Undersøkelser i Drammenselva 1982-1984

Fagrapport om bunndyr og fisk

Laboratorium for ferskvannsøkologi og innlandsfiske (LFI) Zoologisk museum
Universitetet i Oslo

Norsk institutt for vannforskning NIVA
Det statlige programmet omfatter overvåking av forurensningsforholdene i

luft og nedbør
grunnvann
vassdrag og fjorder
havområder

Overvåkingen består i langsiktige undersøkelser av de fysiske, kjemiske og biologiske forhold.

Hovedmålsettingen med overvåkingsprogrammet er å døke myndighetenes behov for informasjon om forurensningsforholdene med sikte på best mulig forvaltning av naturressursene.

Hovedmålet spenner over en rekke delmål der overvåkingen bl. a. skal:

- gi informasjon om tilstand og utvikling av forurensnings situasjonen på kort og lang sikt.
- registrere virkningen av iverksatte tiltak og danne grunnlag for vurdering av nye forurensningsbegrensende tiltak.
- påvise eventuell uheldig utvikling i respondenten på et tidlig tidspunkt.
- over tid gi bedre kunnskaper om de enkelte vannforekomsters naturlige forhold.

Sammen med overvåkingen vil det føres kontroll med forurensende utslipp og andre aktiviteter.

For å sikre den praktiske koordineringen av overvåkingen av luft, nedbør, grunnvann, vassdrag, fjorder og havområder og for å få en helhetlig tolkning av målresultatene er det opprettet et arbeidsutvalg.

Følgende institusjoner deltar i arbeidsutvalget:

- Direktoratet for vilt og ferskvanntfisk (DVF)
- Fiskeridirektoratets Havforskningsinstitutt (FHI)
- Norges Geologiske Undersøkelser (NGU)
- Norsk institutt for luftforskning (NILU)
- Norsk institutt for vannforskning (NIVA)
- Statens forurensningstilsyn (SFT)

Overvåkningsprogrammet finansieres i hovedsak over statsbudsjettet. Statens forurensningstilsyn er ansvarlig for gjennomføring av programmet.

Resultater fra de enkelte overvåkingsprosjekter vil bli publisert i årlige rapporter.

Henvendelser vedrørende programmet kan i tillegg til de aktuelle institutter rettes til Statens forurensningstilsyn, Postboks 8100, Dep. Oslo 1, tlf. 02 - 22 98 10.
**Laboratorium for ferskvannsøkologi og innlandsfiske (LFI),**

Zoologisk Museum,

Universitetet i Oslo,

Sars gt. 1, Oslo 5.

---

**Rapportens tittel:**

UNDERSØKELSER I DRAMMENSELVA, 1982-1984

Fagrapparat om bunndyr og fisk

(Overvåkingsrapport nr. 175/85)

**Dato:**

15. april 1985

**Projektnummer:**

0-80002-26

**Forfatter (e):**

John E. Brittain

Åge Brabrand

Svein Jakob Saltveit

**LFI rapport nr.:**

73

**Geografisk område:**

Buskerud

**Antall sider (inkl. bilag):**

46

---

**Oppdragsgiver:**

Statens forurensningstilsyn

(Statlig program for forurensningsovervåking)

---

**Ekstrakt:**

Ved bruk av to typer forurensningsindekser er det dokumentert endring i bunndyrsamfunnet fra Vikersund til Drammen. I Drammenselva ovenfor Hokksund var det liten forurensning. Umiddelbart nedenfor Mjøndalen viste indeksene noe økt forurensning, mens innslaget av forurensningstolerante grupper var helt dominerende ved Drammen. For fisk var det nedgang i antall påviste ørretunger nedenfor Hellefoss, mens innslaget av laksunger hadde høyest tetthet på strykpartier mellom Hellefoss og Hokksund. Nedstrøms Mjøndalen ble bare få laksunger påvist. Vassdraget har høy produksjon av andre fiskearter som kan gi stor avkastning.

---

**4 emneord, norske:**

1. Forurensningsovervåking
2. Drammenselva
3. Bunndyr
4. Fisk

**4 emneord, engelske:**

1. Monitoring
2. River Drammenselva
3. Zoobenthos
4. Fish

---

ISBN 82-577-0986-7
LABORATORIUM FOR FERSKVANNSØKOLOGI OG INNLANDSFISKE
Zoologisk museum, Universitetet i Oslo

NORSK INSTITUTT FOR VANNFORSKNING, Oslo

0-80002-26

UNDERSØKELSER I DRAMMENSELVA 1982-1984

Fagrapport om bunndyr og fisk

Saksbehandlere: Lars Lingsten
               Leif Lien

Medarbeidere:  John E. Brittain
               Age Brabrand
               Svein Jakob Saltveit

For NIVAs
administrasjon: Rolf T. Arnesen
Drammenselvens forurensning.

Forøvrig uttalte komiteen som almindelig resultat:

-Det er efter den foreløbige befaering vor opfatning at neppe noget av de undersøkte anlæg har truffet foranstaltninger, der kan antas fuldt utat tilfredsstille de krav som med rimelighed bør opstilles. Det vil saaledes formentlig ved alle fabrikker bli nødvendig at søge gjennemført foranstaltninger av større eller mindre omfang til forebyggelse av forurensningen.

15de mai 1911
Landbruksdepartementet.
FORORD

Norsk institutt for vannforskning (NIVA) fikk i oppdrag fra Statens forurensningstilsyn (SFT) å utføre en tiltaksorientert (basis-)undersøkelse av Drammenselva. Undersøkelsen er med i det Statlige program for forurensningsovervåking administrert av SFT.

Deler av undersøkelsen skulle omfatte bunndyr og fisk, og NIVA satte dette delprosjektet bort til Laboratorium for ferskvannsøkologi og innlandsfiske (LFI), Zoologisk Museum, Universitetet i Oslo.


Fram til mars 1985 var Lars Lingsten NIVA's saksbehandler, deretter Leif Lien.

Oslo oktober 1985

Leif Lien
INNHOLD

1. FORMÅL - KONKLUSJONER - TILRADNINGER ................. 1

2. INNLEDDNING ............................................. 2

3. OMRÅDEBESKRIVELSE ........................................ 3

4. LOKALITETER .................................................. 5

5. MATERIALE OG METODE ....................................... 7
   5.1 Bunndyr .................................................... 7
   5.2 Elektrofiske ............................................... 7

6. RESULTATER OG DISKUSJON .................................. 9
   6.1 Bunndyr .................................................... 9
   6.2 Fisk ....................................................... 18
   6.3 Beskatning ............................................... 29
   6.4 Forurensningsgrad ........................................ 32

7. LITTERATUR .................................................... 38

8. ENGLISH SUMMARY ........................................... 41
1. FORMÅL - KONKLUSJONER - TILRÅDNINGER

I. Formål

Hensikten med denne rapporten er å beskrive regionale forskjeller i fisk- og bunndyrsamfunnet i Drammenselva og å knytte disse til forurensning av elva.

