Eutrofisituasjonen i YTRE OSLOFJORD

DELPROSJEKT 3.3 a

Transportmodell av overflatelaget i Ytre Oslofjord.

Rapport 1: Modellen og dens åpne grenseflater.
Rapportens tittel: Eutrofisituasjonen i Ytre Oslofjord
Delområde 3.3: Transportmodell av overflate-laget i Ytre Oslofjord. Rapport 1: Modellen og dens åpne grensflater. Notat 3.3a
Forfatter(e):
Helge Skatun
Lars Petter Røed

Dato: 21. november 1988
Rapportnr.

Faggruppe: Marin eutrofi
Geografisk område: Oslofjorden
Antall sider (inkl. bilag): 37

Oppdragsgiver: Statens forurensningstilsyn (SFT)
(Statlig program for forurensningsovervåking)

Ekstrakt:
(Dette ark er lagt inn i NIVA's eksempler) Notat er et underlag-dokument som er trykket i begrenset opplag.

4 emneord, norske:
1. Oslofjorden
2. Numerisk modell
3. Havstrømmer
4. Forurensningstransport

4 emneord, engelske:
1.
2.
3.
4.

Prosjektleder: Kjell Baalsrud

For administrasjonen:
Programleder, overvåking
Sammendrag/Summary

Dette er første rapport fra delområde 3.3. Rapporten beskriver den numeriske transportmodellen i detalj, dens åpne randbetingelser, og hvordan vind og elver påvirker bevegelsesmengden.

Modellen er en ikke-lineær tyngderedusert modell som er implementert i et rute-nett med oppløsning 375 m. Modellen bruker sentrerte differanser i tid og rom. Integrasjonområdet strekker seg fra Fitværd i nord til Rakkebåne i sør. Også Drogbakområdet er med. På den åpne randen i sør er benyttet en mylig utviklet betingelse kalt "Flow relaxation scheme (FRS)". Denne type betingelse er også brukt for å parameterisere innstrømmingene fra elver (Glomma og Drammenvatnet), samt Indre Oslofjord.

Også de grafiske rutinene og eksempler på visuell fremstilling av dataene er vist.

Rapporttype/Type of Report

- Teknisk rapport

Indexing terms

<table>
<thead>
<tr>
<th>Indexing term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oslofjord</td>
<td>Numerical model</td>
</tr>
<tr>
<td>Ocean Currents</td>
<td>Computer simulations</td>
</tr>
</tbody>
</table>

Distribution statement

- Ingen distribusjon uten tillatelse fra ansvarlig avdeling.
- Begrenset distribusjon innen VERITEC.
- Fri distribusjon/Unrestricted
EUTROFISITUASJONEN I YTRE OSLOFJORD
DELPROSJEKT 3.3:

Transportmodell av overflatelaget i Ytre Oslofjord.
Rapport 1: Modellen og dens åpne grenseflater
av
Helge Skåtun og Lars Petter Røed

Veritas Offshore Technology and Services A/S
Avdeling for Oseanografi
Postboks 300
1322 Løvik
INNHOLDSFØRTEGNELSE

Forord ... 1

1 Sammendrag .. 2

2 Innledning .. 4

3 Beskrivelse av modellen 6
 3.1 Representasjon av vertikal lagdeling 6
 3.2 Bevegelseslikningene 6

4 Numerisk implementering av modellen 9
 4.1 Numerisk gitter ... 9
 4.2 Differanse skjemaet 9
 4.3 Tidsdifferanse skjemaet 11
 4.4 Numerisk stabilitet 11

5 Grenseflatebetingelser og vindkrefter 13
 5.1 Lukkede grenseflater 13
 5.2 Åpne grenseflater 13
 5.2.1 Flow Relaxation Scheme (FRS) 13
 5.2.2 Ekman-transport 14
 5.3 Andre render: Innstrømning fra elver og fjorder 15
 5.3.1 Innstrømning fra elver 16
 5.3.2 Grenseflatebetingelsen mot Indre Oslofjord 17
 5.4 Vindkrefter ... 17

6 Partikkelbaner og spredning av sporstoff 19
 6.1 Partikkelbaner ... 19
 6.2 Spredning av sporstoff 19

7 Lagring og grafisk fremstilling av modellresultater 21
 7.1 Grafisk fremstilling av felter 21
 7.1.1 Konturplott 21
 7.1.2 Vektorplott 21
 7.2 Grafisk fremstilling av tidsserier 22
 7.2.1 Volumflusker og tykkelse i faste punkter 22
 7.2.2 Tidsserier av integrerte variable 23
 7.2.3 Partikkelbaner 24
 7.3 Snitt .. 24

8 Valg av parametre til modellen 25
 8.1 Faste parametre 25
 8.2 Vertikal lagdeling 25
 8.3 Horisontal opplysning 26
FIGURLISTE

Fig. 1: Modellområdet .. 28
Fig. 2: Skjematisk bilde av den vertikale lagdeling 29
Fig. 3: Modellens numeriske gitter (Arakawa C-grid) 30
Fig. 4: Eksempel på konturplott 31
Fig. 5: Eksempel på konturplott for et delområde 32
Fig. 6: Eksempel på plott av hastighetsvektorer 33
Fig. 7: Eksempel på tidsserieplott for 8 posisjoner 34
Fig. 8: Eksempel på plott av partikkelbaner 35
Fig. 9: Eksempel på et plott av et lateralt snitt 36
TABELLER

Tabell 1: Notasjon for bevegelseslikningene i modellen 7
Tabell 2: Geografiske posisjoner for tidsserier 22
Tabell 3: Faste parametre brukt i Oslofjordmodellen 25
Forord

Dette er en delrapport i en større undersøkelse av eutrofisituasjonen i Ytre Oslofjord.

Undersøkelsen utføres for Statens Forurensningstilsyn, SFT, av Norsk institutt for vannforskning i samarbeid med Universitetet i Oslo og Veritas Offshore Technology and Services a.s., VERITEC.

Resultatene rapporteres i en rekke delrapporter, som danner grunnlaget for en fellesrapport.

I forbindelse med arbeidet er det samlet inn en betydelig mengde med data. Noe av datamaterialet er gjengitt i de enkelte delrapporter som vedlegg, og noe er samlet for seg i data-atlas.

Denne delrapporten er første rapport fra delprosjekt 3.3: Transportmodell av overflatelaget i Ytre Oslofjord og har fått beteget rapport 3.3A. Rapporten beskriver det tekniske bakgrunnsmaterialet, eller regneværktøyet, som har vært brukt i forbindelse med arbeidet med modellen.

Denne delrapporten trykkes bare i noen få eksemplerer, men er tilgjengelig for interesserte hos SFT, NIVA, eller VERITEC.

