Nasjonalt referanselaboratorium for vannanalyser

Samordnet med
Statlig program for forurensningsovervåking

Oppdragsgiver
Statens forurensningstilsyn

Prosjekt nr 8101402
Miniringtester for overvåkingsformål

8920 Fosfat, totalfosfor, nitrat, ammonium, totalnitrogen

Norsk institutt for vannforskning NIVA
Nasjonalt referanselaboratorium for vannanalyser

Norsk institutt for vannforskning (NIVA) fungerer fra 1981 som nasjonalt referanselaboratorium for vannanalyser. Referanselaboratoriet har faglig ansvar for

- metodearbeid og utstyrspøying
- løpende standardiseringssvirkomhet
- organisering av ringtester
- veiledning, informasjon og opplæring
- nasjonalt og internasjonalt samarbeid
- utførelse av analyser etter behov

Referanselaboratoriets arbeid blir koordinert med virksomheten innen det statlige program for forurensningsovervåking.

Det er opprettet et råd for referanselaboratoriet. Rådet skal være et kontaktoorgan for brukerne av referanselaboratoriet og delta i planleggingen av arbeidet. Sekretariatet for rådet er lagt til Statens forurensningstilsyn (SFT), som har den overordnede styring av referanselaboratoriets virksomhet.

Forespørsler om retningslinjene for referanselaboratoriets arbeid kan rettes til Statens forurensningstilsyn, Postboks 8100 Dep, 0132 OSLO 1 - tlf. (02) 65 98 10.

Faglige spørsmål vedrørende de enkelte referanseaktiviteter kan tas opp med Norsk institutt for vannforskning. Postboks 69 Korsvoll, 0808 Oslo 8 - tlf. (02) 23 52 80.
MINIRINGTESTER FOR OVERVÅKINGSFORMÅL

Miniringtstest 8920: fosfat, totalfossfor, nitrat, ammonium og totalnitrogen.

Forfatter (e): Hovind, Håvard

Oppdragsgiver: Statens forurensningstilsyn (SFT)

Ekstrakt:
Ved miniringtstest 8920 bestemte 20 regionale laboratorier fosfat, totalfossor, nitrat, ammonium og totalnitrogen i syntetiske vannprøver, samt i naturlig ferskvann og sjøvann tilsatt kjente stoffmengder.

Ialt ble 75% av resultatene vurdert som akseptable - syv laboratorier hadde 87% eller flere akseptableresultater. Ved et laboratorium var bare 40% av resultatene akseptable.
MINIRINGTESTER FOR OVERVÅKINGSFORMÅL
Miniringtest 8920

FOSFAT, TOTALFOSFOR, NITRAT,
AMMONIUM OG TOTALNITROGEN

Oslo 12. desember 1989

Saksbehandler: Håvard Hovind

Leder for referanseaktivitetene: Ingvar Dahl

For administrasjonen: Rainer Lichtenthaler
0. SAMMENDRAG OG KONKLUSJONER

Miniringtest 8920 ble gjennomført i oktober 1989 og omfattet bestemmelse av fosfat, totalfosfor, nitrat, ammonium og totalnitrogen. i syntetiske vannprøver, og i naturlig ferskvann og sjøvann tilsatt kjente stoffmengder.

Alle de tyve innbudte laboratorier deltok i miniringtesten, men tre laboratorier analyserer ikke sjøvann, og utelot derfor å sende inn resultater for disse. Analyseresultatene ble bearbeidet statistisk og vurdert ut fra hva som anses rimelig i overvåkingssammenheng.

Det var de systematiske avvik som dominerte resultatene, både for fosfor- og nitrogenvariable, og hos organisk stoff. Det var best resultater for fosfat, nitrat og kjemisk oksygenforbruk, mens resultatene for totalfosfor, totalnitrogen og totalt organisk karbon var vesentlig dårligere. Dessuten var det generelt færre akseptable resultater for sjøvann enn for ferskvann.

Totalt ble 75 % av resultatene klassifisert som akseptable. Syv laboratorier hadde 87 % eller flere akseptable resultater, hvorav ett laboratorium hadde 100 %.

Hos ett laboratorium var bare 40 % av resultatene akseptable. Dette, og andre laboratorier med høy andel uakseptable resultater, må sette i verk særlige tiltak for å oppspore og korrigerere systematiske feil ved bestemmelsene. Det er nødvendig å gå grundig gjennom arbeidsrutiner og analyseinstrumenter, og dokumentere en rutinemessig gjennomført kvalitetstekontroll.
INNHOLDSFORTENELSE

0. SAMMENDRAG OG KONKLUSJON .. 2
1. INNLEDNING .. 5
2. RESULTATER .. 5
 2.1 Fosfat ... 6
 2.2 Totalfosfor .. 6
 2.3 Nitrat ... 7
 2.4 Ammonium .. 7
 2.5 Totalnitrogen ... 25
 2.6 Intern kvalitetskontroll ... 26
3. VURDERING AV RESULTATENE .. 26
4. LITTERATUR ... 30

FIGURER

1. Fosfat, prøvepar AB ... 10
2. Fosfat, prøvepar CD ... 11
3. Fosfat, prøvepar EF ... 12
4. Totalfosfor, prøvepar AB .. 13
5. Totalfosfor, prøvepar CD ... 14
6. Totalfosfor, prøvepar EF ... 15
7. Nitrat-nitrogen, prøvepar AB ... 16
8. Nitrat-nitrogen, prøvepar CD ... 17
9. Nitrat-nitrogen, prøvepar EF .. 18
10. Ammonium-nitrogen, prøvepar AB 19
11. Ammonium-nitrogen, prøvepar CD 20
12. Ammonium-nitrogen, prøvepar EF 21
13. Totalnitrogen, prøvepar AB .. 22
14. Totalnitrogen, prøvepar CD .. 23
15. Totalnitrogen, prøvepar EF .. 24
<table>
<thead>
<tr>
<th>TABELLER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oversikt over resultatene ved miniringtest 8920</td>
<td>8</td>
</tr>
<tr>
<td>2. Vurdering av resultatene ved miniringtest 8920</td>
<td>27</td>
</tr>
<tr>
<td>3. Oversikt over de enkelte laboratoriers resultater ved miniringtest 8920</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TILLEGG 1. GJENNOMFØRING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysevariabler og metoder</td>
<td>32</td>
</tr>
<tr>
<td>Vannprøver og kontrollanalyser</td>
<td>32</td>
</tr>
<tr>
<td>Prøveutsendelse og resultatrapportering</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TILLEGG 2. BEHANDLING AV ANALYSEDATA</th>
<th>36</th>
</tr>
</thead>
</table>

| TILLEGG 3. DELTAKERNES RESULTATER | 38 |
1. INNLEDNING

Det statlige program for forurensningsovervåking ble etablert i 1980 med Statens forurensningstilsyn (SFT) som ansvarlig for gjennomføringen. Norsk institutt for vannforskning (NIVA) er faglig koordinator for overvåkingen av vassdrag og fjorder, og virker som nasjonalt referanselaboratorium på vannanalyseområdet.

Som ledd i arbeidet med å sikre pålitelige og sammenlignbare overvåkingsdata organiserer referanselaboratoriet spesielle miniringstester hvor analysevariabler, konsentrasjonsnivåer og resultatbedømmelse er tilpasset formålet. Deltakere er regionale laboratorier som medvirker i overvåkingsprogrammet.

Miniringstest 8920 omfatter bestemmelse av fosfat, totalfosfor, nitrat, ammonium og totalnitrogen i syntetiske og naturlige vannprøver. Selve gjennomføringen av ringtesten er beskrevet i Tillegg 1.

2. RESULTATER

20 laboratorier fikk tilsendt vannprøver, og samtlige returnerte analyseresultater. Tre laboratorier som ikke har noen rutine for analyse av sjøvann, har utelatt å sende inn resultater for prøvepar EF.

Deltakernes analyseresultater er bearbeidet statistisk og illustrert grafisk ved hjelp av EDB-programmer utarbeidet ved NIVA. Fremgangsmåten ved behandling av tallmaterialet er nærmere omtalt i Tillegg 2.

En oversikt over resultatene ved miniringstest 8920 er gitt i tabell 1. Analyseresultatene er illustrert i figurene 1-15, der hvert laboratorium er representert med et kors og identifikasjonsnummer. Noen resultater som avviker betydelig fra de sanne verdier, er ikke kommet med i diagrammene.

De enkelte laboratoriers resultater - ordnet etter identifikasjonsnummer - fremgår av tabell 3.2, se Tillegg 3. Et mer fullstendig statistisk materiale er samlet i de øvrige tabellene i samme tillegg.
2.1 Fosfat

Resultatene er presentert i figurene 1-3 og tabellene 3.3-3.5. Seks av laboratoriene bestemte fosfat manuelt i henhold til Norsk Standard, NS 4724 (1), mens de øvrige 14 laboratorier benyttet en automatisert versjon av denne metoden. Det er ingen entydige systematiske forskjeller mellom resultatene bestemt ved de to metodene, forskjellen varierer både med prøvetype og konsentrationsnivå. For ferskvannsprøvene er de avvikende resultater gjennomgående for høye.

78 % av fosfatresultaten ble ved denne miniringstesten vurdert som akseptable, dette er noe bedre enn ved forrige miniringstest (7). Blant de laboratoriene som har fått uakseptable resultater, er det de systematiske avvik som dominerer bildet. Disse laboratoriene må undersøke om avviket er konstant eller proporsjonalt med fosfat-konsentrasjonen. Konstante avvik er i første rekke knyttet til hvordan man fastlegger nullpunktet på måleskalen, og dermed hvordan man utfører blindprøvekorreksjonen.

De proporsjonale avvik er knyttet til de kjemiske forhold under bestemmelsen. I et automatisk analysesystem er som regel blandingsforholdet mellom prøve og reagenser forskjellig fra den manuelle metoden, og det må kontrolleres om pH i reaksjonsblandingen ligger innenfor det anbefalte område. Endringer i pH i reaksjonsblandingen kan gi store utslag i den målte absorbsans. Ved å bruke avionisert vann under fremstilling av kalibreringsløsningene, kan man risikere å få ulike reaksjonsbetingelser ved kalibrering og analyse av f.eks. prøver med høyere saltinnhold. Spesielt må laboratorium nr. 17 kontrollere disse feilkildene.

2.2 Totalfosfor

Resultatene er presentert i figurene 4-6 og tabellene 3.6-3.8. Seks av laboratoriene utførte bestemmelsen manuelt i henhold til Norsk Standard, NS 4725 (2), mens de andre benyttet en automatisert versjon av denne. Det er ingen entydig forskjell mellom resultatene fra disse to gruppene laboratorier.

I gjennomsnitt var 83 % av analyseresultatene for totalfosfor akseptable, og dette er vesentlig bedre enn ved siste miniringstest (7).