II. Konklusjoner

For bunndyr er det påvist endring i forurensningsgrad fra Vikersund til Drammen. Dette er klart dokumentert ved bruk av to typer forurensningsindekser. I Drammenselva ovenfor Høkksund og i sideelvene Bingselva og Snarumselva indikerte indeksene bare liten grad av forurensning. Umiddelbart nedenfor Mjøndalen viste indeksene noe økt forurensning, mens innslaget av forurensningstolerante grupper av bunndyr var helt dominerende ved Drammen. For fisk var det en klar nedgang i påvist antall ørretunger nedenfor Hellefoss, mens innslaget av laksunger hadde sin høyeste tetthet på strykpartiene mellom Hellefoss og Høkksund. I strykene nedstrøms Mjøndalen ble det bare påvist få laksunger. Både laks og ørret viste normalt god vekst første levedør i hele elva. For de nedre deler av vassdraget har menneskelig påvirkning gitt gode forhold for bestander av mer forurensningstolerante arter som abbor, gjedde og flere karpefisker.

III. Tilrådninger

Drammenselva har lange tradisjoner som en meget god lakseelv. Avkastningen er idag bare på 4 - 5 tonn. Vannkvaliteten er stort sett tilfredsstillende for produksjon av ørret og laks, med unntak av strekningen nedenfor Mjøndalen. Hellefoss ble i 1982 gjort lettere å passere for laks. Produksjonen av smolt kan tiløpig økes vesentlig ved økt utsetting, og ved ytterligere økning av laksseførende strekning. Vassdraget har høy produksjon av andre arter som kan gi stor avkastning.
2. INNLEDNING

I likhet med andre biologiske parametre kan dyr knyttet til bunnen og fisk gi informasjon om forholdene i vannforekomster. Mens fysisk-kjemiske målinger bare angir vannets tilstand på det tidspunkt da prøven ble tatt, vil undersøkelse av biologiske parametre som bunndyr og fisk gi informasjon om forholdene over lengre tidsrom, da faunaen er avhengig av vassdraget som levested.


Bunndyr- og fiskeundersøkelser i Drammenselva er lagt opp med følgende formål:

- Beskrivelse av endring i bunndyrsamfunnet på stasjoner i Drammenselva fra Vikersund til Drammen, samt i tilløpselvene Bingselva og Snarumselva, og knytte dette til menneskelig påvirkning i vassdraget.

- Registrering av fiskearter i Drammenselva, Bingselva og Snarumselva, med vekt på dominansforhold og beskrivelse av tetthet og vekst av laksunger, og knytte dette til påvirkning av vassdraget.
3. OMRADEBESKRIVELSE

Drammenselva er den nederste delen av Drammensvassdraget, og renner fra Vikersund til Drammensfjorden. Elva er 46 km lang og har et totalt fall på 63 m. Det vesentligste fallet utgjøres av 6 fosser i den øvre delen av elva (Vikfoss, Geithusfoss, Gravfoss/Katfoss, Embretsfoss, Døvikfoss og Hellefoss).

Det totale nedbørsfeltet er på 17.096 km², mens det lokale nedbørsfeltet nedenfor Tyrifjorden uten Hallingdalselva og Krøderen utgjør vel 2000 km².

De største sideelvene til Drammenselva er Snarumselva, Simoa, Bingselva og Vestfosselva.

<table>
<thead>
<tr>
<th>Nedbørfelt km²</th>
<th>Midlere vannføring m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snarumselva</td>
<td>5263</td>
</tr>
<tr>
<td>Simoa</td>
<td>888</td>
</tr>
<tr>
<td>Vestfosselva</td>
<td>529</td>
</tr>
<tr>
<td>Bingselva</td>
<td>110</td>
</tr>
</tbody>
</table>

Geologiske forhold i nedbørsfeltet ovenfor Tyrifjorden og ovenfor samløpet mellom Snarumselva og Drammenselva er slik at det naturlige avrenningsvannet får et lavt innhold av oppløste salter. I det lokale nedbørsfeltet fra Vikersund til Hokksund er det vesentlig gneis og granitt på vestsiden, mens det på østsiden er et dominerende innslag av leirskifer og kalkstein. Nedstrøms Hokksund renner elva først gjennom kambro-siluriske områder med høyt innhold av kalk, deretter gjennom eruptiver fra Oslo-feltet. Løsavsetningene i den nedre delen av vassdraget består vesentlig av marine leirsedimenter.
Fig. 1. Kartskisse over Drammenselva. Lokaliteter for innsamling av bunndyr og elektrofiske er angitt.
4. LOKALITETER

Stasjonene for elektrofiske og innsamling av bunndyr er i hovedsak de samme som for den fysisk-kjemiske delen av overvåkningen i vassdraget. Imidlertid måtte det tas hensyn til bunnenens beskaffenhet og noen lokaliteter er derfor lagt andre steder. Tidligere kunnskaper om vassdragets bunna fauna var mangelfull og det var nødvendig med en referansestasjon som er mindre berørt av forurensninger enn Snarumselva og selve Drammenselva. Det er derfor tatt prøver i Bingselva (BIN 1).

Stasjon **DRA 1** ligger ved Vikersund (UTM ref. NM557481), på vestsiden av elva nedenfor utløpet av Tyrifjorden. Elektrofiske og bunnpørver er tatt i et strykparti like nedenfor brua der bunnen består av stein av vekslende størrelse som ligger på sand og leire. Noe mose ble observert. Bunnpørver er også tatt i en stillestående vik med leire, slam og vegetasjon.

For **DRA 2** er to lokaliteter benyttet, både til elektrofiske og bunnpørver. Den første er ved Embretsfoss på vestsiden av elva nedenfor kraftstasjonen (UTM ref. NM518409). Det er her brådjupt med små stein på sand og enkelte større steinblokker. Lokaliteten har en del strøm, men er noe preget av at den ligger i en bakevje, og den er betegnet som DRA 2-styk. Den andre lokaliteten er ved Døvikfoss ca. 100 m nedenfor fossen på vestsiden av elva (UTM ref. NM510392). Den er lagt på en langgrunn sandtange med enkelte gruspartier og er betegnet som DRA 2-stille. Mye synketrømmer på bunnen gir gode skjulesteder for fisk.

Ved **DRA 3** er det elektrofisket og tatt bunnpørver på to lokaliteter på nordøstsiden av elva, ca. 1 km nedenfor Hellefoss (UTM ref. NM509270). Den første er i et stryk langs en grusbanke, med bunnen bestående av jevn småstein (DRA 3 stryk). Den andre er i en vik hvor bunnen hovesakelig består av sand og silt, og hvor det vokser noe vegetasjon (DRA 3-stille). I 1984 ble det i tillegg elektrofisket og foretatt bestands-estimering på følgende steder: A - østsiden ca. 500 m nedenfor Hellefoss (april, juli og september), B - østsiden ca. 800 m
nedenfor Hellefoss (april) og C - vestsiden 100-200 m nedenfor Hellefoss (september).