Kjell Baalsrud
Prosjektleder
1 Sammendrag

Formål

Formålet med undersøkelsen av eutrofisituasjonen i Ytre Oslofjord er å anslå behovet for utslippsreduksjoner av eutrofierende stoffer og organisk stoff til Ytre Oslofjord. Formålet med det delprosjektet som denne rapporten er en del av, er å undersøke transportveiene i overflatelaget av Ytre Oslofjord ved hjelp av en forholdsvis enkel numerisk modell. Formålet med denne rapporten er kun å beskrive det regneverktøyet eller den numeriske modellen som er blitt benyttet.

Konklusjoner

En tyngderedusert modell, versjon 1, til beskrivelse av transporten i overflatelaget for Ytre Oslofjord er implementert og testet. Moduler som på grunnlag av de resultater modellen frembringer gir partikkelbaner og spredning av sporstoff er også implementert. Med implementert menes her at de algoritmene som svarer til en endelig differanse form av de matematiske likningene som styrer bevegelsen, er kodet (i FORTRAN) og funnet feilfrie for formelle feil på regnemaskin. Det inkluderer altså ikke en verifikasjon eller validisering av det modellresultatene er tenkt å beskrive fysisk, bare at koden utfører det den er programmert for.

Også de rutiner som skal brukes for grafisk presentasjon av modellresultater er implementert og beskrevet i denne rapporten.

Gjennomførelse og resultater

Modellen som er implementert for å beskrive overflatelagets transportveier i Ytre Oslofjord er en såkalt ikke-lineær, tyngderedusert modell. Modellen er kodet på grunnlag av en detaljert beskrivelse av en tyngdereduserte modell opprinnelig utviklet for Det Indiske Hav av The Mesoscale Air-Sea Interaction Group, MASIG, ved the Florida State University, Tallahassee, Florida (se Dube et al., 1986, Luther and O’Brien, 1985). Imidlertid er modellen utvidet i forhold til MASIG modellen ved at en ny type åpne randbetingelser kalt Flow Relaxation Scheme (FRS) er
implementert. Dessuten er modellen utvidet ved at ferskvannstilstrømning fra områdets større vassdrag nå tillates som pådrag i tillegg til vindspanning.

De enkelte modulene, inklusive rutiner for grafisk presentasjon, er testet under ideelle betingelser for å undersøke og lete opp eventuelle feil i kodene. Det bør her bemerkes at dette er en kontinuerlig prosess, og at vi må regne med å finne nye feil etterhvert som modellen brukes til simulering og/eller idealiserte kjøring. Den versjonen som beskrives her er derfor versjon 1 av en transportmodell for overflatelaget i Ytre Oslofjord. Modellen, både dens matematiske og numeriske form, er behørig dokumentert og beskrevet i denne rapporten.
2 Innledning

I denne rapporten presenteres den modellen som er utviklet for å simulere strømforholdene i Ytre Oslofjord og hvordan den er implementert. Modellen, som er en ikke-lineær, tyngderedusert modell, er beskrevet i kulekoordinater. Utviklingen av modellen bygger på en tilsvarande modell utviklet av the Mesoscale Air-Sea Interaction Group (MASIG) ved the Florida State University, Tallahassee, (FSU) og som beskrevet i detalj av Dube et. al. (1986). FSU-modellen er utviklet og delvis verifisert for vind-dreven strøm i Det Indiske Hav.

Fordelen ved å bruke en tyngderedusert modell isteden for en full to-lags modell, er at regnetiden reduseres. Dette oppnår fordi den barotrope moden er eliminert, og ved at vi derved kan bruke et mye lengre tidsskritt enn for en tilsvarende full 2-lags modell. Da mye tyder på at strømmene i Ytre Oslofjord i stor grad er begrenset til øvre lag, vil en tyngderedusert modell i mange tilfeller være fullt tjenlig for å simulere strømningene i fjorden.

Ved å bruke en ikke-lineær modell, oppnår vi en bedre oppløsning av energikaskaden, idet modellen er i stand til å danne virvler. En slik virvel dannelse synes å være svært viktig for en korrekt beskrivelse av sirkulasjonen i Ytre Oslofjord.

Modellen dekker området fra Drøbak i nord (59° 40’N), til en linje mellom Stavern og Strømstad (58° 58’N) i sør. Topografien i modellen er manuelt digitalisert fra norske sjøkart, med en oppløsning på 0.4 bueminutter i sonal retning (ca. 381 m) og 0.2 bueminutter i meridional retning (370.4 m). Enkelte grunne farvann er markert som land i modellen, f.eks. innerste delen av Sande-bukta, Kurefjorden, Krokstadfjorden, Viksfjorden ved Larvik og områder rundt Nøtterøy. Drammensfjorden strekker seg inn til Holmsbu i modellen. Modellområdet er gitt på Figur 1.

I Kapittel 3 er den matematiske modellen beskrevet i korte trekk, mens Kapittel 4 tar for seg den numeriske implementeringen av modellen. For en nærmere beskrivelse av den tyngdereduserte modellen henvises til Dube et. al. (1986), eventuelt til Luther og O’Brien (1985). Kapittel 4 tar også for en analyse av den numeriske stabiliteten. Implementering av grenseflatebetingelser, både åpne, lukkede og spesifiserte, samt ytre krefter i modellen er beskrevet i Kapittel 5. Her er også parameterisering av innstrømning fra elver og fjordarmer beskrevet. Implementeringen av
moduler for beregning av partikkelbaner (trajektorier) og spredning av sporstoff (tracere), er dokumentert i Kapittel 6. I Kapittel 7 beskrives hvordan resultater fra modellsimuleringene overføres til datafiler og presenteres grafisk, sammen med noen eksempler på den grafiske representasjonen.
3 Beskrivelse av modellen

3.1 Representasjon av vertikal lagdeling

Anta et 2-lags system av væsker på en roterende kule. Et skjematisk snitt av 2-lagsmodellen er gitt i Figur 2. Tetthetene i det øvre og nedre laget er gitt ved hhv \(\rho \) og \(\rho_1 \) og tykkelsen til lagene er hhv. \(h \) og \(h_1 \). Likevektstykkelsene av lagene er henholdsvis \(H \) og \(H_1 \), og hastighetskomponentene i øvre og nedre lag er \((u,v)\) og \((u_1,v_1)\). Overflatehevingen betegnes \(\eta \) og hevingen av skilleflaten mellom lagene betegnes \(\zeta \). Vi antar følgende for 2-lags-modellen.

a) Tykkelsen av væskeren er liten sammenlignet med Jordradien.

b) Væskeren er til enhver tid i hydrostatisk balanse.

c) Boussinesq-apoprosimasjonen er gyldig, dvs. at tetthetsvariasjoner sees bort fra, unntatt i oppdriftsleddet.

d) Hvert lag er homogent i tetthet, både horisontalt og vertikalt.

e) Tykkelsen av nedre lag er mye større enn tykkelsen av øvre lag, slik at ved et nivå i det nedre laget er den horisontale trykkgradienten neglisjebart.