De dominerende avvik ved bestemmelse av totalfosfor er av systematisk art. Ved sammenligning av figur 6 med de to øvrige figurene for
totalfosfor, fremgår det tydelig at spredningen i resultatene er størst for sjøvannsprøvene. Det er åpenbart at denne prøvetypen er noe vanskeligere å analysere enn ferskvann.

Årsaken til disse avvikene må antas å være hovedsakelig den samme som for fosfat, men oppslutningstrinnet kommer i tillegg til selve fosfatbestemmelsen. De laboratorier som har uakseptable resultater for totalfosfor, men akseptable for fosfat, må i første rekke undersøke hvordan oppslutningen påvirker resultatene. Dette gjelder særlig laboratorium nr. 20.

2.3 Nitrat

Resultatene er presentert i figurene 7-9 og i tabellene 3.9-3.11. For denne analysevariabelen ble det oppnådd omtrent samme andel akseptable resultater som ved siste ringtest der næringsstoffer ble analysert (7), med gjennomsnittlig 83 % akseptable resultater denne gang. Relativt sett er avvikene størst i prøve A og B hvor konsentrasjonene er lavest.

Alle laboratoriene benyttet en automatisert versjon av Norsk Standard ved bestemmelsen av nitrat. NS 4745 (3) beskriver en metode for bestemmelse av nitrat i ukonserverte prøver. Alle prøvene ved denne miniringtesten var konservert med svovelsyre, og enkelte laboratorier som til daglig analyserer ukonserverte prøver, måtte derfor nøytralisere prøvene før analyse. Dette anses for å være et problem ved noen av laboratoriene, som påpeker at nøytraliseringstrinnet er et avvik fra rutinemetoden, og derfor fører til økt usikkerhet i analyseresultatet.

Avvikene i de enkelte laboratoriers resultater er først og fremst av systematisk art, og disse laboratoriene må undersøke om avviket er konstant, eller proporsjonalt med nitratkonsentrasjonen.

2.4 Ammonium

(teksten fortsetter side 25)
Tabell 1. Oversikt over resultatene ved miniringstest B920.

<table>
<thead>
<tr>
<th>ANALYSEVARIABEL</th>
<th>PRØVE-PAR</th>
<th>SANNE VERDIER</th>
<th>ANTALL</th>
<th>MEDIAN</th>
<th>GJENNOMSNITT/STANDARDAVVIK</th>
<th>RELATIVT ST.AVVIK</th>
<th>RELATIVT FEIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METODE</td>
<td></td>
<td>TOT U</td>
<td>1</td>
<td>2</td>
<td>SNITT</td>
<td>STD</td>
</tr>
<tr>
<td>FOSFAT</td>
<td>AB</td>
<td>7.8</td>
<td>6.0</td>
<td>20</td>
<td>0</td>
<td>7.8</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>8.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>NS 4724</td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>7.6</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOSFAT</td>
<td>CD</td>
<td>13.5</td>
<td>16.3</td>
<td>20</td>
<td>0</td>
<td>13.5</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>13.5</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>NS 4724</td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>13.4</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOSFAT</td>
<td>EF</td>
<td>25.0</td>
<td>29.9</td>
<td>16</td>
<td>0</td>
<td>25.0</td>
<td>29.9</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>24.8</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>NS 4724</td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>25.0</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALFOSFOR</td>
<td>AB</td>
<td>8.9</td>
<td>6.6</td>
<td>20</td>
<td>1</td>
<td>8.9</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td>8.5</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>NS 4725</td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>9.0</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALFOSFOR</td>
<td>CD</td>
<td>17.0</td>
<td>20.0</td>
<td>20</td>
<td>1</td>
<td>17.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>16.7</td>
<td>19.8</td>
</tr>
<tr>
<td></td>
<td>NS 4725</td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>17.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALFOSFOR</td>
<td>EF</td>
<td>33.0</td>
<td>38.0</td>
<td>16</td>
<td>0</td>
<td>33.4</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>ALLE METODER</td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>35.0</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>NS 4725</td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>33.4</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>42.0</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITRAT-NITROGEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOANALYSATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1</td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>0</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>4</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>4</td>
<td>-1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	CD	305	344.
NITRAT-NITROGEN			
AUTOANALYSATOR			
	20	0	305.
	34	4	344.
	71	9	307.9
	13	3	3.3
	6	4	11.6
	4	3	4.3
	0	9	0.9
	0	2	0.2

	EF	300	262.
NITRAT-NITROGEN			
AUTOANALYSATOR			
	16	0	300.
	26	2	262.
	30	1	301.
	12	5	12.2
	5	6	4.6
	0	3	0.3
	0	8	0.8

	AB	67.0	55.0
AMMONIUM-NITROGEN			
AUTOANALYSATOR			
	19	2	67.0
	5	5	55.0
	5	2	65.2
	9	3	9.39
	9	0	56.0
	8	8	8.58
	1	4	14.4
	5	3	15.3
	-	2	-2.7
	1	9	1.9

	CD	108.0	132.0
AMMONIUM-NITROGEN			
AUTOANALYSATOR			
	20	0	110.3
	0	7	132.7
	8	0	108.8
	1	8	18.1
	1	2	128.6
	3	3	23.2
	2	6	16.6
	0	8	18.0
	0	7	0.7
	2	6	-2.6

	EF	59.0	78.0
AMMONIUM-NITROGEN			
AUTOANALYSATOR			
	15	4	59.4
	8	2	77.9
	1	5	57.0
	0	8	8.43
	1	6	74.2
	1	3	11.7
	1	4	14.8
	5	1	15.8
	3	3	-3.3
	4	9	-4.9

	AB	114.0	92.0
TOTALT NITROGENINNHOLD			
AUTOANALYSATOR			
	20	3	114.0
	0	2	92.0
	1	1	113.7
	8	1	18.1
	0	7	90.7
	7	4	14.7
	1	6	16.0
	2	6	16.2
	0	3	-0.3
	1	4	-1.4

	CD	505	557.
TOTALT NITROGENINNHOLD			
AUTOANALYSATOR			
	20	0	504.5
	5	5	566.5
	0	0	501.0
	4	1	41.3
	3	5	553.1
	7	0	44.3
	2	8	8.2
	0	9	8.0
	8	0	-0.8
	7	0	-0.7

	EF	479	454.
TOTALT NITROGENINNHOLD			
AUTOANALYSATOR			
	16	0	479.
	4	5	454.
	9	3	478.9
	3	3	33.5
	5	4	454.6
	0	7	37.0
	7	0	7.0
	8	1	8.1
	0	0	-0.0
	1	0	0.1

U = UTELATTE RESULTATER
FIG. 2 FOSFAT
ALLE METODER

%
FIG. 5 TOTALFOSFOR
ALLE METODER

The diagram illustrates the distribution of total phosphorus (TOTALFOSFOR) across different methods (ALLE METODER). The x-axis represents PROVE C, ranging from 11.5 to 22.0, while the y-axis represents PROVE D, ranging from 11.5 to 28.0. The data points are plotted on a scatter plot, with each point labeled by a number from 1 to 11. Inset bar charts provide additional information on the percentage distribution.
FIG. 8 NITRAT-NITROGEN
AUTOANALYSATOR
FIG. 9 NITRAT-NITROGEN
AUTOANALYSATOR
FIG. 11 AMMONIUM-NITROGEN
ALLE METODER

[Graph showing data points and a line graph with median values marked.]
FIG. 13 TOTALNITROGENINNHOLD
AUTOANALYSATOR

%
20.
10.

67
4
B
Median

20
12

+
1
3

13
11

4
10
8

19
15
8
18
17

+
+
+
+
+

8
7

95
95
95
95
95

85
85
85
85
85

75
75
75
75
75

35
35
35
35
35

75
75
75
75
75

A Median
B Median

%
20.
10.

88
88
88
88
88

5

+
+
+
+
+

Median

A
B
Median

PRØVE B
PRØVE A
FIG. 14 TOTALT NITROGENINNHOLD
AUTOANALYSATOR
Totalt sett ble bare 55 % av resultatene vurdert som akseptable. Som det fremgår av figurene 10-12 er det de systematiske avvik som dominerer bildet, selv om de tilfeldige feil er vesentlig mer fremtredende ved bestemmelse av ammonium enn for de øvrige analysevariable.

De kjemiske forhold under selve bestemmelsen er en viktig årsak til systematisk avvikende resultater, og spesielt er pH av stor betydning. Ved avvikende resultater må det kontrolleres at pH i reaksjonsblandingen ligger innenfor relativt snevre grenser. Norsk Standard (4) beskriver bestemmelse av ammonium i ukonserverte prøver, og flere av deltakerne som følger denne forskriften måtte nøytaliserere ringtest-prøvene før bestemmelsen. Dette medfører en økt usikkerhet i analyseresultatene, særlig ved de laboratorier som benytter den manuelle metoden. Ved den automatiserte metoden er pH-variasjonene i prøvene mindre kritisk, fordi mengden av buffer i forhold til prøve er mye større enn ved den manuelle metoden.

Syrekonservering har vist seg å være helt nødvendig for å stabilisere prøvene, spesielt tydelig er dette i sjøvann hvor ammonium forsvinner i løpet av kort tid hvis tilsettning av svovelsyre utelates (8). Mange laboratorier kan ikke alltid utføre ammoniumbestemmelsen straks prøvene kommer inn på laboratoriet, og dessuten kan det ofte gå relativt lang tid fra prøvetakingen finner sted til prøvene ankommer laboratoriet. Derfor anbefales det at man benytter syrekonservering, og at det anvendes en analysemetode som er tilpasset slike prøver.

2.5 Totalnitrogen

Resultatene er presentert i figurene 13-15 og tabellene 3.15-3.17. Totalt sett ble 77 % av resultatene vurdert som akseptable.

Alle laboratoriene oppsluttet prøvene med peroksodisulfat i henhold til Norsk Standard, NS 4743 (5), og benyttet en automatisert versjon av metoden til selve sluttbestemmelsen.

Avvikene er dominert av systematiske feil, selv om de tilfeldige feil gir relativt større utslag i prøvepar AB der konsentrasjonen er lavest. Årsaken til de fleste feil er sannsynligvis knyttet til oppslutningstrinnet, selv om bestemmelsestrinnet også vil bidra til den totale feilen.
2.6 Intern kvalitetskontroll

Sammen med analyseresultatene ble laboratoriene bedt om å sende inn middelverdi og standardavvik fra siste periodes internkontroll for de aktuelle analysevariable. Disse er sammenstilt i tabell 3.1 i tillegget.

Gjennom kvalitetskontrollen kan man få et bilde av størrelsen til de tilfeldige feil for de enkelte analysevariable. 18 laboratorier har sendt inn kontrollresultater for minst en analysevariabel, mens laboratorium nr. 12 og 19 ikke har oppgitt kontrollresultater for noen av de fem analysevariable. Noen få laboratorier har angitt at de utfører visse analyser meget sjelden, og at de derfor ikke har gjennomført systematisk internkontroll for disse analysene. De laboratorier som fortsatt ikke utfører rutinemessig internkontroll, må sette dette igang snarest, f.eks. slik som beskrevet i håndboken (6) som er tilsendt tidligere.