Ved **DRA 4** er det tatt bunnprøver og elektrofisket på to nærliggende lokaliteter på Solbergmoen i Nedre Eiker på nordsiden av elva (UTM ref. NM594248). Den øverste lokaliteten (DRA 4 - stryk) består av stryk med enkelte steinblokker. Bunnen består høvesakelig av stein på sand og grus med noe mose. **DRA 4** - stille er like nedenfor, men strømmen er svakere og bunnen består hovedsakelig av mudder og slam, med enkelte steiner. Det vokser en del vegetasjon, bl.a. tusenblad (**Myriophyllum**). Det lukter sulfider av bunnmaterialet, og fargen var tildels svart.

Stasjon **DRA 5** ligger i Drammen sentrum ved Bybrua (NTM ref. NM677236). Bunnen består av sand og mudder og det er brådjupt ned til ca. 3 m. Det er her tatt bunnprøver med stanghenter. Fiske er ikke utført pga. ikke sammenlignbart substrat med de øvrige lokaliteter, og fordi fiskeforholdene var vanskelige.

Stasjon **SNA 1** ligger nederst i Snarumselva på vestsiden og 100-200 m før utløp i Drammenselva (UTM ref. NM527446). Bunnen består av stein liggende på grus.

Stasjon **BIN 1** i Bingselva ligger ca. 1.5 km før samløp med Drammenselva hvor veien krysser elva (UTM ref. NM492341). Elva går her i stryk og bunnsubstratet er grovt og består av blokker og større stein liggende på grus.
5. MATERIALE OG METODER

5.1 Bunndyr


5.2 Elektrofiske

Til registrering av ungfisk i Drammenselva ble det benyttet et elektrisk fiskeapparat konstruert av ing. Steinar Paulsen, Trondheim. Maksimum spenning er 1600 V og pulsfrekvensen er 80 Hz.

Ved Hokksund ble det foretatt bestandsestimater av laksunger innenfor avgrenset arealer som ble avfisket tre ganger fortøpende. Nedgangen i fangst fra gang til gang danner grunnlaget for beregningen (Ricker 1975). Fiskebestandens størrelse ved fiskets begynnelsel ($N_0$) er beregnet etter følgende formel:
\[ N_0 = \frac{C_t}{q} + k_t \]

hvor \( C_t \) er fangst ved \( t \)’te avfisking og \( k_t \) er kumulativ fangst til start av \( t \)’te fisking. \( q \) er fangbarheten (dvs. sannsynligheten for å bli fanget) estimert ved minste kvadraters metode. I de tilfelle forutsetningene var til stede, ble det beregnet usikkerhet i estimatet basert på minste kvadraters metode (DeLury 1951). Estimatene ble beregnet adskilt for årsyngel (O+) og eldre fisk. Oppdeling av materialet er gjort på grunnlag av lengde-frekvenskurver. Otolitter ble undersøkt der inndelingen var lite tydelig. All laks og ørret ble lengdemålt til nærmeste millimeter fra snute til halefinnens ytterste flik i naturlig stilling.
6. RESULTATER OG DISKUSJON

6.1 Bunndyr

Resultatene fra bunndyrinnsamlingene på stasjoner i Drammenselva og i tilløpselvene, Snarumelva og Bingselva er vist i Tabell 1-5 og i Fig. 2-7.

Tabell 1. Antall bunndyr innsamlet pr. minutt sparkekøve på forskjellige stasjoner i Drammenselva, Snarumelva og Bingselva. Tallene for DRA 5 er oppgitt som antall/m². -: Prøver ikke tatt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>106</td>
<td>146</td>
<td>1155</td>
<td>691</td>
<td>1367</td>
<td>693</td>
</tr>
<tr>
<td>stille</td>
<td>116</td>
<td>250</td>
<td>208</td>
<td>361</td>
<td>-</td>
<td>234</td>
</tr>
<tr>
<td>DRA 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>148</td>
<td>160</td>
<td>112</td>
<td>480</td>
<td>81</td>
<td>196</td>
</tr>
<tr>
<td>stille</td>
<td>-</td>
<td>199</td>
<td>26</td>
<td>168</td>
<td>158</td>
<td>138</td>
</tr>
<tr>
<td>DRA 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>25</td>
<td>123</td>
<td>15</td>
<td>567</td>
<td>151</td>
<td>176</td>
</tr>
<tr>
<td>stille</td>
<td>17</td>
<td>106</td>
<td>87</td>
<td>522</td>
<td>-</td>
<td>183</td>
</tr>
<tr>
<td>DRA 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>101</td>
<td>276</td>
<td>17</td>
<td>404</td>
<td>127</td>
<td>185</td>
</tr>
<tr>
<td>stille</td>
<td>120</td>
<td>37</td>
<td>40</td>
<td>83</td>
<td>636</td>
<td>183</td>
</tr>
<tr>
<td>SNA 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>82</td>
<td>270</td>
<td>85</td>
<td>218</td>
<td>26</td>
<td>136</td>
</tr>
<tr>
<td>BIN 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stryk</td>
<td>44</td>
<td>297</td>
<td>235</td>
<td>167</td>
<td>267</td>
<td>214</td>
</tr>
<tr>
<td>Middel</td>
<td>195</td>
<td>186</td>
<td>204</td>
<td>366</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>DRA 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stille (antall/m²)</td>
<td>- 1728</td>
<td>2058</td>
<td>1529</td>
<td>96</td>
<td>1082</td>
<td></td>
</tr>
</tbody>
</table>

Bunntfaunaen på stasjon DRA 1 (Vikersund) var preget av at det var nær utløpet av Tyrifjorden. Bunndyrtyttheten var stor og var i gjennomsnitt ca. 3 ganger større enn på de nedenforliggende stasjoner (Tabell 1). Dette var spesielt tydelig om høsten. Mange av insektene som har larvevekt kan her utnytte driv av næring produsert i Tyrifjorden. De dyregrupper som utnytter næringspartikler på denne måten, knott, nettspinnende vårfly, og muslinger, var spesielt fremtredende på DRA 1. Bare 3 steinfluansarter ble registrert på DRA 1, mens det lengre nede i vassdraget ble funnet 9-11 arter. Det er typisk at antall steinfluansarter er lavt i utløp av innsjøer, for så å øke nedover elva.
Fig. 2. Prosentvis sammensetning av bunndyr på de forskjellige stasjoner i Drammenselva og tilløpselver, Snarumelva og Bingselva, i mai 1982. Over: fra strykpartier, under: stilleflytende partier.

Den generelle faunasammensetningen og den totale bunndyrmengden viste små forskjeller fra DRA 2 til og med DRA 4. Fjærmygg, asell (Asellus aquaticus), fåbørstemark og døgnfluer utgjorde størstedelen av bunnaunaen både på strykstrekninger og på mer stilleflytende partier. Asell ble funnet i størst antall på strykstrekningene, med unntak av på DRA 1, mens døgnfluene generelt var mer alminnelig på stilleflytende partier.

Bunnaunaen på DRA 5 var helt annerledes, med sterk dominans av fåbørstemark og fjærmygg. Disse utgjorde tilsammen over 95% av faunaen, og indikerer sterk forurensning.