3.2 Bevegelseslikningene

De ikke-lineære ligningene for en redusert tyngde modell på en roterende kule kan skrives (se Dube et. al., 1986):

\[
\frac{\partial u}{\partial t} + \frac{u}{a \cos \theta} \frac{\partial u}{\partial \phi} + \frac{v}{a} \frac{\partial u}{\partial \theta} - (2 \Omega \sin \theta) v = - \frac{\epsilon g}{2a \cos \theta} \frac{\partial h}{\partial \phi} + \frac{\tau^*}{\rho h} + D \nabla^2 u
\] \hspace{1cm} (2.1)

\[
\frac{\partial v}{\partial t} + \frac{u}{a \cos \theta} \frac{\partial v}{\partial \phi} + \frac{v}{a} \frac{\partial v}{\partial \theta} + (2 \Omega \sin \theta) u = - \frac{\epsilon g}{2a} \frac{\partial h}{\partial \theta} + \frac{\tau^*}{\rho h} + D \nabla^2 v
\] \hspace{1cm} (2.2)

\[
\frac{\partial h}{\partial t} + \frac{1}{a \cos \theta} \left(\frac{\partial}{\partial \phi} (hu) + \frac{\partial}{\partial \theta} (h \cos \theta) \right) = 0
\] \hspace{1cm} (2.3)

Notasjonen er gitt i Tabell 1 nedenfor:
Tabell 1: Notasjon for bevegelseslikningene i modellen.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>hastighetskomp. østover</td>
</tr>
<tr>
<td>v</td>
<td>hastighetskomp. nordover</td>
</tr>
<tr>
<td>h</td>
<td>tykkelsen av øvre lag</td>
</tr>
<tr>
<td>ϕ</td>
<td>lengdegrad</td>
</tr>
<tr>
<td>θ</td>
<td>breddegrad</td>
</tr>
<tr>
<td>α</td>
<td>jordens radius</td>
</tr>
<tr>
<td>ϵ</td>
<td>relativ tetthetsforskjell mellom de to lagene, dvs. $\epsilon = \frac{\rho_1 - \rho_2}{\rho_1}$</td>
</tr>
<tr>
<td>g</td>
<td>tyngdeakselerasjonen</td>
</tr>
<tr>
<td>τ^θ</td>
<td>vindstressets øst-komponent</td>
</tr>
<tr>
<td>τ^φ</td>
<td>vindstressets nord-komponent</td>
</tr>
<tr>
<td>ρ</td>
<td>tettheten av det øvre laget</td>
</tr>
<tr>
<td>Ω</td>
<td>jordens rotasjons hastighet</td>
</tr>
<tr>
<td>∇^2</td>
<td>den horisontale Laplace-operator</td>
</tr>
<tr>
<td>D</td>
<td>eddy-diffusjonskoeffisienten</td>
</tr>
</tbody>
</table>

Ved å definere volumflukser $U = uh$ og $V = vh$ kan bevegelseslikningene (2.1) - (2.3) skrives på transportform:

$$\frac{\partial U}{\partial t} + \frac{1}{\alpha \cos \theta} \frac{\partial}{\partial \phi} \left(\frac{U^2}{h} \right) + \frac{1}{\alpha} \frac{\partial}{\partial \theta} \left(\frac{UV}{h} \right) = -(2\Omega \sin \theta) V - \frac{\epsilon g}{\alpha \cos \theta} \frac{\partial h^2}{\partial \phi} + \frac{\tau^\theta}{\rho} + D \nabla^2 U$$ (2.4)

$$\frac{\partial V}{\partial t} + \frac{1}{\alpha \cos \theta} \frac{\partial}{\partial \phi} \left(\frac{UV}{h} \right) + \frac{1}{\alpha} \frac{\partial}{\partial \theta} \left(\frac{V^2}{h} \right) = -(2\Omega \sin \theta) U - \frac{\epsilon g}{\alpha} \frac{\partial h^2}{\partial \theta} + \frac{\tau^\theta}{\rho} + D \nabla^2 V$$ (2.5)

$$\frac{\partial h}{\partial t} + \frac{1}{(\alpha \cos \theta)} \left(\frac{\partial U}{\partial \phi} + \frac{\partial (V \cos \theta)}{\partial \theta} \right) = 0$$ (2.6)
Denne formen av bevegelseslikningene har følgende fordeler:

i) kontinuitetslikningen blir lineær

ii) adveksjonsleddene skrives på divergensform, noe som gir modellen bedre numeriske egenskaper

Eddy diffusjon er inkludert i modellen for selektivt å dempe numerisk støy som opptrer på de korteste skalaene i modellen. Den er kun ment som en "kosmetisk" viskositet, og ikke som noen parameterisering av fysiske prosesser.
4 Numerisk implementering av modellen

4.1 Numerisk gitter

Bevegelseslikningene som er beskrevet i kapittel 3 er definert og integrert v.h.a. et endelig differanse skjema i et numerisk gitter. Gitteret er beskrevet i kulekoordinater, og er et Arakawa type C forskjøvet gitter. I dette gitteret er gitterpunktene for h, U og V forskjøvet 1/2 gitteravstand i forhold til hverandre. Arakawa C-gitteret er vist skjematisk i Figur 3.

De horisontale gitteravstandene i Oslofjord-modellen er hhv. 0.4 bueminutter i sonal retning (dvs. $\Delta \phi = 381 \text{ m}$) og 0.2 bueminutter i meridional retning ($\alpha \Delta \theta = 370.4 \text{ m}$), og er definert som den horisontale gitteravstanden mellom gitterpunkt med samme variabel (jfr. Figur 3). Vi har dessuten lagt til et område i sør på 5 gitterpunkter for å unngå uheldig interferens mellom grenseflaten i sør og øyer som ligger nær denne grenseflaten. Modellens utstrekning (ekskusive FRS-soner, jfr. kap. 5.2.1) er 185 punkter østover og 215 punkter nordover.

I det alternenende gitteret har vi i gittercelle (j,k) plassert tykkelsen h i lengdegrad $(\phi_j)_h = \phi_0 + (j-1)\Delta \phi$ og breddegrad $(\theta_k)_h = \theta_0 + (k-1)\Delta \theta$, øst-komponenten av volumfluksen U i lengdegrad $(\phi_j)_U = \phi_0 + (j-1/2)\Delta \phi$ og breddegrad $(\theta_k)_U = \theta_0 + (k-1)\Delta \theta$, og nord-komponenten av volumfluksen V i lengdegrad $(\phi_j)_V = \phi_0 + (j-1)\Delta \phi$ og breddegrad $(\theta_k)_V = \theta_0 + (k-1/2)\Delta \theta$.

(ϕ_0, θ_0) er således den geografiske posisjonen til tykkelsespunktet i det sørvestre hjørnet av modellen. I Oslofjord-modellen er denne posisjonen 10° øst og 58° 57' nord.

