enn det en kan forvente ut fra atmosfæriske deponeringer.

Konklusjon

Skytefeltet på Heistadmoen er slik anlagt at det i utgangspunktet ikke vil være knyttet store betenkeligheter til vannforurensning av tungmetaller fra skyteaktiviteten. Resultatene viser at forurensninger av kobber og bly er knyttet til skytebane-området, mens påvirkningen utenfor disse var ubetydelige.
Tab.2 Kjemiske og biologiske målinger i Heistadmoen og Hegsvatn skytefelt. Undersøkelsene er gjort i juli 1991. GT=glødetap, OC=organisk materiale, Kf=konc./ref.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT cm</th>
<th>Cu ppm</th>
<th>Kf %</th>
<th>Pb ppm</th>
<th>Kf %</th>
<th>Zn ppm</th>
<th>Kf %</th>
<th>Cd ppm</th>
<th>Kf %</th>
<th>Fe ppm</th>
<th>OC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hengsv. (16 m)</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>41</td>
<td>53</td>
<td>2,0</td>
<td>106</td>
<td>6,2</td>
<td>175</td>
<td><1</td>
<td>0,7</td>
<td>1</td>
<td>25,1</td>
<td>15</td>
</tr>
<tr>
<td>1-2</td>
<td>42</td>
<td>104</td>
<td>3,8</td>
<td>128</td>
<td>7,5</td>
<td>244</td>
<td><1</td>
<td>1,7</td>
<td>2,1</td>
<td>20,2</td>
<td>17</td>
</tr>
<tr>
<td>2-3</td>
<td>42</td>
<td>42</td>
<td>1,6</td>
<td>103</td>
<td>6,1</td>
<td>217</td>
<td><1</td>
<td>1,0</td>
<td>1,2</td>
<td>8,8</td>
<td>20</td>
</tr>
<tr>
<td>ref.</td>
<td>48</td>
<td>27</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>256</td>
<td>-</td>
<td>0,8</td>
<td>-</td>
<td>7,8</td>
<td>23</td>
</tr>
<tr>
<td>Hengsv. (19m)</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>36</td>
<td>1,8</td>
<td>123</td>
<td>5,8</td>
<td>219</td>
<td>1,9</td>
<td>1,1</td>
<td>2</td>
<td>6,7</td>
<td>23</td>
</tr>
<tr>
<td>1-2</td>
<td>48</td>
<td>35</td>
<td>1,8</td>
<td>148</td>
<td>7,0</td>
<td>215</td>
<td>1,8</td>
<td>1,1</td>
<td>2</td>
<td>7,5</td>
<td>23</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>68</td>
<td>3,4</td>
<td>157</td>
<td>7,5</td>
<td>254</td>
<td>2,2</td>
<td>1,4</td>
<td>2,8</td>
<td>9,3</td>
<td>23</td>
</tr>
<tr>
<td>ref.</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>116</td>
<td><1</td>
<td><0,5</td>
<td>-</td>
<td>5,6</td>
<td>25</td>
</tr>
<tr>
<td>Villingbutj.</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>53</td>
<td>32</td>
<td>1,2</td>
<td>232</td>
<td>4,1</td>
<td>290</td>
<td>3,5</td>
<td>2,1</td>
<td>3,5</td>
<td>3,0</td>
<td>27</td>
</tr>
<tr>
<td>1-2</td>
<td>63</td>
<td>33</td>
<td>1,2</td>
<td>286</td>
<td>5,1</td>
<td>327</td>
<td>4,0</td>
<td>2,4</td>
<td>4,0</td>
<td>2,5</td>
<td>32</td>
</tr>
<tr>
<td>2-3</td>
<td>63</td>
<td>24</td>
<td>1,0</td>
<td>199</td>
<td>3,6</td>
<td>186</td>
<td>2,3</td>
<td>1,4</td>
<td>2,3</td>
<td>2,4</td>
<td>32</td>
</tr>
<tr>
<td>ref.</td>
<td>65</td>
<td>27</td>
<td>-</td>
<td>56</td>
<td>-</td>
<td>82</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
<td>2,4</td>
<td>33</td>
</tr>
<tr>
<td>Ertstj.</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>54</td>
<td>156</td>
<td><1</td>
<td>153</td>
<td><1</td>
<td>805</td>
<td><1</td>
<td>3,0</td>
<td><1</td>
<td>10,7</td>
<td>26</td>
</tr>
<tr>
<td>1-2</td>
<td>53</td>
<td>154</td>
<td><1</td>
<td>161</td>
<td><1</td>
<td>734</td>
<td><1</td>
<td>3,3</td>
<td><1</td>
<td>8,1</td>
<td>26</td>
</tr>
<tr>
<td>2-3</td>
<td>53</td>
<td>145</td>
<td><1</td>
<td>163</td>
<td><1</td>
<td>748</td>
<td><1</td>
<td>3,4</td>
<td>1</td>
<td>7,3</td>
<td>26</td>
</tr>
<tr>
<td>ref.</td>
<td>54</td>
<td>334</td>
<td>-</td>
<td>190</td>
<td>-</td>
<td>996</td>
<td>-</td>
<td>3,4</td>
<td>-</td>
<td>7,1</td>
<td>26</td>
</tr>
<tr>
<td>Dam Heistadmoen</td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>46</td>
<td>86</td>
<td>-</td>
<td>131</td>
<td>-</td>
<td>230</td>
<td>-</td>
<td>6,4</td>
<td>-</td>
<td>2,7</td>
<td>23</td>
</tr>
</tbody>
</table>

Vannmose

<table>
<thead>
<tr>
<th>Vegetasjon</th>
<th>pH</th>
<th>Ca</th>
<th>Farge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gras bane</td>
<td>36</td>
<td>612</td>
<td>103</td>
</tr>
<tr>
<td>ref.</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Blåberris bane</td>
<td>36</td>
<td>612</td>
<td>153</td>
</tr>
<tr>
<td>ref.</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bjørk bane</td>
<td>18</td>
<td>154</td>
<td>38</td>
</tr>
<tr>
<td>ref.</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Vannprøver

<table>
<thead>
<tr>
<th>pH</th>
<th>Ca</th>
<th>Farge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hengsvatn</td>
<td>5,88</td>
<td>22</td>
</tr>
<tr>
<td>Villingbutj.</td>
<td>7,08</td>
<td>18</td>
</tr>
<tr>
<td>Ertstj.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 Steinsjøfeltet

Områdebeskrivelse

En oversikt over skytefeltet er gitt i Fig.3.

![Fig.3 Oversikt over Steinsjøen skytefelt.](image)

Måleprogram

a) Elvemoser ble eksponert i perioden ved 3 forskjellige stasjoner (Fig.3).

Avvanningen fra feltskytebanen skjer via en bekk som ender i Brenntjern. St.1 var plassert i denne bekk som før den rant ut i tjernet. St.2. var plassert i utløpet av Stusjøtjern og denne bekk omfattet bl.a. avvanningen av M72 panserverntrukketbanen. St.3 var plassert i Steinsjøelva og representerer således avvanningen av hele feltet.

b) Sedimentprøver ble samlet fra Brenntjern, som mottar forurensninger fra flere skytebaner, og fra Stusjøtjern som avvanner bombekasterbanen. Vi har ikke sikre tall, men det er grunn til å anta at dette er en av Forsvarets mest benyttede feltskytebaner.

c) Vegetasjonsprøver fra feltskytebanen ved Brenntjern. Referanseprøvene ble tatt bak standplass.

Resultater (Tab.3)

a) Moseanalysene viste at bekk fra feltskytebanen (st.1) var klart forurensnet av kobber og bly. Analysene indikerer at konsentrasjonene i vannet i snitt over disse ukene kan ha vært så høg som ca 10 μg/l. St.2 og 3 var også svakt påvirket, men disse verdiene var innenfor den variasjonen en har registrert som referanseverdier i Østlandsområdet.

b) Sedimentresultatene fra Brenntjern og Stusjøtjern sammen med to referansesjøer, Langen og Bergsjøen, er gitt i Tab.3. Resultatene viser at Stusjøtjern er forurensset bare av atmosfæriske avsetninger, mens Brenntjern antagelig har et lite påslag på kobber og bly fra feltskytebanen. Verdiene var likevel ikke høge, og de er innenfor den variasjonen en finner i innsjøer som bare mottar atmosfæriske belastninger i Sør-Norge.

c) Analysene av vegetasjon på feltskytebanen viser en betydelig anrikning av bly (25-68 ganger), men en beskjeden anrikning av kobber (1,5-3,4 ganger).