<table>
<thead>
<tr>
<th>Arter</th>
<th>DRA 1</th>
<th>DRA 2</th>
<th>DRA 3</th>
<th>DRA 4</th>
<th>DRA 5</th>
<th>SNA 1</th>
<th>BIN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diura nansenii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla grammatica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla obscura</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphonoperla burmeisteri</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeniorteryx nebulosa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Brachyptera risi</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphinemura borealis</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Amphinemura standfussi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphinemura sulcicollis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemoura avicularis</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemoura cinerea</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protonemura meyeri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canna bifrons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Capnopsis schilleri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra fuscua</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra hippocus</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Antall arter</strong></td>
<td><strong>3</strong></td>
<td><strong>9</strong></td>
<td><strong>11</strong></td>
<td><strong>2</strong></td>
<td><strong>0</strong></td>
<td><strong>8</strong></td>
<td><strong>14</strong></td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Arter</th>
<th>DRA 1</th>
<th>DRA 2</th>
<th>DRA 3</th>
<th>DRA 4</th>
<th>DRA 5</th>
<th>SNA 1</th>
<th>BIN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siphlonurus alternatus</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis digitatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis fuscatus/scambus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis niger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Baetis rhodani</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centroptilum luteolum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloeon dipterum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Procloeon bifidum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptagenia daelecarlica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Heptagenia fuscochisae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Heptagenia isernensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptagenia suphurea</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metretopus borealis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophlebia marginata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophlebia vespertina</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella aurivillii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella mucronata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella ignita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis horaria</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Antall arter</strong></td>
<td><strong>13</strong></td>
<td><strong>13</strong></td>
<td><strong>12</strong></td>
<td><strong>10</strong></td>
<td><strong>0</strong></td>
<td><strong>13</strong></td>
<td><strong>11</strong></td>
</tr>
</tbody>
</table>
Fig. 3. Prosentvis sammensetning av bunndyr på de forskjellige stasjonene i Drammenselva og tallépselver, Snarumselva og Bing selva, i juli 1982. Over: fra strykpartier, under: stilleflytende partier.

Faunasammensetningen i tallépselvene Snarumselva og Bing selva, var noe forskjellig sammenliknet med selve Drammenselva. Asell var sjelden i Snarumselva og manglet i Bing selva, men ble funnet i stort antall i Drammenselva. I begge tallépselver var mengden steinfluer mye større i forhold til andre dyregrupper sammenliknet med Drammenselva. Total bunndyr mengde av var samme størrelsesorden, men faunaen var mer variert, slik at ingen grupper dominerte.

Bunndyr mengden var størst sennhøstes og tidlig på våren (Tabell 1). Mange vanninsekter tilbringer sommeren som egg eller som voksne på land. Dette gjør at antall bunndyr i elver vanligvis er lavest om sommeren og høyest om vinteren.

<table>
<thead>
<tr>
<th></th>
<th>DRA 1</th>
<th>DRA 2</th>
<th>DRA 3</th>
<th>DRA 4</th>
<th>DRA 5</th>
<th>SNA 1</th>
<th>BIN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroptilidae</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhysacophilida</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wormaldia subnigra</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neureclipsis bimaculata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycentropus flavomaculatus</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holoecentropus sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cygnus sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinodes waeneri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomyia pusilla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsychae angustipennis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsychae pellucidula</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsychae siltalai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctopsyche lagodesis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptoceridae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidostoma hirtum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phryganeidae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Antall taxa</strong></td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th></th>
<th>DRA 1</th>
<th>DRA 2</th>
<th>DRA 3</th>
<th>DRA 4</th>
<th>DRA 5</th>
<th>SNA 1</th>
<th>BIN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosimum hirtipes</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eusimulium vernum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulium erythrocephalum</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ornatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td><strong>Antall arter</strong></td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Steinfluefaunaen i Drammenselva er forholdsvis artsrik og det ble registrert 16 arter (Tabell 2). Flest arter hadde Bingselva, mens den mest artsrike lokalitet i Drammenselva var DRA 3 med 11 arter. De fleste arter er alminnelig i norske elver. Imidlertid er Capnia bifrons mer typisk for små bekkere enn større elver (Lillehammer 1974).
Fig. 4. Prosentvis sammensetning av bunndyr på de forskjellige stasjonen i Drammenselva og tilløpselver, Snarumselva og Bingselva, i november 1982. Over: fra strykpartier, under: stilleflytende partier.

Fig. 6. Prosentvis sammensetning av bunndyr på de forskjellige stasjonen i Drammenselva og tilløpselver, Snarumselva og Bingselva, i november/desember 1983. Over: fra strykpartier, under: stilleflytende partier.

Når det gjelder knott er Drammenselva artsfattig. Det ble bare registrert 4 arter og da bare på DRA 1, DRA 2, SNA 1 og BIN 1. Simulium erythrocephalum, som opptrer i stor mengde på DRA 1, er sjelden i Norge. Den er kjent som alvorlig plague sydover i Europa (Raastad 1981). De øvrige arter er alle vanlige i norske elver.
Fig. 7. Gjennomsnittlig prosentvis sammensetning av bunndyr på de enkelte stasjoner i Drammenselva og tilløpselver, Snarumselva og Bingelva, basert på prøver tatt både i juli og november 1982 og april 1983. De øverste søylene er fra strykpartier mens de nederste søylene er fra stilleflytende partier.
6.2 Fisk


<table>
<thead>
<tr>
<th>Fiskearter</th>
<th>DRA 1</th>
<th>SNA 1</th>
<th>DRA 2</th>
<th>DRA 3</th>
<th>BIN 1</th>
<th>DRA 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørret</td>
<td>+</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Abbor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gjedde</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-pigget</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stingsild</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ørekjyt</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ál</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Laks</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Hork</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Mort</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Fig. 8. Øvre påviste grense for fiskearter som forekommer i Drammensvassdraget, basert på foreliggende undersøkelse og på litteratur. Arter tilhørende gruppe 1 har øvre utbredelsesgrense ved Hellefoss. Fisketrapp her gjør at laks og sjørret (gruppe 2) kan vandre videre til Døvikfoss. Videre vandring forbi Døvikfoss er begrenset, men øvre grense for laks og sjørret er i Gravfoss og Kaggefoss i Snarumselva. Arter tilhørende gruppe 3 finnes alle i Tyrifjorden, og er derfor også utbredt i Drammenselva.