Det fremkommer ikke noe entydig bilde av hvordan standardavviket varierer med konsentrasjonen ved kontrollanalyserne. De laboratorier som har uforholdsmessig store standardavvik i forhold til de øvrige deltakerne, bør undersøke om det er spesielle grunner for at spredningen er større enn vanlig, og forsøke å redusere de tilfeldige feil. Disse feil kan variere noe fra ett laboratorium til et annet, fordi de lokale forhold naturligvis må være forskjellige.

3. VURDERING AV RESULTATENE

En vurdering av om et analyseresultat er akseptabelt eller ikke, er avhengig av hva det skal brukes til. Formålet med miniringstestene er å bidra til pålitelige og fremfor alt sammenlignbare overvåkingsdata. De valgte akseptansegrenser må betraktes mer som analysefaglige mål enn som endelig fastlagte nøytalighetskrav.

Ved fastsettelse av akseptansegrensene er tidligere miniringstester lagt til grunn, men det er også tatt hensyn til konsentrasjonsnivåene. I figurene 1-15 er det avsatt en sirkel med radius som tilsvarer akseptansegrensen for vedkommende analysevariabel. Sentrum i sirkelen representerer de sanne verdier. Resultater som ligger innenfor denne sirkelen, er regnet som akseptable.

I tabell 2 er akseptansegrensene angitt for de enkelte variable og prøvepar, samt en samlet vurdering av resultatene fra miniringstest 8920.
En mer detaljert oversikt over de enkelte laboratoriers resultater er gitt i tabell 3. Denne tabellen er fremstilt slik at den gir opplysninger som vil være til hjelp for det enkelte laboratorium under oppfølgingen av ringtesten. Noen av laboratoriene har fått angitt to tall i kolonnen for andel akseptable resultater. Det første tallet angir prosent akseptable resultatet blant de verdiene laboratoriet har sendt inn, mens tallet i parentes angir prosent akseptable resultatpar i forhold til det forventede antall. Tre av laboratoriene har angitt at de ikke analyserer sjøvann rutinemessig, og disse har unnlatt å rapportere resultater for prøvepar EF.

Tabell 2. Vurdering av resultatene ved miniringtest 8920.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Prøvepar</th>
<th>Akseptansegrense</th>
<th>Antall resultat</th>
<th>Antall akseptable</th>
<th>% akseptable</th>
<th>Gj. snitt andel akseptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfat</td>
<td>AB</td>
<td>2 μg/l</td>
<td>20</td>
<td>18</td>
<td>90</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>2 μg/l</td>
<td>20</td>
<td>15</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>10 %</td>
<td>16</td>
<td>11</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Totalfosfor</td>
<td>AB</td>
<td>3 μg/l</td>
<td>20</td>
<td>18</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>3 μg/l</td>
<td>20</td>
<td>18</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>10 %</td>
<td>16</td>
<td>11</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Nitrat</td>
<td>AB</td>
<td>5 μg/l</td>
<td>20</td>
<td>15</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>10 %</td>
<td>20</td>
<td>17</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>10 %</td>
<td>16</td>
<td>14</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Ammonium-nitrogen</td>
<td>AB</td>
<td>10 μg/l</td>
<td>19</td>
<td>11</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>10 μg/l</td>
<td>20</td>
<td>12</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>10 μg/l</td>
<td>15</td>
<td>7</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Totalnitrogen</td>
<td>AB</td>
<td>15 %</td>
<td>20</td>
<td>13</td>
<td>65</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>15 %</td>
<td>20</td>
<td>17</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>15 %</td>
<td>16</td>
<td>13</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
<td>278</td>
<td>206</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 3. Oversikt over de enkelte laboratoriets resultater ved miniringtet 8920.

<table>
<thead>
<tr>
<th>Lab. nr.</th>
<th>PO₄-P</th>
<th>TOT-P</th>
<th>NO₃-N</th>
<th>NH₄-N</th>
<th>TOT-N</th>
<th>% akseptabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AB</td>
<td>CD</td>
<td>EF</td>
<td>AB</td>
<td>CD</td>
<td>EF</td>
</tr>
<tr>
<td>1</td>
<td>(S+)</td>
<td>S+</td>
<td>(S+)</td>
<td>S-</td>
<td>S-</td>
<td>S-</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>S-</td>
<td>*</td>
<td>(S+)</td>
<td>T</td>
<td>(S+)</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T S-</td>
<td>*</td>
<td>*</td>
<td>S+</td>
<td>S-</td>
</tr>
<tr>
<td>4</td>
<td>S-</td>
<td>S-</td>
<td>(S-)</td>
<td>T</td>
<td>S-</td>
<td>(S-)</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>S+</td>
<td>S+</td>
<td>S-</td>
<td>S-</td>
<td>(S+)</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>*</td>
<td>S+</td>
<td>S-</td>
<td>S-</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>(S+)</td>
<td>(S+)</td>
<td>S-</td>
<td>T S+</td>
<td>(S+)</td>
</tr>
<tr>
<td>8</td>
<td>S+</td>
<td>*</td>
<td>U</td>
<td>S+</td>
<td>S+</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>S+</td>
<td>S+</td>
<td>U</td>
<td>(S+)</td>
<td>S+</td>
<td>U</td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>S+</td>
<td>S+</td>
<td>S-</td>
<td>T</td>
<td>S-</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>S-</td>
<td>S-</td>
<td>T</td>
<td>S+</td>
<td>(S+)</td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>(S+)</td>
<td>U</td>
<td>T</td>
<td>*</td>
<td>U</td>
</tr>
<tr>
<td>13</td>
<td>S-</td>
<td>S+</td>
<td>S+</td>
<td>S-</td>
<td>S-</td>
<td>S-</td>
</tr>
<tr>
<td>14</td>
<td>S-</td>
<td>(S-)</td>
<td>(T)</td>
<td>*</td>
<td>*</td>
<td>S-</td>
</tr>
<tr>
<td>15</td>
<td>*</td>
<td>S-</td>
<td>S-</td>
<td>S-</td>
<td>*</td>
<td>(S-)</td>
</tr>
<tr>
<td>16</td>
<td>*</td>
<td>S-</td>
<td>S-</td>
<td>S-</td>
<td>(S+)</td>
<td>*</td>
</tr>
<tr>
<td>17</td>
<td>(S-)</td>
<td>(S-)</td>
<td>(S-)</td>
<td>S+</td>
<td>T</td>
<td>S+</td>
</tr>
<tr>
<td>18</td>
<td>T</td>
<td>S-</td>
<td>S-</td>
<td>S-</td>
<td>(S-)</td>
<td>(S-)</td>
</tr>
<tr>
<td>19</td>
<td>T</td>
<td>T</td>
<td>(T)</td>
<td>S-</td>
<td>S-</td>
<td>T</td>
</tr>
<tr>
<td>20</td>
<td>S+</td>
<td>S+</td>
<td>U</td>
<td>(S+)</td>
<td>(S+)</td>
<td>U</td>
</tr>
</tbody>
</table>

Ialt ble 75 % av de innsendte resultater bedømt som akseptable, og dette er noe bedre enn ved forrige miniringstest der næringssaltene ble bestemt (7). Hos syv laboratorier var 86 % eller flere av de utførte analyser akseptable. De fleste uakseptable resultatene er i stor grad konsentrert til bestemte laboratorier, og det er nå helt nødvendig at disse gjennomfører ekstra tiltak for å komme opp på samme nivå som de øvrige. For laboratorium nr. 7 var bare 40 % av resultatene akseptable. Referanselaboratoriet vil ta direkte kontakt med de laboratorier som har problemer.
4. LITTERATUR

TILLEGG

TILLEGG 1. GJENNOMFØRING

Analysevariable og metoder
Vannprøver og kontrollanalyser
Prøveutsendelse og resultatrapportering

TILLEGG 2. BEHANDLING AV ANALYSEDATA

TILLEGG 3. DELTAKERNES RESULTATER
TILlegg 1: GJENNOMFØRING

Analysevariable og metoder

Det er til nå gjennomført nitten miniringtester. I denne tyvende miniringtesten (8920) inngår bestemmelse av fosfat, totalfosfor, nitrat, ammonium og totalnitrogen.

Deltakerne ble bedt om å følge Norsk Standard ved bestemmelsene (1-6).

Det var også anledning til å bruke automatiserte metoder ved analysene. For totalfosfor og totalnitrogen blir prøvene i slike tilfeller oppsluttet manuelt etter Norsk Standard (2,5) før den fotometriske sluttbestemmelsen utføres med autoanalysator.

Vannprøver og kontrollanalyser

Til miniringtestene ble det sendt ut seks vannprøver. Prøvene A og B var syntetiske, og ble fremstilt ved å løse nøyaktig innsveide mengder av rene saltet i destillert vann. Til prøvepar CD ble benyttet humusholdig ferskvann, og til prøvepar EF sjøvann. Både ferskvannet og sjøvannet ble tilsatt kjente mengder av de aktuelle forbindelser. Tilsetning av fosfat skjedde i form av en løsning av kaliumhydrogenfosfat mens organisk bundet fosfor og nitrogen ble tilsatt som en løsning av dinatrium-adenosin-5'-monofosfat. Tilsetning av nitrat skjedde i form av en løsning av kaliumnitrat. Ytterligere mengder organisk bundet nitrogen ble tilsatt som en løsning av dinatriumsaltet av EDTA.

Naturlig vann brukt til fremstilling av ringtestprøvene, ble tappet på store beholdere av polyetilen og lagret omtrent en måned ved værelsetemperatur før det ble filtrert gjennom membranfilter med nominell porevidde 0,45 μm. 20 L porser for av vannet ble overført til nye polyetilenbeholder, tilsatt 1 ml svovelsyre (1 mol/l) pr. 100 ml løsning, og lagret ytterligere en uke. Destillert vann til de syntetiske prøvene ble også tilsatt svovelsyre og oppbevart på samme måte.

Av disse løsningene ble det tatt ut delprøver til bestemmelse av bakgrunnskonsentrasjonen av fosfat, totalfosfor, nitrat, ammonium og totalnitrogen, før kjente mengder av de forskjellige forbindelsene ble tilsatt. Ringtestprøvene ble etter tilsetningen lagret på de store beholderne, og fordelt på 500 ml polyetilenflasker en ukes tid før utsendelse til deltakerne.

Før og under ringtestperioden ble det tatt ut åtte prøveserier til
kontrollanalyser ved NIVA, og resultatene av disse viser at delprøvene var stabile under hele ringtestperioden. Konservering av slike prøver med svøvelsyre har vist seg å være helt nødvendig for at prøvene skal være stabile over en lengre periode.

Forventede konsentrasjoner beregnet på grunnlag av målte bakgrunnsvardier og tilsatte stoffmengder ("sanne verdier"), samt konsentrasjonsdifferansene for hvert prøvepar ("sann differanse") er gjengitt i tabell 1.1-1.5 for henholdsvis fosfat, totalfosfor, nitrat, ammonium og totalnitrogen. På samme sted er også gitt en oversikt over resultatene ved NIVAs kontrollanalyser.

Det er akseptabel overensstemmelse mellom de forventede "sanne verdier" og middelverdien av kontrollresultatene. Som sann verdi ble benyttet medianverdien av de innsendte resultater.

Prøveutsendelse og resultatrapportering

Tabell 1.1. Fosfat (µg/l PO₄-P). Målte bakgrunnsvardier, beregnede konsentrasjoner og konsentrasjonsdifferanser, og sammen drag av NIVAs kontrollanalyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Målte bakgrunnsvardier</th>
<th>Beregnet mengde tilsatt</th>
<th>Forventet "sann" verdi</th>
<th>Sann diff.</th>
<th>Kontrollresultater Middel verdi</th>
<th>Standard avvik</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><0,5</td>
<td>8,0</td>
<td>8,0</td>
<td>2,0</td>
<td>7,6</td>
<td>0,38</td>
</tr>
<tr>
<td>B</td>
<td><0,5</td>
<td>6,0</td>
<td>6,0</td>
<td></td>
<td>5,9</td>
<td>0,38</td>
</tr>
<tr>
<td>C</td>
<td>1,5</td>
<td>12,1</td>
<td>13,6</td>
<td>3,0</td>
<td>13,6</td>
<td>0,53</td>
</tr>
<tr>
<td>D</td>
<td>1,5</td>
<td>15,1</td>
<td>16,6</td>
<td></td>
<td>16,5</td>
<td>0,29</td>
</tr>
<tr>
<td>E</td>
<td>25,0</td>
<td>0</td>
<td>25,0</td>
<td>5,0</td>
<td>24,5</td>
<td>0,41</td>
</tr>
<tr>
<td>F</td>
<td>25,0</td>
<td>5,0</td>
<td>30,0</td>
<td></td>
<td>29,9</td>
<td>0,38</td>
</tr>
</tbody>
</table>
Tabell 1.2. Totalfosfor (µg/l TOT-P). Målte bakgrunnsverdier, samt beregnede konsertrationser og konsentrasjonsdifferanser, og sammendrag av NIVAs kontrollanalyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Målte bakgrunnsverdier</th>
<th>Beregnet mengde tilsatt</th>
<th>Forventet "sann" verdi</th>
<th>Sann diff.</th>
<th>Kontrollresultater</th>
<th>Standard avvik</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><0,5</td>
<td>10,2</td>
<td>10,2</td>
<td>4,2</td>
<td>8,9</td>
<td>0,38</td>
</tr>
<tr>
<td>B</td>
<td><0,5</td>
<td>6,0</td>
<td>6,0</td>
<td>4,2</td>
<td>7,2</td>
<td>0,41</td>
</tr>
<tr>
<td>C</td>
<td>1,0</td>
<td>15,4</td>
<td>16,4</td>
<td>4,1</td>
<td>16,7</td>
<td>0,49</td>
</tr>
<tr>
<td>D</td>
<td>1,0</td>
<td>19,5</td>
<td>20,5</td>
<td>4,0</td>
<td>19,7</td>
<td>0,49</td>
</tr>
<tr>
<td>E</td>
<td>28</td>
<td>5,6</td>
<td>33,6</td>
<td>5,0</td>
<td>33,0</td>
<td>1,52</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>10,6</td>
<td>38,6</td>
<td></td>
<td>38,3</td>
<td>1,39</td>
</tr>
</tbody>
</table>

Tabell 1.3. Nitrat (µg/l NO₃-N). Målte bakgrunnsverdier, beregnede konsertrationser og konsentrasjonsdifferanser, og sammendrag av NIVAs kontrollanalyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Målte bakgrunnsverdier</th>
<th>Beregnet mengde tilsatt</th>
<th>Forventet "sann" verdi</th>
<th>Sann diff.</th>
<th>Kontrollresultater</th>
<th>Standard avvik</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><1</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>39,7</td>
<td>0,8</td>
</tr>
<tr>
<td>B</td>
<td><1</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>29,4</td>
<td>0,8</td>
</tr>
<tr>
<td>C</td>
<td>305</td>
<td>0</td>
<td>305</td>
<td>40</td>
<td>312</td>
<td>3,9</td>
</tr>
<tr>
<td>D</td>
<td>305</td>
<td>40</td>
<td>345</td>
<td>40</td>
<td>347</td>
<td>3,9</td>
</tr>
<tr>
<td>E</td>
<td>260</td>
<td>40</td>
<td>300</td>
<td>40</td>
<td>306</td>
<td>4,5</td>
</tr>
<tr>
<td>F</td>
<td>260</td>
<td>0</td>
<td>260</td>
<td></td>
<td>266</td>
<td>4,5</td>
</tr>
</tbody>
</table>
Tabell 1.4. Ammonium (μg/l NH₃-N). Målte bakgrunnsverdier, beregnet konsentrasjoner og konsentrasjonsdifferanser, og sammen-
drag av NIVAs kontrollanalyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Målte bakgrunnsverdier</th>
<th>Beregnet mengde tilsatt</th>
<th>Forventet "sann" verdi</th>
<th>Sann diff.</th>
<th>Kontrollresultater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Middel-verdi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standard avvik</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>50</td>
<td>60</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,9</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>40</td>
<td>50</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>101</td>
<td>111</td>
<td>20</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,5</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>121</td>
<td>131</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,6</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,9</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>60</td>
<td>80</td>
<td>20</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,6</td>
</tr>
</tbody>
</table>

Tabell 1.5. Totalnitrogen (μg/l TOT-N). Målte bakgrunnsverdier, samt beregnete konsentrasjoner og konsentrasjonsdifferanser, og sammendrag av NIVAs kontrollanalyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Målte bakgrunnsverdier</th>
<th>Beregnet mengde tilsatt</th>
<th>Forventet "sann" verdi</th>
<th>Sann diff.</th>
<th>Kontrollresultater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Middel-verdi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standard avvik</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>96</td>
<td>116</td>
<td>25</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,1</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>71</td>
<td>91</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,2</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>109</td>
<td>509</td>
<td>63</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,9</td>
</tr>
<tr>
<td>D</td>
<td>400</td>
<td>172</td>
<td>572</td>
<td></td>
<td>581</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,1</td>
</tr>
<tr>
<td>E</td>
<td>390</td>
<td>93</td>
<td>483</td>
<td>20</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,9</td>
</tr>
<tr>
<td>F</td>
<td>390</td>
<td>73</td>
<td>463</td>
<td></td>
<td>469</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,6</td>
</tr>
</tbody>
</table>
TILLEGG 2: BEHANDLING AV ANALYSEDATA

Selve ringtesten ble gjennomført etter Youdens metode. Denne metoden forutsetter at det analyseres to prøver pr. variabel, og at den enkelte deltaker bare oppgir ett analyseresultat pr. prøve. For hver variabel avsettes samtlige deltakeres resultater i et rettvinklet koordinatsystem. Alle resultatparene markeres i diagrammet med et symbol, f.eks. et lite kors (jfr. figur 1-15).

Grensen for akseptable resultater er angitt som en sirkel med sentrum i skjæringspunktet mellom linjene som markerer de sanne verdier. Avstanden fra sirkelens sentrum til det enkelte kors i diagrammet er et mål for laboratoriets totale analysefeil. Avstanden langs 45°-linjen gir et uttrykk for størrelsen av de systematiske feil, mens avstanden vinkelrett på denne linjen antyder bidraget fra de tilfeldige feil. Laboratoriets plassering i diagrammet gir altså direkte opplysninger om analysefeilens art og størrelse, slik at man lettere kan finne fram til årsakene.

Systematiske feil kan f.eks. skyldes unøyaktige kalibreringsløsninger, dårlig instrumentkalibrering, feilaktig arbeidsteknikk eller mangler ved analysemetoden. Årsaken til de tilfeldige feil kan være ukontrollerbare variasjoner i analysebetingelsene – blant annet som følge av ustabilitet hos instrumenter og forskjeller i mengden av tilsatte reagenser – eller menneskelig svikt (fortynningsfeil, avlesningsfeil, regne- og skrivefeil).

For hver enkelt prøve er dessuten analyseresultatene fremstilt i et histogram som er plassert langs den tilhørende akse i Youdens diagrammet. Det aktuelle måleområdet er delt inn i ti intervall. Sann verdi er markert mellom de to midtre stolpene i histogrammet. Prosentvis andel av resultatene i hvert intervall kan leses av på ordinaten.
De enkelte laboratoriers analyseresultater, ordnet etter stigende identifikasjonsnumre, er vist i tabell 3.2.

Den statistiske bearbeidelsen av analyseresultatene følger disse retningslinjer: Resultatpar hvorf den ene eller begge verdier ligger utenfor sann verdi \(\pm 50 \% \) forkastes. Av de gjenstående resultater bergnes middelverdi (\(x \)) og standardavvik (\(s \)). Resultatpar hvor en eller begge verdier faller utenfor \(x \pm 3s \), utelates. Av de resterende resultater beregnes de forskjellige statistiske variable. Tallmaterialet fra den avsluttende beregningsomgangen er gjengitt i tabellene 3.3-3.17. Enkeltresultater som er utelatt ved beregningene er merket med bokstaven \(U \).
Tabell 3.1. Oversikt over laboratorienes internkontrollresultater for fosfat, totalfosfor, nitrat, ammonium og totalnitrogen. \(x\) er middelverdien og \(s\) er standardavviket.