4.2 Differanse skjemaet

Som endelig differanse-tilnærrelse av romderiverte brukes sentrerte differanser. La Q være en vilkårlig variabel i gitteret. Vi definerer følgende differanse operatorer:

$$\delta_\phi Q_{j,k,n} = (Q_{j+1/2,k,n} - Q_{j-1/2,k,n}) / \Delta \phi$$
\[\delta_0 Q_{j,k,n} = \frac{(Q_{j,k+1/2,n} - Q_{j,k-1/2,n})}{\Delta y} \]

\[\overline{Q}_{j,k,n} = \frac{(Q_{j+1/2,k,n} + Q_{j-1/2,k,n})}{\Delta \phi} \]

\[\overline{Q}_{j,k,n} = \frac{(Q_{j,k+1/2,n} + Q_{j,k-1/2,n})}{\Delta \theta} \]

I det angitte gitteret vil bevegelseslikningene ha følgende tilnærminger på endelig differanse form:

\[\delta(U) = -\frac{1}{(a \cos \phi)} \delta_0 \left(\frac{U^\phi}{h} \right) - \frac{1}{a} \delta_0 \left(\frac{U^\theta V^\theta}{h} \right) \]

\[-(2 \Omega \sin \theta_k) \overline{U}^\theta \]

\[-\frac{\varepsilon g}{2a \cos \theta_k} \delta_0 h^2 \]

\[+ \frac{\tau^\phi}{\rho} \]

\[+ \frac{D}{a^2} \left(\frac{1}{\cos^2 \theta_k} \delta_{\theta \theta} U + \delta_{\phi \phi} U + \tan \theta_k \delta_\phi U \right) \]

\[\delta(V) = -\frac{1}{(a \cos \phi)} \delta_0 \left(\frac{\overline{U^\phi V^\theta}}{h} \right) - \frac{1}{a} \delta_0 \left(\frac{(U^\theta)^2}{h} \right) \]

\[+(2 \Omega \sin \theta_k) \overline{U}^\theta \]

\[-\frac{\varepsilon g}{2a \cos \theta_k} \delta_0 h^2 \]

\[+ \frac{\tau^\theta}{\rho} \]

\[+ \frac{D}{a^2} \left(\frac{1}{\cos^2 \theta_k} \delta_{\theta \theta} V + \delta_{\phi \phi} V + \tan \theta_k \delta_\phi V \right) \]

\[\delta(h) = -\frac{1}{(a \cos \theta_k)} (\delta_\phi U + \delta_\theta (V \cos \theta_k)) \]
4.3 Tidsdifferanse skjemaet

For å integrere likningene framover i tid, bruker modellen et "leapfrog" skjema. Dette skjemaet krever verdier for tre tidsnivå. La Q være en vilkårlig avhengig variabel som endres ved tiden. Verdien ved forrige tidsskritt betegnes da Q_{n-1}, verdien ved dette tidsskritt Q_n, og verdien ved neste tidsskritt Q_{n+1}. Leapfrog-skjemaet kan da skrives formelt:

$$Q_{n+1} = Q_{n-1} + 2\Delta t \cdot \delta(Q_n)$$

hvor $\delta(Q_n)$ er definert v.h.a. differanseoperatorene i (2.7) - (2.9) for U, V og h.

For å fjerne en kraftig løsning av likningene som skyldes det numeriske differanseskjemaet brukes en forover differanse i tid hvert 199. tidsskritt, dvs. $Q_{n+1} = Q_n + \Delta t \cdot \delta(Q_n)$.

4.4 Numerisk stabilitet

For at modellen skal være numerisk stabil, må vi sette visse krav til tidsskrittet i modellen. CFL (Courant-Friedrichs-Lewy) kriteriet krever at den numeriske signalhastigheten skal være større enn den fysiske signalhastigheten, dvs. at ingen fysiske signaler skal kunne gå lenger enn en gitteravstand i løpet av ett tidsskritt.

De to signalhastighetene vi må ta hensyn til i modellen er fasehastigheten til de indre tyngdebølgene c_i og adveksjonshastigheten u. Fasehastigheten for indre tyngdebølger er gitt ved $c_i = \sqrt{eg}$. CFL-kriteriet kan da uttrykkes som

$$\Delta t \leq \frac{\Delta s}{\sqrt{2 \varepsilon (c_i + u)}} = \frac{\Delta s}{\sqrt{2(\sqrt{eg} + u)}}$$

der Δs er avstanden mellom to punkt med amme variabel i gitteret. Fordi modellen er ikke-lineær, vil fasehastigheten c_i avhenge av tykkelsen til det øvre laget til enhver tid.
Med de parametrene vi har valgt for tetthetsskikkningen og en maksimal tykkelse av det øvre laget på 40 m, dvs. det dobbelte av likevektstykken, vil vi få en maksimal fasehastighet på 1.75 m/s.

En kan imidlertid forvente at strømhastighetene i modellen oppnår høyere verdier enn dette. I denne modellen er den minste gitteravstanden 370 m. Ved å bruke et tidsskritt på 90 s vil modellen kunne tåle signalhastigheter opp til 2.9 m/s uten å bli instabil. Dersom maksimal strømhastighet og maksimal fasehastighet for de indre bølgene opptrer samtidig, vil modellen kunne tåle en strømhastighet på 1.15 m/s. En kan imidlertid anta at disse ikke oppnår maksimalverdier samtidig, på grunn av deres avhengighet av tykkelsen av det øvre laget. Fasehastigheten til de indre bølgene er proporsjonal med kvadratroten av tykkelsen, mens strømhastigheten vil være omvendt proporsjonal med tykkelsen ved konstant volumflukts. En kan derfor med rimelighet anta at større strømhastigheter enn 1.15 m/s vil kunne opptre uten at modellen blir instabil.

En annen type instabilitet i modellen er den ikke-lineære instabiliteten. Denne skyldes modellens håndtering av energikaskaden over til kortere skalaer. Fordi modellen er diskret, og ikke kontinuerlig, vil den korteste oppløsbare bølge være den med bølgelengde $2\Delta s$. Energien vil derfor samle seg opp på denne skalaen og kunne føre til ikke-lineær instabilitet.

Ved å formulere adveksjonsleddene som volumfluks-divergens i (2.4) og (2.5), oppnår vi en midlingseffekt som vil dempe energiopphopningen på de korteste skalaene. I tillegg vil diffusjonsleddet bidra til å dempe instabiliteter på de minste skalaene. Den numeriske diffusjonskoefisienten er gjort avheng av gridavstanden og likevektstykken av det øvre lag, slik at $D = AH\Delta s$, der vi har valgt $A = 0.5 \cdot 10^{-3} s^{-1}$. Denne verdien er den samme som Martinsen og Engedahl (1987) har brukt til sine produksjonskjøring.
5 Grenseflatebetingelser og vindkrefter

Grenseflatene i modellen er plassert i punkter der normalfluksen til grenseflaten er spesifisert, dvs. sonale grenseflater er plassert i U-punkt, og meridionale grenseflater er plassert i V-punkt. Dette gjelder såvel lukkede som åpne grenseflater.