Konklusjon

Skytebanene som ligger i nedbørfeltet til Brenntjern forurensen bekkene ned til tjernet, men utover dette ble det ikke registrert forurensninger av betydning. Stusjøtjern var ubetydelig påvirket av forurensninger fra bombekasterbanen. Metallforurensningen synes i hovedsak å være knyttet til skytebaneområdet ved Brenntjern.
Tab.3 Kjemiske og biologiske målinger i Steinsjøen skytefelt. Undersøkelsene er gjort i juli 1991. GT=gåletap, OC=organisk materiale, Kf=konc./ref.
Resultatene fra Langen og Bergsjøen er hentet fra Rognerud & Fjeld 1990.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Cd</th>
<th>Fe</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>%</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
</tr>
<tr>
<td>Brenntj.</td>
<td>0-1</td>
<td>42</td>
<td>71</td>
<td>7,1</td>
<td>198</td>
<td>12,3</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>66</td>
<td>39</td>
<td>3,9</td>
<td>131</td>
<td>8,1</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>46</td>
<td>42</td>
<td>4,2</td>
<td>138</td>
<td>8,6</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>46</td>
<td>10</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>81</td>
</tr>
<tr>
<td>Stusjøtj.</td>
<td>0-1</td>
<td>49</td>
<td>16</td>
<td>1</td>
<td>90</td>
<td>2,0</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>48</td>
<td>17</td>
<td>1</td>
<td>102</td>
<td>2,3</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>48</td>
<td>17</td>
<td>1</td>
<td>122</td>
<td>2,7</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>54</td>
<td>15</td>
<td>-</td>
<td>45</td>
<td>-</td>
<td>190</td>
</tr>
<tr>
<td>Langen</td>
<td>0-1</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>179</td>
<td>6,8</td>
<td>2,3</td>
</tr>
<tr>
<td>Hadeland</td>
<td>1-2</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>166</td>
<td>6,4</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>(18m)</td>
<td>2-3</td>
<td>46</td>
<td>-</td>
<td>131</td>
<td>5,0</td>
<td>2,2</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>Bergsjøen</td>
<td>0-1</td>
<td>39</td>
<td>-</td>
<td>-</td>
<td>248</td>
<td>13,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Toten</td>
<td>1-2</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>230</td>
<td>12,7</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>(30 m)</td>
<td>2-3</td>
<td>42</td>
<td>-</td>
<td>250</td>
<td>13,8</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feltskyteb.(st.1)</td>
<td>75</td>
<td>7,5</td>
<td>78</td>
<td>78</td>
<td>222</td>
<td>1,7</td>
<td>-</td>
</tr>
<tr>
<td>BK-bane (st.2)</td>
<td>36</td>
<td>3,6</td>
<td>9</td>
<td>9</td>
<td>154</td>
<td>1,2</td>
<td>-</td>
</tr>
<tr>
<td>Hele feltet (st.3)</td>
<td>41</td>
<td>4,1</td>
<td>8</td>
<td>8</td>
<td>127</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Referanse</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetasjon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>9</td>
<td>1,5</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ref.</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blåbærris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>21</td>
<td>2,3</td>
<td>213</td>
<td>71</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ref.</td>
<td>9</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bjørk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>24</td>
<td>3,4</td>
<td>136</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ref.</td>
<td>7</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vannanalyser</td>
<td>pH</td>
<td>Farge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brenntj.</td>
<td>6,68</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stusjøtj.</td>
<td>6,15</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 Hjerkinn

En oversikt over stasjonsplasseringene i Hjerkinn skytefelt er vist i Fig.4. Detaljerte opplysninger er gitt i Kjellberg (1988).

![Diagram of Hjerkinn](image)

Fig.4 Oversikt over stasjonene i Hjerkinn skytefelt.

Hjerkinn skytefelt ble tatt i bruk i slutten av 20-årene for utvikling av artelleriskyts- og ammunisjon. Feltets nåværende utstrekning ble etablert av okkupasjonsmakten under siste krig. I årene like etter krigen fortsatte de norske styrker å nytte feltet uten at noen faste bruksavtaler ble inngått. I slutten av 50-årene ble det imidlertid opprettet bruksrett og avsavnsavtaler (erstatning for tapte bruksrettigheter) med Dovre- og Lesja fjellstyrer, samt bruksrettavtale med Statens skoger. Videre ble en hel rekke private retter innløst, herunder de to Rollstadsetrene. I dag dekkes feltets bruk i hovedsak av avtalene med Dovre- og Lesja fjellstyrer, samt Statens skoger. I tillegg ligger deler av det tidligere Hjerkinnutmål innenfor skytefeltet. Dette er bruksmessig å betrakte som statens "private" høytjell og bruken her er regulert ved en egen avtale direkte med Statens skoger.

Resultatene for analysene av utsatt og stedegen (Svåni) elvemose er gitt i Tab.4. På bakgrunn av analysene er det ikke mulig å registrere kobber- eller blyforurensninger fra skyteaktiviteten og demoleringsaktiviteten i Grisungdalen. Det er heller ikke mulig å spore noen effekter av skyteaktivitet og demolering av ammunisjon for bly og kobber i Svåni (st.2). Dette er i overenstemmelse med tidligere undersøkelser i dette feltet (Kjellberg 1988). Hjerkinn skytefelt brukes bare i begrenset utstrekning til skyting med mitraljøse/handvåpen. Måleresultatene var derfor som ventet.

Tab.4 Analyser (ppm) av elvemose eksponert i 4 uker sommeren 1991.

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svåni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.2</td>
<td>13</td>
<td>13</td>
<td>47</td>
<td>900</td>
</tr>
<tr>
<td>ref.</td>
<td>20-30</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grisungbekken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.1</td>
<td>36</td>
<td>6</td>
<td>69</td>
<td>1500</td>
</tr>
<tr>
<td>st.2</td>
<td>31</td>
<td>7</td>
<td>54</td>
<td>600</td>
</tr>
<tr>
<td>ref.</td>
<td>31</td>
<td>4</td>
<td>50</td>
<td>400</td>
</tr>
</tbody>
</table>
2.5 Giskås

Områdebeskrivelse

Skytefeltet og de viktigste banene er vist i Fig.5. Steinkjersannan ble tatt i bruk som ekserserplass før infanteriet i 1868 og har senere fram til idag vært den mest markerte militære øvingsplass i Trøndelag. Etablissementet ble i hovedsak bygget ut i perioden 1957-68. Etter denne perioden er det ytterlig bygget ut med bl.a. mannskapsforlegning, befalsforlegning, messebygning og forvaltningsbygg. Den er idag standkvarter for Nord Trøndelag forsvarsdistrikt nr.13 (FDI 13). Dette er nå en kombinert oppsettende avdeling, forsvarskommando og utdanningsavdeling. I tillegg til stabs, forvaltnings- og verkstedrift er Infanteriets øvingsavdeling nr.3 (lø3) forlagt hit.

Fig.5 Oversikt over Giskås skytefelt. Skytebanene er rasterlagt.

Måleprogram

a) Det ble satt ut moser på følgende 4 stasjoner (Fig.5).

I tillegg ble det målt metallkonsentrasjoner i vannsig fra fellskytebanen og fra kortholdsbanen (ikke inntegnet i fig.) samt fra sigevann fra geværskytebanene i Steinkjer.

b) Vegetasjonsprøver ble samlet inn fra fellskytebanen.

Resultater (Tab.5)

Konsentrasjonene av sink og kobber i vannmosen var tilnærmet lik bakgrunnskonsentrasjonen på alle fire stasjonene (Tab.5). Dette var også tilfelte for bly på stasjon C og D, mens stasjon A og B var klart forurenset av bly. På disse sistnevnte stasjonene vil konsentrasjonene av bly i mosene tilsvarer ca. 8-10 μg/l i vannfasen. Når vi i tillegg vet at begge disse bekkene var relativt sure og humusrike, er det mulig at mengden i mosene skulle tilsli enda høyere verdier i vannfasen. Vannprøver tatt i vannsig fra fellskytebanen og på kortholdsbanen viste konsentrasjoner i området 15-20 μg/l (Tab.5). Det er med andre ord en god overenstemmelse mellom disse observasjonen og mosemålingene.

Vegetasjonen på fellskytebanen var anrikt på bly, men ubetydelig av kobber. For bly var verdiene 9-64 ganger høyere enn bakgrunnsverdiene, og dette viser en klar lokal forurensningseffekt.

Konklusjon

Det er vesentlig bly og kobber som transporteres fra skytefeltene. Forurensningen har lokal karakter og det er de nærmeste 100 metrene fra skytebanene som gir klare utslag. Forøvrig var forurensningsgraden liten.
Tab.5 Kjemiske og biologiske målinger i Giskås skytefelt. Undersøkelsene er gjort i juli 1991.
GT=glødetap, OC=organisk materiale, Kf=konc./ref.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Cd</th>
<th>Fe</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.A</td>
<td>15</td>
<td>1,5</td>
<td>73</td>
<td>14</td>
<td>28</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>st.B</td>
<td>14</td>
<td>1,4</td>
<td>80</td>
<td>11</td>
<td>39</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>st.C</td>
<td>15</td>
<td>1,5</td>
<td>12</td>
<td>2,4</td>
<td>38</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>st.D</td>
<td>16</td>
<td>1,6</td>
<td>9</td>
<td>2</td>
<td>43</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>10</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>47</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vegetasjon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>4</td>
<td>1,3</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blåbæriss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>13</td>
<td>1,4</td>
<td>64</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>8</td>
<td></td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>7</td>
<td>1,4</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geiterams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>11</td>
<td>3,1</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>9</td>
<td></td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td>µg/l</td>
<td></td>
</tr>
<tr>
<td>Vannprøve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannsig kortbane</td>
<td>16,5</td>
<td>15,6</td>
<td>0,02</td>
<td></td>
<td>9,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bekkesig Feltsk.b.</td>
<td>5,7</td>
<td>17,1</td>
<td><0,01</td>
<td></td>
<td>1,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannsig fra geværbaner i Steinkjer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.1</td>
<td>16,5</td>
<td>2,4</td>
<td>10</td>
<td></td>
<td>3420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.2</td>
<td>5,9</td>
<td>4,9</td>
<td><10</td>
<td></td>
<td>520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ledn.evne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>farge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furdalen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.D</td>
<td>6,2</td>
<td>2,9</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heidalsbekken st.C</td>
<td>6,7</td>
<td>2,2</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvennakken st.A</td>
<td>4,9</td>
<td>2,5</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tjernbekken st.B</td>
<td>5,4</td>
<td>2,2</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reipbekken</td>
<td>5,5</td>
<td>2,2</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.6 Sætermoen/Karlstadskogen/Mauken skytefelt.

Områdebeskrivelse

En oversikt over skytefeltene og de viktigste banene er gitt i Fig.6.

![Diagram til Fig.6](image)

Fig.6 Oversikt over Mauken/Sætermoen og Karlstadskogen skytefelt. Skytebaner er rasterlagt eller markert med pil.

Sætermoen nyttes også til øvningssted for andre avdelinger i Nord-Norge og til repetisjonsøvelser.

Måleprogram

a) Elvemoser ble eksponert ca. 8 uker ved 2 stasjoner i Sætermoen skytefelt (Kobbryggelva og Sæterelva) og 2 bekker på Mauken skytefelt (st.1 og 2).

b) Sedimenter i innsjøene Øvre Sætervann, nedre Sætervann og Lortjern ble analysert. Nedre Sætervann har kuledeponeringen i vannkanten, mens Lortjern sannsynligvis inneholder deponert ammunisjon og er muligens brukt som avfallsplas tidligere under krigen.

c) Vegetasjonsprøver er samlet inn ved den mest brukte feltskytebanen (lag i forsvaret) ved Kalstadskogen.

Resultater

b) Sedimentene i øvre Sætervann var ikke forurenset av kobber, bly, kadmium eller sink. Økningen av sinkkonsentrasjon i de ferskeste (øverste) sedimentene skyldtes økning i organisk materiale. Nedre Sætervann var ikke forurenset av kadmium og sink, men svakt forurenset av kobber og bly. Verdiene var imidlertid svært lave, noe som også henger sammen med
det lave innholdet av organisk materiale i sedimentet. Dersom en tar i betrakning de prosjekttilmengdene som er deponert i strandkanten (og som også kan observeres visuelt), så må korrosjonshastigheten og utløsningen av metaller fra disse være svært sein. Hovedårsaken til dette er gode oksygenforhold i vannet som i tillegg er basisk og har lavt innhold av humus og relativt høgt kalkinnhold.

Sedimentene i Lortjern hadde et høyere innhold av organisk materiale enn de to ovennevnte. Dette er en av årsakene til at verdiene for alle elementene var noe høyere i dette tjernet. Det forklarer imidlertid ikke hele økningen og tjernet må anses som å være betydelig forurenset av bly og kadmium, lite av sink og ubetydelig av kobber. Årsaken til dette antas å være at dette tjernet har en høyere humusbelastning og lavere oksygenverdier nær sedimentene enn f.eks. i Sætervannene. De kjemiske forholdene i vannet betinger derfor en høyere korrosjonshastighet av prosjekttiler i Lortjerns bunnområder enn i Sætervannene. Vi vil likevel presisere at totalverdiene av de undersøkte elementene ikke er høyere enn de en kan finne i innsjøsedimenter i Sør-Norge som kun mottar atmosfæriske deposisjoner.

c) Vannanalyser fra et sig fra feltskytebanen i Karlstadskogen viste høge verdier for spesielt bly (144 µg/l), men også kobber (60 µg/l). Skytingen foregikk utover ei vannrik myr. Sur myrjord med lavt oksygeninnhold øker korrosjonshastigheten av prosjekttiler samtids med at løste humusyrer virker som metaltransportører. Dette er de viktigste årsakene til de høge verdiene. Vegetasjonen på feltskytebanen viste liten anning av kobber i forhold til referansene like utenfor, mens konsentrasjonen av bly var betydelig høyere enn referansene spesielt for gras, krekling og molter.

Konklusjon

Tab. 6 Kjemiske og biologiske målinger i Sætermoen / Karlstadskogen/Mauken skytefelt.
Undersøkelsene er gjort i juli 1991.
GT=glødetap, OC=organisk materiale, Kf=konz./ref.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT</th>
<th>Cu ppm</th>
<th>Kf</th>
<th>Pb ppm</th>
<th>Kf</th>
<th>Zn ppm</th>
<th>Kf</th>
<th>Cd ppm</th>
<th>Kf</th>
<th>Fe %</th>
<th>OC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNSJØER</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>11</td>
<td>57</td>
<td>1,0</td>
<td>16</td>
<td>1</td>
<td>143</td>
<td>1,2</td>
<td><0,5</td>
<td></td>
<td>6,4</td>
<td>4</td>
</tr>
<tr>
<td>1-2</td>
<td>7</td>
<td>50</td>
<td><1</td>
<td>16</td>
<td>1</td>
<td>126</td>
<td>1,1</td>
<td><0,5</td>
<td></td>
<td>5,0</td>
<td>2</td>
</tr>
<tr>
<td>(13 m)</td>
<td>2-3</td>
<td>8</td>
<td>56</td>
<td>1,0</td>
<td>18</td>
<td>131</td>
<td>1,2</td>
<td><0,5</td>
<td></td>
<td>5,2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>5</td>
<td>54</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>113</td>
<td><0,5</td>
<td></td>
<td>4,8</td>
<td>1</td>
</tr>
<tr>
<td>Øv.Setervann</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>13</td>
<td>80</td>
<td>1,2</td>
<td>33</td>
<td>2,2</td>
<td>213</td>
<td>1,3</td>
<td><0,5</td>
<td></td>
<td>7,8</td>
<td>5</td>
</tr>
<tr>
<td>(19 m)</td>
<td>1-2</td>
<td>12</td>
<td>79</td>
<td>1,2</td>
<td>30</td>
<td>2,0</td>
<td>196</td>
<td>1,2</td>
<td></td>
<td>7,6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>7</td>
<td>74</td>
<td>1,1</td>
<td>20</td>
<td>1,3</td>
<td>142</td>
<td><1</td>
<td></td>
<td>6,9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>10</td>
<td>65</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>165</td>
<td><0,5</td>
<td></td>
<td>5,9</td>
<td>4</td>
</tr>
<tr>
<td>Ne.Setervann</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>42</td>
<td>94</td>
<td>1</td>
<td>253</td>
<td>15,8</td>
<td>450</td>
<td>1,8</td>
<td>2,6</td>
<td>4,3</td>
<td>5,0</td>
<td>20</td>
</tr>
<tr>
<td>(13 m)</td>
<td>1-2</td>
<td>39</td>
<td>120</td>
<td>1,2</td>
<td>145</td>
<td>9,1</td>
<td>554</td>
<td>2,2</td>
<td>4,6</td>
<td>7,6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>42</td>
<td>75</td>
<td><1</td>
<td>91</td>
<td>5,7</td>
<td>477</td>
<td>1,9</td>
<td>2,5</td>
<td>4,2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>50</td>
<td>102</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>246</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
<td>7,2</td>
</tr>
<tr>
<td>Lortjern</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>42</td>
<td>94</td>
<td>1</td>
<td>253</td>
<td>15,8</td>
<td>450</td>
<td>1,8</td>
<td>2,6</td>
<td>4,3</td>
<td>5,0</td>
<td>20</td>
</tr>
<tr>
<td>(13 m)</td>
<td>1-2</td>
<td>39</td>
<td>120</td>
<td>1,2</td>
<td>145</td>
<td>9,1</td>
<td>554</td>
<td>2,2</td>
<td>4,6</td>
<td>7,6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>42</td>
<td>75</td>
<td><1</td>
<td>91</td>
<td>5,7</td>
<td>477</td>
<td>1,9</td>
<td>2,5</td>
<td>4,2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>ref.</td>
<td>50</td>
<td>102</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>246</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
<td>7,2</td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
</tr>
<tr>
<td>Sætermoen</td>
<td></td>
</tr>
<tr>
<td>Kobbrøygelva</td>
<td>B1</td>
<td>47</td>
<td>1,3</td>
<td>8</td>
<td>1</td>
<td>86</td>
<td>1,4</td>
<td>1,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seterelva</td>
<td>st.2</td>
<td>64</td>
<td>1,8</td>
<td>11</td>
<td>1,4</td>
<td>141</td>
<td>2,4</td>
<td>1,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barduelva</td>
<td>ref.</td>
<td>35</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>59</td>
<td>-</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauken</td>
<td></td>
</tr>
<tr>
<td>st.1</td>
<td>94</td>
<td>2,6</td>
<td>53</td>
<td>6,6</td>
<td>267</td>
<td>4,5</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>st.2</td>
<td>60</td>
<td>1,7</td>
<td>35</td>
<td>4,3</td>
<td>130</td>
<td>2,2</td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>35</td>
<td>-</td>
<td>8</td>
<td>59</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrisk</td>
<td></td>
</tr>
<tr>
<td>Karlstadskogen</td>
<td></td>
</tr>
<tr>
<td>Nærstridsløyfe (hunus)</td>
<td>1205</td>
<td>10241</td>
<td>230</td>
<td><0,5</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gras</td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>14</td>
<td>4,6</td>
<td>80</td>
<td>10</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blåbærvis</td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>9</td>
<td>1,3</td>
<td>37</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>7</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørk</td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>7</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>7</td>
<td>-</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreaklingblad</td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>18</td>
<td>2,5</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>7</td>
<td>-</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molteblad</td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td>11</td>
<td>1,2</td>
<td>57</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>9</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannprøver</td>
<td></td>
</tr>
<tr>
<td>sig fellsk.bane</td>
<td>60 μg/l</td>
<td>144 μg/l</td>
<td>40 μg/l</td>
<td>0,6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/7</td>
<td>Ca (mg/l)</td>
<td>pH</td>
<td>led.ev(mS/m)</td>
<td>Farge(mgPt/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Øv.Setervann</td>
<td>9,9</td>
<td>7,8</td>
<td>7,6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ne.Setervann</td>
<td>7,8</td>
<td>6,8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lortj.</td>
<td>7,8</td>
<td>10,1</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7 Porsangermoen

Områdebeskrivelse

En oversikt over skytefeltene nærmest Porsangermoen er gitt i Fig.7. "Gagga-feltet" NØ for Porsangermoen er ikke vist.

![Map of Porsangermoen](image)

Fig.7 Oversikt over Porsangermoen skytefelt.

skyte- og øvningsfelt er et av Forsvarets største felter på ialt 318000 da. Området er i sin helhet statens grunn.

Måleprogram

a) Det ble analysert prøver av vannmoser fra Gaggajokka nedstrøms skytefeltet og fra Andersbekken ved utløpet i Nedrevatn. Andersbekken avvanner skytefelter nærmest Porsangermoen.

b) Det ble analysert sedimentprøver fra 5 innsjøer som er påvirket av skyteaktivitet i ulik grad. Røyevatn, Yngelvatn og Gjeddevatn må antas å motta de største forurensningene, mens store og unna Ingasjavri er mindre berørt.

c) Det ble samlet vegetasjonsprøver fra den mest benyttede feltskytebanen (lag i forsvar).

Resultater (Tab.7)

a) Moseanalyserne fra Gaggajokka viste verdier nær bakgrunnsverdiene for bly, kobber og sink. Lite humus i nedbørfeltet kombinert med relativt kalkrikt jordsmonn og betydelige løsavsetninger er forhold som bidrar til å redusere korrosjonen av prosjektiler og reduserer mobiliteten av tungmetaller. I tillegg er vannføringen i Gaggajokka ganske stor slik at fortynningseffekten er betydelig. Totalt sett blir derfor metallforurensningen fra dette feltet uten økologisk betydning.

Moseanalyserne fra Andersbekken viste noe høgere verdier for kobber og bly enn referansene, men totalverdiene var likevel beskjedne. Dette indikerer at middelkonsentrasjonen av kobber og bly i sommerperioden neppe har vært over 3 μg/l i vannfasen. De økologiske effektene på dette avsnittet må derfor anses som beskjedne.

b) Analysene av referansesedimentene viste at geokjemien i skytefeltet er relativt rik på kobber. Geokjemien og sedimentets innhold av organisk materiale er de faktorene som styrer sedimentkonsentrasjonen også i de ferskest avsatte sedimentene (øvre 3 cm). I denne sammenhengen viser det seg altså at bidrag fra kobberforurensning fra skytefeltet er uten betydning.

Blyanalyserne viser at bakgrunnsverdiene var lave slik de er i store deler av Nord-Norge. Det var en økning i konsentrasjonen i de yngste sedimentene (0-3cm) for alle innsjøene. For Yngelvatn, store og unna Ingasjavri skyldes denne økningen i alt vesentlig atmos-
færisk deposisjon. Gjeddevatn viser et klart påslag fra skyteaktivitet, mens Røyevatn har meget høge blyverdier i sedimentet og var sterkt blyforurenset. Ingen av innsjøene var forurenset av sink og kadmium.

c) Vegetasjonsanalyser fra de bakre måleområdene på feltskytebanen viste liten akkumuleringssgrad for både bly og kobber.

Konklusjon

Røyevatnet var sterkt forurenset av bly fra deponerte prosjektiler. Sedimentene i Gjeddevatn var også noe forurenset av bly fra skyteaktivitet. Forøvrig skyldes forurensningen av bly i de andre innsjøene hovedsakelig atmosfæriske avsetninger. Høge naturlige kobber-konsentrasjoner gjør at bidraget fra kobberforurensning fra skytefeltene blir nærmest uten betydning.

Det generelle intrykket fra skytefeltene langs Andersbekken er at en ville ha forventet at forurensningen av metaller hadde vært større enn det som observeres. Årsaken til at forurensningene var små er sannsynligvis betydelige løsavsetninger med kalkinnslag som gir en basisk reaksjon i vannet og et relativt høgt kalkinhold. I tillegg til dette er humuss påvirkningen liten. Alle disse forholdene er med på å redusere korrosjonshastigheten av prosjektiler og mobiliteten av metaller i feltet. Det samme resonnementet gjelder for Gaggafeltet der Gaggajokkas metallkonsentrasjoner er lik de naturalitte.

Totalt sett er det derfor bare enkelte lokale deler av skytefeltet som har betydelige metall-forurensninger, men de forblir der eller i umiddelbar nærhet og forurenser ikke vannsystemene utenfor skytefeltet. De naturalitte forhold kan sies å være gunstige med hensyn til anlegging av et skytefelt.
<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>GT</th>
<th>Cu</th>
<th>GB</th>
<th>Zn</th>
<th>Cd</th>
<th>Fe</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNSJØER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjeddetj.</td>
<td>cm</td>
<td>%</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
<td>Kf</td>
<td>ppm</td>
</tr>
<tr>
<td>0-1</td>
<td>37</td>
<td>197</td>
<td><1</td>
<td>85</td>
<td>21</td>
<td>99</td>
<td>1,2</td>
</tr>
<tr>
<td>1-2</td>
<td>36</td>
<td>200</td>
<td><1</td>
<td>80</td>
<td>20</td>
<td>101</td>
<td>1,2</td>
</tr>
<tr>
<td>2-3</td>
<td>33</td>
<td>188</td>
<td><1</td>
<td>132</td>
<td>33</td>
<td>98</td>
<td>1,2</td>
</tr>
<tr>
<td>ref.</td>
<td>34</td>
<td>214</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>81</td>
<td>-</td>
</tr>
<tr>
<td>Yngelvatnet 96 m.o.h.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>21</td>
<td>284</td>
<td><1</td>
<td>17</td>
<td>8,5</td>
<td>70</td>
<td><1</td>
</tr>
<tr>
<td>1-2</td>
<td>33</td>
<td>528</td>
<td><1</td>
<td>7</td>
<td>3,5</td>
<td>79</td>
<td><1</td>
</tr>
<tr>
<td>2-3</td>
<td>33</td>
<td>520</td>
<td><1</td>
<td>9</td>
<td>4,5</td>
<td>71</td>
<td><1</td>
</tr>
<tr>
<td>ref.</td>
<td>36</td>
<td>828</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>112</td>
<td>-</td>
</tr>
<tr>
<td>Røyevatnet 149 m.o.h.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>438</td>
<td><1</td>
<td>10975</td>
<td>1219</td>
<td>96</td>
<td>1,1</td>
</tr>
<tr>
<td>1-2</td>
<td>36</td>
<td>533</td>
<td><1</td>
<td>361</td>
<td>40</td>
<td>95</td>
<td>1,1</td>
</tr>
<tr>
<td>2-3</td>
<td>37</td>
<td>474</td>
<td><1</td>
<td>139</td>
<td>15</td>
<td>79</td>
<td><1</td>
</tr>
<tr>
<td>ref.</td>
<td>43</td>
<td>779</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>89</td>
<td><0,5</td>
</tr>
<tr>
<td>Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingasjavri (31 m)</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>20</td>
<td>102</td>
<td><1</td>
<td>22</td>
<td>5,5</td>
<td>71</td>
<td>1,0</td>
</tr>
<tr>
<td>1-2</td>
<td>17</td>
<td>111</td>
<td><1</td>
<td>15</td>
<td>3,8</td>
<td>76</td>
<td>1,0</td>
</tr>
<tr>
<td>2-3</td>
<td>17</td>
<td>100</td>
<td><1</td>
<td>8</td>
<td>2</td>
<td>76</td>
<td>1,1</td>
</tr>
<tr>
<td>ref.</td>
<td>23</td>
<td>214</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>Unna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingasjavri (17 m)</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>32</td>
<td>100</td>
<td><1</td>
<td>39</td>
<td>13</td>
<td>208</td>
<td>2,9</td>
</tr>
<tr>
<td>1-2</td>
<td>30</td>
<td>94</td>
<td><1</td>
<td>32</td>
<td>11</td>
<td>76</td>
<td>1,0</td>
</tr>
<tr>
<td>2-3</td>
<td>27</td>
<td>94</td>
<td><1</td>
<td>20</td>
<td>7</td>
<td>75</td>
<td>1,0</td>
</tr>
<tr>
<td>ref.</td>
<td>26</td>
<td>120</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>71</td>
<td>-</td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaggajokka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersbekken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referanse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetasjon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blåbærnis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geitrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannanalyser</td>
<td>Cu (μg/l)</td>
<td>Pb(μg/l)</td>
<td>Zn(μg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utsig fra sprengnings-felt (st.x) ved S.Ingasjavri</td>
<td>5,7</td>
<td><0,5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannanalyse</td>
<td>pH</td>
<td>led.ev(nS/m)</td>
<td>Ca (mg/l)</td>
<td>Farge(mgP/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjeddetj. 17/7</td>
<td>7,81</td>
<td>13,0</td>
<td>17,2</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.8 Høybuktmoen

Områdebeskrivelse

En oversikt over området er gitt i Fig.8. Dette er delt mellom et østre og et vestre felt.

Fig.8 Oversikt over Høybuktmoen skytefelt.

Måleprogram

a) Konsentrationsjonen i en naturlig bestand av vannmoser i utløpsbekken fra lille Pumpehusvatn ble analysert med hensyn på kobber, bly og sink. Denne bekken avvannet det meste av vestre skytefelt.

b) I vestre felt ble det analysert sedimentkjerner fra store og midtre Pumpehusvatn. I det østre feltet ble det analysert sedimentfer fra noen små grunne tjern eller vannansamlinger nær banene K, N og O (Fig.8).

c) Det ble samlet inn vegetasjonssprøver fra feltskytebanen (lag i forsvar) i østre felt. Det ble også analysert på metallkonsentrationsjoner i bekken fra bane M og L.

Resultater

Alle analyseresultatene er gitt i Tab.8.

a) Moseanalysete fra utløpsbekken fra vestre felt viser noe høyere verdier for kobber og bly enn referanseverdien. Verdiene var imidlertid ikke spesielt høge.

b) Metallkonsentrasjonene i sedimentet i innsjøene i vestre felt var lave. For de ferskeste sedimentene (0-3cm) var kobber og sinkinholdet til og med lavere enn i referanse-sedimentet. Kadmium verdiene var alle lave. Bly viser et lite påslag som nok i hovedsak skyldes atmosfæriske deponeringer. Totalt sett var det derfor ikke store problemer knyttet til forurensning av bly og kobber fra skyteaktivitet til vassdraget fra vestre skytefelt.

Det samme var også tilfelle for dammene i østre skytefelt med unntak av dammen ved bane N som var klart forurensnet av bly.
c) Analysene av vegetasjon fra feltskytebanen viste små anrikninger av kobber, men betydelige for bly. Spesielt blåbærris og kreklig hadde høge verdier 200-500 ganger høgere enn bakgrunnsverdiene. Avrenningsvannet fra feltet viste også konsentrasjoner av bly og kobber i området 2-5 µg/l som er høgere enn de naturgitte verdier. Melter, gras og bjørk hadde en lavere biokonsentrering av spesielt bly selv om økningen var betydelig også for disse.

Konklusjon

Skytebanene i østre felt er anlagt på en stor løsavsetning. En svakt sur reaksjon (pH verdi) og lite humus i vannet samt at feltet ligger øverst i et nedbørfelt gjør at det er ubetydelige vannforurensningsproblemer knyttet til tungmetaller fra dette feltet.

Det vestre skytefeltet hadde større gjennomstrømning av vann som var relativt lite humus-påvirket og har en svakt sur pH-verdi. En god vannstrømming kombinert med lav korrosjonsfasthet på prosjektlinene er nok hovedårsaken til at forurensningsfaren fra dette feltet er liten. Kombinasjonen drikkevannskilde - skytebane bør kreve stor aktsomhet i forvaltningen av området rundt Store Pumphusvann.
Tab. 8 Kjemiske og biologiske målinger i Høybuktmoen skytefelt. Undersøkelsene er gjort i juli 1991.
GT=glødetap, OC=organisk materiale, Kf=konc./ref.

<table>
<thead>
<tr>
<th>Sedimenter</th>
<th>em</th>
<th>%</th>
<th>ppm</th>
<th>Kf</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>store</td>
<td>0-1</td>
<td>42</td>
<td>79</td>
<td><1</td>
<td>30</td>
<td>30</td>
<td><1</td>
<td>36</td>
<td><1</td>
<td><0,5</td>
<td>3</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumphusv.</td>
<td>1-2</td>
<td>39</td>
<td>189</td>
<td><1</td>
<td>20</td>
<td>20</td>
<td><1</td>
<td>70</td>
<td><1</td>
<td><0,5</td>
<td>5</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6m)</td>
<td>2-3</td>
<td>37</td>
<td>192</td>
<td><1</td>
<td>14</td>
<td>14</td>
<td><1</td>
<td>72</td>
<td><1</td>
<td><0,5</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>46</td>
<td>241</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>174</td>
<td>-</td>
<td>5</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midtre</td>
<td>0-1</td>
<td>19</td>
<td>87</td>
<td><1</td>
<td>28</td>
<td>28</td>
<td>69</td>
<td><0,5</td>
<td>4,7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumphusv.</td>
<td>1-2</td>
<td>39</td>
<td>103</td>
<td><1</td>
<td>25</td>
<td>25</td>
<td>89</td>
<td><0,5</td>
<td>6,3</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14m)</td>
<td>2-3</td>
<td>47</td>
<td>129</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>64</td>
<td><0,5</td>
<td>5,6</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>44</td>
<td>126</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>97</td>
<td>-</td>
<td><0,5</td>
<td>9,0</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bane O</td>
<td>0-1</td>
<td>88</td>
<td>36</td>
<td>24</td>
<td>8</td>
<td>229</td>
<td>0,76</td>
<td>1,8</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,7m)</td>
<td>1-2</td>
<td>91</td>
<td>25</td>
<td>22</td>
<td>7</td>
<td>272</td>
<td>0,60</td>
<td>1,3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>97</td>
<td>7</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>27</td>
<td><0,5</td>
<td>0,3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bane K</td>
<td>0-1</td>
<td>78</td>
<td>56</td>
<td>12</td>
<td>1,3</td>
<td>87</td>
<td><0,5</td>
<td>1,8</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>80</td>
<td>50</td>
<td>10</td>
<td>1,1</td>
<td>128</td>
<td>0,68</td>
<td>1,2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>82</td>
<td>40</td>
<td>9</td>
<td>-</td>
<td>65</td>
<td>0,54</td>
<td>0,7</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bane N</td>
<td>0-1</td>
<td>51</td>
<td>85</td>
<td>223</td>
<td>15</td>
<td>98</td>
<td>0,65</td>
<td>1,3</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,5m)</td>
<td>1-2</td>
<td>50</td>
<td>91</td>
<td>158</td>
<td>10</td>
<td>243</td>
<td>1,42</td>
<td>0,5</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td>70</td>
<td>79</td>
<td>15</td>
<td>-</td>
<td>232</td>
<td>1,30</td>
<td>0,3</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vannmose</td>
<td></td>
</tr>
<tr>
<td>Pumphusv.</td>
<td></td>
</tr>
<tr>
<td>Utløpsekka</td>
<td></td>
</tr>
<tr>
<td>ref.</td>
<td></td>
</tr>
<tr>
<td>Høybuktmoen</td>
<td></td>
</tr>
<tr>
<td>Bekk fra</td>
<td></td>
</tr>
<tr>
<td>M og L</td>
<td></td>
</tr>
<tr>
<td>Vannprøver</td>
<td>pH</td>
<td></td>
<td>led.evnr(mS/m)</td>
<td>Ca(mg/l)</td>
<td>farge(mgPt/l)</td>
<td></td>
</tr>
<tr>
<td>St.Pumphusv.</td>
<td>6,16</td>
<td>2,83</td>
<td>1,3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Tjern O</td>
<td>5,85</td>
<td>4,12</td>
<td>0,5</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
3. Sammenfattende diskusjon

3.1 Er det mulig å fremskaffe realistiske mål på mengden deponerte prosjektler i skytefeltene?

NIVA har undersøkt muligheten for å få en oversikt over årlige skytevolum i de enkelte felter. Forsvarets ammunisjonsregnskap bygger på regnskapsførsel og registrering av ammunisjon som leveres fra arsenal til den enkelte avdeling. Det sier ikke noe om hvor denne ammunisjon er forbrukt. Enkelte avdelinger kan forbruke det meste av ammunisjonen i egne felt, andre har ikke egne baner og gjennomfører all sin skyting på andre avdelinger felter. Steinsjøfeltet er et felt som i sin helhet kun nyttes av andre avdelinger. For å finne ut hvor repetisjonsavdelinger gjennomfører sin trening måtte en kryssjekke med bl.a. øvingsplanene. I de enkelte felt er det opplysninger om deponerte mengder på hver enkelt bane som er interessant. Her måtte en i såfall gå inn i de daglige skyteprogram noe som vil medføre et enormt papirarbeid. Uansett vil opptil 100 års tidligere forbruk ikke kunne rekonstrueres. Satt på denne bakgrunn har en foreløpig ikke gått videre med kartlegging av deponert mengde på de enkelte baner.

3.2 Hvorfor bruker vi vannmoser til å måle bly og kobberforurensning i bekker fra skytefelt, og hva viser resultatene av undersøkelsen?

I lite eller moderat forurensede elver og bekker forekommer tungmetallene oftest i meget lave konsentrasjoner, og det kreves et stort antall prøver for å oppnå representative middelverdier over en lengre tidsperiode. Konsentrasjonene er ofte nær grensen for det som kan måles, og risikoen for å forurene prøvene ved prøvetakningen og seinere ved analysene er stor. I slike tilfeller er vannanalyser usikre og ofte lite egnet til å beskrive vannforurensninger av metaller. I rennende vann bruker vi i stedet bioindikatorer. Dette er organismer som oppkonsentrerer (biokonsentre og bioakkumulere) metallene i et bestemt forhold til mengden i vannet. Konsentrasjonene kan bli 1000-10000 ganger høyere enn i vannet. De høyere konsentrasjonene i organismene sikrer dermed en vesentlig større fælomhet i analyseresultatene sammenlignet med vannprøver, og forurensningsfaren knyttet til prøvebehandlingen er liten. En annen fordel med å bruke bioindikatorer er at en vannprøve representerer et øyeblikksbilde, mens konsentrasjonen i en bioindikator er relatert til en middelkonsentrasjon av metallene i vannet gjennom en lengre periode. Videre gir en bioindikator informasjon om den biotilgjengelige fraksjon av metall som er viktig for vurderingen av de økologiske effektene. Vannmoser og da særlig storvokste arter som vanlig elvemose og slank elvemose tilfredsstiller mange av kravene til å være en god bioindikator (Fig.9).
For at mosene skal fungere som gode bioindikatorer er det imidlertid viktig at den generelle vannkvaliteten holder seg innenfor visse grenser. Vi vet at i surt vann tar de opp en mindre andel av den biotilgjengelige fraksjonen av metallene enn ved mer nærtral pH. Mosene kan derfor ikke brukes ukritisk ved pH verdier mindre enn 6,0. Ved høgt humusinnhold (brunt vann) med en vannfarge overstigende 200 mg Pt/l er også opptaket lite, men dette gjennompeier antagelig at den biotilgjengelige andelen av totalkonsentrasjon er liten ved slike tilfelle. Redusert opptak er også registrert i kalkrikt vann når kalsiumkonsentrasjonen overstiger 40 mg/l. Dette er imidlertid en uaktuell vannkvalitet for de undersøkte skytefeltene. Surhetsgrad og humuspåvirkningen i bekk er og vann i skytefeltene sommeren 1991 er vist i Fig.10.