<table>
<thead>
<tr>
<th>Lab. nr.</th>
<th>Fosfat</th>
<th>Totalfosfor</th>
<th>Nitrat</th>
<th>Ammonium</th>
<th>Totalnitrogen</th>
<th>Anmerkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28,7</td>
<td>1,11</td>
<td>55,4</td>
<td>1,76</td>
<td>200</td>
<td>212</td>
</tr>
<tr>
<td>2</td>
<td>10,2</td>
<td>0,7</td>
<td>99,8</td>
<td>2,9</td>
<td>203</td>
<td>101,9</td>
</tr>
<tr>
<td>3</td>
<td>97,7</td>
<td>2,3%</td>
<td>47,8</td>
<td>2,9%</td>
<td>2494</td>
<td>1,7%</td>
</tr>
<tr>
<td>4</td>
<td>41,4</td>
<td>0,71</td>
<td>45,3</td>
<td>1,75</td>
<td>252,2</td>
<td>2,50</td>
</tr>
<tr>
<td>5</td>
<td>42,3</td>
<td>2,97</td>
<td>46,3</td>
<td>0,78</td>
<td>250,1</td>
<td>5,06</td>
</tr>
<tr>
<td>6</td>
<td>35,8</td>
<td>-</td>
<td>46,25</td>
<td>-</td>
<td>254</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>10,04</td>
<td>0,21</td>
<td>10,15</td>
<td>0,26</td>
<td>198,3</td>
<td>4,12</td>
</tr>
<tr>
<td>8</td>
<td>9,92</td>
<td>0,16</td>
<td>9,79</td>
<td>0,69</td>
<td>202</td>
<td>3,6</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>37,2</td>
<td>1,20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>40,5</td>
<td>0,42</td>
<td>45,5</td>
<td>1,0</td>
<td>251</td>
<td>1,7</td>
</tr>
<tr>
<td>11</td>
<td>40,5</td>
<td>1,36</td>
<td>44,9</td>
<td>2,3</td>
<td>253</td>
<td>5,3</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>18,4</td>
<td>1,1</td>
<td>48,2</td>
<td>1,7</td>
</tr>
<tr>
<td>14</td>
<td>38,33</td>
<td>1,15</td>
<td>46,56</td>
<td>1,67</td>
<td>244,29</td>
<td>7,32</td>
</tr>
<tr>
<td>15</td>
<td>36,2</td>
<td>0,93</td>
<td>47,0</td>
<td>1,43</td>
<td>251,4</td>
<td>4,57</td>
</tr>
<tr>
<td>16</td>
<td>41,2</td>
<td>0,22</td>
<td>45,6</td>
<td>1,05</td>
<td>252</td>
<td>1,83</td>
</tr>
<tr>
<td>17</td>
<td>29,77</td>
<td>1,29</td>
<td>30,06</td>
<td>0,79</td>
<td>299,6</td>
<td>8,83</td>
</tr>
<tr>
<td>18</td>
<td>25,5</td>
<td>0,68</td>
<td>29,5</td>
<td>1,29</td>
<td>103</td>
<td>5,9</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>20,3</td>
<td>1,07</td>
<td>19,9</td>
<td>0,44</td>
<td>202,7</td>
<td>5,69</td>
</tr>
</tbody>
</table>
Tabell 3.2 De enkelte deltageres analyseresultater.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>PO₄-P µg/l</th>
<th>PO₄-P µg/l</th>
<th>PO₄-P µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.20</td>
<td>7.60</td>
<td>14.6</td>
</tr>
<tr>
<td>2</td>
<td>7.70</td>
<td>6.00</td>
<td>13.1</td>
</tr>
<tr>
<td>3</td>
<td>8.50</td>
<td>6.00</td>
<td>9.50</td>
</tr>
<tr>
<td>4</td>
<td>7.00</td>
<td>5.00</td>
<td>12.0</td>
</tr>
<tr>
<td>5</td>
<td>7.80</td>
<td>5.70</td>
<td>13.9</td>
</tr>
<tr>
<td>6</td>
<td>6.30</td>
<td>7.00</td>
<td>13.5</td>
</tr>
<tr>
<td>7</td>
<td>7.30</td>
<td>6.00</td>
<td>14.7</td>
</tr>
<tr>
<td>8</td>
<td>8.72</td>
<td>6.85</td>
<td>13.4</td>
</tr>
<tr>
<td>9</td>
<td>8.80</td>
<td>7.50</td>
<td>14.5</td>
</tr>
<tr>
<td>10</td>
<td>8.00</td>
<td>6.10</td>
<td>13.9</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>6.00</td>
<td>13.0</td>
</tr>
<tr>
<td>12</td>
<td>8.00</td>
<td>6.00</td>
<td>18.0</td>
</tr>
<tr>
<td>13</td>
<td>7.00</td>
<td>5.30</td>
<td>14.1</td>
</tr>
<tr>
<td>14</td>
<td>7.00</td>
<td>5.00</td>
<td>11.0</td>
</tr>
<tr>
<td>15</td>
<td>6.90</td>
<td>5.00</td>
<td>13.3</td>
</tr>
<tr>
<td>16</td>
<td>8.00</td>
<td>6.00</td>
<td>13.0</td>
</tr>
<tr>
<td>17</td>
<td>4.30</td>
<td>3.30</td>
<td>9.40</td>
</tr>
<tr>
<td>18</td>
<td>7.80</td>
<td>5.40</td>
<td>13.0</td>
</tr>
<tr>
<td>19</td>
<td>6.40</td>
<td>6.00</td>
<td>13.6</td>
</tr>
<tr>
<td>20</td>
<td>8.90</td>
<td>6.90</td>
<td>13.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>TOT-P µg/l</th>
<th>TOT-P µg/l</th>
<th>TOT-P µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.1</td>
<td>8.60</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>11.9</td>
<td>7.30</td>
<td>17.6</td>
</tr>
<tr>
<td>3</td>
<td>8.90</td>
<td>6.30</td>
<td>16.7</td>
</tr>
<tr>
<td>4</td>
<td>9.00</td>
<td>7.00</td>
<td>17.0</td>
</tr>
<tr>
<td>5</td>
<td>8.70</td>
<td>6.30</td>
<td>17.5</td>
</tr>
<tr>
<td>6</td>
<td>7.80</td>
<td>5.80</td>
<td>17.0</td>
</tr>
<tr>
<td>7</td>
<td>7.70</td>
<td>6.90</td>
<td>17.6</td>
</tr>
<tr>
<td>8</td>
<td>9.83</td>
<td>7.33</td>
<td>17.33</td>
</tr>
<tr>
<td>9</td>
<td>11.2</td>
<td>8.40</td>
<td>17.6</td>
</tr>
<tr>
<td>10</td>
<td>8.50</td>
<td>6.10</td>
<td>16.0</td>
</tr>
<tr>
<td>11</td>
<td>10.0</td>
<td>8.30</td>
<td>18.6</td>
</tr>
<tr>
<td>12</td>
<td>9.00</td>
<td>6.00</td>
<td>17.0</td>
</tr>
<tr>
<td>13</td>
<td>8.40</td>
<td>6.00</td>
<td>17.0</td>
</tr>
<tr>
<td>14</td>
<td>9.00</td>
<td>7.00</td>
<td>17.0</td>
</tr>
<tr>
<td>15</td>
<td>8.00</td>
<td>5.70</td>
<td>15.0</td>
</tr>
<tr>
<td>16</td>
<td>8.00</td>
<td>6.00</td>
<td>16.0</td>
</tr>
<tr>
<td>17</td>
<td>9.10</td>
<td>6.60</td>
<td>17.8</td>
</tr>
<tr>
<td>18</td>
<td>8.00</td>
<td>6.00</td>
<td>15.0</td>
</tr>
<tr>
<td>19</td>
<td>6.80</td>
<td>7.20</td>
<td>15.0</td>
</tr>
<tr>
<td>20</td>
<td>14.9</td>
<td>11.7</td>
<td>21.7</td>
</tr>
<tr>
<td>Nr.</td>
<td>NO₃-N μg/l</td>
<td>NO₂-N μg/l</td>
<td>NO₃-N μg/l</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>40.0</td>
<td>29.0</td>
<td>300.</td>
</tr>
<tr>
<td>2</td>
<td>41.0</td>
<td>34.0</td>
<td>318.</td>
</tr>
<tr>
<td>3</td>
<td>45.5</td>
<td>34.1</td>
<td>339.</td>
</tr>
<tr>
<td>4</td>
<td>42.0</td>
<td>33.0</td>
<td>304.</td>
</tr>
<tr>
<td>5</td>
<td>42.3</td>
<td>29.7</td>
<td>310.</td>
</tr>
<tr>
<td>6</td>
<td>50.0</td>
<td>30.0</td>
<td>306.</td>
</tr>
<tr>
<td>7</td>
<td>30.0</td>
<td>25.0</td>
<td>315.</td>
</tr>
<tr>
<td>8</td>
<td>42.5</td>
<td>30.0</td>
<td>304.</td>
</tr>
<tr>
<td>9</td>
<td>42.0</td>
<td>31.0</td>
<td>302.</td>
</tr>
<tr>
<td>10</td>
<td>43.0</td>
<td>32.0</td>
<td>305.</td>
</tr>
<tr>
<td>11</td>
<td>40.0</td>
<td>31.0</td>
<td>305.</td>
</tr>
<tr>
<td>12</td>
<td>38.0</td>
<td>30.0</td>
<td>303.</td>
</tr>
<tr>
<td>13</td>
<td>38.1</td>
<td>27.4</td>
<td>295.</td>
</tr>
<tr>
<td>14</td>
<td>40.0</td>
<td>25.0</td>
<td>300.</td>
</tr>
<tr>
<td>15</td>
<td>42.5</td>
<td>31.5</td>
<td>304.</td>
</tr>
<tr>
<td>16</td>
<td>43.0</td>
<td>31.0</td>
<td>308.</td>
</tr>
<tr>
<td>17</td>
<td>45.0</td>
<td>30.0</td>
<td>310.</td>
</tr>
<tr>
<td>18</td>
<td>25.0</td>
<td>15.0</td>
<td>280.</td>
</tr>
<tr>
<td>19</td>
<td>40.0</td>
<td>35.0</td>
<td>340.</td>
</tr>
<tr>
<td>20</td>
<td>42.0</td>
<td>32.0</td>
<td>309.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>NH₃-N μg/l</th>
<th>NH₃-N μg/l</th>
<th>NH₃-N μg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>69.0</td>
<td>56.0</td>
<td>128.</td>
</tr>
<tr>
<td>2</td>
<td>64.8</td>
<td>56.9</td>
<td>115.</td>
</tr>
<tr>
<td>3</td>
<td>59.0</td>
<td>51.0</td>
<td>113.</td>
</tr>
<tr>
<td>4</td>
<td>56.0</td>
<td>45.0</td>
<td>104.</td>
</tr>
<tr>
<td>5</td>
<td>70.0</td>
<td>59.5</td>
<td>122.</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>15.0</td>
<td>80.0</td>
</tr>
<tr>
<td>7</td>
<td>30.0</td>
<td>25.0</td>
<td>65.0</td>
</tr>
<tr>
<td>8</td>
<td>58.0</td>
<td>49.7</td>
<td>106.</td>
</tr>
<tr>
<td>9</td>
<td>72.0</td>
<td>63.0</td>
<td>116.</td>
</tr>
<tr>
<td>10</td>
<td>72.0</td>
<td>55.0</td>
<td>104.</td>
</tr>
<tr>
<td>11</td>
<td>61.0</td>
<td>55.0</td>
<td>108.</td>
</tr>
<tr>
<td>12</td>
<td>75.0</td>
<td>64.0</td>
<td>150.</td>
</tr>
<tr>
<td>13</td>
<td>60.8</td>
<td>49.7</td>
<td>112.5</td>
</tr>
<tr>
<td>14</td>
<td>70.0</td>
<td>70.0</td>
<td>120.</td>
</tr>
<tr>
<td>15</td>
<td>79.0</td>
<td>72.0</td>
<td>97.0</td>
</tr>
<tr>
<td>16</td>
<td>39.0</td>
<td>37.0</td>
<td>87.0</td>
</tr>
<tr>
<td>17</td>
<td>73.0</td>
<td>59.0</td>
<td>124.</td>
</tr>
<tr>
<td>18</td>
<td>67.0</td>
<td>55.0</td>
<td>107.</td>
</tr>
<tr>
<td>19</td>
<td>62.2</td>
<td>54.6</td>
<td>102.3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>128.</td>
<td>120.</td>
<td>579.</td>
</tr>
<tr>
<td>2</td>
<td>116.</td>
<td>93.0</td>
<td>514.</td>
</tr>
<tr>
<td>3</td>
<td>123.</td>
<td>108.</td>
<td>551.</td>
</tr>
<tr>
<td>4</td>
<td>110.</td>
<td>95.0</td>
<td>475.</td>
</tr>
<tr>
<td>5</td>
<td>153.</td>
<td>80.0</td>
<td>493.</td>
</tr>
<tr>
<td>6</td>
<td>76.0</td>
<td>45.0</td>
<td>441.</td>
</tr>
<tr>
<td>7</td>
<td>60.0</td>
<td>50.0</td>
<td>382.</td>
</tr>
<tr>
<td>8</td>
<td>105.</td>
<td>86.0</td>
<td>531.</td>
</tr>
<tr>
<td>9</td>
<td>113.</td>
<td>92.0</td>
<td>510.</td>
</tr>
<tr>
<td>10</td>
<td>110.</td>
<td>92.0</td>
<td>515.</td>
</tr>
<tr>
<td>11</td>
<td>126.</td>
<td>99.0</td>
<td>497.</td>
</tr>
<tr>
<td>12</td>
<td>140.</td>
<td>550.</td>
<td>540.</td>
</tr>
<tr>
<td>13</td>
<td>114.</td>
<td>100.</td>
<td>483.</td>
</tr>
<tr>
<td>14</td>
<td>115.</td>
<td>90.0</td>
<td>490.</td>
</tr>
<tr>
<td>15</td>
<td>105.</td>
<td>89.0</td>
<td>495.</td>
</tr>
<tr>
<td>16</td>
<td>105.</td>
<td>82.0</td>
<td>505.</td>
</tr>
<tr>
<td>17</td>
<td>120.</td>
<td>80.0</td>
<td>520.</td>
</tr>
<tr>
<td>18</td>
<td>121.</td>
<td>86.0</td>
<td>470.</td>
</tr>
<tr>
<td>19</td>
<td>108.</td>
<td>100.</td>
<td>525.</td>
</tr>
<tr>
<td>20</td>
<td>126.</td>
<td>141.</td>
<td>504.</td>
</tr>
</tbody>
</table>
Tabell 3.3