5.1 Lukkede grenseflater

For de lukkede grenseflatene (vegger i modellen) er en "no-slip" grenseflatebetingelse implementert. Denne betingelsen krever at både normalkomponenten og tangentialkomponenten av hastigheten (og derav volumfluksen) skal være lik null ved grenseflaten.

De indre lukkete grenseflatene er flagget ved at tykkelsen av overflatelaget \(h \) er satt til en spesiell verdi for landpunkter i modellen. Dersom \(h \) har en slik spesiell verdi i et gitt punkt, så vil verdiene i de omkringliggende U- og V-punktene bli satt lik null. Tykkelsesverdien i et slikt h-punkt vil heller ikke bli oppdatert.

5.2 Åpne grenseflater

Åpne grenseflater er grenseflater mot andre havområder eller fjordarmer. Åpne grenseflater er implementert på to ulike måter i modellen, enten ved direkte spesifisering på modellens grenseflate eller ved at den indre løsningen tilpasses (relakseres) til den gitte verdien på randen gjennom en relaksasjonszone. Denne siste, som kalles et transport tilpassnings skjema (Flow Relaxation Scheme, FRS) er en nyutviklet åpen grenseflatebetingelse og er beskrevet tidligere av Martinsen og Engedahl (1987). Her følger en kort beskrivelse av hvordan den er implementert i vår modell.

5.2.1 Flow Relaxation Scheme (FRS)

Ved slike grenseflater har vi benyttet et såkalt "Flow Relaxation Scheme" (FRS). Ved et slikt skjema vil den indre løsningen tilpasses (relakseres) til den ytre påtrykte løsningen gjennom en relaksasjonszone.

I FRS-sonen blir de prognostiske variable oppdatert på følgende måte:
\[h = \alpha h_s + (1 - \alpha) h_i, \]
\[U = \alpha U_s + (1 - \alpha) U_i, \]
\[V = \alpha V_s + (1 - \alpha) V_i, \]
\[(4.1)\]

der subskript s betyr den spesifiserte løsning, og subskript i betyr den indre løsningen. Den indre løsningen fremkommer ved tidsintegrasjon uten innflytelse av grenseflatebetingelsen. Ved den ytre enden av relaksasjonssonen, der løsningen er spesifisert er \(\alpha\) lik 1, og ved den indre enden av relaksasjonssonen er \(\alpha\) lik 0.

I denne modellen er lengden av relaksasjonssonene satt lik 20 gitterpunkt, og \(\alpha\) varierer gjennom relaksasjonssonen på følgende måte

\[\alpha(i) = \left(\frac{NN - i + 1}{NN}\right)^2, \quad i = 1, 2, 3, \ldots, NN. \]

I regneskjemaet brukes FRS-metoden på følgende måte:

i) Oppdater de prognostisk variable for neste tidsskritt i hele integrasjonområdet, inkludert relaksasjonssonene, untatt de ytre gitterpunktene i sonene der \(\alpha = 1\).

ii) Bruk formlene (4.2) til å oppdatere de prognostisk variable i relaksasjonssonene.

Det er viktig å merke seg at denne spesielle måten å angi ytre løsninger på er velegnet til å dempe forstyrrelser eller uønsket "støy" som er på vei ut av modellområdet i form av bolger. På denne måten virker FRS-sonene som energi-svamper, samtidig som de tillater ytre påvirkning å slippe inn. Denne type grenseflatebetingelse er beskrevet i detalj i Martinsen og Engedahl (1987).

5.2.2 Ekman-transport

De ytre påvirkningene eller de spesifiserte løsninger som brukes i FRS sonene i modellen er vesentlig vind-drevet og/eller vind-indusert (Ekman dynamikk).

Ved de åpne render hvor vindspenningen forventes å utgjøre en vesentlig del av de spesifiserte ytre løsningene er disse i noen grad parameterisert eller gitt ved hjelp av en enkel Ekman-dynamikk, dvs. Ekman-transporten
er spesifisert slik at den gir en balanse mellom Coriolis-kraften, trykk-gradienten og vindkreftene tangentialt på grenseflaten. Normalt på grenseflaten er det kun en balanse mellom Coriolis-kraften og vindkreftene. Det er viktig å merke seg at denne balansen gjenspeiler noe av dynamikken i det egentlige området som modellen gjelder for.

La \(U \) være volumfluksen tangentialt på grenseflaten og \(V \) volumfluksen normalt på grenseflaten. Ekman-transporten på grenseflaten kan da beskrives ved likningene

\[
\frac{\partial U}{\partial t} - (2\Omega \sin \theta) V = -\frac{\varepsilon g H}{a \cos \theta} \frac{\partial h}{\partial \phi} + \frac{\tau^\phi}{\rho h} - R \frac{U}{h}
\]

\[
\frac{\partial V}{\partial t} + (2\Omega \sin \theta) U = -\frac{\varepsilon g \partial h^2}{a} + \frac{\tau^\theta}{\rho h} - R \frac{V}{h}
\]

\[
\frac{\partial h}{\partial t} + \frac{1}{(a \cos \theta)} \left(\frac{\partial U}{\partial \phi} \right) = 0
\]

Her har vi brukt de lineariserte bevegelseslikningene og neglisjert eddy-diffusjonen. Likningene for Ekman-transporten blir oppdatert uavhengig av likningene i modellen. Tids-integrasjons-skjemaet for Ekman-transporten er et forover-bakover-skjema (se Martinsen et. al., 1979), der \(h \) blir oppdatert med et forover tidsskritt, og deretter blir \(U \) og \(V \) oppdatert ved hjelp av de nye \(h \)-verdiene. Dette skjemaet er stabilt så lenge CFL-kriteriet er oppfylt.

5.3 Andre render: Innstrømning fra elver og fjordarmer

I tillegg til grenseflater på randen av det numeriske gitteret er det også mulig å spesifisere grenseflatebetingelser for "indre" grenseflater, slik som ved utløpet av elver og fjorder. For slike grenseflater har vi spesifisert grenseflateverdiene og så relaksert den indre løsningen til de spesifiserte verdiene gjennom en relaksasjonszone, som beskrevet i kapittel 5.2.1

Det bør her navnes at vi har parameterisert Drammensfjorden som et elveutløp. I modellen er Drammensfjorden avsluttet ved Holmsbu. Vi har...
sett bort fra andre tilsig i fjorden enn Drammenselva, og brukt volumfluks og elvedybde for denne elva som parametre for tilsiget fra Drammensfjorden ved Holmsbu. For bredden b_f har vi brukt 100 m.

5.3.1 Innstrømning fra elver

For elver må først vannføringen, som er oppgitt som m^3/s ferskvann, omgjøres til x antall m^3/s saltvann.
Dette har vi parameterisert ved hjelp av en tenkt entrainment-prosess der ferskvannet fra elven blandes opp med vannet fra det nedre laget til blandingen oppnår tettheten av det øvre laget. Under denne prosessen har vi krevet at bevegelsesmengden er bevart.