![Image of elvemose plants]

Fig.9 Vannmosene **vanlig elvemose** (*Fontinalis antipyretica*) og **slank elvemose** (*Fontinalis dalecarlica*) som brukes som bioindikator for tungmetallkonsentrasjoner i vann.

![Graph showing pH vs. farge (mg Pt/l)]

Fig.10 Sammenhengen mellom surhetsgrad og humuspåvirkning i vann som avvanker skytefelt.

1. Evjemoen 6. Giskås
2. Hengsvatn 7. Sætermoen
3. Heistadmoen 8. Mauken
Enkelte bekker på Giskås hadde imidlertid et høgt humusinnhold og to av de var også relativt sure slik som også var tilfelle for Bjoråa ved Evjemoen. I disse tilfellene kan metallverdiene være noe lavere enn de skulle ha vært sammenliknet med de andre målingene.

En viktig side i vurderingen av forurensningen av metaller fra skytefelt er variasjonen og størrelsen i de naturlige bakgrunnskonsentrasjonene. Med dette begrepet menes egentlig de konsentrasjoner som måles i moser fra områder der geokjemien er den eneste kilden. Slike områder er imidlertid umulig å finne. Menneskelig aktivitet har også forurenset atmosfæren og avsetningen av mange metaller er betydelig slik som f.eks. for bly. Denne atmosfæriske kilden er ofte umulig å skille fra geokjemiske kilder når det gjelder å forklare metallkonsentrasjoner i vann. Vi pleier derfor ofte å inkludere denne kilden og kaller konsentrasjoner fra områder som bare har geokjemiske + atmosfæriske kilder som referanseverdier. Gode referanseverdier for hvert felt er viktig å ha når en annen forurensning slik som fra skytefelt skal klarlegges. NIVA har brukt egne forskningsmidler til å undersøke variasjonen i referanseverdier for vannmoser i ulike deler av landet. Resultatene er vist i Fig. 11. Vi ser at det er en stor forskjell på konsentrasjonene av de ulike metallene, men også variasjonen innen hvert metall kan være betydelig. Dette viser at det er nødvendig å innhente referanseverdier for hvert område som undersøkes og at et såkalt landsgjennomsnitt for referanseverdier ikke kan brukes som grunnlag i vurderingen av forurensninger fra skytefelt. Forholdet mellom målte konsentrasjoner og referanseverdiene kalles kontamineningsfaktor og denne er i de fleste tilfeller et godt relativt mål på forurensningsgraden av

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvikksølv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikkel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kobber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jern(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11 Middelverdier og variasjonsbredder for konsentrasjoner av elementer i elvemose fra hele Skandinavia er gitt. Verdiene representerer referanseverdier da mosene kun var utsatt for naturlige geokjemiske kilder i tillegg til atmosfæriske forurensninger.
Kontamineringssfaktoren (Kf) er også antakelig et av de bedre målene vi har på å vurdere sjansen for at metallkonsentrasjon skal virke giftig på organismer i økosystemet. Variasjonen i Kf-verdier for kobber og bly i vannmoser i de ulike skytefeltene er vist i Fig.12. Vi ser at anrikningsgraden for kobber var relativt beskjedent for de fleste feltene bortsett fra Steinsjøfeltet og Evjemoen der en tydelig anriknning ble registrert. For bly var forurensningen mer markert med klare utslag for de fleste felter unntatt for Sæterelva (Sætermoen) og Svånl/Grisungbekken (Hjerkinn).

<table>
<thead>
<tr>
<th></th>
<th>Kobber (Kf)</th>
<th>Bly (Kf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Evjemoen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinsjøfeltet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hjerkinn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giskås</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porsanger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sætermoen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauken</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.12 Variasjon i anrikningsgrad (Kf) for vannmose. Kf er målt konsentrasjon delt på referanseverdier fra den aktuelle geografiske regionen. Prøvene er eksponert i 4 uker på ettersommeren 1991.

Selv om det var klare forurensningsutslag for bly så var ikke konsentrasjonene særlig høge. Totalt sett var de ikke særlig høgere enn de en kan observere i elver/bekker i de deler av landet som har de høgste konsentrasjoner av bly og kobber i geokjemien og eventuelt samtidig har høge atmosfæriske depositioner (unntak: en bekk på Steinsjøfeltet og en i Giskås).

Som en oppsummering kan vi derfor si at vannmosene indikerer forhøydde verdier av særlig bly, men av og til også kobber i vann fra skytefelt. Verdiene er imidlertid ikke spesielt høge og de vil i de aller fleste tilfeller ikke gi omfattende forgiftninger i økosystemet.
3.3 Hvorfor bruker vi sedimenter til å måle forurensningsgraden av tungmetaller i innsjøer, og hva viser disse analysene for undersøkelsen i skytefeltene?

Metaller forblir i liten grad som løste ioner i vannet, men bindes til partikler som synker til bunns og danner sedimenter. Dette gjør at metallkonsentrasjonene i innsjøen oftest er svært lave og varierer mye over kort tid. Det kreves derfor et stort prøvetakingsopplegg for å oppnå representative prøver. Derimot er konsentrasjonene i sedimentene mye høyere og varierer lite over året. Derfor gir få prøver stor representativitet. De kan dessuten samles inn uavhengig av tidspunkt på året.

I innsjøer som er dype nok vil kvaliteten og konsentrasjonene av metaller i sedimentet gjen
speile vannkvaliteten i innsjøen. Hvert år avsettes et ca 1mm tykt sjikt på innsjøbunnen. Analyser i ulike sjikt nedover i sedimentet vil gi oss svar på tidsutviklingen i eventuelle forurensninger fordi sedimentene avsettes kronologisk. Den dypest prøven i sedimentet (ca. 20cm) er så gammel (ca. 200år) at den representerer tidsperioden før atmosfæren var nevneverdig forurenset av metaller (Fig.13). Konsentrasjonene i dette sjiktet kan derfor kalles naturlige bakgrunnsverdier. Ved å sammenlikne konsentrasjoner i sedimentet for innsjøer fra skytefeltene og for innsjøer like utenfor kan vi også beregne utviklingen i de atmosfæriske deponeringer for de respektive områdene. Påslag av forurensninger utover dette kan vi så tilskrive skyteaktivitetene.

I Fig.14 har vi framstilt variasjonen i konsentrasjonen i overflatesedimentene og referancesedimentene for kobber og bly i de ulike feltene. Vi ser at for kobber er forskjellene svært små mellom disse to sedimentsjiktene og at et lite påslag i 0-1cm sjiktet i feltene på Evjemoen og Steinsjøen kan skyldes atmosfæriske avsetninger. Bakgrunnsverdiene er imidlertid mye høyere i feltene i Nord-Norge enn i Sør-Norge.

Totalt sett viser dette at forurensningen av kobber fra skytefelt til vannfasen må ha vært ubetydelig helt fra feltene ble etablert og fram til i dag (se også Tab.1-8).

![Fig.13 Sedimentets alder i ulike sedimentdyp.](image)
<table>
<thead>
<tr>
<th></th>
<th>Kobber (ppm)</th>
<th>Bly (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Evjemoen</td>
<td>SØR 0-1 R</td>
<td></td>
</tr>
<tr>
<td>Steinsjøfeltet</td>
<td>ØST 0-1 R</td>
<td></td>
</tr>
<tr>
<td>Hengsvatn</td>
<td>ØST 0-1 R</td>
<td></td>
</tr>
<tr>
<td>Sætermoen</td>
<td>NORD 0-1 R</td>
<td></td>
</tr>
<tr>
<td>Porsanger</td>
<td>NORD 0-1 R</td>
<td>828</td>
</tr>
<tr>
<td>Høybuktmoen</td>
<td>NORD 0-1 R</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14 Konsentrasjonen av bly og kobber i innsjøsedimenter fra skytefeltene. Middelverdier og variasjonsbredder er gitt for overflatesedimentet (0-1) og referansesedimentet (R) som er hentet fra ca. 20 cm sedimenttyp. I tillegg er også resultatene vist for overflatesedimenter fra ulike regioner basert på data fra en landsomfattende undersøkelse av innsjøer som bare mottar atmosfærisk forurensning. (Rognerud & Fjeld 1990).

SØR=Sørlandet ØST=Østlandet NORD=Nord-Norge

Blykonsentrasjonene i overflatesedimentene var høyere enn bakgrunnsverdiene i alle feltene (Fig. 14). I den samme figuren har vi imidlertid lagt inn de verdiene vi oftest finner i innsjøer som bare er forurenset av atmosfæren i de respektive regioner. Vi ser at økningen i overflatesedimentene i alle feltene i Sør-Norge kan forklares ut fra atmosfæriske avsetninger. Det er kun enkelte av innsjøene i de Nord-Norske feltene som kan sies å være forurenset av bly fra skyteaktivitet. Med et unntak (Røysvatn i Porsanger) var imidlertid ikke totalverdiene i overflatesjiktet høyere enn i sedimentene fra innsjøer i Sør-Norge.

Metallnivået i sedimentet er ikke direkte sammenlignbart med belastningen av metaller da det modifiseres noe av sedimentets innhold av organisk materiale og jern samt surhetsgraden og oksygenforholdes i innsjøen. Dersom vi tar alle disse forhold i betraktning er det med unntak av Røysvatn i Porsanger ikke registrert alvorlige blyforurensninger av innsjø-sedimenter som følge av skyteaktivitet i feltene fram til i dag. Konsentrasjonene er innenfor de grenser en finner i "naturlige referansesedimenter" dvs. sedimenter som mottar atmosfærisk metallavsetninger i tillegg til de geokjemiske.
3.4 Biotilgjengeligheten av bly og kobber på skytebanen måler vi bl.a. ved opptak i vegetation.

Det ble også samla inn og analysert vegetasjonsprøver fra feltskytebanen og kulefangervollene. I feltskytebanene ble det samlet vegetation fra områdene hvor hoveddelen av prosjekttilene ble deponert. Det ble analysert prøver av gras (engkvein, rødsvingel, finnskjepp), blåbærarris, bjørk (nye skudd), geitrams og enkelte prøver av moltebær, blokkebær og tyttebær. Et framtidig overvåkningsprogram bør også belyse variasjoner i metallinnholdet i vegetationen fra flere deler av skytebanen. Feltskytingen fortør ofte etter standardiserte skyterekker og en vil ha muligheter til også å sammenligne resultater fra flere felter.

Det var en del variasjon i konsentrasjonene for de enkelte vegetasjonstypene mellom feltene sannsynligvis avhengig av hvor lenge feltene har vært i bruk, lokal geologi og variasjoner i graden av korrosjon fra prosjekttilene. Likevel var hovedtrekkene de samme for feltene, og en middelverdi beregnet for de ulike vegetasjonstypene for alle feltene kan være et utgangspunkt for en diskusjon (Tab.9). Anrikningsgraden av kobber var beskjedent i vegetation og variasjonene mellom artene var relativt små. Vi kan derfor si at det ikke er betenkeligheter knyttet til belastning av vegetation på skytefelt når det gjelder kobber.

Tab.9 Middelkonsentrasjon (ppm) i vegetation fra 13 feltskytebaner og 5 kulefangervoller fra hele landet og tilhørende referanseverdier i vegetation like utenfor banene. Kf-verdier er også beregnet.

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Cu_{ref.}</th>
<th>Kf</th>
<th>Pb</th>
<th>Pb_{ref.}</th>
<th>Kf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gras</td>
<td>27</td>
<td>5</td>
<td>5,4</td>
<td>200</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Blåbærarris</td>
<td>26</td>
<td>9</td>
<td>2,8</td>
<td>318</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>Bjørk</td>
<td>19</td>
<td>8</td>
<td>2,3</td>
<td>132</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Geitrams</td>
<td>19</td>
<td>8</td>
<td>2,3</td>
<td>109</td>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>Andre</td>
<td>23</td>
<td>7</td>
<td>3,2</td>
<td>201</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>X (middel)</td>
<td>23</td>
<td>8</td>
<td>2,9</td>
<td>192</td>
<td>3</td>
<td>64</td>
</tr>
</tbody>
</table>

Når det gjelder bly var anrikningsgraden betydelig høyere (100-300). På grunn av meget lave referanseverdier blir likevel ikke totalkonsentrasjonene ekstremt høge. Dersom en tar i betraktning de mengder av prosjektler (tonnevis) som ligger i nær tilknytning til denne vegetationen, så er det bemerkelsesverdig at konsentrasjonene ikke er høgere. Disse resultatene er imidlertid i meget god overensstemmelse med tidligere resultater fra sivile og militære skytebaner slik som diskutert i delrapport 1. Videre så er også den totale mengden av vegetation liten både på feltskytebanen og ved kulefangervollene.

Konsentrasjonene i plantene var heller ikke vesentlig høyere enn i humusjiktet fra de deler av landet som mottar mest atmosfæriske avsetninger. Vi kan derfor konkludere med at det
ikke er knyttet store betenkeligheter til beiting av vegetasjon på Forsvarets skytefelt. Det er nok risikoen for at dyr får i seg fragmenter av blyprosjektiler som er den største forurensningsfaren.

3.5 Sammenfatning av resultatene fra de ulike undersøkelsene.

Kobber og bly er elementer som lett binder seg til humus og finfordelte uorganiske partikler i jorda. Selv en forsuring endrer lite på dette bildet. Den generelt lave forurensningsgraden av kobber og bly i de akvatiske økosystemene i skytefeltene må tyde på at korrosjonen av prosjektilene går meget seint, og at de frigjorte metallene bindes raskt til jordsmonnet og i liten grad føres ut i bekker og elver. Vannsystemene utenfor skytefeltenes grenser (nedstrøms) påvirkes praktisk talt ikke av forurensninger av kobber og bly fra feltene. Når det gjelder sink og kadmium er det ikke målt forurensninger av betydning på noen økosystemnivå. Vi kan derfor konkludere med at kobber, bly, sink og kadmiumforurensninger fra skytefelt i hovedsak er begrenset til plassen der de deponeres på skytebanen og i kulefangervollene. Korrosjonen av prosjektiler er svært sein og mye seinere enn de årlige depoeneringer. Mengdene av metaller i feltene vil derfor fortsette å øke med årene så lenge feltene er i bruk. En overvåkningsundersøkelse på noen utvalgte felter vil avdekke eventuelle årlige variasjoner i metallavrenning og dessuten vise tidsutviklingen.

Mange av skytebanene ligger også på "moer" med store løsavsetninger og ble således utilisitet gunstig plassert med hensyn til metalltransport til vann. Det er en forutsetning at massene fra kulefangervollene ikke flyttes evnt. dumpes i vassdrag og at områdene fra nedslagsområdene på feltskytebanene ikke utsettes for unnødig erosjon. Konklusjonene om at forurensningene av bly, kobber, sink og kadmium fra skytefelt i hovedsak er knyttet til skytebanen, mens områdene utenfor skytefeltet er lite berørt, er i god overenstemmelse med andre publiserte undersøkelser om dette emnet (se Rognerud et al. 1991). Det synes derfor som om disse konklusjonene kan ha en almengyldig karakter da spekteret i typen av skytebaner (unntak lerduebaner) og naturgitte betingelser var svært stort i undersøkelsen.

4. Litteraturliste

Lingsten,L. 1985. "Bakgrunnsnivåer" av utvalgte metaller i ferskvannsmoser og mulighet for bruk av moser som indikator på organiske miljøgifter. NIVA-rapport L.nr. 1839. 15s.