STATISTIKK, FOSFAT

PRØVE A

ANALYSEMETODE: ALLE METODER

ENHET: MIKROGRAM/LITER

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonss bredde:</th>
<th>4.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>1.27</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>7.80</td>
<td>Standardavvik:</td>
<td>1.13</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>7.58</td>
<td>Relativt standardavvik:</td>
<td>14.87 %</td>
</tr>
<tr>
<td>Median:</td>
<td>7.80</td>
<td>Relativ feil:</td>
<td>-2.81 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	4.30	:	7	7.30	:	12	8.00
6	6.30	:	2	7.70	:	3	8.50
19	6.40	:	18	7.80	:	8	8.72
15	6.90	:	5	7.80	:	9	8.80
4	7.00	:	16	8.00	:	20	8.90
13	7.00	:	10	8.00	:	1	9.20
14	7.00	:	11	8.00			

PRØVE B

ANALYSEMETODE: ALLE METODER

ENHET: MIKROGRAM/LITER

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonss bredde:</th>
<th>4.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>0.97</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>6.00</td>
<td>Standardavvik:</td>
<td>0.99</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>5.93</td>
<td>Relativt standardavvik:</td>
<td>16.63 %</td>
</tr>
<tr>
<td>Median:</td>
<td>6.00</td>
<td>Relativ feil:</td>
<td>-1.13 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	3.30	:	7	6.00	:	10	6.10
14	5.00	:	3	6.00	:	8	6.85
15	5.00	:	2	6.00	:	20	6.90
4	5.00	:	16	6.00	:	6	7.00
13	5.30	:	11	6.00	:	9	7.50
18	5.40	:	12	6.00	:	1	7.60
5	5.70	:	19	6.00			
Tabell 3.4

Statistikk, Fosfat

Prøve C

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonsbredde:</th>
<th>8.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>3.47</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>13.5</td>
<td>Standardavvik:</td>
<td>1.86</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>13.27</td>
<td>Relativt standardavvik:</td>
<td>14.04%</td>
</tr>
<tr>
<td>Median:</td>
<td>13.45</td>
<td>Relativ feil:</td>
<td>-1.7%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	9.40	:	2	13.1	:	20	13.9
3	9.50	:	15	13.3	:	13	14.1
14	11.0	:	8	13.4	:	9	14.5
4	12.0	:	6	13.5	:	1	14.6
16	13.0	:	19	13.6	:	7	14.7
11	13.0	:	10	13.9	:	12	18.0
18	13.0	:	5	13.9	:		

Prøve D

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonsbredde:</th>
<th>10.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>3.53</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>16.3</td>
<td>Standardavvik:</td>
<td>1.88</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>16.31</td>
<td>Relativt standardavvik:</td>
<td>11.53%</td>
</tr>
<tr>
<td>Median:</td>
<td>16.25</td>
<td>Relativ feil:</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	10.7	:	19	16.1	:	10	17.0
14	14.0	:	3	16.2	:	5	17.1
2	15.5	:	15	16.2	:	20	17.1
18	15.5	:	6	16.3	:	13	17.2
16	16.0	:	8	16.51	:	7	18.2
11	16.0	:	9	16.6	:	12	21.0
4	16.0	:	1	17.0	:		
Tabell 3.5

Statistikk, fosfat

Prøve E

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredd:</th>
<th>15.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>9.22</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>25.0</td>
<td>Standardavvik:</td>
<td>3.04</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>24.86</td>
<td>Relativt standardavvik:</td>
<td>12.21 %</td>
</tr>
<tr>
<td>Median:</td>
<td>24.95</td>
<td>Relativ feil:</td>
<td>-0.55 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	16.7	:	2	24.5	:	6	26.0
4	23.0	:	18	24.9	:	5	26.1
15	23.3	:	16	25.0	:	13	26.4
19	23.7	:	14	25.0	:	1	27.4
3	23.8	:	10	25.5	:	7	32.0
11	24.5	:					

Prøve F

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredd:</th>
<th>16.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>11.82</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>29.9</td>
<td>Standardavvik:</td>
<td>3.44</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>29.73</td>
<td>Relativt standardavvik:</td>
<td>11.56 %</td>
</tr>
<tr>
<td>Median:</td>
<td>29.9</td>
<td>Relativ feil:</td>
<td>-0.56 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

17	20.1	:	2	29.9	:	10	30.6
14	27.0	:	18	29.9	:	13	32.0
4	28.0	:	19	29.9	:	5	32.1
15	28.5	:	16	30.0	:	1	32.4
3	28.9	:	6	30.0	:	7	37.0
11	29.4	:					
Tabell 3.6

Statistikk, totalfosfor

Prove A

Analysemetode: alle metoder

Enhet: mikrogram/liter

Antall deltagere: 20 Variasjonsbredde: 5.10
Antall utelatte res.: 1 Varians: 1.54
Sann verdi: 8.90 Standardavvik: 1.24
Middelverdi: 8.94 Relativt standardavvik: 13.89 %
Median: 8.90 Relativ feil: 0.49 %

Analyseresultater i stigende rekkefølge:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>6.80</td>
<td>10</td>
<td>8.50</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7.70</td>
<td>5</td>
<td>8.70</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>7.80</td>
<td>3</td>
<td>8.90</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>8.00</td>
<td>4</td>
<td>9.00</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>8.00</td>
<td>14</td>
<td>9.00</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>8.00</td>
<td>12</td>
<td>9.00</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>8.40</td>
<td>17</td>
<td>9.10</td>
<td></td>
</tr>
</tbody>
</table>

U = utelatte resultater

Prove B

Analysemetode: alle metoder

Enhet: mikrogram/liter

Antall deltagere: 20 Variasjonsbredde: 2.90
Antall utelatte res.: 1 Varians: 0.81
Sann verdi: 6.60 Standardavvik: 0.90
Middelverdi: 6.78 Relativt standardavvik: 13.29 %
Median: 6.60 Relativ feil: 2.74 %

Analyseresultater i stigende rekkefølge:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5.70</td>
<td>3</td>
<td>6.30</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5.80</td>
<td>5</td>
<td>6.30</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>6.00</td>
<td>17</td>
<td>6.60</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>6.00</td>
<td>7</td>
<td>6.90</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>6.00</td>
<td>4</td>
<td>7.00</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>6.00</td>
<td>14</td>
<td>7.00</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>6.10</td>
<td>19</td>
<td>7.20</td>
<td></td>
</tr>
</tbody>
</table>

U = utelatte resultater
Tabell 3.7

Statistikk, totalfosfor

Prøve C

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagerer:</th>
<th>20</th>
<th>Variasjonsbredde:</th>
<th>3.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>UteLATTE res.:</td>
<td>1</td>
<td>Varians:</td>
<td>1.01</td>
</tr>
<tr>
<td>Sann verd:</td>
<td>17.0</td>
<td>Standardavvik:</td>
<td>1.01</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>16.8</td>
<td>Relativt standardavvik:</td>
<td>5.99%</td>
</tr>
<tr>
<td>Median:</td>
<td>17.0</td>
<td>Relativ feil:</td>
<td>-1.17%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

15	15.0	:	14	17.0	:	2	17.6
18	15.0	:	6	17.0	:	9	17.6
19	15.0	:	4	17.0	:	7	17.6
10	16.0	:	12	17.0	:	17	17.8
16	16.0	:	13	17.0	:	11	18.6
1	16.5	:	8	17.33	:	20	21.7 U
3	16.7	:	5	17.5	:		

U = UteLATTE resultatet

Prøve D

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagerer:</th>
<th>20</th>
<th>Variasjonsbredde:</th>
<th>7.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>UteLATTE res.:</td>
<td>1</td>
<td>Varians:</td>
<td>2.45</td>
</tr>
<tr>
<td>Sann verd:</td>
<td>20.0</td>
<td>Standardavvik:</td>
<td>1.57</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>20.11</td>
<td>Relativt standardavvik:</td>
<td>7.78%</td>
</tr>
<tr>
<td>Median:</td>
<td>20.0</td>
<td>Relativ feil:</td>
<td>0.57%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

18	18.0	:	1	19.9	:	7	20.7
15	18.2	:	6	20.0	:	5	21.0
19	18.3	:	3	20.0	:	9	21.5
4	19.0	:	12	20.0	:	17	21.5
16	19.0	:	14	20.0	:	20	24.8 U
8	19.66	:	13	20.1	:	11	25.1
2	19.9	:	10	20.3	:		

U = UteLATTE resultatet
Tabell 3.8

Statistikk, totalfosfor

Prøve E

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredde:</th>
<th>14.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>13.62</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>33.0</td>
<td>Standardavvik:</td>
<td>3.69</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>33.83</td>
<td>Relativt standardavvik:</td>
<td>10.91%</td>
</tr>
<tr>
<td>Median:</td>
<td>33.4</td>
<td>Relativ feil:</td>
<td>2.52%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

15	28.6	:	13	32.4	:	17	35.4
4	29.0	:	6	33.0	:	5	35.5
19	30.1	:	3	33.8	:	16	38.0
10	32.0	:	1	34.0	:	2	38.3
18	32.0	:	11	34.2	:	7	43.0

Prøve F

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredde:</th>
<th>14.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>12.38</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>38.0</td>
<td>Standardavvik:</td>
<td>3.52</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>38.64</td>
<td>Relativt standardavvik:</td>
<td>9.11%</td>
</tr>
<tr>
<td>Median:</td>
<td>38.1</td>
<td>Relativ feil:</td>
<td>1.69%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

4	33.0	:	14	37.0	:	17	40.0
15	35.0	:	11	38.0	:	1	40.2
6	36.0	:	13	38.2	:	5	40.4
18	36.0	:	3	39.3	:	2	44.7
10	36.6	:	16	40.0	:	7	47.0
19	36.9	:					
Tabell 3.9

Statistikk, Nitrat-Nitrogen

Prøve A

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

- **Antall deltagere:** 20
- **Variasjonsbredde:** 20.0
- **Sann verdi:** 42.0
- **Middelverdi:** 41.42
- **Median:** 42.0
- **Varians:** 15.2
- **Standardavvik:** 3.90
- **Relativt standardavvik:** 9.41%
- **Relativ feil:** -1.39%

Analyseresultater i stigende rekkefølge:

18	25.0	U	:	19	40.0	:	8	42.5												
7	30.0	:	2	41.0	:	16	43.0													
12	38.0	:	9	42.0	:	10	43.0													
13	38.1	:	4	42.0	:	17	45.0													
11	40.0	:	20	42.0	:	3	45.5													
14	40.0	:	5	42.3	:	6	50.0													
1	40.0	:	15	42.5	:															

U = Utelatte resultater

Prøve B

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

- **Antall deltagere:** 20
- **Variasjonsbredde:** 10.0
- **Sann verdi:** 31.0
- **Middelverdi:** 30.56
- **Median:** 31.0
- **Varians:** 7.33
- **Standardavvik:** 2.71
- **Relativt standardavvik:** 8.86%
- **Relativ feil:** -1.41%

Analyseresultater i stigende rekkefølge:

18	15.0	U	:	6	30.0	:	10	32.0												
14	25.0	:	17	30.0	:	20	32.0													
7	25.0	:	12	30.0	:	4	33.0													
13	27.4	:	16	31.0	:	2	34.0													
1	29.0	:	11	31.0	:	3	34.1													
5	29.7	:	9	31.0	:	19	35.0													
8	30.0	:	15	31.5	:															

U = Utelatte resultater
Tabell 3.10

Statistikk, Nitrat-Nitrogen

Prøve C

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere</th>
<th>20</th>
<th>Variasjonsbredde</th>
<th>60.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.</td>
<td>0</td>
<td>Varians</td>
<td>176.56</td>
</tr>
<tr>
<td>Sann verdi</td>
<td>305.</td>
<td>Standardavvik</td>
<td>13.29</td>
</tr>
<tr>
<td>Middelverdi</td>
<td>307.85</td>
<td>Relativt standardavvik</td>
<td>4.32 %</td>
</tr>
<tr>
<td>Median</td>
<td>305.</td>
<td>Relativ feil</td>
<td>0.93 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

18	280.	:	8	304.	:	5	310.
1	300.	:	11	305.	:	7	315.
14	300.	:	10	305.	:	2	318.
15	304.	:	20	309.			

Prøve D

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere</th>
<th>20</th>
<th>Variasjonsbredde</th>
<th>53.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.</td>
<td>0</td>
<td>Varians</td>
<td>134.96</td>
</tr>
<tr>
<td>Sann verdi</td>
<td>344.</td>
<td>Standardavvik</td>
<td>11.62</td>
</tr>
<tr>
<td>Middelverdi</td>
<td>344.7</td>
<td>Relativt standardavvik</td>
<td>3.37 %</td>
</tr>
<tr>
<td>Median</td>
<td>344.</td>
<td>Relativ feil</td>
<td>0.20 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

18	312.	:	12	342.	:	17	350.
13	332.	:	8	343.	:	2	354.
9	338.	:	6	344.	:	3	361.
16	342.	:	10	346.			
Tabell 3.11

Statistikk, Nitrat-Nitrogen

Prøve E

Analysemetode: Alle Metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredde:</th>
<th>46.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>155.6</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>300.</td>
<td>Standardavvik:</td>
<td>12.47</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>301.</td>
<td>Relativ standardavvik:</td>
<td>4.14 %</td>
</tr>
<tr>
<td>Median:</td>
<td>300.</td>
<td>Relativ feil:</td>
<td>0.33 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>280.</td>
<td>15</td>
<td>300.</td>
</tr>
<tr>
<td>18</td>
<td>280.</td>
<td>16</td>
<td>300.</td>
</tr>
<tr>
<td>13</td>
<td>293.</td>
<td>10</td>
<td>300.</td>
</tr>
<tr>
<td>11</td>
<td>293.</td>
<td>17</td>
<td>305.</td>
</tr>
<tr>
<td>11</td>
<td>293.</td>
<td>2</td>
<td>306.</td>
</tr>
<tr>
<td>4</td>
<td>294.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prøve F

Analysemetode: Alle Metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>16</th>
<th>Variasjonsbredde:</th>
<th>45.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>149.07</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>262.</td>
<td>Standardavvik:</td>
<td>12.21</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>264.</td>
<td>Relativ standardavvik:</td>
<td>4.62 %</td>
</tr>
<tr>
<td>Median:</td>
<td>262.</td>
<td>Relativ feil:</td>
<td>0.76 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>250.</td>
<td>10</td>
<td>259.</td>
</tr>
<tr>
<td>13</td>
<td>251.</td>
<td>15</td>
<td>260.</td>
</tr>
<tr>
<td>11</td>
<td>251.</td>
<td>3</td>
<td>264.</td>
</tr>
<tr>
<td>1</td>
<td>255.</td>
<td>17</td>
<td>265.</td>
</tr>
<tr>
<td>4</td>
<td>255.</td>
<td>2</td>
<td>266.</td>
</tr>
<tr>
<td>16</td>
<td>258.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 3.12

Statistikk, ammonium-nitrogen

Prøve A

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>19</th>
<th>Variaisjonsbredde:</th>
<th>40.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>2</td>
<td>Varians:</td>
<td>88.19</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>67.0</td>
<td>Standardavvik:</td>
<td>9.39</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>65.16</td>
<td>Relativt standardavvik:</td>
<td>14.41%</td>
</tr>
<tr>
<td>Median:</td>
<td>67.0</td>
<td>Relativ feil:</td>
<td>-2.74%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>26.0</td>
<td>U:</td>
<td>11</td>
<td>61.0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>30.0</td>
<td>U:</td>
<td>20</td>
<td>62.2</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>39.0</td>
<td>U:</td>
<td>2</td>
<td>64.8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>56.0</td>
<td>U:</td>
<td>19</td>
<td>67.0</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>58.0</td>
<td>U:</td>
<td>1</td>
<td>69.0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>59.0</td>
<td>U:</td>
<td>14</td>
<td>70.0</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>60.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U = Utelatte resultater

Prøve B

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>19</th>
<th>Variaisjonsbredde:</th>
<th>35.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>2</td>
<td>Varians:</td>
<td>73.65</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>55.0</td>
<td>Standardavvik:</td>
<td>8.58</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>56.02</td>
<td>Relativt standardavvik:</td>
<td>15.32%</td>
</tr>
<tr>
<td>Median:</td>
<td>55.0</td>
<td>Relativ feil:</td>
<td>1.86%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15.0</td>
<td>U:</td>
<td>20</td>
<td>54.6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>25.0</td>
<td>U:</td>
<td>11</td>
<td>55.0</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>37.0</td>
<td>U:</td>
<td>19</td>
<td>55.0</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>45.0</td>
<td>U:</td>
<td>10</td>
<td>55.0</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>49.7</td>
<td>U:</td>
<td>1</td>
<td>56.0</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>49.7</td>
<td>U:</td>
<td>2</td>
<td>56.9</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>51.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U = Utelatte resultater
TABELL 3.13

STATISTIKK, AMMONIUM-NITROGEN

PRØVE C

ANALYSEMETODE: ALLE METODER

ENHET: MIKROGRAM/LITER

<table>
<thead>
<tr>
<th>ANTALL DELTAGERE: 20</th>
<th>VARAIASJONSBREDDE: 85.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTALL UTELATTE RES.: 0</td>
<td>VARIANS: 327.33</td>
</tr>
<tr>
<td>SANN VERDI: 110.3</td>
<td>STANDARDAVVIK: 18.09</td>
</tr>
<tr>
<td>MIDDELVERDI: 108.79</td>
<td>RELATIVT STANDARDAVVIK: 16.63 %</td>
</tr>
<tr>
<td>MEDIAN: 110.25</td>
<td>RELATIV FEIL: -1.37 %</td>
</tr>
</tbody>
</table>

ANALYSERESULTATER I STIGENDE REKKEFØLGE:

7 65.0	:	8 106.	:	9 116.
6 80.0	:	19 107.	:	14 120.
17 87.0	:	11 108.	:	5 122.
15 97.0	:	13 112.5	:	18 124.
20 102.3	:	3 113.	:	1 128.
4 104.	:	16 115.	:	12 150.
10 104.	:	2 115.	:	

PRØVE D

ANALYSEMETODE: ALLE METODER

ENHET: MIKROGRAM/LITER

<table>
<thead>
<tr>
<th>ANTALL DELTAGERE: 20</th>
<th>VARAIASJONSBREDDE: 119.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTALL UTELATTE RES.: 0</td>
<td>VARIANS: 538.73</td>
</tr>
<tr>
<td>SANN VERDI: 132.7</td>
<td>STANDARDAVVIK: 23.21</td>
</tr>
<tr>
<td>MIDDELVERDI: 128.63</td>
<td>RELATIVT STANDARDAVVIK: 18.04 %</td>
</tr>
<tr>
<td>MEDIAN: 132.65</td>
<td>RELATIV FEIL: -3.07 %</td>
</tr>
</tbody>
</table>

ANALYSERESULTATER I STIGENDE REKKEFØLGE:

7 70.0	:	20 124.7	:	9 139.
6 100.	:	8 125.6	:	14 140.
17 106.	:	2 132.	:	5 141.
19 110.	:	13 133.3	:	18 141.
15 116.	:	11 134.	:	1 149.
10 122.	:	3 138.	:	12 189.
4 123.	:	16 139.	:	
Tabell 3.14

Statistikk, Ammonium-nitrogen

Prøve E

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>15</th>
<th>Variasjonsbredde:</th>
<th>28.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>3</td>
<td>Varians:</td>
<td>71.01</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>59.4</td>
<td>Standardavvik:</td>
<td>8.43</td>
</tr>
<tr>
<td>Middeleverdi:</td>
<td>57.03</td>
<td>Relativ standardavvik:</td>
<td>14.78 %</td>
</tr>
<tr>
<td>Median:</td>
<td>59.35</td>
<td>Relativ feil:</td>
<td>-3.98 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>36.0</td>
<td>U</td>
<td>18</td>
<td>58.0</td>
</tr>
<tr>
<td>17</td>
<td>39.0</td>
<td></td>
<td>5</td>
<td>58.7</td>
</tr>
<tr>
<td>4</td>
<td>45.0</td>
<td></td>
<td>15</td>
<td>60.0</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td></td>
<td>13</td>
<td>60.8</td>
</tr>
<tr>
<td>3</td>
<td>54.0</td>
<td></td>
<td>10</td>
<td>62.0</td>
</tr>
</tbody>
</table>

U = utelatte resultater

Prøve F

Analysemetode: Alle metoder

Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>15</th>
<th>Variasjonsbredde:</th>
<th>43.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>3</td>
<td>Varians:</td>
<td>137.13</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>77.9</td>
<td>Standardavvik:</td>
<td>11.71</td>
</tr>
<tr>
<td>Middeleverdi:</td>
<td>74.17</td>
<td>Relativ standardavvik:</td>
<td>15.79 %</td>
</tr>
<tr>
<td>Median:</td>
<td>77.9</td>
<td>Relativ feil:</td>
<td>-4.79 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>26.0</td>
<td>U</td>
<td>18</td>
<td>72.0</td>
</tr>
<tr>
<td>17</td>
<td>47.0</td>
<td></td>
<td>15</td>
<td>76.0</td>
</tr>
<tr>
<td>3</td>
<td>63.0</td>
<td></td>
<td>13</td>
<td>79.8</td>
</tr>
<tr>
<td>4</td>
<td>65.0</td>
<td></td>
<td>16</td>
<td>80.0</td>
</tr>
<tr>
<td>1</td>
<td>70.0</td>
<td></td>
<td>2</td>
<td>80.5</td>
</tr>
</tbody>
</table>

U = utelatte resultater
Tabell 3.15

Statistikk, Totalt Nitrogeninnhold

Prøve A

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonsbredd:</th>
<th>93.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>3</td>
<td>Varians:</td>
<td>328.62</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>114.0</td>
<td>Standardavvik:</td>
<td>18.13</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>113.65</td>
<td>Relativ standardavvik:</td>
<td>15.95%</td>
</tr>
<tr>
<td>Median:</td>
<td>114.0</td>
<td>Relativ feil:</td>
<td>-0.31%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

7	60.0	:	10	110.0	:	3	123.0
6	76.0 U	:	9	113.0	:	11	126.0
8	105.0	:	13	114.0	:	20	126.0 U
15	105.0	:	14	115.0	:	1	128.0
16	105.0	:	2	116.0	:	12	140.0 U
19	108.0	:	17	120.0	:	5	153.0
4	110.0	:	18	121.0	:		

U = Utelatte resultat

Prøve B

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonsbredd:</th>
<th>70.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>3</td>
<td>Varians:</td>
<td>214.72</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>92.0</td>
<td>Standardavvik:</td>
<td>14.65</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>90.71</td>
<td>Relativ standardavvik:</td>
<td>16.15%</td>
</tr>
<tr>
<td>Median:</td>
<td>92.0</td>
<td>Relativ feil:</td>
<td>-1.41%</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

6	45.0 U	:	15	89.0	:	13	100.0
7	50.0	:	14	90.0	:	19	100.0
5	80.0	:	9	92.0	:	3	108.0
17	80.0	:	10	92.0	:	1	120.0
16	82.0	:	2	93.0	:	20	141.0 U
8	86.0	:	4	95.0	:	12	550.0 U
18	86.0	:	11	99.0			

U = Utelatte resultat
Tabell 3.16

Statistikk, totalt nitrogeninnhold

Prøve C

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th>Antall deltagere:</th>
<th>20</th>
<th>Variasjonsbredde:</th>
<th>197.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>1703.79</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>505.</td>
<td>Standardavvik:</td>
<td>41.28</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>501.</td>
<td>Relativt standardavvik:</td>
<td>8.24 %</td>
</tr>
<tr>
<td>Median:</td>
<td>504.5</td>
<td>Relativ feil:</td>
<td>-0.79 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

7	382.	15	495.	17	520.
6	441.	11	497.	19	525.
18	470.	20	504.	8	531.
4	475.	16	505.	12	540.
13	483.	9	510.	3	551.
14	490.	2	514.	1	579.
5	493.	10	515.	:	:

U = UTELATTE RESULTATER

Prøve D

Analysemetode: Alle metoder
Enhet: Mikrogram/liter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall utelatte res.:</td>
<td>0</td>
<td>Varians:</td>
<td>1957.78</td>
</tr>
<tr>
<td>Sann verdi:</td>
<td>557.</td>
<td>Standardavvik:</td>
<td>44.25</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>553.1</td>
<td>Relativt standardavvik:</td>
<td>8.00 %</td>
</tr>
<tr>
<td>Median:</td>
<td>556.5</td>
<td>Relativ feil:</td>
<td>-0.7 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

7	425.	5	553.	2	580.
6	478.	20	553.	17	585.
18	521.	9	554.	19	595.
14	530.	16	559.	1	599.
4	535.	11	561.	3	603.
13	537.	8	563.	12	620.
15	545.	10	566.	:	:

U = UTELATTE RESULTATER
Tabell 3.17

Statistikk, Totalt Nitrogeninnhold

Prove E

Analyzemetode: Alle metoder
Enhet: Mikrogram/Liter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall Utelatte Res:</td>
<td>0</td>
<td>Varians:</td>
<td>1122.78</td>
</tr>
<tr>
<td>Sann Verdi:</td>
<td>479.</td>
<td>Standardavvik:</td>
<td>33.51</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>478.87</td>
<td>Relativt Standardavvik:</td>
<td>7.00 %</td>
</tr>
<tr>
<td>Median:</td>
<td>479.</td>
<td>Relativ feil:</td>
<td>-0.03 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

4	430.	:	10	479.	:	5	508.
7	452.	:	2	481.	:	1	514.
15	455.	:	3	500.	:	19	544.

Prove F

Analyzemetode: Alle metoder
Enhet: Mikrogram/Liter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall Utelatte Res:</td>
<td>0</td>
<td>Varians:</td>
<td>1365.72</td>
</tr>
<tr>
<td>Sann Verdi:</td>
<td>454.</td>
<td>Standardavvik:</td>
<td>36.96</td>
</tr>
<tr>
<td>Middelverdi:</td>
<td>454.62</td>
<td>Relativt Standardavvik:</td>
<td>8.13 %</td>
</tr>
<tr>
<td>Median:</td>
<td>454.</td>
<td>Relativ feil:</td>
<td>0.14 %</td>
</tr>
</tbody>
</table>

Analyseresultater i stigende rekkefølge:

4	390.	:	5	453.	:	17	480.
14	400.	:	18	453.	:	11	480.
7	404.	:	10	455.	:	3	482.
13	425.	:	2	461.	:	1	497.
6	441.	:	16	475.	:	19	528.

<table>
<thead>
<tr>
<th>Miniringtest</th>
<th>Testbeskrivelse</th>
<th>Probetrinn</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>8101</td>
<td>Ortofosfat, totalfosfor, nitrat og totalnitrogen</td>
<td>25. juni 1981</td>
<td></td>
</tr>
<tr>
<td>8202</td>
<td>Ortofosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>26. april 1982</td>
<td></td>
</tr>
<tr>
<td>8203</td>
<td>Ortofosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>27. august 1982</td>
<td></td>
</tr>
<tr>
<td>8204</td>
<td>Aluminium, bly, jern, kadmium, kobber, mangan og sink</td>
<td>22. desember 1982</td>
<td></td>
</tr>
<tr>
<td>8305</td>
<td>Aluminium, bly, jern, kadmium, kobber, mangan og sink</td>
<td>30. mars 1983</td>
<td></td>
</tr>
<tr>
<td>8306</td>
<td>Ortofosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>24. juni 1983</td>
<td></td>
</tr>
<tr>
<td>8307</td>
<td>Nitrat, ammonium og totalnitrogen</td>
<td>30. november 1983</td>
<td></td>
</tr>
<tr>
<td>8408</td>
<td>Aluminium, bly, jern, kadmium, kobber, mangan og sink</td>
<td>30. mars 1984</td>
<td></td>
</tr>
<tr>
<td>8409</td>
<td>Fosfat, totalfosfor, nitrat ammonium og totalnitrogen</td>
<td>21. juni 1984</td>
<td></td>
</tr>
<tr>
<td>8410</td>
<td>Nitrat, ammonium og totalnitrogen</td>
<td>7. desember 1984</td>
<td></td>
</tr>
<tr>
<td>8511</td>
<td>Fosfat og totalfosfor</td>
<td>24. april 1985</td>
<td></td>
</tr>
<tr>
<td>8512</td>
<td>Nitrat, ammonium og totalnitrogen</td>
<td>10. januar 1986</td>
<td></td>
</tr>
<tr>
<td>8613</td>
<td>Fosfat og totalfosfor</td>
<td>30. mai 1986</td>
<td></td>
</tr>
<tr>
<td>8614</td>
<td>Nitrat, ammonium og totalnitrogen</td>
<td>10. november 1986</td>
<td></td>
</tr>
<tr>
<td>8715</td>
<td>Fosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>25. april 1987</td>
<td></td>
</tr>
<tr>
<td>8716</td>
<td>pH, konduktivitet, alkalitet, nitrat, klorid, sulfat, kalsium, magnesium, natrium og kalsium</td>
<td>21. januar 1988</td>
<td></td>
</tr>
<tr>
<td>8817</td>
<td>pH, konduktivitet, alkalitet, nitrat, klorid, sulfat, kalsium, magnesium, natrium og kalsium</td>
<td>25. juli 1988</td>
<td></td>
</tr>
<tr>
<td>8818</td>
<td>Fosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>20. januar 1989</td>
<td></td>
</tr>
<tr>
<td>8919</td>
<td>Fosfat, totalfosfor, nitrat, ammonium og totalnitrogen</td>
<td>25. april 1989</td>
<td></td>
</tr>
</tbody>
</table>