La elvevannets egenskaper være gitt ved tettheten ρ_f, dybden h_f og hastigheten u_f. Bevaring av bevegelsesmengden gir:

$$b_f \rho_f u_f^2 = \text{konstant} = b_f \rho_f h_f u_f \frac{\rho_f U_f^2}{h_f}$$

der U_f er elvens volumfluks pr. breddeenhet. Ved å introdusere elvens innstrømning $Q = u_f b_f h_f$, der b_f er elvens bredde, og bruke relasjonen $U = uh$ får vi at

$$U = \sqrt{\left(\frac{\rho_f}{\rho}\right) \left(\frac{h}{h_f}\right) \frac{Q}{\sqrt{b_f b}}}$$

(4.5)

Denne U-verdien er så spesifisert for den ytre enden av en relaksasjonszone, slik at den indre løsningen kan tilpasse seg denne spesifiserte volumfluksen. Lengden av relaksasjonssonen er 20 gridavstander. Både innstrømningen Q og elvedybden h_f er generelt tidsavhengige størrelser.

For h-verdien har vi spesifisert en verdi som oppfyller den integrerte kontinuitetslikningen, dvs. at volumet av det øvre laget i FRS-sonen skal være konstant. I denne beregningen har vi også antatt at tykkelsen av det øvre laget er konstant ved den indre enden av FRS-sonen, og at tykkelsen varierer lineært med avstanden innover i sonen. På denne måten bygges det gradvis opp en trykk-gradient som vil motvirke at det strømmer for mye vann inn i FRS-sonen. Matematisk kan dette uttrykkes som:
\[
\frac{\delta}{\delta t}(h_z) = \frac{2 \Sigma U}{L_{FRS} \cdot b}
\]
der \(h_z\) er den ytre spesifiserte løsningen for \(h\), \(\Sigma U\) er den samlede volumfluks inn i FRS-sonen, \(L_{FRS}\) er lengden av bassenget som simuleres av FRS-sonen og \(b\) er bredden av FRS-sonen.

Ved å bruke en virtuell bassenglengde \(L_{FRS}\), kan en simulere større bassenger uten å måtte øke lengden av FRS-sonen i modellen tilsvarende. Dette er aktuelt for Indre Oslofjord, der den delen som ligger innerfor Drøbak (areal ca. 260 kvadratkilometer) er simulert med en FRS-sone på bare 4x20 gridpunkt.

5.3.2 Grenseflatebetingelsen mot Indre Oslofjord

Indre Oslofjord adskiller seg fra en "normal" fjord ved at elvetilsiget er lite. På grenseflaten i Drøbaksundet har vi derfor brukt en grenseflatebetingelse som ikke tar hensyn til elvetilsiget. Vi har her spesifisert en FRS med gitt løsning i form av null volumfluks eller vind-drevet Ekman-transport avhengig av eksperiment-oppsettet. For den påtrykte, ytre løsningen der volumfluksen er null, har vi parameterisert et indre basseng som beskrevet i 5.3.1 Innstrømning fra elver.

5.4 Vindkretser

Vindkreftene i modellen kan spesifiseres på ulike måter i modellen. På grunn av at området relativt har liten utstrekning, har vi antatt at vinden vil være konstant over området. Som input til modellen spesifiseres windstresset \((\tau^x, \tau^y)\) direkte istedenfor vindhastigheten.

I eksperimentene kan en velge mellom tre ulike tidsforløp av vinden:

1) en konstant vind i en periode \(T_0\) som blir slått av momentant.

2) en vind der tidsavhengigheten er gitt som en Gauss-funksjon (klokkefunksjon)

\[
\tau(t) = \tau_0 \exp \left(- \left(\frac{t-t_m}{t_e} \right)^2 \right)
\]
For begge disse typene vind-fordelinger kan retningen på vindfeltet spesifiseres. Retningen oppgis som kompassretningen vinden kommer fra, og holdes konstant gjennom eksperimentet.

3) For kjøring av simuleringer med reelle parametre er det også implementert en vindfordeling der vindhastigheten blir gitt (konstant for hele området) hver 6. time. Vindhastighet og retning leses fra fil for hver 6. time og vindkomponentene interpoleres lineært mellom disse tidspunktene. Deretter beregnes vindstresset etter formelen

$$\tau = C_d \rho a W^2$$

Drag-koeffisienten vil være avhengig av hvilken høyde over havflaten vinden er målt, vindhastigheten og sjøtilstanden (ruheten). Verdien for drag-koeffisienten C_d vil derfor bli gitt under resultatbeskrivelsen av hver enkelt simulering.
6 Partikkelbaner og spredning av sporstoff

I modellen er det mulighet til å legge inn sporelementer som trajektorier og tracere, slik at bevegelsen til bestemte vannpartikler eller vannmasser/forurensinger kan følges i modellen.

6.1 Partikkelbaner

I modellen kan en legge inn trajektorier eller partikkelbaner, for partikler som passivt følger vannbevegelsen. Utgangsposisjonene og tidspunktene for utsetting kan bestemmes av brukeren. Antall trajektorier er i utgangspunktet begrenset til 16, men kan lett utvides. Posisjonene til trajektoriene oppdateres ved hjelp av likningene

\[\delta \phi_i = \frac{-U(\phi_i(t), \theta_i(t))}{a \cos \theta \ h(\phi_i(t), \theta_i(t))} \delta t\]
(5.1)

\[\delta \theta_i = \frac{-V(\phi_i(t), \theta_i(t))}{a \ h(\phi_i(t), \theta_i(t))} \delta t\]
(5.2)

der \((\phi_i(t), \theta_i(t))\) er posisjonen til trajektorie nummer \(i\) ved tiden \(t\).

Verdiene av \(U\), \(V\) og \(h\) blir interpolert mellom de fire nærmeste gitterpunktene for hver variabel. Likningene for trajektorieposisjonene er numerisk stabile og uavhengige av CFL-kriteriet. Det er derfor nøyaktigheten som bestemmer lengden av tidsskrittet. Vi har valgt et tidsskritt som er 6 minutter.

Dersom en trajektorie blir transportert ut av moddlområdet, så blir trajektorien flagget som "død", dvs. at posisjonen ikke lenger blir oppdatert. Trajektoriene kan også holdes passive inntil et visst tidspunkt, dvs. at posisjonen ikke blir oppdatert før dette tidspunktet.

6.2 Spredning av sporstoff

I modellen er det implementert sporstoff eller tracerlikninger for å oppdatere spredningen i form av konsentrasjon av ulike sporstoff. Antall forskjellige sporstoff er i prinsippet ubegrenset, men hvert nytt sporstoff vil øke både regnetiden og den plassen modellen trenger i
regnemaskinen. Vi har derfor begrenset antallet sporstoff til 3, for å kunne følge vannet som kommer ut i hhv. Drammensfjorden, Glommas vestre løp og Glommas østre løp.