<table>
<thead>
<tr>
<th>Fiskearter</th>
<th>DRA 1 APR NOV</th>
<th>DRA 2 APR NOV</th>
<th>DRA 3 APR NOV</th>
<th>DRA 4 APR NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ørret</td>
<td>+++ ++</td>
<td>- -</td>
<td>+ -</td>
<td>+++ +</td>
</tr>
<tr>
<td>Aabbor</td>
<td>- -</td>
<td>+ -</td>
<td>++ ++</td>
<td>-</td>
</tr>
<tr>
<td>Gjedde</td>
<td>- +</td>
<td>- -</td>
<td>+ +</td>
<td>-</td>
</tr>
<tr>
<td>9 pigget</td>
<td>+ -</td>
<td>+ -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>stingsild</td>
<td>+ -</td>
<td>+ +</td>
<td>++ +</td>
<td>-</td>
</tr>
<tr>
<td>Ørekjet</td>
<td>+++ ++</td>
<td>+ ++</td>
<td>+ -</td>
<td>++ ++</td>
</tr>
<tr>
<td>Laks</td>
<td>- -</td>
<td>++ +</td>
<td>- -</td>
<td>+</td>
</tr>
<tr>
<td>Mort</td>
<td>- -</td>
<td>++ ++</td>
<td>++ ++</td>
<td>-</td>
</tr>
<tr>
<td>Niøye</td>
<td>- -</td>
<td>- -</td>
<td>++ +</td>
<td>-</td>
</tr>
</tbody>
</table>

Resultatene fra elektrofiske er vist i Tabell 6 og 7, og i Fig. 9 til 13. I 1982 ble det fisket på alle lokalitetene i mai, juli og november med unntak av DRA 5, mens det i 1983 bare ble fisket på tre av lokalitetene i Drammenselva i april og november. I 1984 ble undersøkelsene konsentert om lakseunger nedenfor Hellefossen (DRA 3).

Det ble i forbindelse med den foreliggende undersøkelsen påvist tilsammen 10 fiskearter i vassdraget. 9 arter ble funnet i 1982 mens det i 1983 ble påvist 8 arter (Tabell 6 og 7). De to vanligste fiskeartene var Ørret og Ørekjet som begge ble påvist på samtlige lokaliteter (Tabell 6). Begge artene var enkelte steder meget tallrike. Laks, hork, mort og niøye ble bare påvist nedenfor Hellefossen. Al ble bare funnet i 1982 i Bingselva og på DRA 4. Imidlertid opplyses det at Al er en svært vanlig fiskeart i vassdraget, og som det tas store mengder av på sportsfiskeredskap (Natland, pers.medd.). Flest fiskearter ble funnet i selve hovedvassdraget, hvorav DRA 4 og DRA 3 hadde de fleste, med henholdsvis 8 og 6 arter. I begge de undersøkte tilløpselvene ble det bare funnet tre fiskearter.
Fig. 9. Lengdefordeling av ørret tatt under elektrofiske på DRA 1 i 1982 og 1983. Årsunger (°) er skravert og gjennomsnittslengden er oppgitt der antallet er tilstrekkelig.
Fig. 10. Lengdefordeling av ørret tatt under elektrofiske på SNA 1 i juli 1982, og juli og november 1982 på BIN 1. Årsunger (Ø') er skravert og gjennomsnittslengden er oppgitt.

På lokaliteten i utløpet av Tyrifjorden (DRA 1) ble det funnet fem fiskearter. De to dominerende artene var ørret og ørekryt. Lengdefordelingen av ørretmateriale fra denne stasjonen er vist på Fig.9. Som det fremgår av figuren domineres materialet av årsunger og et år gammel fisk. Ørret har en relativt god vekst første leveår. Fra juli 1982 fram til november 1982 økte lengden med vel 2 cm. Det skjer ingen vekst i løpet av vinteren (nov-april). Lite fisk i november 1983 skyldes vanskelige innsamlingsforhold grunnet is. I april 1984 ble det fortatt en beregning av tettheten av ørretunger på lokaliteten. Denne ble beregnet for to ulike områder. Da fangbarheten var lav blir det
Fig. 11. Lengdefordeling av ørret tatt under elektrofiske på DRA 2 i 1982. Årsunner (Ø') er skravert og gjennomsnittslengden er oppgitt der antallet er tilstrekkelig.

stor usikkerhet i estimatet. For årsunger ble tettheten anslått til flere enn 45 ind./100 m², mens estimatet for eldre ørret var 13 ind/100 m². På DRA 1 er ørretungene rekutter av ørret fra Tyrifjorden. Ørethetstanden i Tyrifjorden består hovedsaklig av to stammer, en som gyter i Randselva og en som gyter i Drammenselva (Qvenild & Skurdal 1983). På eldre fisk på denne lokaliteten skyldes både at disse har andre oppholdsplasser enn årsungene, og at noen allerede etter ett år på elv vandrer opp i Tyrifjorden. Qvenild & Skurdal (1983) oppgir en tilvekst på ca. 6 cm pr. år for ørret som står på utløpet. Dette stemmer godt med gjennomsnittslengden for årsunger.
Fig. 12: Lengdefordeling av ørret tatt under elektrofiske på DRA 3 i 1984. Årsunger (0') er skrevet og gjennomsnittslengden er oppgitt der antallet er tilstrekkelig.

I Snarumselva (SNA_1) like før samløpet med Drammenselva ble det bare fanget ørret i juli (Tabell 6). Det ble da hovedsaklig påvist årsunger (0+)(Fig. 10). At ørret ikke påvises om våren og sent på høsten skyldes trolig at øretungene allerede etter en vekstsesong vandrer ned i Drammenselva. Gjennomsnittslengden i juli var 4.8 cm og denne er ikke signifikant forskjellig fra DRA 1. Av andre fiskearter ble et lite antall abbor og ørekyn påvist.
Fig. 13. Lengdefordeling av laks tatt under elektrofiske på DRA 3 i 1982, 1983 og 1984. Årsunger (0+) er skravert og gjennomsnitts-lengden er oppgitt i 1984.

DRA 2 ble bare undersøkt i 1982. Det ble da påvist fem fiskearter, med ørret og ørekjet som dominerte. Lengdeforårdelningen for ørret er vist på Fig. 11. I juli besto det meste av materialet av årsunger (O+).

I Bingselva (BIN 1) ble det påvist ørret, ørekjet og ål, alle i lite antall. Det ble her ikke funnet årsunger av ørret (Fig. 10).

Ingen av de 6 påviste fiskeartene på DRA 3 var spesielt tallrike, men laks, ørekjet og mort var de mest vanlige. Lengdeformasjonen av laks i 1982 og 1983 er vist på Fig. 13. I juli 1982 ble det funnet laksunger på fra 3.4 til 12 cm, med dominans av årsunger (O+). I 1983 ble det funnet lite fisk og materialet er for lite til å gi et bilde av vekst.
I 1984 ble undersøkelsene på DRA 3 konsentrert om å beregne tettheten av laks- og ørretunger. Resultatene for laks er vist i Fig. 13, mens de for ørret er vist på Fig. 12. I april 1984 ble det hovedsaklig funnet laks av størrelse mellom 5 og 15 cm. Gjennomsnittslengetden av 1+ (klekket våren 1983) var 5.8 cm. I juli ble det hovedsaklig fanget årsunger. Gjennomsnittslengetden var 4.4 cm. I september ble funnet laks mellom 3.5 cm og 14.2 cm. Gjennomsnittslengetden for årsunger var 5.2 cm. Denne er signifikant lavere enn gjennomsnittsstørrelsen funnet i april. Dette kan tyde på at det finner sted en liten vekst i lengde senere på høsten, eller at vekstforholdene for årsunger i 1983 og 1984 har vært forskjellige. Imidlertid kan økningen også skyldes at det er de minste lakseungene som dør i løpet av vinteren og derved hever gjennomsnittslengetden. Slike forhold er bl.a. funnet i Lærdalselva (Saltveit & Styrvold 1983).

I april og september 1984 ble det på DRA 3 bestandsberegnet på to ulike områder innen lokalteten, mens det i juli bare ble fisket på ett område. Resultatene fra de enkelte områdene er vist i Tabell 8. Det ble funnet en relativt stor variasjon i tetthet innen de to områdene både i april og september (Tabell 8). Den totale tetthet av laksunger var lav. Innen område A som ble undersøkt ved alle anledninger var det ingen endring i tetthet fra juli til september.

Mengden ørret var svært lav på DRA 3 i 1984. I april besto materialet av fisk mellom 6.5 og 21.7 cm (Fig. 12). I juli besto materialet bare av årsunger med gjennomsnittslenge 4.7 cm, mens det i september igjen ble fanget enkelte eldre ørret. Tettheten av 0+ i juli ble beregnet til 23.8 ind/100m². Dette er ikke signifikant forskjellig fra laks i juli.

Selv om det ikke ble foretatt bestandsberetninger i 1982 og 1983, synes det også å ha funnet sted en økning i laksungen på DRA 3 i 1984. Tettheten av laksunger er imidlertid ikke spesielt høy sammenlignet med endel andre norske lakseelver (se Saltveit & Styrvold 1983). I Alta var gjennomsnittstettheten av
Årsunger 41 ind/100m² (Heggerberget 1981), mens den i Lærdal var 53 ind/100m² (Saltveit & Styrvold 1984). Beregnet tetthet i Drammenselva er svært lik den som er funnet i Suldalslågen (regulert)(Saltveit & Styrvold 1984, Saltveit upubl.). Veksten i Drammenselva er imidlertid svært god og ved avslutning av vekst var årsungene signifikant lengre enn det som er funnet i Suldalslågen og Lærdalselva. God vekst betyr at de fleste lakseungene vandrer ut i havet allerede etter to vekstsesonger på elv. Dette gir mindre dødlighet enn i elver der laksungene står i lengre tid på elv.

Tabell 8. Beregnet tetthet av laks- og ørretunger pr. 100 m² på stasjon DRA 3 i Drammenselva i april, juli og september 1984 p = fångbarhet. Avvik fra middel er oppgitt som 95% konfidensintervall. Tetthet av laks innen de ulike område på DRA 3 er angitt under prikket linje.

<table>
<thead>
<tr>
<th>Art og Årsklasse</th>
<th>APRIL 1984</th>
<th>JULI 1984</th>
<th>SEPTEMBER 1984</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/100 m²</td>
<td>95%</td>
<td>p</td>
</tr>
<tr>
<td>LAKS TOT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>3.8</td>
<td>0.73</td>
<td>26.2</td>
</tr>
<tr>
<td>eldre</td>
<td>6.7</td>
<td>0.73</td>
<td>3.3</td>
</tr>
<tr>
<td>LAKS A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>10.1</td>
<td>0.75</td>
<td>26.2</td>
</tr>
<tr>
<td>eldre</td>
<td>8.3</td>
<td>0.60</td>
<td>3.3</td>
</tr>
<tr>
<td>LAKS B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>2.1</td>
<td>0.73</td>
<td>ikke undersøkt</td>
</tr>
<tr>
<td>eldre</td>
<td>6.2</td>
<td>0.80</td>
<td>ikke undersøkt</td>
</tr>
<tr>
<td>LAKS C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>ikke undersøkt</td>
<td></td>
<td>ikke undersøkt</td>
</tr>
<tr>
<td>eldre</td>
<td>ikke undersøkt</td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>ØRRET</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+</td>
<td>23.8</td>
<td>15-49</td>
<td>0.3</td>
</tr>
<tr>
<td>eldre</td>
<td>0.0</td>
<td>-</td>
<td>1.8</td>
</tr>
</tbody>
</table>

*I i april ble det fanget for lite ørret til å beregne bestanden.*
6.3 BESKATNING/ORGANISERING AV FISKE


Offentlig statistikk over utbyttet fra norske lakseelver foreligger fra ca. 1880. Laks og ørret er slått sammen på statistikken fram til 1966. Størst utbytte hadde Dømmenselva i 1876 da det ble tatt ca. 27.000 kg. I perioden 1876 til 1908 var utbyttet relativt høyt, men varierte mye (Fig. 14). Efter et kraftig fall i fangstene mellom 1905 og 1910, tok fangstene seg noe opp igjen fram til 1930, hvoretter utbyttet igjen sank.
Med unntak av i 1964 og 1965 var fangstene mellom 1958 og 1980 aldri over 2.100 kg. De laveste fangsttall er fra 1978, da det ble registrert tilsammen 513 kg laks og ørret. Av statistikken synes det nå som om fangsten av laks igjen er i ferd med å øke (Fig. 14), og for 1984 er foreløpige tall 4.500 kg. Så høy fangst har ikke vært registrert siden 1954. De observerte variasjoner skyldes flere forhold, der forurensning, fangstintensitet, utsetting av yngel og biologiske forhold har betydning.
Fig. 14. Offentlig statistikk over utbyttet av laks og sjøørret fra Drammenselva, 1876-1984.

Ørret utgjør en meget liten del av fangstene i Fig 14, og i den perioden laks og ørret er holdt adskilt er det aldri registrert høyere fangst av ørret enn 117 kg (1968). Normalt utgjør ørret 5-10 % av fangstene.


Tidligere hadde grunnerierne alle rettigheter i vassdraget og garnfiske var tillatt. I 1978 ble det imidlertid innført forbud mot alt garnfiske i vassdraget, og salg av fiskekort for stangfiske ble innført. I tillegg til stangfiske er fiske med snøre fra oppankret båt tillatt. Grunneierne nedenfor Hellefossen er nå organisert i Hellefossen Elveeierlag som har


6.4 Forurensningsgrad


Det andre systemet er basert på et bredere spekter av elver. Systemet har to komponenter, begge basert på registrerte familier av bunndyr (se Armitage et al. 1983). Familiene er gitt poeng fra 1 til 10, avhengig av toleransen ovenfor forurensninger. Disse er summert i "Biological Monitoring Working Party" (BMWP) indeksen. I tillegg er det også utregnet en gjennomsnittlig poengsum pr. familie (average score per taxa - ASPT).

Begge systemer er utviklet og tilpasset de lokale forhold i Storbritannia og kan derfor ikke uten forbehold benyttes direkte. Spesielle forhold i Norge er bl. a. sterkt strømmende vann og lav temperaturer som gjør at omsetningen går langsomt og at oksygen derfor sjelden er begrensende. Dessuten er forekomsten av næringsfattig vann mye større i Norge enn i mange andre europeiske land.

Systemene er en forenkling av kompliserte samfunnssendringer blant bunndyr. Praktiske undersøkelser viser ofte større biologisk diversitet ved lett forurensning enn i næringsfattig vann. Lette forurensninger kan derfor best registreres gjennom forandringer i den naturlige artsbestand og individbalanse.
Fig. 15. Forurensningsforhold på forskjellige stasjoner i Drammenselva og tilløpselvne, Snarumselva og Bingselva, uttrykt gjennom fire forskjellige forurensningsindekser, alle basert på bunndyr-sammensetningen (se tekst for nærmere forklaring). For Trent Biotic Index er verdiene oppgitt særskilt for 1982 og 1983, mens de øvrige indekser er basert på resultater fra både 1982 og 1983.

Indeks-tallene utarbeidet for Drammenselva i 1982-83 er vist i Fig. 15. Alle fire kurver, basert på henholdvis "Trent Biotic Index", modifisert "Trent Index", "BMWP" og "ASPT", er nokså sammenfallende. Alle stasjoner fra DRA 1 til og med DRA 4, samt Snarumselva og Bingselva, ligger omtrent på samme nivå når det gjelder forurensningsgrad, et nivå som bare indikerer svak forurensning og en forholdsvis bra vannkvalitet. Stasjonen DRA 1 viser litt lavere tall enn den nedenforliggende stasjon DRA 2, noe som skyldes mindre artsdiversitet ved en utløps-situasjon. DRA 4 har et noe høyere forurensningsnivå enn de


Indeksene og faunasammensetningen i Snarumselva og Bingselva indikere en liten grad av forurensning omtrent på samme nivå som de nærliggende deler av Drammenselva. BMWP score er no lavere og ASPT score noe høyere i tilløpselvene enn i Drammenselva. Dette skyldes forskjell i elvenes størrelse og dermed i mangfoldet i levevilkårene. I Drammenselva er antall bunndyrfamilier høyere pga. tilstedeværelse av familier som f. eks. Siphlonuridae, Caenidae og Corixidae, som er knyttet til mer stilleflytende elvepartier med vannplanter. Dette gir utslag i BMWP score. De familiene som er tilstede i tilløpselvene er imidlertid i gjennomsnitt mindre forurensningstolerant, noe som gir utslag i et høyere ASPT score. Det kan derfor konkluderes med at Snarumselva og Bingselva innholder en litt mindre variert fauna, og at lokalitetene i de to sideelvene er noe mindre forurensnet enn Drammenselva. Forskjellene er imidlertid ikke store. Forskjellen underbygges ved at asell, som forekommer i stort antall i Drammenselva, så vidt er registrert i Snarumselva og
er fraværende i Bingselva. Fiskefaunaen er dominert av ørret og ørekjet, noe som støtter inntrykket av liten grad av forurensning. Spesielt er forekomsten av årsyngel av ørret høy på SNA 1, noe som indikerer gode reproduksjonsforhold.

De ulike fiskeartenes geografiske utbredelse i vassdraget er bestemt ut fra historiske innvandringsveier. Hørk, laue, sørve, stam, mort og vederbuk har innvandret seint, og ikke kommet ovenfor Hellefoss i hovedvassdraget. Derimot er dominansforholdene svært avhengig av de lokale forholdene som består av belastningsgrad, vegetasjonsforhold, strømmastighet og bunnsubstrat.


Fisk manglet ikke på noen av de undersøkte lokalitetene. Imidlertid skjer det en endring i artssammensetningen nedover vassdraget. Dette skyldes både at de mer eutrofe arter har en geografisk utbredelse som er begrenset til nedstrøms Hellefoss, og at disse fiskeartene profilerer på økt eutrofiering. Antall laks- og ørretunger tatt etter en gangs avfisking er vist i Fig. 16. For årsunger og eldre ørret skjedde det en nedgang nedover i vassdraget, spesielt nedenfor DRA 2. Den kraftige
nedgangen i påviste eldre ørret på SNA 1 antas å henge sammen med at ørret raskt vandrer fra Snarumselva og ut i Drammenselva. Laks ble bare påvist nedenfor Hellefoss, på DRA 3 og DRA 4.

![Graph showing fish abundance over different reaches in Drammenselva.](image)

**Fig. 16.** Antall laks og ørret tatt pr. 100 m² etter én gangs avfiskning i Drammenselva i juli og november 1982.

Dominans av eutrofe fiskearter nedstrøms Hellefoss er derfor alene ingen indikasjon på økt forurensning. Da laksefisk ut fra substrat og strøm Hann Henn burde ha brukbare forhold på DRA 4, antas fravært på denne lokaliteten å skyldes forurensning, enten direkte pga. dårlig vannkvalitet, eller indirekte som følge av predasjon/næringskonkurranse fra omkringliggende strømfrie områder med dominans av eutrofe fiskearter.
Sammenlignet med en del andre elver på Østlandet viser de biologiske forholdene i Drammenselva forholdvis lav forurensning, med unntak av den alle nederste delen. Drammenselva har stor vannføring, og dette sammen med innslag av flere fosser og strykestrekninger mellom Vikersund og Hokksund, reduserer i stor grad virkningen av forurensningsbelastningen på faunaen. Eventuelle forurensningsindekser ville trolig vise noe høyere verdier i mindre elver med tilsvarende relativ belastning. Indeksverdiene faller også drastisk for Drammenselva akkurat i den nederste delen der det er lite fallhøyde og elva er mer stilleflytende.
7. LITTERATUR


8. ENGLISH SUMMARY.


The aim of the present report is to describe the benthic fauna and fish communities along the course of the large Norwegian river, Drammenselva, and two of its main tributaries, Snarumselva and Bingselva, and to use this information to assess the present degree of pollution and act as a baseline for future changes. This study forms parts of a larger programme concerned with monitoring Drammenselva, financed by the Norwegian State Pollution Control Authority.

Drammenselva is a 46 km stretch of river from the outlet of the large oligotrophic lake, Tyrifjorden, at Vikersund to where it enters the sea at Drammen. During its course it falls 63 m and several waterfalls, now harnessed for hydro-electric power, occur in the upper reaches. The upper catchment has a variable geology, with both calcareous and non-calcareous rocks represented. In the lower part of the river marine sediments dominate. There are several communities situated along the river and the lower reaches are densely populated. Along the upper reaches there is a predominance of agriculture, while in the lower reaches industry predominates. The river is polluted from several sources, industry, agriculture and domestic sewage, although the latter two are probably the major sources.

At different times of the year six localities were sampled in the main river (DRA 1-DRA 5) and one in each of the tributary rivers, Snarumselva (SNA 1) and Bingselva (BIN 1)(see Fig. 1). The benthos was sampled using a time-based kick method, except at DRA 5, where a core sampler was used. Fish populations were recorded and estimated by electrofishing.

At Vikersund (DRA 1) there was a typical benthic outflow community with high densities. At DRA 2, DRA 3 and DRA 4 benthic densities and community composition were similar. Chironomidae, Asellus aquaticus, Oligochaeta, and Ephemeroptera
were the dominant elements. In contrast, the benthos at DRA 5 was strongly dominated by Chironomidae and Oligochaeta. The tributary rivers had a varied fauna, although Plecoptera were more abundant and Asellus less abundant than in the main river. A total of 16 plecopteran species were recorded during the study (Tab. 2). The river had a rich ephemeropteran fauna and a total of 19 species were found, including Baetis digitatus, which has not previously been recorded from Norway (Tab. 3). The caseless trichopteran fauna was also fairly rich in species (Tab. 4), while only 4 simulid species were recorded (Tab. 5).

Drammenselva is rich in fish species, especially below the falls at Hokksund (DRA 3 - Hellefoss) and the following species occur in the river: Atlantic salmon, brown trout, charr, whitefish, pike, eel, minnow, perch, ruffe, bream, roach, ide, rudd, chub, bleak, smelt and flounder. Minnows and trout occurred at all localities, apart from DRA 5 where the fish community was not studied, while salmon and most of the cyprinids were restricted to below Hellefoss (Fig. 8).

Densities of juvenile salmon and brown trout were estimated at DRA 3. Salmon densities were similar to rivers in western Norway, but their growth was better in Drammenselva. During the last century Drammenselva was an important salmon river. Annual catches again appear to be on the increase (Fig. 14) as a result of stocking and improvement of existing fish ladders to increase the extent of the smoult producing reach.

On the basis of benthic communities the degree of pollution has been estimated in the main river and its tributaries. Four different measures of pollution have been used: the Trent Biotic Index, a modified Trent Index based on Danish conditions, the Biological Monitoring Working Party Index (BMWP) and the Average Score per Taxa (ASPT) component of the BMWP index. All four indices show a similar pattern (Fig. 15). The high values for localities from DRA 1 to DRA 4 and the tributaries indicate only mild pollution, although DRA 4 generally shows somewhat lower values. This trend towards a
greater degree of pollution is already apparent in the ASPT value for DRA 3. The indices indicate heavy pollution in the lower reaches around DRA 5. Fewer brown trout and salmon were also recorded below DRA 3.

Along much of its length Drammenselva shows a lower degree of pollution than many other lowland rivers in S.E. Norway which have similar levels of pollution loading. This is explained by the high water flows, which, together with several waterfalls and rapids, reduce the effects of pollution, such as oxygen depletion. However, when the river becomes slow-flowing below Mjøndalen, the effects of pollution become more apparent.

Drammenselva has considerable potential for fish production. Smoult production can be further increased by stocking and extending the natural salmon areas through effective fish ladders. The river also has several other fish species which could give commercial yields.

Legend to figures and tables.

Fig. 1 - Map of the river, Drammenselva, and its main tributaries. The sampling stations for benthos and electrofishing are indicated.

Fig. 2 - Percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, during May 1982. Upper diagram: riffles; lower diagram: pools.

Fig. 3 - Percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, during July 1982. Upper diagram: riffles; lower diagram: pools.

Fig. 4 - Percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, during November 1982. Upper diagram:
riffles; lower diagram: pools.

Fig. 5  -  Percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, during April 1983. Upper diagram: riffles; lower diagram: pools.

Fig. 6  -  Percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, during November/December 1983. Upper diagram: riffles; lower diagram: pools.

Fig. 7  -  Mean percentage composition of the benthos at stations along Drammenselva and its tributaries, Snarumselva and Bingselva, based on samples taken in July 1982, November 1982 and April 1983. The upper columns represent riffles while the lower represent pools.

Fig. 8  -  Upper limits for fish species present in Drammenselva based on the literature and on data collected during the present study. Species belonging to group 1 (gruppe 1) (fish species are translated in Table 6) have their upper limit at the Hellefoss falls. A fish ladder here has permitted salmon and sea trout (group 2) to migrate as far as Døvikfoss. Further progress is limited and their upper limit is at Gravfoss in the main river and at Kaggefoss in Snarumselva. Species belonging to group 3 are all present in the lake, Tyrifjorden, and thus can all occur in Drammenselva.

Fig. 9  -  Length distribution of brown trout caught by electrofishing at station DRA 1 during 1982 and 1983. O° fish are shown by shading. Mean lengths are given when numbers were sufficient.

Fig. 10  -  Length distribution of brown trout caught by electro-
fishing at station SNA 1 in July 1982 and at BIN 1 in July and November 1982. O\(^+\) fish are shown by shading. Mean lengths are given.

Fig. 11 - Length distribution of brown trout caught by electrofishing at station DRA 2 during 1982. O\(^+\) fish are shown by shading. Mean lengths are given when numbers were sufficient.

Fig. 12 - Length distribution of brown trout caught by electrofishing at station DRA 3 during 1984. O\(^+\) fish are shown by shading. Mean lengths are given when numbers were sufficient.

Fig. 12 - Length distribution of Atlantic salmon caught by electrofishing at station DRA 3 during 1982, 1983 and 1984. O\(^+\) fish are shown by shading. Mean lengths are given for 1984.

Fig. 14 - Official statistics for the yield of Atlantic salmon and sea trout from Drammenselva, 1876-1984.

Fig. 15 - The level of pollution at different stations along Drammenselva and the tributaries, Snarumselva and Bingselva, expressed by four different pollution indices calculated on the basis of the benthos. Values of the Trent Biotic Index are given separately for 1982 and 1983, while the other indices are calculated on the basis of data from both 1982 and 1983.

Fig. 16 - Densities (nos/100 m\(^2\)) of juvenile salmon and trout in Drammenselva, based on electrofishing in July and November 1982.

Table 1 - Numbers of benthic animals collected per 1 min. kick sample at stations in Drammenselva and its tributaries, Snarumselva and Bingselva. Numbers at
DRA 5 are expressed as nos/m². Stryk = riffle; stille = pool; middel = mean.

Table 2 - Plecoptera species recorded at stations in Dрамmenselva, Snarumselva and Bingselva during 1982 and 1983. Antall arter = no. species.

Table 3 - Ephemeroptera species recorded at stations in Dрамmenselva, Snarumselva and Bingselva during 1982 and 1983. Antall arter = no. species.

Table 4 - Trichoptera species recorded at stations in Dрамmenselva, Snarumselva and Bingselva during 1982 and 1983. Antall taxa = no. taxa.

Table 5 - Simulid species recorded at stations in Dрамmenselva, Snarumselva and Bingselva during 1982 and 1983. Antall arter = no. species.

Table 6 - Review of fish species taken at the various stations in Dрамmenselva, Snarumselva and Bingselva during 1982. + = present, ++ = common, +++ = abundant, - = not recorded. Ørret = brown trout, abbor = perch, gjedde = pike, 9-pigget stingsild = 9-spined stickleback, ørekyt = minnow, ål = eel, laks = Atlantic salmon, hork = ruffe, mort = roach.

Table 7 - Summary of fish species taken at the various stations in Dрамmenselva, Snarumselva and Bingselva during 1982. For explanation see Table 6.

Table 8 - Calculated densities of juvenile Atlantic salmon and brown trout (nos/100m²) at station DRA 3 in April, July and September 1984. p = catchability. 95% C.L. are given when possible. Laks = salmon, Ørret = trout, ikke undersøkt = not studied. For salmon, densities are given for different areas (Laks A, B and C), as well as for all areas together (Laks tot.). In April trout nos were too low.