Fordelingen av sporstoffene blir oppdatert vha. adveksjonslikninger, der vi i tillegg har inkludert ledd for kilder og diffusiv spredning. Likningene er bare egnet til å beregne konsentrasjon av sporstoff som ikke påvirker dynamikken i modellen, dvs. påvirker tettheten av vannmassene.

La \(P_m(\phi, \theta, t) \) være fordelingen av sporstoff nr. m. Likningen for sporstoffet blir da:

\[
\frac{\partial P_m}{\partial t} + \frac{u}{\alpha \cos \theta} \frac{\partial P_m}{\partial \phi} + \frac{v}{\alpha} \frac{\partial P_m}{\partial \theta} = S_m(\phi, \theta, t) + D_m \nabla^2 P_m
\]

(5.3)

der \(S_m(\phi, \theta, t) \) er kildeleddet til sporstoff m.

Denne likningen er implementert med sentrerte differanser i rom, og med samme tids-differanse-skjema som for bevegelseslikningene. Diffusjonsleddet er her, med vårt valg av \(D_m \), av samme karakter som i bevegelseslikningene, dvs. av "kosmetisk" karakter. Diffusjonsleddet kan også brukes til å beskrive fysiske diffusjonsprosesser.
7 Lagring og grafisk fremstilling av modellresultater

Resultatene fra modellen blir skrevet ut på fil for senere å presenteres i grafisk form. De tre hovedtypene av data fra modellen er:

1) **Komplette felter for spesifiserte tidspunkt**, som består av volumflukser, tykkelsen av det øvre lag, samt sporstoff fordelinger. Slike felt lagres vanligvis bare hver 6 time.

2) **Tidserier** for volumfluksene og tykkelsen av det øvre laget i spesifiserte (faste) punkter, samt integrerte størrelser som masseoverskudd, kinetisk og potensiell energi i modellen lagres og fremkommer ved at verdier utskrives på fil for hvert 5 minutt. Trajektorieposisjonene blir også gitt som tidserier.

3) **Laterale snitt**, sonale såvel som meridionale av hastigheter og tykkelsen av det øvre laget for en fast lengde- og breddgrad, lagres også slik at forplantning av bølger e.l. i modellen lettere kan detekteres.

7.1 Grafisk fremstilling av felter

7.1.1 Konturplott

Tykkelsen av det øvre laget, samt konsentrasjonen av de ulike tracere presenteres som korturplott. Disse korturplottene kan enten omfatte hele modellområdet, eller gi mere detaljerte bilder fra deler av området. For landpunkter er feltene gitt en spesiell verdi slik at ikke konturene plottes over land eller langs grenselinjene mellom land og hav.

Et eksempel på tykkelseskonturer for hele feltet er gitt i Figur 4, og et eksempel for tykkelseskonturer for et delområde (Breidangen) er gitt i Figur 5.

7.1.2 Vektorplott

Ved hjelp av volumfluksene og tykkelsen av det øvre laget kan en regne ut hastighetskomponentene og plotte hastighetsvektorer. Hastighetsvektorene blir interpolert og presentert i gitterpunkter der tykkelsen er gitt (h-punkter). Et eksempel på et hastighets-vektorplott er gitt
i Figur 6. Vektorens lengde er proporsjonal med hastigheten. Det er satt en terskelverdi, slik at hastigheter under denne terskelen ikke blir plottet.

7.2 Grafisk fremstilling av tidsserier

7.2.1 Volumflukser og tykkelse i faste punkter

I modellen er det mulighet for å ta ut tidsserier av volumflukser samt tykkelsen av det øvre laget i inntil 8 faste gitterpunkter. Volumflukserne blir regnet om til hastighetskomponenter. Verdiene er tatt ut i tykkelsespunkter, slik at volumfluks-komponentene er midlet mellom to punkt for hastighetskomponentene er beregnet. Kurvene blir presentert slik at kurvene for alle 8 punkt og samme variabel (f. eks hastighetskomponent østover) gis i samme plott. Kurvene er merket A, B, C, D, E, F, G og H, og refererer seg til posisjonene som er gitt i Tabell 2.

<table>
<thead>
<tr>
<th>J=</th>
<th>K=</th>
<th>Lengdegrad</th>
<th>Breddegrad</th>
<th>Stedsangivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>98</td>
<td>191</td>
<td>10° 38.8'E</td>
<td>59° 35.0'N</td>
</tr>
<tr>
<td>B</td>
<td>95</td>
<td>191</td>
<td>10° 37.6'E</td>
<td>59° 35.0'N</td>
</tr>
<tr>
<td>C</td>
<td>107</td>
<td>67</td>
<td>10° 42.4'E</td>
<td>59° 10.2'N</td>
</tr>
<tr>
<td>D</td>
<td>92</td>
<td>67</td>
<td>10° 36.4'E</td>
<td>59° 10.2'N</td>
</tr>
<tr>
<td>E</td>
<td>79</td>
<td>169</td>
<td>10° 31.2'E</td>
<td>59° 31.2'N</td>
</tr>
<tr>
<td>F</td>
<td>106</td>
<td>86</td>
<td>10° 42.0'E</td>
<td>59° 14.0'N</td>
</tr>
<tr>
<td>G</td>
<td>147</td>
<td>13</td>
<td>10° 58.4'E</td>
<td>58° 59.4'N</td>
</tr>
<tr>
<td>H</td>
<td>151</td>
<td>13</td>
<td>11° 0.0'E</td>
<td>58° 59.4'N</td>
</tr>
</tbody>
</table>

Et eksempel på et slikt tidsserie-diagram er gitt i Figur 7.
7.2.2 Tidsserier av integrerte variable

Modellen beregner følgende integrerte størrelser, nemlig overskuddsmasse, kinetisk energi, og tilgjengelig potensiell energi.

Overskuddsmassen i modellen (Excess Mass), EM, er definert som den nettomassen som er transportert inn i modellområdet ved et gitt tidspunkt, og er definert ved integralet

\[EM = \rho \iint_A (h - H) \delta A / A = \rho \left(\sum_{j=2}^{J} \sum_{k=2}^{K} h_{j,k} \right) / A \nu - H \]

Den tilgjengelige kinetiske energien (Available Kinetic Energy) pr. arealenhet, AKE, er beregnet ved å ingegrere den kinetiske energien gjennom det øvre laget og over området. Den tilgjengelige kinetiske energien er definert ved integralet

\[AKE = \iint_A \left(\int_{-h}^{h} \frac{\rho}{2} (u^2 + v^2) \delta z \right) \delta A / A \]

\[= \frac{\rho}{2} \left(\sum_{j=2}^{J} \sum_{k=2}^{K} \left(\frac{U^2_{j,k} + V^2_{j,k}}{h_{j,k}} \right) \right) / A \nu \]

Den tilgjengelige potensielle energien er beregnet ved å integrere den potensielle energien \(\rho g z \delta z \) over området og deretter trekke fra den potensielle energien ved likevekt. Uttrykket for tilgjengelig potensiell energi blir da

\[APE = \int_A \int_{-\infty}^{\eta} \rho(z) g z \delta z - \int_{-\infty}^{0} \rho_o(z) g z \delta z \delta A / A \]

der \(\rho_o \) er tetthetsfordelingen ved likevekt.

Ved å integrere gjennom de to lagene med tetthet \(\rho \) og \(\rho' = \rho / (1 - \varepsilon) \), der skilleflaten mellom lagene er i nivå \(\zeta = -(1 - \varepsilon) h \) og overflaten i nivå \(\eta = \varepsilon h \), får vi følgende uttrykk for APE:
\[APE = \int_A \int_A (\varepsilon \rho g / 2)(h^2 - H^2) \delta A / A \]

\[= (\varepsilon \rho g / 2) \left(\sum_{i=2}^{KK} \sum_{j=2}^{J} h_{i,j}^2 / A \right) - H^2 \]

7.2.3 Partikkelbaner

7.3 Snitt

Tykkelsen av det øvre laget samt hastighetskomponentene kan presenteres som x-t-plott, dvs. konturplott i et diagram der den ene koordinaten er avstanden langs snittet og den andre koordinaten er tiden. Slike diagram er særlig egnet til å studere bølgefenomener i modellen, enten forplantninger eller stående svingninger. Et eksempel på et slikt diagram er vist i Figur 9.

I modellen er det lagt inn to slise snitt. Det sonale (eller sør-nord-) snittet går langs koordinaten J=100, dvs. langs 10° 37.6'E (omtrent midtfjords). Det meridionale (eller vest-øst-) snittet går langs koordinaten K=21, dvs. langs 59° 1'N (omtrent mellom Færder og Torbjørnshelleren).
8 Valg av parametre til modellen

8.1 Faste parametre

En del av parametrene i modellen er faste dvs. at de er globale konstanter som er fastsatt en gang for alle. Nedenfor er gitt en oversikt over hvilke verdier som er brukt for disse parametrene i Oslofjordmodellen:

Tabell 3: Faste parametre brukt i oslofjord-modellen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beskrivelse</th>
<th>Verdi</th>
<th>Enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>initiell tykkelse av øvre lag</td>
<td>20</td>
<td>m</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>vestligste lengdegrad</td>
<td>10° 0’E</td>
<td>-</td>
</tr>
<tr>
<td>θ_0</td>
<td>sørligste breddegrad</td>
<td>58° 57’N</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>jordens radius</td>
<td>6.378 · 10^6</td>
<td>m</td>
</tr>
<tr>
<td>g</td>
<td>tyngdeakselerasjonen</td>
<td>9.8</td>
<td>m s^-2</td>
</tr>
<tr>
<td>Ω</td>
<td>jordens rotasjonshastighet</td>
<td>7.29 · 10^-5</td>
<td>s^-1</td>
</tr>
<tr>
<td>A</td>
<td>eddy-diffusjons-koeffisienten</td>
<td>0.5 · 10^-3</td>
<td>s^-1</td>
</tr>
</tbody>
</table>

8.2 Vertikal lagdeling

Parametrene for den vertikale lagdelingen, dvs. tetthetene i det øvre og nedre lag, samt tykkelsen av det øvre lag er valgt slik at de skal svarebest mulig til forholdene i Ytre Oslofjord.

Vi har valgt $\rho_0 = 1017.0 \text{ kg/m}^3$ og $\rho_1 = 1025.0 \text{ kg/m}^3$ for tetthetene i øvre og nedre lag. Likevektstykkelser av øvre lag er satt til 20 m.
Dette gir en indre Rossby-radius $R_i = 9.9$ km, og en forplantningshastighet for de indre tyngdebølgene på $c_i = 1.24$ m/s. Med en slik forplantningshastighet vil en forstyrrelse generert ved Holmsbu forplante seg til til Fulehuk i form av en indre bølge i løpet av 10 timer.

8.3 Horisontal oppløsning

Den horisontale oppløsningen i modellen er bestemt av to faktorer:

i) Barokline bølger skal ha en tilstrekkelig oppløsning. Dette kravet innebærer at gitteravstanden ikke bør være større enn ca. 1/5 av den indre Rossby-radien.

ii) Områdets topografi skal være tilstrekkelig oppløst i modellen.

Det siste kravet er bestemmende for valget av de horisontale gitteravstandene i modellen. Vi har valgt en oppløsning på 0.4 bueminutter i sonal retning (ca. 381 m) og 0.2 bueminutter i meridional retning (370.4 m). Med en indre Rossby-radius på 9.9 km gir dette en gitteravstand på 1/30, altså vel innenfor krav i).
FIGURER
VERTIKAL LAGDELING, 2-LAGS MODELL

FIG. 2: Figuren viser skjematisk den vertikale lagdelingen til modellen. Notasjonene er som følger:

η = Overflateheving, τ = Høving av grenseflaten mellom øvre og nedre lag, \(H \) = Likevektstykkestå av øvre lag, \(h \) = Aktuell tykkelse av øvre lag, \(\rho \) = Tetthet av øvre lag, \(\rho_s \) = Tetthet av nedre lag.
FIG. 3: Figuren viser skjematisk det numeriske gitteret av Arakawa C-type som er brukt i Oslofjordmodellen. Plasseringen av punktene for øvre langs tykkelse (h) og komponentene av volumfluksen (U og V) er vist. Gittercellenes plassering er som beskrevet i kapittel 4.1 med indeks j og k i hhv. sonal og meridional retning.
FIG. 5: Figuren viser et eksempel på konturplott fra et delområde i modellen. Området som er vist er Breiangen, fra Filtvedt og Holmsbu i nord til Horten i sør. Landpunktene er vist som ruter. Aksene viser geografiske koordinater, grader og minutter. Eksperimenter-avsnitt (WIN04C) og simuleringstid (48 timer), samt konturintervall (0.5 m) er vist i tittel-panelet.
FIG. 6: Figuren viser et eksempel på hastighetsvektorplott fra et delområde i modellen. Området som er vist er Breangen, fra Filvstdt og Holmsbu i nord til Horten i sør. Landpunktene er vist som ruter. Aksene viser geografiske koordinater, grader og minutter. Maksimum hastighet (1.0 m/s) er vist i tittel-panelet, sammen med skaleringslengden for denne hastigheten. I tittel-panelet er også vist eksperiment-avsnitt (WIND4C) og simuleringstid (48 timer) som i Figur 5.
FIG. 8: Figuren viser partikkelbaner (traektorier) som er startet ved utløpet av Drammensfjorden når modellen startet. Disse posisjonene er merket som punkter. Posisjonene for hver 24. time er merket som ringer.
REFERANSEN:

