NORD-TEXTIL-VA
76 - 79

är samlingsrubrik
för rapporter från
det nordiska pro-
jektet

TEXTILINDUSTRINS
VATTENVÅRDSPROBLEМ

NORD-TEXTIL-VA
76 - 79

stöds av:
NORDFORSK
Nordisk Industri-
fond (NI)
Teknologirådet (TR)
Handels- & Industri-
ministeriet (HoitM)
Norges Tekn.Natur-
vetensk.forsknings-
råd (NTNF)
Statens Forurens-
ningstilsyn (SFT)
Styrelsen f tekn.
Utveckl. (STU)
Textilindustrin

NORD-TEXTIL-VA
76 - 79

bearbetas vid:
Dansk Text.Inst (DTI)
Textillab. (VTT)
Norsk Textil Inst.
(TI), Norsk Inst.
for Vannforskning
(NIVA), Vannkval.
Inst. (VKI)
Sv. Textilf. Inst.
(TEFO), Inst. f Vat-
ten & Luftvårdsforsk
(IVL)

Projektledning:
Leif Bruneau
IVL
Box 21060
S-100 31 STOCKHOLM
Tel: 08-24 96 80

RAPPORT NR. 24 FRA DELPROSJEKTET
Delprosjekt 4 rapport nr. 2
"Kjemisk og biologisk karakterisering av avløpsvann fra
en del typer av tekstile delprosesser"

Egil Gjessing
Magne Grande
Torsten Källqvist
Rolf Volden x)

NORSK INSTITUTT FOR VANNFORSKNING
x) NORSK REGNESENTRAL

Blindern
OSLO 3
ISBN 82-577-0102-5

10. oktober 1978
INNHOLD

1. SAMMENDRAG 3
2. INNLEDNING 5
3. RESULTATER MED KOMMENTARER 6
4. MANUELL BEARBEIDELSE 38
5. PRINSIPAL KOMPONENTANALYSE – FAKTORANALYSE 40
 5.1 Statistisk bearbeiding 44
 5.2 Statistisk konklusjon 65
6. SAMMENFATTENDE KONKLUSJON 69
7. PLAN FOR NESTE PERIODE 71
8. REFERANSEN 73
1. SAMMENDRAG

Prøver fra en del forskjellige tekstile delprosesser, valgt ut blant følgende behandlingsprosesser:

Etterbehandling av bomull, ull og syntetisk kemo
Farging av bomull og syntetisk kemo

er analysert ved bruk av tilgjengelige kjemiske og biologiske metoder for vann.

Metodene har omfattet:

Screeningtester:

<table>
<thead>
<tr>
<th>Tester</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Akutt-toksisitetstest overfor mikroorganismer</td>
</tr>
<tr>
<td>Ledningsevne</td>
<td>Kobber</td>
</tr>
<tr>
<td>Alkalitet</td>
<td>Krom</td>
</tr>
<tr>
<td>Asiditet</td>
<td>Fettløselige forbindelser (total og persistente)</td>
</tr>
</tbody>
</table>

Øvrige tester:

<table>
<thead>
<tr>
<th>Tester</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutt-toksisitetstest</td>
<td>overfor alger</td>
</tr>
<tr>
<td>"</td>
<td>fisk</td>
</tr>
<tr>
<td>Total organisk karbon, TOC</td>
<td></td>
</tr>
<tr>
<td>Biologisk oksygenforbruk</td>
<td>(7 døgn), BOD$_7$</td>
</tr>
<tr>
<td>"</td>
<td>(21 døgn), BOD$_{21}$</td>
</tr>
</tbody>
</table>

Målsetningen har vært å ta stilling til, enten på grunnlag av et redusert analyseprogram (screeningtest) eller på fullt analyttisk grunnlag, om avløpet fra en delprosess er Rent og kan gjenanvendes eller føres direkte til resipient eller BOD-vann, dvs. har en sammensetning som gjør det egnet for biologisk rensing eller Tokskisk, dvs. har en slik karakter at det må gies spesiell oppmerksomhet.

Basert på det mest omfattende analyseprogram og med støtte i et visst skjønn, synes det mulig å karakterisere prøvene innenfor disse tre kategoriene. Prøveantallet og frem for alt prøvespekteret er imidlertid foreløpig ikke tilstrekkelig til å gi tilfredsstillende erfaringsgrunnlag. Likeledes mangler den organisk kjemiske identifikasjon.

Resultatene tyder på at akutt-toksisitetstesten overfor mikroorganismer (TTC-test) ikke er egnet hverken som screeningtest eller totalt sett.
Dette er bl.a. på grunn av fargeinterferens. Det antaes at BOD-analysene er en tilstrekkelig erstatning for denne. Det antaes videre at algetesten er en god erstatning for TTC-testen i screening sammenheng. Resultatene gir dessuten grunnlag for i fremtiden å innbefatte TOC og BOD i screening-opplegget.

Basert på de kjemiske og biologiske analyseresultatene synes det allerede nå å være grunnlag for å fremheve at "avløpene" fra Flammesiknings- og "Wash and Wear"-behandling bør gies spesiell oppmerksomhet.

Det foreslås at det videre arbeid omfatter analyser av et 50 tall prøver av delprosessavløpsvann etter stort sett samme analyseopplegg.

Prøvene bør i hovedsak omfatte de samme prosesser som tidligere, men i tillegg bør noe mindre problemfylte avløpsvann være representert.

Det taes sikte på et betydelig og intimt samarbeide i rapporteringsfasen, som antaes avsluttet i løpet av mai 1979.
2. INNLEDNING

I rapport 18 fra totalprosjektet (delprosjekt 4 rapport nr. 1) ble det lagt hovedvekt på presentasjon av data og detaljering av forskriftene for de anvendte metoder. Rapporten var formet som en midlertidig rapport bl.a. fordi en del prøver ikke var ferdig analysert.

I det nedenforstående har vi med utgangspunkt i Rapport nr. 18 og med disse tilleggsdata diskutert og tolket datamaterialet i den grad vi har funnet det forsvarlig.

Resultatene er i rapporten presentert på en skjematisk måte i overensstemmelse med plan og målsetning. Som kjent er utgangspunktet for delprosjektet at man ved hjelp av et kjemisk og biologisk "metodebatteri" - med økende detaljering - skal kunne karakterisere vannet som: RENT, BOD eller TØKSISK. I Rapport nr. 18 ble en grovinndeling av prøvene utført (se side 14). Som ventet ble ingen prøver karakterisert som RENT fordi prøvevalget i utgangspunktet tok sikte på toksiske avløpsvannstyper.

Det som er presentert i det følgende har som viktig hensikt, bl.a., ved statistiske metoder å avgjøre:

- om det er visse deler av de tekstile prosessene som vi allerede nå kan si gir uakseptabelt avløpsvann, eller som kan plasseres i en av gruppene RENT, BOD, TØKSISK.

- om det er noen av de anvendte metoder som er overflødige eller som kan avledes av andre, eller om metodeopplegget er utilstrekkelig.

- om datamaterialet kan gi et bedre utbytte ved enkle suppleringer enten m.h.p. prøvematerialet eller m.h.p. flere analyser.
3. RESULTATER MED KOMMENTARER

På de følgende 31 sider er samtlige data gjengitt og i det vesentlige kommentert. Ved klassifisering av prøvene er det til en viss grad tatt hensyn til den avløpsmengde som prøven representerer, på den annen side er ikke kjemikaliene bak de ulike resepturer vurdert i sammenhengen. Nedenfor er gitt et resymé av hvordan de ulike prøver er gruppert. Det er verd å fremheve at alle prøver som angår etterbehandling er klassifisert som TOKSISK.

<table>
<thead>
<tr>
<th>RENT</th>
<th>PRØVE</th>
<th>PROSESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>Utvask etter reaktorfarging 2. skylling</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Forbehandling. Bleking av bomull.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Farging av ull.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>" " " Komplexfarging.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>" " " Kromfarging.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>" " bomull.</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>" " " Svovelfarging.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>" " polyester og cellull, Dispersjonsfarging.</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>" " " og ull, Dispersjons-komplex.</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>" " synt. kemo.</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>" " akryl.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Utvask etter reaktivfarging 1. skylling.</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Farging av ull, kromfarging</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Vask og farging av ull, Reaktivfarging</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Farging av bomull, "</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>" " " , Svovelfarging</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>" " " , Kypefarging</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Farging " " , Reaktivtrykk</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>" " polyester Dispersjonsfarging</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Etterbehandling, Wash & Wear</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>" av bomull</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>" " "</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>" " Flammesikring</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>" " Stiving av hvite varer</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>" " Vannavstøtende - flammesikring</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>" " Flammesikring</td>
</tr>
</tbody>
</table>
Prøve nr. 1
Prøven tatt 6.5.78
pH 5,4
k 5100 µS/cm
ALK, (pH 4,5) 88 ml 0,1 N HCl/l
ASID ml 0,1 N NaOH/l

Vannforb. delprosess: m³/d
Vannforb. totalt: m³/d
PROSESS: Kont. □ Diskont. □

Synt. kemo □ Forb. X
U11 □ Bleking □
Bomull X □ Farging □
Regen. kemo □ Etterbeh. □

PRØVERESKRIVELSE:
Prøve tatt av avløpsvannet fra første vaskekasse på P.M. vaskemaskin etter klorittbleking av en kreppull kvalitet 744. Blekeresekt 2.7 cm²/l maursyre, 6,25 g/l Puffersalz PK 2, 25 g/l Na-kloritt 80 %, 1 g/l Leophen U

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.
Antas lav ML/L

LAV □
HØY □

TOC/BOD, 2640 mg C/l, lav mg O/l, IDENTIFIKASJON AV AKTIV SUBSTANS

TOC/BOD □

TILTAK

METALLER:
µg/l HØY LAV
Cu: 120/200 □ □
Cr: 27/32 □ □
Zn: □ □

FETTLØS. FORB.:
TOTAL PERSISTENT
mg/l: 78 2,3

TILTAK

AKUTTOX. ALGER (IC₅₀):

AKUTTOX FISK (4d LC₅₀):

MANOMETRISK BOD:
BOD Nj O/l

5 10 15 20

DESN

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven har "god" pH. Den er relatvert rik på oppløste salter og har et høyt innhold av organisk stoff som antas å være lett nedbrytbart. Alt skulle tilsi at dette er et typisk BOD-vann, bl.a. også fordi resepten ikke tyder på noen problemforbindelser. Det er imidlertid verdt å bemerke at innholdet av persistente fettløs- lige forbindelser kan karakteriseres som høyt, og kanskje særlig at det er påvist betydelige mengder av DDT. Likevel vil vi anta at dette faller innenfor rammen av

BOD-VANN
Prøven tatt:
PH 12.2
E 14000 µS/cm
ALK (pH 4-5) 1238 ml 0.1 N HCl/1
ASID 0.1 N NaOH/1

Prøvebeskrivelse:
Prøve tatt av avløpsvannet fra første spylekasse på Hydrotexvaskemaskin etter en reaktivfarging på krepptvare kval 744. Fargerecept nr. 3482, 13.44 g/l Cibacollgelb RA, 14.96 g/l Cibacronblau 5R-E, 4.48 g/l Cibacronmarineblau R-E, 10 g/l Glaubersalt kals., 43 cm²/l Na-lut 38⁰Be¹, 10 g/l Soda kal.

Åkutox. Mikroorg.:
TTC, kons. for 50 % aktivitet.
550 ML/L

Metaller:
µg/l Høy Lav
CU: 2900/2920
Zn: 13/18

Fettløs. forb.:
TOTAL PERSISTENT
MC/l: 1... 2... 3...

Tilk tak:

Kritter:
Fargerezepten viser at avløpsvannet fra spylekassen må være rik på salter og ha høy pH. Analyseresultatene viser at prøven har en viss toksisitet overfor mikroorganismer, et relativt høyt kobberinnhold og relativt store mengder av fettløselige og persistente forbindelser. Den er meget toksisk overfor fisk og ganske toksisk overfor alger. BOD-kurven viser relatert liten forskjell etter 21 døgn sammenlignet med 7 døgn BOD. På grunnlag av toksisiteten overfor fisk og alger, og på grunnlag av innholdet av persistente fettløselige forbindelser, må prøven karakteriseres som toksisk.
Vannforb. delprosess: \(\frac{M^3}{d} \)
Vannforb. totalt: \(\frac{M^3}{d} \)

PROSESS: Kont. \(\square \) Diskont. \(\times \)
Regen. kemo \(\square \)
Etterbeh. \(\times \)

PRØVEBESKRIVELSE:

Prøve tatt av et appreturbad, "wash and Wear".
Rezept: 130 g/l Fixapret CPN, 130 g/l Fixapret TN, 1 g/l tinoventin
JU conv., 30 g/l Siligren PW, 20 g/l Condensol FN.

AKUTTOX. MIKROORG.:

\(\text{TTC, kons. for } 50\% \text{ aktivitet.} \)
\(\text{.... } 35, \text{ ML/L} \)

METALLER:

\(\text{Cu: } 40 \square \)
\(\text{Cr: } 92 \square \)
\(\text{Zn: } \square \)

FETTLØS. FORB.:

\(\text{mg/l: } 81 \rightarrow 4,2 \)

IDENTIFIKASJON AV AKTIV SUBSTANS:

\(\text{LAV} \)
\(\text{HØY} \)

\(\text{TOC/BOD, } 1000 \text{ mg C/l } \times \text{ mg O/l} \)

\(\text{AKUTTOX. ALGER (4h IC}_{50}^{14C}: \text{ } 3,5 \text{ ml/l} \)
\(\text{AKUTTOX FISK (4d LC}_{50}^{14C}: \text{ } 1,7 \text{ ml/l} \)

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:

Prøven faller klart innenfor det som må kalles

TOKSISK

\(x) \) BOD meget høy. Årsaken ikke klarlagt.
Prøve nr. 4
Prøven tatt 12,9,77
pH 5,0
κ 6608μS/cm
ALK (pH 4,5) .37...
ml 0,1 N HCl/1
ASID. 75...
ml 0,1 N NaOH/1

PROSESS: Kont. □ Diskont. X

PRØVEBESKRIVELSE: Prøven tatt fra fargkar før tappning.
5% Na₂SO₄, 1,3 % Eddiksyre (80%), 0,5 % Maursyre,
0,8 % Melin FF (køyer-fargestoff),
Alizarinbrilliant blau 2%
Svakt surt fargestoff.

PRØVEBESKRIVELSE: Prøven tatt fra fargkar før tappning.
5% Na₂SO₄, 1,3 % Eddiksyre (80%), 0,5 % Maursyre,
0,8 % Melin FF (køyer-fargestoff),
Alizarinbrilliant blau 2%
Svakt surt fargestoff.

AKUTTOX. MIKROORG.: TTC, kons. for 50 % aktivitet.
Ingen hæmping ML/L

METALLER: Cu: < 50 □ □
Crt: < 50 □ □
Zn: □ □

FETTLØS. FORB.: TOTAL: MG/L: 2,0...
PERSISTENT: 0,3...

LAV □
Høy □

TOC/BOD, 1180 mg C/l = 0,7.
1675 mg O/l

IDENTIFIKASJON AV AKTIV SUBSTANS

LAV □
Høy □

IDENTIFIKASJON AV AKTIV SUBSTANS:

AKUTTOX ALGER: (IC₅₀): 140, m/l/l

AKUTTOX FISK (4d LC₅₀):

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven har en "god" pH, er rik på oppløste salter og har et forholdsvis moderat innhold av organisk stoff som er lett nedbrytbart. Innholdet av fettløselige persistente forbindelser er lavt. Stoffene i prøven virker ikke hemmende på mikrobiologisk aktivitet, men har en viss toksisk virkning på alger. Innholdet av kobber og krom er under deteksjonsgrensen. Prøven kan ikke på grunnlag av disse analyseresultatene karakteriseres som toksisk og faller inn under gruppen

BOD-VANN
Vannforb. delprosess: 2600 l
Vannforb. totalt: 2600 H³/d

PROSESS: Kont. □ Diskont. ☒

PRØVEBESTRIVELSE:
Prøve tatt fra fragekar før tapping.
Rustød komplexfargestoff (1:2).
Gibor-Geigy fargestoffer: Irgalanorange 0,89 %.
Irgalanbraun (0,60 %), Irgalanrot (0,12 %).
4% Ammonium sulfat, 12% Iragsol DAM 0,8 % Mitin FE

AKUTTOX. MIKROORG.: TTC, kons. for 50 % aktivitet.
Ingen hemning. ML/L

METALLER: METALLER:
CU: 86 □ □ □
CR: 920 □ □ □
ZN: □ □ □

FETTLØS. FORB.: TOTAL PERSISTENT
MG/L: 8..... 1.5...

IDENTIFIKASJON AV AKTIV SUBSTANS:

AKUTTOX. ALGER (IC₅₀): 180, ml/L
AKUTTOX FISK (4d LC₅₀):

MANOMETRISK BOD:

BED:
NC 0/L

IDENTIFIKASJON AV AKTIV SUBSTANS:

.......

KOMMENTARER:
Resepten tilsier "god" pH og relativt mye oppløste salter. Innholdet av toksiske elementer (kobber, krom) er lavt, likeledes er det lite av persistente fettløselige forbindelser. Vannet hemmer ikke mikrobiologisk aktivitet og har bare en liten toksisk virkning på alger. Det er et moderat innhold av organiske stoffer og disse stoffene kan i stor grad nedbrytes av mikroorganismer. Vannet er ikke rent og kan ikke karakteriseres som toksisk, men faller naturlig inn i gruppen.

BOD-VANN
Vannforb. delprosess: 1900 l
Vannforb. totalt: M³/d
PROSESS: Kont. □ Diskont. X

PRØVEBeskrivelse: Farging av ultøy. Prøven tatt før tapping i:1 komplexfarge krom. Svoveltsyre (8%), Natriumsulfat (3%), Mëlin 0,8 %.
Ciba-Geigy: Neolanblau GGN (1,6 %), Neolanores BN (0,66 %), Neolangrën (BLN) 0,1 %, Neolangelb RE (0,08 %).

AKUTTOX. MIKROORG.: TTC, kons. for 50 % aktivitet.
Ingen hemning, ml/l

AKUTTOX. ALGER
(tC₅₀): 5 ml/l.

AKUTTOX. FISK (4d C₅₀):

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

emet er sur (svoversyr) og har relativ lige pH, oppløste salter, blir bidraget er trukket fra. Innholdet av krom er høyt, likeledes totalinnholdet av fettløse forbindelser, mens innholdet av persistente fettløse forbindelser er lavt. Prøven viser ingen hemmende effekt overfor mikroorganismene, mens akutt toksisitet overfor algene er relativt stor. Innholdet av organisk stoff er lavt og dette organiske stoffet er relativt lett tilgjengelig for mikroorganismene. Det er trolig at biologisk rensing av dette vannet vil eliminere det

organiske stoff - også de fettløse forbindelser - og man har derved bare krom tilbake. Det er ikke umiddelbart innlysende at tekniske tiltak er nødvendige; slike vurderinger vil i det hvert tilfelle avhenge av forholdet mellom vannvolumet, det totale vannforbruken, utjenvingsmagasins kapasiteten og resipientens karakter. Denne spesielle fabrikken har et gjennomsnittlig vannforbruk i løpet av en 8 timers arbeidsdag på 150 m³ og har nå etterhvert utjenvingsmagasin. På et fritt og generelt grunnlag må imidlertid den type avløpsvann falle inn i gruppen

BOD-VANN
Prøve nr. 7
Prøven tatt 12.9.77
pH 4,0
10770 uS/cm
ALK. (pH 4,5) ... ml 0,1 N HCl/l 42
ASID. ml 0,1 N NaOH/l

Vannforb. delprosess: 1800 l x 2
Vannforb. totalt: H3/d
PROSESS: Kont. □ Diskont. X

PRØVEBESKRIVELSE:
Dispersjonsfarging under trykk uten carrier.
Polyester (67 Z): Cellulul (33Z): Solophenylgrau NGL (0,27Z)
Resoln gelb RL (1,5 Z) " rot FB (0,63 Z) " gelb GL (0,087 Z)
" blau FBL (0,28 Z) " braun 8 RL (0,033 Z) " 3 RL (0,11 Z)
N2% natriumsulfat, 0,5 % g/l Næpsol, 1,0 g/l ammoniumsulfat

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

... 900 ml/l

LAV □
HØY □

TOC/BOD, 1000 mg C/l = 2,5
400 mg O/l

IDENTIFIKASJON AV AKTIV SUBSTANS

AKUTTOX. ALGER (IC50): 290 ml/l
AKUTTOX FISK (4d LC50):

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er relativt sur og har et høyt innhold av oppløste salter. Kobberinnholdet er høyt og likeledes er det relativt høye konsentrasjoner av organisk stoff som til dels er tungt nedbrytbart. Prøven hemmer imidlertid bare i liten grad mikrobiologisk aktivitet og er lite toksisk overfor alger. Innholdet av fettløselige forbindelser er lavt. BOD-21 er bare storrelsesorden 10% høyere enn BOD-7 og dette antyder at "restorganisk stoff" er lite tilgjengelig for mikroorganismer. Selv om kobberinnholdet er relativt høyt, er det tvilsomt om dette er tilstrekkelig grunn til å karakterisere prøven som toksisk. Selv om det organiske stoff er relativt tungt nedbrytbart er konsentrasjonen av organisk stoff tross alt moderat og det synes riktig å gruppere prøven innenfor

BOD-VANN
Vannforb. delprosess: 0,8 m³
Vannforb. totalt: 3,6 m³/d

PRØVEBESKRIVELSE:
Farging med reaktiv fargestoff (Sandos)
Prøvege tatt ved fargeprosessens avslutning.
0,8 m³ bad. 50 g/l natriumklorid, 20 g/l natriumkarbonat,
1,07 g/l Drimarenoranger Kg-L, 0,56 g/l Drimarenrubin K 5 Bl,
0,44 g/l Drimarenamarinblau KGRL

AKUTTOX. MIKROORG.:
TTC, kons. for 50% aktivitet.

METALLER:
μg/l Høy Lav
CU: 3900
CR: < 50
ZN:

FETTLØS. FORB.:
mg/l: 1,0
TOTAL PERSISTENT 0,3

TILTAK

LETTAK

IDENTIFIKASJON AV AKTIV SUBSTANS

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven har en høy pH og et overmåte høytt innhold av oppløste salter. Prøven har et høytt kobberinnhold, men et meget lavt innhold av organiske stoffer og det er lite fettløsige forbindelser i prøven. Vannet virker imidlertid hemmende på mikrobiologisk aktivitet og er relativt toksisk overfor fisk (sannsynligvis p.g.a. kobberinnholdet), men derimot lige toksisk overfor alger. Vannet er ikke noe typisk BOD-vann, først og fremst fordi organiske stoff er lavt og saltinnholdet meget høyt. Kobberinnholdet er imidlertid så høyt at man på det grunnlag lett kunne karakterisere prøven som toksisk. På den annen side har volumet av det avløpet som prøven representerer lite, og da særlig sett i forhold til fabrikkens totale daglige vannforbruk (150 m³ pr. 8 timer), men på fritt grunnlag synes det allikevel forsvarlig å karakterisere prøven som BOD-VANN
Vannforbr. delprosessa: M³/d
Vannforbr. totalt: M³/d
PROSESS: Kont. X Diskont. □

PRØVEBESKRIVELSE: Utvask etter reaktivfarging 1. skyllebad.
Resept: 40 g/l Levafix brillianblau E-BRA
75 g/l urëa, 7,5 ml/l, 38° Bé natriumhydroksyd
12 g/l soda kalz.

AKUTTOX. MIKROORG.:

TTC, kons. for 50 % aktivitet.

900, m/l/L

METALLER:

mg/l µg/l HØY LAV

CU: 460 □ □
CR: < 50 □ □
ZN: □ □

TOTAL PERSISTENT mg/l: 8........ 1,6

FETTLØS. FORB.: TILTAK TILTAK

AKUTTOX. ALGER

(1C₅₀): 50 m/l/l.

AKUTTOX FISK (4d LC₅₀):165.

MANOMETRISK BOD:

BOD mg/ØL

5 10 15 20

Døgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

.............................

KOMMENTARER:

Prøven er relativt basisk, men inneholder lite oppløste salter og har et moderat innhold av tungmetaller. Innholdet av organisk stoff er også forholdsvis moderat, likeledes innholdet av fettløselige forbindelser. Det organiske stoff synes ikke å være lett nedbrytbart. Toksisitten overfor mikroorganismer og overfor fisk er moderat, mens toksisiteten overfor alger på den annen side er noe større enn "vanlig" (blant de mest algetoksiske halvpart av disse 31 prøver). Screening-testen til-kjennegir altså et lite problemfylt vann. TOC/BOD-forholdet på den annen side tyder på tungt nedbrytbart organisk stoff. Denne prøven er eksempel på et tilfelle hvor tilleggsinformasjon vil være ønskelig, f.eks. mer om BOD-forholdene. Ettom prøven ikke synes å ha karakter av tokstisk (eller ren) vil dette være

BOD-VANN
Vannforbr. delprosess: m³/d
Vannforbr. totalt: m³/d

PROSESS: Kont. X Diskont.

PRØVEBESKRIVELSE:
Utvask etter reaktivfarging, 2. skyllebad:
50 g/l Levafix brillantblau E-BKA
75 g/l urea, 7.5 ml/l 380 °B natriumhydroksyd,
12 g/l soda kals.

PH 10.1...
k 295 µS/cm
ALK. (pH 4,5) 18...
ml 0,1 N HCl/l
ASID. ml 0,1 N NaOH/l

PRøve nr. 10
Prøven tatt 14.9.77

AKUTTOX. MIKOORG.:

TTC, kons. for 50 % aktivitet.
Ingen hemning
.............. , ML/L

METALLER:

mg/l HØY LAV
CU: 715 0 0
CR: <50 0 0
ZN: 0 0 0

FETTLØS. FORB.:

TOTAL Persistent
mg/l: 2,5 0,9

IDENTIFIKASJON AV AKTIV SUSTANS:

MANOMETRISK BOD:

BOD mg/l

5 10 15 20

DEØRM

METHODEN AS FOR KOMMENTARER:

KOmmentar:
Denne prøven skulle være en fornyning av prøve 9. Ifølge ledningsevnen er det en fornyning på 1:5. Dette er imidlertid ikke en fornyningsfaktor som er gyldig for de øvrige karakteriseringss-parametrene, selv om hovedtrekkene er de samme. Det er

RENT VANN
Prøve nr. 11
Prøvenatt 14.9.77
pH 2.9
κ 71.86 μS/cm
ALK (pH 4,5) ml 0,1 N HCl/1
ASID ml 0,1 N NaOH/1

PRØVEBESKRIVELSE:

Vannforb. delprosess: M³/d
Vannforb. totalt: M³/d
PROSESS: Kont. - Diskont. X

PRØVEBESKRIVELSE:

Appreturbad for "Wash & wear",
130 g/l Fixatret CPR, 130 g/l Fixapret TN
30 g/l Siligen PW, 20 g/l Condensol PW

AKUTOX. MIKROORG.:

TTC, kons. for 50% aktivitet.

50. ML/L

LAV □

HØY □

METALLER:

Cu: < 50 □
Cr: < 50 □
Zn: □

FETTLØS. FORB.:

TOTAL MG/L: 13
PERSISTENT 1,6

TILTAK

LEAN

45000 mg C/l

TILTAK

AKUTOX. ALGER

(μg/l) < 50

AKUTOX. FISK (4d LC50): 3,0

MAMMETRISK BOD:

5 10 15 20 Døgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:

Avløpet etter Wash & Wear representerer vanligvis et lite volum, men prøven viser en lav pH med stor bufferkapasitet og høyt innhold av organisk stoff som synes relativt lett nedbrytbart. Imidlertid av fettloselige forbindelser og fettloselige persistente forbindelser er lavt. På den annen side er akutt toksisiteten overfor mikroorganismer, overfor fisk og overfor alger betydelig. Prøven må alt tatt i betraktning, karakteriseres som TOKSISK.
Prøve nr. 12 14.9.77
Prøven tatt
PH 10,0
κ 4136 µS/cm
ALK. (pH 4,5)
ml 0,1 N HCl/1
ASID.
ml 0,1 N NaOH/1

Vannforb. delprosess: H^3/d
Vannforb. totalt: H^3/d
PROSESS: Kont. X Diskont.

PRØVEBESKRIVELSE: Utvask etter reaktiv-trykk:
50 g/kg Uranmøn dunkk. brun
20 " " " 10 " 8 "
18 " " " 22 " 40 "
20 " " " 15 " 0,4 g/kg
20 " " " 8 " 0,4 "
20 " " " 1 " 4 "

AKUTTOX. MIKROORG.: TTC, kons. for 50 % aktivitet.

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er rik på oppløste salter og er basisk. Det som for øvrig karakteriserer prøven er et høyt innhold av organisk stoff og et høyt innhold av persistente fettløsige forbindelser. Prøven har et relativt høyt innhold av kobber og har en viss negativ virkning overfor mikroorganismers aktivitet. Toksisiteten overfor alger er liten, mens toksisiteten overfor fisk er betydelig. Muligens er fisketoksisiteten forårsaket av det relativt høye innhold av kobber. Prøven som sådann må karakteriseres som toksisk, men dette vil til en viss grad avhenge av hvilke volum som er involvert, men likevel

TOKSISK

x) reaktivtrykk
Vannforb. delprosess: Hᵢ/d
Vannforb. totalt: Hᵢ/d
PROSESS: Kont. □ Diskont. X

PRØVEBESKRIVELSE:
Appreturbad: Permanent vann avstøtende impregnering.
80 g/l Phosphotex FTC
8 g/l " CR
10 ml/l Eddiksyre (80%)

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

150 ML/L

LAV □
HØY □

TOC/BOD: 17600mg C/l = 0,2
80000mg O/l

IDENTIFIKASJON AV AKTIV SUBSTANS

METALLER:
μg/l HØY LAV
CU: 86 □ □
CR: x) □ □
ZN: □ □

FETTLØS. FORB.:
TOTAL MGL/L: — — — —
PERSISTENT

TILTAK

TILTAK

AKUTTOX. ALGER
(ic₅₀): 8 ml/l / 1

AKUTTOX FISK (4d LC₅₀):

NANOMETRISK BOD:
BOD mg O/l

5 10 15 20

Δøgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er sur med en betydelig bufferkapasitet. Den virker toksisk både over-
for mikroorganismer og overfor alger. Dessuten er det et betydelig inntil av
krom og av organisk stoff. Ettersom dette representerer en prøve fra et avløp med
store konsentrasjoner av både organisk stoff og tungmetaller og samtidig rep-
resenterer et relativt lite volum, synes det ikke riktig å spyle dette vannet til
avløp. Prøven må for øvrig karakteri-
seres som

TOKSISK

x) 515 mg/l
Vannforb. delprosess: 1 H³/d
Vannforb. totalt: H³/d
PROSESS: Kont. ■ Diskont. x

PRØVEBESKRIVELSE:

Farging av bomull:
Sulphol Liquid Black QC (svovelargestoff) 20 g/l,
kalsineret-natriumsulfat 20 g/l, Permin OSN (tannsid) 1 g/l,
trilon B-Flüssig (EDTA) 2 g/l, natriumsulfid 1,5 g/l

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

Integriertens ML/L

LAV ■

Høy ■

TOC/BOD: 1600 mg C/l, 2840 mg 0/l = 0,6

IDENTIFIKASJON AV AKTIV SUBSTANS

Identifikasjon av aktiv substans:

LAV ■

Høy ■

AKUTTOX.ALGER

(ic₅₀): 3,4 ML/L

AKUTTOX FISK (4d LC₅₀):

METALLER:

μg/l Høy LAV

Cu: <50 ■ ■

Crt: <50 ■ ■

Zn: ■ ■

FETTLØS. FORB.:

TOTAL PERSISTENT

mg/l: — H₂S —

TILTAK

TILTAK

KOMMENTARER:

BOD-VANN
Prøve nr. 15
Prøven tatt 19/9/77
pH 12,3
k 2587,1 µS/cm
ALK (pH 4,5) 1563 ml 0,1 N HCl/l
ASID 0,1 N NaOH/l

Vannforb. delprosess: 1 m³/d
Vannforb. totalt: 1 m³/d

PROSESS: Kont. Diskont. X

PRØVEBESKRIVELSE:

Fargning av bomull:
Indathren grün BB 8059 (Küpfargestoff) 10 g/l,
natriumhydroksyd 50% 86 13 g/l, svovelsyre 4 g/l,
trilon B Flüssig (EDTA) 2 g/l, Perenin OSN (Tensid)

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

...120... ML/L

LAV

HØY

TOC/BOD 1150 mg C/l, 352 mg O/l

IDENTIFIKASJON AV AKTIV SUBSTANS

MANOMETRISK BOD:

BOD 5 10 15 20

IDENTIFIKASJON AV AKTIV SUBSTANS:

METALLER:

CU: 1250
CR: < 50
ZN: 2

TOTAL PERSISTENT

MG/l 11,3 0,6

FETTLØS. FORB.:

TILTAK

TILTAK

KOMMENTARER:
Prøven er basisk og svært saltri og innholdet av kobber er relativt høyt. Innholdet av organisk stoff er moderat, men dette er relativt tungt nedbrytbart. Den viser en viss toksisitet både overfor mikroorganismer og overfor alger. Også her kunne det være behov for en del tilleggsinformasjon som f.eks. langtids BOD. Prøvevolumet er imidlertid lite og vannet vil kunne falle inn under gruppen

BOD-VANN
Vannforb. delprosess: \(1 \text{ m}^3/\text{d} \)
Vannforb. totalt: \(\text{m}^3/\text{d} \)

Sylt. kemo □
Forb. □
Ul1 □
Bleking □
Bomull X
Farging □
Regen. kemo □
Etterbeh. X

PRØVEBESKRIVELSE:
Etterbehandling av bomull
Stabiltex D46D (Triazinharz) 100 g/l,
Prigeminir US (Etyleen urea forbindelse) 15 g/l,
magnesium klorid 10 g/l, Irgapadol NNU (Siliconforb.) 5 g/l.

ÅKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.
70... ml/l

METALLER:
Cu: < 50 □
Cr: < 50 □
Zn: □ □

FETTLØS. FORB.:
TOTAL □
PERSISTENT □

MG/L: .9,6... .0,4...

TOC/BOD:
\(24000 \text{ mg C/l} \)
\(15100 \text{ mg O/l} \)

IDENTIFIKASJON AV AKTIV SUBSTANS

TILTAK

KOMMENTARER:
Prøven er på det nærmeste nøytal og har et relativt høyt innhold av oppløste salter. Kobber- og kromkonsentrasjonen er under deteksjonsgrensen og det er lite fettløselige organiske forbindelser. På den annen side er det et særdeles høyt innhold av organisk stoff, selv om det meste av dette synes lett nedbrytbart, virker det toksisk overfor mikroorganismer, overfor alger og overfor fisk. Selv om BOD-kurven antyder at dette organiske stoff kan brytes fullstendig ned over lengre tid, vil dette være en stor belastning og en særbehandling av dette avløpsvannet bør anbefales. Prøven må imidlertid klart karakteriseres som **TOKSISK**
Vannforb. delprossec: M³/d
Vannforb. totalt: 9,50.. M³/d
PROSES: Kont. □ Diskont. X

PRØVERESKRIVELSE: Kromfarging av ull, -chromet på nytt bad dvs. etter farging tappes badet ut og nytt bad tappes på for kromering.
Prøven tatt fra dette badet. Fargebad:
Eddiksyre 1,5 %, Salmiakk 1,8 %, Mursyre 2%, Bl.salt 5%,
Allalgal A 1%, Diamantchromgrønn 0,75 %, Diamantchromgelbe
KE 0,414 %, Alizarin-cyanidgrønn GWA 0,4 %. Krombad:
Kromkali 0,60 %, Mursyre 1%, Sunfis N 10%.

AKUTTOX. MIKROORG.: METALLER:
TTT, kons. for 50 % aktivitet. µg/l HØY LAV
...... 1000 ml/l

CR: 2250 □ □
ZN: □ □

TOTAL PERSISTENT
MG/l:

FETTLØS. FORB.: TILTAK

TILTAK

AKUTTOX.ALGER

(LE₅₀): 790 ml/l

AKUTTOX FISK (4d LE₅₀):

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

IDENTIFIKASJON AV AKTIV SUBSTANS:

FETT-LØS. FORB.: TILTAK

KOMMENTARER:
Prøven er sur og har et relativt lite innhold av oppløste saltret og lite organisk stoff. Krominnholdet er imidlertid relativt høyt, men prøven har ikke toksisk virkning overfor hverken mikroorganismer eller alger. Prøven kan hverken karakteriseres som ren eller toksisk, men vil kunne klassifiseres innenfor

BOD-VANN
Vannforb. delprosess: m³/d
Vannforb. totalt: 950 m³/d

PROESS: Kont. □ Diskont. ✗

PRØVEBESKRIVELSE:
Fargning av acryl: Irgatorem SE, Eddekeyre 3%, Natriumacetat 3%, Elsalin F 1 g/l, Sandocryl schmaz BBL 4% Lampepane 303, 3%.

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet:
900 ml/L

METALLER:
Cu: < 50 □ □
Cr: < 50 □ □
Zn: □ □

FETTLØS. FORB.:
TOTAL MG/L: 10.8
PERSISTENT MG/L: 2.3

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er moderat sur og har et lavt innhold av oppløste salter. Innholdet av organisk stoff er relativt latt, mens innholdet av persistente fettlosemelige forbindelser bør fremheves. Toksitetten overfor mikroorganismer og overfor alger er moderat. Innholdet av kobber og krom er under deteksjonsgrensen. På grunnlag av prøvens innhold av persistente fettlosemelige organiske stoffer er det naturlig at denne må karakteriseres som toksisk. På den annen side tyder ikke resultatene på at vannet virker toksisk overfor hverken mikroorganismer eller alger. Relativt sett er vannvolumene moderate og derfor er det naturlig å gruppe denne prøven innenfor som moderat.
Vannforb. delprosess: M^3/d
Vannforb. totalt: 950 M^3/d
PROSESS: Kont. □ Diskont. X

PRØVEBESKRIVELSE:
Reaktivfarging og vask av ull - farging og vask i samme bad - Meltsikring med Rulan U 33.
Ammoniumsulfat 4%, Eddisyre 0,5 %, Lawasolgelb 66 0,08 %, Lawasolorot 66 0,037 %, Lawasolblau 36 0,017 % + Rulan U 33

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

950, ML/L

METALLER:

CU: < 50 □
CR: < 50 □
ZN: □

FETTLØS. FORB.:
TOTAL □
PERSISTENT □

MG/L: 56 ?/3...

TILTAK

IDENTIFIKASJON AV AKTIV SUBSTANS

AKUTTOX. ALGER (IC_{50}): 24, ml/l.
AKUTTOX FISK (4d LC_{50}):

MANOMETRISK BOD:

BOD g/1
5 10 15 20
Døgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er nøytral med moderat saltinnhold og relativt lite organisk stoff. Derimot foreligger en betydelig del av dette organiske stoff som fettløselige organiske forbindelser og en del av dette igjen er persistent. Tungmetallinnholdet er negli-
sjerbart. Toksisiteten overfor mikroorga-

nismen er liten, mens det er en betydelig
toksisitet overfor alger. Tatt i betrak-
tning det store volumet vann som er invol-

ervert, er det naturlig at dette vannet
gjøres til gjenstand for behandling og

prøven må følgelig karakteriseres som

TOKSISK
Vannforb. delpros: H²/d
Vannforb. totalt: ...950.... H²/d
PROSESS: Kont. □ - Diskont. ☒

PRØVEBESKRIVELSE:
Farging av ull med metallfargestoff (1:2 komplex).
Nafelt WA 2%, Irgafosmal SE, Eddikskyre 1,5%, Allelgyl A (A) 1%,
Blaudimpaalt 5%, Cibalanbrilliant-blau 0,49 %, Cibalanbraun
2 GL 0,63 % cebeljanrot 2 GL 0,092%, Irgalanbrilliant-blau
RLS 0,276 %, Irgalanrot RLS 0,028 %.

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

METALLER:
Cu: < 50 □ □
Cr: 390 □ □
Zn: □ □

FETTLØS. FORB.:
TOTAL PERSEPTENT
mg/l: 240...... 0,7...

AKUTTOX. ALGER (TC₅₀):
AKUTTOX. FISK (4d LC₅₀):

MAMMOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er lite sur med en del oppløste salter. Innholdet av organisk stoff er moderat, likeledes er tungmetallinnholdet lavt. Derimot er innholdet av fettløse- lige organiske forbindelser høyt, selv om det er lite av dette som er persistant. På grunn av sterk fargeinterferens i prøven mangler uttrykket for toksisitet overfor mikroorganismer og ettersom de øvrige toks- sissetestestene også mangler, er det ingen muligheter for toksisitetsvurderinger.

Det organiske stoff synes imidlertid å være lett nedbrytbart og det skulle derfor være grunnlag for å klassifisere prøven som

BOD-VANN
Fargening av Polyester - Dispersjonsfargering, silicane (antiskum) 0,05 ml/l, ammoniumsulfat 2 g/l, lyocell WPN (SANDOX) - egalisering og despergeringsmiddel 0,5 g/l, Permalose T (antistatisk) 3%, Naursyre 0,025 ml/l.

Prøvebruk: Kont. □ Diskont. □

Proseksjonsfaktorer:
- Vannforb. delprosess: 4 m³/h
- Vannforb. totalt: 2 m³/d

Metaller:
- Cu: < 50 □ □
- Cr: < 50 □ □
- Zn: □ □

Fettlös. forb.:
- Total: □ □
- Persistent: □ □

Antikoxy. Mikroorg.:
- TTC, kons. for 50% aktivitet:

Integrasjon: ml/l
- Interferens □
- LAV □
- HØY □

Organismene:
- AKUTTOX. ALGER □
- AKUTTOX. FISK (4d LC50): 75
g

Nøkkeldata:
- AKUTTOX. ALGER (1C50): 28 ml/l

Målegrunnlag:
- MÅNOMETRISK BOD:
 - I O/l
 - 5 10 15 20

Identifikasjon av aktiv substans:

Kommentarer:
Prøve nr. ... 22 ...
Prøven tatt 15.9.77
pH ... 5.4 446
< μS/cm
ALK. (pH 4.5) 12 ml 0.1 N HCl/l
ASID. 47 ml 0.1 N NaOH/l

PROSESS: Kont. [] Diskont. [x]

PRØVEBESTRIKELSE:
Farging av polyester 55% - ull 45% - Dispersjonsyre - metall-komplex (2:1) farging.
Silicon antiskum 0.05 ml/l, ammoniumsulfat 2 g/l, Lyocal WPN fl. 0.5 g/l, dilatin OD fi carrier (alkalisk ortophenyl - fenalbasis 4 ml/l, maursyre (pH 5 - 5.5).

AKUTOX. MIKROORG.:
TTC, kons. for 50% aktivitet.

METALLER:
μg/l HØY LAV
CU: < 50 [] []
CR: 200 [] []
ZN: [] []

FETTLØS. FORB.:
TOTAL PERSISTENT
MG/l: 96 [] 5 []

IDENTIFIKASJON AV AKTIV SUBSTANS

LAV []
HØY []

TILTAK

(ɪc₅₀): 120 ml/l

AKUTOX. ALGER

AKUTOX FISK (4d LC₅₀):

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven har en "gunstig" pH og relativt lite med oppløste saltet. Innholdet av organisk stoff er relativt høyt og likeledes innholdet av persistente fettløselige organiske forbindelser. Det organiske stoff synes relativt lett tilgjengelig for mikroorganismer. Toksisiteten overfor mikroorganismer og overfor alger er 'moderat'. Til tross for et relativt høyt innhold av persistente fettløselige forbindelser må prøven, på grunnlag av det relativt begrensede volum kunne karakteriseres som

BOD-VANN
Vannforb. delprosess: M³/d
Vannforb. totalt: M³/d
PROSESS: Kont. ☐ Diskont. ☐

PRØVEBESKRIVELSE: Nr. 1: Bad-avtapping fra flammesikring ved spannrahm (tatt 19.9):
350 g/l Pyrovatex CP
60 " Lyofox CIN
30 " Turpex ACN
1 " Tinctorin JU konz.
4 " Uvitex 2 B
20 " Fosforsyre 85%
Spec.kjemikalier fra Ciba-Geigy.

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.
Interferens ML/L

METALLER:
µg/l Høy LAV
CU: < 50 ☐ ☐
CR: < 50 ☐ ☐
ZN: ☐ ☐ ☐
TOTAL ☐ ☐ ☐
PERSISTENT ☐ ☐ ☐

MANOMETRISK BOD:
BOD NG 0/1

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven er sur og rik på oppløste salter. Den har et meget høyt innhold av tungt nedbrytbart organisk stoff. Det er ikke påvist hverken kobber eller krom og det har ikke vært mulig å bestemme innholdet av persistente fettløselige forbindelser p.g.a. prøvens konsistens. Toksisiteten overst for alger og fisk er stor. Prøven representerer et relativt lite volum og synes på grunnlag av de foreliggende analyser å være problemfylt. Prøven må i alle tilfeller karakteriseres som

TOKSISK
Prøve nr. 26
Prøven tatt 19.9.77
pH 6,6
e 3000 µS/cm
ALK. (pH 4,5) 3 ml 0,1 N HCl/1
ASID. 11 ml 0,1 N NaOH/1

PROSESS: Kont. □ Diskont. X

PRØVERESKrivelse: Nr. 2: Rad-avtapping fra stiving hvitevarer ved spannrahm (tatt 19.9.):
15 g/l Boëvi H 4/3/00 Børregaard, polyvinylacetat.
3 " Uvitex 2BT BO Ciba-Geigy, optisk hvitt.
10 " Universitet TN Th. Bøhme, mykgsjøren.

AKUTOX. MIKROORG.: TTC, kons. for 50% aktivitet.

<table>
<thead>
<tr>
<th>Inteferens ML/L</th>
<th>LAV □</th>
<th>HØY □</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC/BOD 5200 mg C/l / 720 mg O/1 = 7,2 IDENTIFIKASJON AV AKTIV SUBSTANS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METALLER:

<table>
<thead>
<tr>
<th>µg/l</th>
<th>HØY</th>
<th>LAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>< 50 □</td>
<td>□</td>
</tr>
<tr>
<td>Cr</td>
<td>< 50 □</td>
<td>□</td>
</tr>
<tr>
<td>Zn</td>
<td>□ □</td>
<td></td>
</tr>
</tbody>
</table>

PETTLØS. FORB.:

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>PERSISTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Vannforb. delprosess: H³/d
Vannforb. totalt: H³/d

PROSSESS: Kont. □ Diskont. X

PRØVEBESKRIVELSE:
Nr. 3: Bad-avtapping fra kypefarvebad på Pouillard-Hotilue
(tatt 20.9.;)
10 g/l Cibanon brill.grn BF m.d. - Ciba-Geigy.
2 " olivengrøn B m.d.
1,5 " Indanthren khaki GG "Collisol" - Hoechst.
1 " Primaol ANK - BASF, fuktémiddel
0,3 " Edikseyre 80% - Teknisk kjemikalje.

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.
.......
.......

METALLER:
Cu: 3350 □ □
Cr: 1500 □ □
Zn: □ □

FETTLØS. FORB.:
TOTAL 21
PERSISTENT 13

TILTAK
TILTAK

AKUTTOX. ALGER
(1C₅₀): 11 ml/l.

AKUTTOX FISK (4d LC₅₀): 140

NANOMETRISK BOD:

5 10 15 20

Døgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

Kommentarer:
Prøven har en "gunstig" pH med relativt høyt innhold av oppløste salter. En betydelig konsentrasjon av både kobber og krom og et betydelig innhold av lett nedbrytbart organisk stoff. Den viser en betydelig toksisitet overfor mikroorganismer og overfor alger, mens toksisiteten overfor fisk er moderat til tross for et høyt kobberinnhold. Dette sammen med det relativt høye innhold av persistente fettløselige forbindelser gjør at prøven må klassifiseres som
toksisk.
Prøve nr. 26
Prøven tatt 22.9.77
pH 7,8
κ μS/cm
ALK. (pH 4,5) ml 0,1 N HCl/l
ASID. ml 0,1 N NaOH/l

PRØVEBESKRIVELSE:
Appreturbad "wash & wear".
Arkofix NC 120 g/l, Casafaret P kons.
20 g/l, Katalysator TS f1. 30 g/l, soda 0,75 g/l

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.

70 ML/L

LAV □

HØY □

METALLER:

CU: < 50 □ □
CR: < 50 □ □
ZN: □ □

TOTAL PERSISTENT
Mg/l:

FETTLØS. FORB.:

TILTAK

TILTAK

AKUTTOX. ALGER
(IC₅₀):

AKUTTOX FISK (4d LC₅₀):

MANOMETRISK BOD:

BOD (mg O₂/l)
8000
5000
3000
1000
500
0

5 10 15 20

Døgn

IDENTIFIKASJON AV AKTIV SUBSTANS:

..

KOMMENTARER:
Prøven har lav pH og den høye lednings-
øvnen viser at der er mye oppløste salter.
Innholdet av tungt nedbrytbart organisk
stoff er høyt og likeledes er toksisiteten
overfor mikroorganismer stor. Prøven må
sammenlignes med prøvene 3 og 11 ettersom
de er fra samme type behandling. Som nevnt
representerer disse prøvene et lite volum
relativt'sett og bør bl.a. p.g.a. sitt
høye innhold av organisk stoff og høye
toksisitet overfor mikroorganismer (og
alger og fisk) karakteriseres som

TOKSISK
Prøve nr. 27
Prøven tatt 22.9.77
pH 2.6
κ 2563 μS/cm
ALK (pH 4.5) 484 ml 0,1 N HCl/l
ASID 484 ml 0,1 N NaOH/l

PRØVEBESKRIVELSE:
Appreturbad - komb. vannavstøtende og flammesikring.
Phobotex FTC 60 g/l, Pyrovatex CP 630 g/l.
Lyofix CHN 60 g/l, Eddiksyre, 80% ig 7,5 ml/l (NB Prøven måtte fornyttes med destillert vann 1:10).

AKUTTOX. MIKROORG.:
TTC, kons. for 50 % aktivitet.
140 ml/l

METALLER:
CU: < 50
CR: < 50
ZN:

FETTLOŚ. FORB.:
TOTAL
PERSISTENT

MG/l:

TILTAK
TILTAK

IDENTIFIKASJON AV AKTIV SUBSTANS

PRØVEN har en lav pH og et høyt innhold av oppkløpte salter, og fremfor alt mye organiske stoff. P.g.a. tekniske vanskeligheter var det ikke mulig å få et uttrykk for innholdet av persistente fettlośelige forbindelser. Prøven viser stor toksisitet overfor alle tre organismityper. Selv om det organiske stoff tilsynelatende er relativt lett tilgjengelig for mikroorganismer er konsentrasjonen av organiske stoff så høy at dette vannet bør gies en særbehandling, og i alle fall karakteriseres som

TOKSISK
Prøven er relatert sur og rik på oppløste salter, og har en stor bufferkapasitet. Innholdet av organisk stoff er høyt og dette organiske stoff synes tungt nedbrytbart. Innholdet av fettløsige persistente forbindelser har det ikke vært mulig å bestemme, p.g.a. prøvene konsisten har det vært store ekstraksjons- og separasjonsvanskeligheter. Prøven viser imidlertid høy toksisitet overfor mikroorganismer og overfor alger og overfor fisk. En særbehandling av denne type avløpsvann synes rimelig, særlig på grunnlag av de høye konsentrasjonen av organisk stoff. Denne prøven faller i alle fall innenfor gruppen.

TOKSISK
Vannforb. delprosess: 1,5 m³/d
Vannforb. totalt: 2081 m³/d

PRØVEPROCESSE: Kont. □ - Diskont. x

PRØVEBESKRIVELSE:
- Orolf-farging.
- Astrazonolgelb GL 200Z
- Astrazonolgelb 7 GL 200Z
- Irgason DAM
- Tinegal W
- Eddiksyre
- Vann

METALLER:
- Cu: < 50 □ □
- Cr: < 50 □ □
- Zn: □ □

FETTLØS. FORB.: TOTAL PERSISTENT
- Mg/L: .23... 1,1...

AKUTTOX. MIKROORG.:
- TTC, kons. for 50 % aktivitet.
 300 ml/l

AKUTTOX. ALGER (IC₅₀): 20 ml/l...

AKUTTOX FISK (4d IC₅₀): 20...

MANOMETRISK BOD:

IDENTIFIKASJON AV AKTIV SUBSTANS:

Kommentarer:
Prøven er moderat sur og har et relativt lite innhold av oppløste salter. Prøven har et relativt moderat innhold av tungt nedbrytbart organisk stoff og har toksisk virkning overfor både mikroorganismer, alger og fisk. Innholdet av persistente fettløselige forbindelser er moderat, likeledes er innholdet av kobber og krom lavt. Prøven representerer et relativt lite avløpsvolum og ettersom det organiske stoffinnhold ikke er avskrekkende høyt, og til en viss grad nedbrytbart, vil det være rimelig å gruppere denne prøven innenfor BOD-VANN.
Prøve nr. 30
Prøvenatt 20.9.77
pH 5,1
κ 2877 µS/cm
ALK (pH 4,5) 11 ml 0,1 N HCl/l
ASID 23 ml 0,1 N NaOH/l

Vannforb. delprosess: 3,6 m³/d
Vannforb. totalt: 2081 m³/d

PROSESS: Kont. Diskont.

PRØVEBESKRIVELSE:
- Kromfarging - U11
- Diamantehtunkelblau RRL: 1,320 g
- Blauciellauchrom B: 300 g
- Erloehrombrilliantviolet R: 83 g
- Myresyre: 1,5 liter
- Vann: 2,250 g
- Krom: 3,600 liter

METALLER:
- Cu: < 50 µg/l
- Cr: < 50 µg/l
- Zn: < 50 µg/l

FETTLØS. FORB:
- TOTAL: 2,7 mg/l
- PERSISTENT 1,0 mg/l

TILTAK

AKUTTOX. MIKROORG.:
TTC, kons. for 50% aktivitet: 600 ml/l

LAV

HØY

TILTAK

AKUTTOX. ALGER:
(TC₅₀): 6 ml/l

AKUTTOX. FISK (4d LC₅₀): 220

NANOMETRISK BOD:
BOD 5 10 15 20

Døn

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:
Prøven har en "gunstig" pH og relativt moderat innhold av oppløste salter. Det organiske stoffinnhold er lavt og tilsynelatende lett nedbrytbart. Det er lite av persistente fettløselige forbindelser og toksisiteten overfor fisk og mikroorganismer er liten, mens toksisiteten overfor alger er en del mer markert. Det totale krominnhold er betydelig. På grunnlag av det høye krominnhold og med støtte i akut-toksisiteten overfor alger må denne prøven karakteriseres som "TOKSISK".

x) ved oppslutning: 24 mg/l
Vannforbr. delprosess: 290 m³/d
Vannforbr. totalt: 2081 m³/d

PROSESS: Kont. X Diskont.

PRØVEBESKRIVELSE:

Svovelfarging - Bomull (Pad-steam).
- Immeiali/direktblau VBR 45 g/l
- Svovelnatrium 50 g/l
- Erkantol 5 g/l
- Lut 7 g/l
- Fargebad forbruk ca. 16 l/min.
- Krom/Eddiksyre 30/90 g/l

AKUTTOX. MIKROORG.

- TTC, konsen for 50% aktivitet.
- Interferens (20% ved 200 mg/l)

METALLER:

- Cu: < 50 µg/l
- Cr: < 50 µg/l
- Zn: —

FETTLØS. FORB.:

- TOTAL MG/L: 33
- PERSISTENT 4.0

IDENTIFIKASJON AV AKTIV SUBSTANS

NO MONOMETRISK BOD:

- BOD 50/1

IDENTIFIKASJON AV AKTIV SUBSTANS:

KOMMENTARER:

Prøven er basisk med høyt totalinnhold av krom og relativt høy konsentrasjon av fettløselige forbindelser og persistente fettløselige stoff. Til tross for fargeinterferens tyder resultatene på en viss toksisitet for mikroorganismer. På den annen side er en moderat toksisitet overfor alger. På bakgrunn av det relativt store vannvolum som er involvert, den høye konsentrasjon av persistente fettløselige forbindelser og det høye totalinnhold av krom, må denne prøven falle inn under gruppen

TOKSISK

x) ved oppslutning 16,5 mg/l
4. MANUELL BEARBEIDELSE

Det umiddelbare problem man står overfor når man skal nyttiggjøre seg disse resultatene er om det screening-test-opplegget som de biologiske og kjemiske vurderingene skulle baseres på er tilstrekkelig, om noen av analysene er overflødige og dessuten hvilke konsentrasjoner og toksisitetsnivåer som skal legges til grunn for HØY- og LAV-grupperingen.

Ved ensidig å vurdere screeningresultatene (TTC, metaller, fettløs persistent og TOC/BOD) og benytte følgende kriterier for "ikke tosk" avløpsvann:

\[
\begin{align*}
TTC & > 200 \text{ ml/l} \quad (\frac{1}{TTC} < 5 \cdot 10^{-3}) \\
\text{Cu og Cr} & < 2500 \text{ µg/l} \\
\text{Tot fettløs. forb.} & < 20 \text{ mg/l} \\
\text{Persistent fettløs. forb.} & < 2,0 \text{ mg/l} \\
\frac{\text{TOC}}{\text{BOD}} & < 2,0
\end{align*}
\]

er det bare prøvene 4, 5 og 17 som ikke er TØKSISK, mens en mer individuell vurdering - gitt på sidene foran resulterte i at totalt 15 av prøvene ble klassifisert som "ikke tosk". Det synes riktig derfor å fremheve at skjønnsmessige vurderinger er nødvendig når man skal karakterisere og klassifisere avløpsvann med støtte i kjemiske og biologiske analyseresultater.

En annen mulig fremgangsmåte for manuell bearbeidelse kan være å ordne etter f.eks. avtagende toksisitet eller konsentrasjon som angitt i tabell nedenfor.

<table>
<thead>
<tr>
<th>Tabell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tallene angir prøvenummer og er ordnet etter økende toksisitet og konsentrasjon</td>
</tr>
<tr>
<td>TOX FISK</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
Sammenholder man de tre toksisitetsparametrene finner man at blandt de 10 prøvene som samtidig virker mest toksisk på fisk, på alger og på mikroorganismer er følgende 5 prøver blant de som virket mest toksiske på samtlige 3 organismetyper: Prøvene 3, 27, 11, 28, 16.

Sammenholder man imidlertid dette med den øvrige del av tabellen ovenfor synes det ikke å være noen iøynefallende sammenheng mellom toksiske virkninger og innholdet av hverken persistente stoffer, biologisk nedbrytbarhet, eller konsentrasjon av kobber og krom.

De prøver som på denne måten er sortert ut har til felles at de alle er fra etterbehandlingsbad og ettersom årsaken til den relativt høye toksisiteten ikke finnes blant de øvrige karakteriseringsparametrene er det nærliggende å analysere disse prøvene noe mer inngående og eventuelt de kjemikalierne som badene er komponert av:

Tabell 3

<table>
<thead>
<tr>
<th>PRØVE NR.</th>
<th>3</th>
<th>11</th>
<th>16</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIXAPREN CPN</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>DIMETHYLOL-GLYOXAL, MONOUREA</td>
<td></td>
</tr>
<tr>
<td>" TN</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TINOVENTIN JU</td>
<td>x</td>
<td>x</td>
<td>ALKYL-ARYL-POLYGLYCOL-ETHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILIGREN PW</td>
<td>x</td>
<td>x</td>
<td>STEARYLHARNSTOFFDERIVAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDENSOL FN</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST BITEX D460</td>
<td>x</td>
<td>TRIAZINHARZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIGNENITT US</td>
<td>x</td>
<td>ETHYLENE-UREA-forbindelse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg Cl₂</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRGAPÁDOL NNU</td>
<td>x</td>
<td>SILICON-forbindelse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOBOTEX FTC</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYROVATEX CP</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYOFIX CAN</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDDIKSyre</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURPIX</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOSFORSYRE</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. PRINSIPAL KOMPONENTANALYSE - FAKTORANALYSE

Utgangspunktet for de statistiske analysemetoder vi her vil diskutere er et datamateriale bestående av n prøver av p variable (kjemiske og biologiske metoder). Et slikt datamateriale kan fremstilles i en to-dimensjonal datamatrise hvor radene i matrisen svarer til verdiene for alle variable for en bestemt prøve, mens kolonnene i matrisen angir alle verdier for en bestemt variabel over alle prøver. Vi antar her i tillegg at datamatrisen er fullstendig slik at det i alt foreligger n x p verdier.

Til å analysere variasjonen i et slikt datamateriale er det i dag utviklet en rekke dataanalyse-metoder hvorav prinsipal komponentanalyse og ulike metoder for faktoranalyse hører med.

Noen av hovedhensiktene ved bruk av denne type metoder er å få til en kraftig datareduksjon og en enkel datapresentasjon. I stedet for å fokusere oppmerksomheten på alle de n x p verdiene simultant og den informasjonsmengde som ligger i disse, leter vi etter strukturelle sammenhenger i dataene. Hvis vi finner slike sammenhenger kan vi uttrykke informasjonen i dataene med strukturelle sammenhenger i stedet for ved enkelt verdier. Om sammenhengene er sterke, vil informationsstapet ved en strukturell framstilling vanligvis være relativt lite sammenlignet med informasjonen i alle enkelt verdier. Ved siden av at en strukturell framstilling vanligvis er meget kompakt, er den ofte lettere å illustrere ved grafiske metoder, noe som i neste omgang kan gi opphav til nye konstruktive ideer oghypoteser.

Ved prinsipal komponentanalyse som foretas på en kovarians- eller korrelasjonsmatrise forsøker man først å bestemme antall underliggende dimensjoner i dataene. Deretter forsøker man å skaffe en enkel representasjon for disse dimensjonene nemlig ved såkalte prinsipale komponenter. Om disse komponentene har noen problemmessig fortolkning eller ikke bryr man seg her lite om.

I faktoranalyse går man noe videre enn i prinsipal komponentanalyse. For det første så tar man her utgangspunkt i en faktoranalyse modell som innebærer at man pålegger dataene spesielle forutsetninger og strukturer. En slik modell innebærer at man splitter opp variasjonen i dataene i to ulike deler, nemlig en del som skyldes de underliggende felles faktorer og en annen del som skyldes egenskaper ved variablene.
Hensikten med faktoranalyse er vanligvis:

i) å bestemme antall underliggende felles faktorer (dimensjoner) for de variable relativt til en faktoranalyse modell, samt å finne en enkel representasjon for sammenhengen mellom faktorene og variablene.

ii) å oppnå tolkbare faktorer ved å foreta transformasjoner av en løsning over til en annen slik at det blir mulig å tolke faktorene ut fra deres relasjoner til bestemte grupper av variable.

iii) å gi mulighet til å vurdere prøvene ut fra deres estimerte scorer for de ulike faktorer.

<table>
<thead>
<tr>
<th>PROVE</th>
<th>TEKST</th>
<th>BETAL</th>
<th>BETAL</th>
<th>KU</th>
<th>GR</th>
<th>PH</th>
<th>KONDI</th>
<th>HCL</th>
<th>ALK</th>
<th>ASID</th>
<th>TOC/R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FETLØS TOT.</td>
<td>FETLØS PERS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FORBEHANDLING</td>
<td>78.0</td>
<td>2.3</td>
<td>120.0</td>
<td>27.0</td>
<td>5.4</td>
<td>5100.0</td>
<td>88.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>FARGING</td>
<td>31.0</td>
<td>4.3</td>
<td>2900.0</td>
<td>13.0</td>
<td>12.2</td>
<td>14000.0</td>
<td>1238.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EITRBEHANDLING</td>
<td>81.0</td>
<td>4.2</td>
<td>50.0</td>
<td>92.0</td>
<td>2.9</td>
<td>7000.0</td>
<td>742.0</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FARGING</td>
<td>2.0</td>
<td>0.3</td>
<td>50.0</td>
<td>5.0</td>
<td>5.0</td>
<td>6608.0</td>
<td>37.0</td>
<td>75.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FARGING</td>
<td>8.0</td>
<td>1.5</td>
<td>96.0</td>
<td>920.0</td>
<td>7.9</td>
<td>4259.0</td>
<td>29.0</td>
<td>52.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FARGING</td>
<td>4.2</td>
<td>0.4</td>
<td>50.0</td>
<td>5200.0</td>
<td>1.1</td>
<td>1493.0</td>
<td>0.0</td>
<td>540.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FARGING</td>
<td>1.2</td>
<td>0.1</td>
<td>2000.0</td>
<td>50.0</td>
<td>4.0</td>
<td>10770.0</td>
<td>1.0</td>
<td>42.0</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FARGING</td>
<td>1.0</td>
<td>0.3</td>
<td>3900.0</td>
<td>50.0</td>
<td>10.7</td>
<td>30000.0</td>
<td>3203.0</td>
<td>0.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FARGING</td>
<td>8.0</td>
<td>1.6</td>
<td>460.0</td>
<td>59.0</td>
<td>10.5</td>
<td>1625.0</td>
<td>109.0</td>
<td>0.0</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>FARGING</td>
<td>2.5</td>
<td>0.9</td>
<td>715.0</td>
<td>50.0</td>
<td>10.1</td>
<td>295.0</td>
<td>18.0</td>
<td>0.0</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EITRBEHANDLING</td>
<td>13.0</td>
<td>1.6</td>
<td>50.0</td>
<td>50.0</td>
<td>2.9</td>
<td>7186.0</td>
<td>0.0</td>
<td>680.0</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FARGING</td>
<td>77.0</td>
<td>7.5</td>
<td>2750.0</td>
<td>150.0</td>
<td>10.0</td>
<td>4136.0</td>
<td>268.0</td>
<td>0.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EITRBEHANDLING</td>
<td>56.0</td>
<td>8.6</td>
<td>615000.0</td>
<td>50.0</td>
<td>3.8</td>
<td>3309.0</td>
<td>0.0</td>
<td>1603.0</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>FARGING</td>
<td>50.0</td>
<td>50.0</td>
<td>11.0</td>
<td>22200.0</td>
<td>9.0</td>
<td>22209.0</td>
<td>689.0</td>
<td>0.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>FARGING</td>
<td>11.3</td>
<td>0.6</td>
<td>1250.0</td>
<td>50.0</td>
<td>12.3</td>
<td>15871.0</td>
<td>1563.0</td>
<td>0.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>EITRBEHANDLING</td>
<td>9.6</td>
<td>0.4</td>
<td>50.0</td>
<td>50.0</td>
<td>7.7</td>
<td>8117.0</td>
<td>36.0</td>
<td>13.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>FARGING</td>
<td>50.0</td>
<td>2250.0</td>
<td>3.8</td>
<td>972.0</td>
<td>0.0</td>
<td>62.0</td>
<td>0.0</td>
<td>101.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>FARGING</td>
<td>10.8</td>
<td>2.3</td>
<td>50.0</td>
<td>50.0</td>
<td>4.4</td>
<td>574.0</td>
<td>0.0</td>
<td>101.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>FARGING</td>
<td>56.0</td>
<td>2.3</td>
<td>50.0</td>
<td>50.0</td>
<td>7.0</td>
<td>3295.0</td>
<td>28.0</td>
<td>33.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FARGING</td>
<td>240.0</td>
<td>0.7</td>
<td>50.0</td>
<td>390.0</td>
<td>5.1</td>
<td>2792.0</td>
<td>35.0</td>
<td>25.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FARGING</td>
<td>38.0</td>
<td>27.0</td>
<td>50.0</td>
<td>50.0</td>
<td>5.9</td>
<td>3257.0</td>
<td>3.0</td>
<td>37.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>FARGING</td>
<td>38.0</td>
<td>0.9</td>
<td>50.0</td>
<td>200.0</td>
<td>1.0</td>
<td>446.0</td>
<td>12.0</td>
<td>47.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>EITRBEHANDLING</td>
<td>50.0</td>
<td>50.0</td>
<td>2.7</td>
<td>7910.0</td>
<td>0.0</td>
<td>4092.0</td>
<td>75.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>EITRBEHANDLING</td>
<td>50.0</td>
<td>50.0</td>
<td>6.6</td>
<td>3000.0</td>
<td>3.0</td>
<td>11.0</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>FARGING</td>
<td>21.0</td>
<td>13.0</td>
<td>3600.0</td>
<td>1500.0</td>
<td>6.0</td>
<td>13930.0</td>
<td>61.0</td>
<td>196.0</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>EITRBEHANDLING</td>
<td>50.0</td>
<td>50.0</td>
<td>1.8</td>
<td>12550.0</td>
<td>0.0</td>
<td>392.0</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>EITRBEHANDLING</td>
<td>50.0</td>
<td>50.0</td>
<td>2.6</td>
<td>2563.0</td>
<td>0.0</td>
<td>484.0</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>EITRBEHANDLING</td>
<td>50.0</td>
<td>50.0</td>
<td>2.3</td>
<td>4495.0</td>
<td>0.0</td>
<td>5048.0</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>FARGING</td>
<td>23.0</td>
<td>1.1</td>
<td>50.0</td>
<td>90.0</td>
<td>3.8</td>
<td>617.0</td>
<td>0.0</td>
<td>86.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>FARGING</td>
<td>2.7</td>
<td>1.0</td>
<td>50.0</td>
<td>90.0</td>
<td>5.1</td>
<td>2877.0</td>
<td>11.0</td>
<td>23.0</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>FARGING</td>
<td>33.0</td>
<td>4.0</td>
<td>50.0</td>
<td>50.0</td>
<td>11.7</td>
<td>4701.0</td>
<td>215.0</td>
<td>0.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>PROBE</td>
<td>TEKST</td>
<td>TOX. FISK</td>
<td>TOX. ALGER</td>
<td>TOX. MICRO</td>
<td>mg 0/l</td>
<td>mg C/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FORBEHANDL</td>
<td>33.333</td>
<td>0.013</td>
<td>0.002</td>
<td>200</td>
<td>360</td>
<td>380</td>
<td>500</td>
<td>400</td>
<td>450</td>
<td>2640</td>
</tr>
<tr>
<td>2</td>
<td>FARGING</td>
<td>0.590</td>
<td>0.333</td>
<td>0.029</td>
<td>0</td>
<td>3400</td>
<td>3600</td>
<td>4000</td>
<td>3900</td>
<td>4900</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>ETTERBEHANDL</td>
<td>0.007</td>
<td>0.006</td>
<td>0.001</td>
<td>1675</td>
<td>634</td>
<td>248</td>
<td>280</td>
<td>330</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FARGING</td>
<td>0.006</td>
<td>0.004</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>FARGING</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>FARGING</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>FARGING</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>FARGING</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>FARGING</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>FARGING</td>
<td>0.006</td>
<td>0.001</td>
<td>0.001</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>11</td>
<td>ETTERBEHANDL</td>
<td>0.333</td>
<td>3.330</td>
<td>0.020</td>
<td>45000</td>
<td>62000</td>
<td>36000</td>
<td>17600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FARGING</td>
<td>0.040</td>
<td>0.002</td>
<td>0.002</td>
<td>1595</td>
<td>1595</td>
<td>36000</td>
<td>17600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ETTERBEHANDL</td>
<td>0.125</td>
<td>0.007</td>
<td>0.007</td>
<td>80000</td>
<td>80000</td>
<td>36000</td>
<td>17600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>FARGING</td>
<td>0.294</td>
<td>0.063</td>
<td>0.008</td>
<td>250</td>
<td>800</td>
<td>1000</td>
<td>2840</td>
<td>1250</td>
<td>1750</td>
<td>1600</td>
</tr>
<tr>
<td>15</td>
<td>FARGING</td>
<td>0.294</td>
<td>0.063</td>
<td>0.008</td>
<td>250</td>
<td>800</td>
<td>1000</td>
<td>2840</td>
<td>1250</td>
<td>1750</td>
<td>1600</td>
</tr>
<tr>
<td>16</td>
<td>ETTERBEHANDL</td>
<td>0.167</td>
<td>2.500</td>
<td>0.014</td>
<td>400</td>
<td>9000</td>
<td>12900</td>
<td>15100</td>
<td>14000</td>
<td>18300</td>
<td>24000</td>
</tr>
<tr>
<td>17</td>
<td>FARGING</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>109</td>
<td>135</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>18</td>
<td>FARGING</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>109</td>
<td>135</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>19</td>
<td>FARGING</td>
<td>0.040</td>
<td>0.001</td>
<td>0.001</td>
<td>170</td>
<td>370</td>
<td>480</td>
<td>1075</td>
<td>600</td>
<td>830</td>
<td>840</td>
</tr>
<tr>
<td>20</td>
<td>FARGING</td>
<td>0.040</td>
<td>0.001</td>
<td>0.001</td>
<td>170</td>
<td>370</td>
<td>480</td>
<td>1075</td>
<td>600</td>
<td>830</td>
<td>840</td>
</tr>
<tr>
<td>21</td>
<td>FARGING</td>
<td>0.013</td>
<td>0.040</td>
<td>0.001</td>
<td>290</td>
<td>330</td>
<td>360</td>
<td>300</td>
<td>370</td>
<td>400</td>
<td>920</td>
</tr>
<tr>
<td>22</td>
<td>FARGING</td>
<td>0.008</td>
<td>0.001</td>
<td>0.001</td>
<td>250</td>
<td>1850</td>
<td>1900</td>
<td>2270</td>
<td>1950</td>
<td>2200</td>
<td>1260</td>
</tr>
<tr>
<td>23</td>
<td>ETTERBEHANDL</td>
<td>0.167</td>
<td>2.000</td>
<td>0.001</td>
<td>250</td>
<td>1850</td>
<td>1900</td>
<td>2270</td>
<td>1950</td>
<td>2200</td>
<td>1260</td>
</tr>
<tr>
<td>24</td>
<td>ETTERBEHANDL</td>
<td>0.021</td>
<td>0.008</td>
<td>0.001</td>
<td>250</td>
<td>1850</td>
<td>1900</td>
<td>2270</td>
<td>1950</td>
<td>2200</td>
<td>1260</td>
</tr>
<tr>
<td>25</td>
<td>FARGING</td>
<td>0.007</td>
<td>0.090</td>
<td>0.025</td>
<td>150</td>
<td>240</td>
<td>270</td>
<td>400</td>
<td>280</td>
<td>330</td>
<td>1000</td>
</tr>
<tr>
<td>26</td>
<td>ETTERBEHANDL</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>400</td>
<td>3000</td>
<td>3550</td>
<td>3875</td>
<td>4600</td>
<td>7300</td>
<td>20000</td>
</tr>
<tr>
<td>27</td>
<td>ETTERBEHANDL</td>
<td>1.250</td>
<td>5.000</td>
<td>0.007</td>
<td>96500</td>
<td>152000</td>
<td>200000</td>
<td>250000</td>
<td>146000</td>
<td>146000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ETTERBEHANDL</td>
<td>0.525</td>
<td>3.330</td>
<td>0.016</td>
<td>0</td>
<td>0</td>
<td>6000</td>
<td>39000</td>
<td>20000</td>
<td>25000</td>
<td>146000</td>
</tr>
<tr>
<td>29</td>
<td>FARGING</td>
<td>0.050</td>
<td>0.050</td>
<td>0.003</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>30</td>
<td>FARGING</td>
<td>0.005</td>
<td>0.107</td>
<td>0.002</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>31</td>
<td>FARGING</td>
<td>0.004</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.1 Statistisk bearbeidelse

Til statistisk bearbeidelse av datamaterialet, beskrevet i kap. 3 og resymert i tabell 4 foran, er det benyttet et regnemaskinprogram P4M fra BMDP-serien ved Dixon (1975). Siden datamatriisen for alle prøver og variable ikke er fullstendig er det i stedet valgt 4 ulike delmatriser som alle er fullstendige. En separat analyse er så foretatt for hver av disse delmatrisene.

Da antallet av prøver for hver av disse datamatriisen er lite relativt til antallet av variable, har vi benyttet prinzipal komponentanalyse på korrelasjonsmatrisene i stedet for en tradisjonell faktoranalyse-metode under punkt i)nevnt ovenfor. Videre har vi benyttet Bivartimin rotasjon under punkt ii) av analysene, mens vi under punkt iii) har benyttet regresjonsmetoden.

Av praktiske grunner har vi her valgt å ta for oss en av de fire analysene og presentere resultatene fra denne relativt utførlig, mens resultatene fra de øvrige analysene bare blir summarisk presentert.

Analyse I:

Denne analyse er foretatt for 12 prøver av 12 variable. De prøvene som er benyttet er nr.: 2, 3, 8, 9, 11, 12, 16, 25, 27, 28, 29 og 30, mens variablene er: TOX-FISK, TOX-ALGER, TOX-MIKRO, BOD7-N, TOC, CU, CR, PH, KOND, ALK, ASID og TOC/BOD. I analysene blir både prøvene og variablene nummerert fra 1 til 12 i den rekkefølge de blir lest inn. Alle observasjoner er blitt tillagt samme vekt i analysen.

\[Y_{ij} = \frac{X_{ij} - \bar{X}_j}{S_j}; \quad i = 1, \ldots, n; \quad j = 1, \ldots, p \]
hvor X_{ij} er opprinnelig verdi for prøve i og variabel j, mens \bar{X}_j og S_j er middeltall og standardavvik for variabel j. Standardscorene er spesielt nyttige til å finne feil i dataene samt til å karakterisere ekstreme prøver. En standardscore på f.eks. 3.2 for en prøve sier oss at verdien ligger 3.2 standardavvik fra middeltallet. Eksempler på utskrifter hvor også korrelasjonsmatrisen er tatt med, er:

UNIVARIATE SUMMARY STATISTICS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>MEAN</th>
<th>STANDARD DEVIATION</th>
<th>COEFFICIENT OF VARIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TOX-FI</td>
<td>3.0331</td>
<td>9.54904</td>
<td>3.148209</td>
</tr>
<tr>
<td>2 TOX-AL</td>
<td>1.23653</td>
<td>1.78957</td>
<td>1.447188</td>
</tr>
<tr>
<td>3 TOX-MI</td>
<td>.01050</td>
<td>.00996</td>
<td>.943477</td>
</tr>
<tr>
<td>4 BOD/N</td>
<td>19724.5000</td>
<td>29495.49288</td>
<td>1.49534</td>
</tr>
<tr>
<td>5 TOC</td>
<td>33236.0000</td>
<td>56924.54888</td>
<td>1.71274</td>
</tr>
<tr>
<td>6 CU</td>
<td>1141.66667</td>
<td>1566.47742</td>
<td>1.37209</td>
</tr>
<tr>
<td>7 CR</td>
<td>179.56333</td>
<td>417.14734</td>
<td>2.32286</td>
</tr>
<tr>
<td>8 PH</td>
<td>6.39167</td>
<td>3.66741</td>
<td>1.9737</td>
</tr>
<tr>
<td>9 KOND</td>
<td>7211.33333</td>
<td>3086.11816</td>
<td>1.121307</td>
</tr>
<tr>
<td>10 ALK</td>
<td>471.58333</td>
<td>941.98430</td>
<td>1.99749</td>
</tr>
<tr>
<td>11 ASIO</td>
<td>545.83333</td>
<td>1441.35611</td>
<td>2.64965</td>
</tr>
<tr>
<td>12 TOC800</td>
<td>2.29833</td>
<td>2.32064</td>
<td>1.050945</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SMALLEST VALUE</th>
<th>SMALLEST FIRST STANDARD CASE FOR</th>
<th>LARGEST VALUE</th>
<th>LARGEST FIRST STANDARD CASE FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TOX-FI</td>
<td>.0050</td>
<td>-.32</td>
<td>12</td>
<td>33.3330</td>
</tr>
<tr>
<td>2 TOX-AL</td>
<td>.0020</td>
<td>-.09</td>
<td>6</td>
<td>5.0000</td>
</tr>
<tr>
<td>3 TOX-MI</td>
<td>.0010</td>
<td>-.95</td>
<td>4</td>
<td>0.0290</td>
</tr>
<tr>
<td>4 BOD/N</td>
<td>39.0000</td>
<td>-.67</td>
<td>3</td>
<td>965.000.000</td>
</tr>
<tr>
<td>5 TOC</td>
<td>92.0000</td>
<td>-.58</td>
<td>3</td>
<td>15200.000.000</td>
</tr>
<tr>
<td>6 CU</td>
<td>40.0000</td>
<td>-.70</td>
<td>2</td>
<td>3900.000.000</td>
</tr>
<tr>
<td>7 CR</td>
<td>13.0000</td>
<td>-.40</td>
<td>1</td>
<td>15000.000.000</td>
</tr>
<tr>
<td>8 PH</td>
<td>2.3000</td>
<td>-1.12</td>
<td>10</td>
<td>1250.000.000</td>
</tr>
<tr>
<td>9 KOND</td>
<td>617.0000</td>
<td>-.82</td>
<td>11</td>
<td>30000.000.000</td>
</tr>
<tr>
<td>10 ALK</td>
<td>.0000</td>
<td>-.50</td>
<td>5</td>
<td>320.000.000.000</td>
</tr>
<tr>
<td>11 ASIO</td>
<td>.0000</td>
<td>-.38</td>
<td>1</td>
<td>5006.000.000</td>
</tr>
<tr>
<td>12 TOC800</td>
<td>.2000</td>
<td>-.87</td>
<td>8</td>
<td>8700.000.000</td>
</tr>
</tbody>
</table>
De prinsipale komponenter blir så bestemt ut fra korrelationsmatrisen. Antallet av disse er lik antallet av variable i analyseen, men bare noen få av de prinsipale komponenter vil vanligvis bli benyttet videre i analysen.

Den totale variasjon i dataene blir definert som summen av diagonalelementene i korrelationsmatrisen, dvs. 12 her. Ved å vurdere hvor meget
hver prinsipal komponent bidrar med til å forklare den totale variasjon, kan man få et visst grunnlag for å bestemme antall komponenter som er nødvendig for å gi en noenlunde adekvat representasjon av dataene.

Siden de mest betydningsfulle prinsipale komponenter vil bli brukt som en enkel representasjon av de underliggende faktorer relativt til de variable, vil vi i fortsettelsen snakke om faktorer i stedet for prinsipale komponenter.

På det foreliggende datamaterialet fikk vi følgende resultat:

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>VARIANCE EXPLAINED</th>
<th>CUMULATIVE PROPORTION OF TOTAL VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.691</td>
<td>.391</td>
</tr>
<tr>
<td>2</td>
<td>2.009</td>
<td>.554</td>
</tr>
<tr>
<td>3</td>
<td>1.046</td>
<td>.716</td>
</tr>
<tr>
<td>4</td>
<td>1.024</td>
<td>.803</td>
</tr>
<tr>
<td>5</td>
<td>.754</td>
<td>.886</td>
</tr>
<tr>
<td>6</td>
<td>.363</td>
<td>.951</td>
</tr>
<tr>
<td>7</td>
<td>.149</td>
<td>.981</td>
</tr>
<tr>
<td>8</td>
<td>.056</td>
<td>.999</td>
</tr>
<tr>
<td>9</td>
<td>.016</td>
<td>1.000</td>
</tr>
<tr>
<td>10</td>
<td>.001</td>
<td>1.000</td>
</tr>
<tr>
<td>12</td>
<td>-.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

THE VARIANCE EXPLAINED BY EACH FACTOR IS THE EIGENVALUE FOR THAT FACTOR.

Vi ser at de 3 første faktorer forklarer 71.6 % av den totale variasjon, de 4 første faktorer forklarer 80.3 %, osv. Hovedproblemet her er hvor mange faktorer skal vi benytte i løsningen?

En metode foreslått av Cattell (1966) går ut på at vi skal vurdere egenverdiene for korrelationsmatrisen og se hvor det er et naturlig sprang i størrelsen av disse. Man skal så benytte like mange faktorer som det er "store" egenverdier. I tilfellet ovenfor er det ikke noe slikt naturlig sprang i egenverdiene, noe som indikerer at antall faktorer som løsningen baseres på er en høyest diskutabel sak.
En annen metode foreslått av Kaiser (1960) går ut på å bestemme antall faktorer som det antall egenverdier i korrelasjonsmatrisen som er større eller lik 1. Erfaringer fra simuleringseksperimenter har imidlertid vært lite oppmuntrende for metoden. Siden denne metoden er den eneste som er implementert i programmet P4M, er den likevel benyttet her. Vi har følgelig fått en løsning basert på 5 faktorer.

En alternativ metode til å vurdere løsningens godhet er å studere restkorrelasjonene etter at bidragene fra et visst antall faktorer er trukket fra. I vårt tilfelle får vi:

RESIDUAL CORRELATIONS

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-A1</td>
<td>.256</td>
<td>.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-AL</td>
<td>.082</td>
<td>.980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-V1</td>
<td>.114</td>
<td>.703</td>
<td>.216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-| .140</td>
<td>.957</td>
<td>-.045</td>
<td>.137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRC</td>
<td>.315</td>
<td>-.013</td>
<td>.026</td>
<td>.995</td>
<td>.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>.052</td>
<td>-.001</td>
<td>.058</td>
<td>.014</td>
<td>.013</td>
<td>.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>.001</td>
<td>-.003</td>
<td>.032</td>
<td>.007</td>
<td>-.072</td>
<td>-.016</td>
<td>.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0</td>
<td>.033</td>
<td>.066</td>
<td>.051</td>
<td>.014</td>
<td>-.011</td>
<td>-.009</td>
<td>-.011</td>
<td>.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>.051</td>
<td>.019</td>
<td>.103</td>
<td>.000</td>
<td>.017</td>
<td>-.010</td>
<td>-.012</td>
<td>.011</td>
<td>.030</td>
<td>.019</td>
</tr>
<tr>
<td>LRC</td>
<td>.035</td>
<td>.006</td>
<td>.033</td>
<td>.057</td>
<td>.009</td>
<td>.001</td>
<td>.009</td>
<td>-.075</td>
<td>-.003</td>
<td>.043</td>
</tr>
<tr>
<td>ASID</td>
<td>.211</td>
<td>-.116</td>
<td>.060</td>
<td>.206</td>
<td>.001</td>
<td>-.011</td>
<td>-.006</td>
<td>-.002</td>
<td>.045</td>
<td>-.073</td>
</tr>
<tr>
<td>TOGA0</td>
<td>.033</td>
<td>.029</td>
<td>.039</td>
<td>.051</td>
<td>-.017</td>
<td>-.038</td>
<td>.001</td>
<td>.021</td>
<td>.014</td>
<td>.026</td>
</tr>
</tbody>
</table>

ASID **TOGA0**

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>.329</td>
<td></td>
</tr>
<tr>
<td>TOGA0</td>
<td>.095</td>
<td>.100</td>
</tr>
</tbody>
</table>

Vi ser her at de fleste restkorrelasjonene er små i tallverdi, noe som viser at en løsning basert på 5 faktorer er relativt bra. Noen mindre avvik finnes dog for ASID mot en rekke av de øvrige variable.
Foreløpige faktorladninger er deretter bestemt for de 5 faktorene med følgende resultat:

Unrotated Factor Loadings (Pattern)

For Principal Components

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX-FI</td>
<td>1</td>
<td>-.422</td>
<td>-.182</td>
<td>.255</td>
<td>.665</td>
</tr>
<tr>
<td>TOX-AL</td>
<td>2</td>
<td>.830</td>
<td>-.263</td>
<td>.370</td>
<td>.156</td>
</tr>
<tr>
<td>TOX-MI</td>
<td>3</td>
<td>.414</td>
<td>.647</td>
<td>.281</td>
<td>-.269</td>
</tr>
<tr>
<td>BOD-N</td>
<td>4</td>
<td>.759</td>
<td>.060</td>
<td>.409</td>
<td>.230</td>
</tr>
<tr>
<td>TOC</td>
<td>5</td>
<td>.821</td>
<td>-.334</td>
<td>.402</td>
<td>.029</td>
</tr>
<tr>
<td>CU</td>
<td>6</td>
<td>-.726</td>
<td>.251</td>
<td>.440</td>
<td>-.056</td>
</tr>
<tr>
<td>CH</td>
<td>7</td>
<td>-.010</td>
<td>.336</td>
<td>.031</td>
<td>-.123</td>
</tr>
<tr>
<td>PH</td>
<td>8</td>
<td>-.866</td>
<td>-.223</td>
<td>-.019</td>
<td>.086</td>
</tr>
<tr>
<td>KOND</td>
<td>9</td>
<td>-.572</td>
<td>-.248</td>
<td>.700</td>
<td>-.223</td>
</tr>
<tr>
<td>ALK</td>
<td>10</td>
<td>-.696</td>
<td>-.172</td>
<td>.592</td>
<td>-.237</td>
</tr>
<tr>
<td>ASI</td>
<td>11</td>
<td>.561</td>
<td>-.309</td>
<td>.272</td>
<td>-.367</td>
</tr>
<tr>
<td>TOCHOL</td>
<td>12</td>
<td>-.020</td>
<td>-.612</td>
<td>-.407</td>
<td>-.430</td>
</tr>
</tbody>
</table>

\[VP = 4.691 \sqrt[3]{2.309} \cdot 1.890 \cdot 1.046 \cdot 1.024 \]

Her angir \(VP \)-verdiene, som er lik egenverdiene, hvor meget hver faktor bidrar med i forklaringen av den totale variasjonen i dataene.

Når man skal forsøke å tolke faktorene, så gjøres det ut fra faktorladningene. Ladninger som er høye i absoluttverdi vil ofte indikere at en faktor har nær tilknytning til de tilhørende variable. Middels høye absoluttladninger vil vanligvis indikere noe lettere tilknytning, mens små absoluttladninger kan forklares som støy.

Bare meget sjelden vil det være mulig å gi noen vettig tolkning av faktorene ut fra foreløpige faktorladninger. I det foreliggende tilfellet ser faktor 1 ut til å ha høye absoluttladninger på litt for mange variable. For de øvrige faktorer ser det heller ikke ut til å være noen klar gruppering av høye absoluttladninger på noen få variable.
For å forsøke å få fram faktorladninger som gir mere tolkbare faktorer, foretas en rotasjon av faktoraksene. Denne rotasjon kan være enten ortogonal eller oblik. I det foreliggende tilfellet er det benyttet en oblik rotasjon hvor man tillater heller moderate avvik fra rette vinkler mellom faktoraksene. Resultatet her ble:

ROTATED FACTOR LOADINGS (PATTERN)

<table>
<thead>
<tr>
<th></th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
<th>FACTOR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX-FI</td>
<td>0.057</td>
<td>0.117</td>
<td>-0.125</td>
<td>-0.005</td>
<td>0.338</td>
</tr>
<tr>
<td>TOX-AL</td>
<td>0.904</td>
<td>-0.167</td>
<td>-0.116</td>
<td>-0.215</td>
<td>0.057</td>
</tr>
<tr>
<td>TOX-MI</td>
<td>0.145</td>
<td>0.069</td>
<td>-0.519</td>
<td>0.279</td>
<td>-0.579</td>
</tr>
<tr>
<td>BOD5-N</td>
<td>0.869</td>
<td>-0.167</td>
<td>-0.172</td>
<td>0.176</td>
<td>0.151</td>
</tr>
<tr>
<td>TOC</td>
<td>0.997</td>
<td>-0.023</td>
<td>0.096</td>
<td>-0.078</td>
<td>0.057</td>
</tr>
<tr>
<td>CU</td>
<td>-0.165</td>
<td>0.520</td>
<td>0.067</td>
<td>0.645</td>
<td>0.292</td>
</tr>
<tr>
<td>CR</td>
<td>0.064</td>
<td>-0.189</td>
<td>-0.105</td>
<td>0.938</td>
<td>-0.134</td>
</tr>
<tr>
<td>PH</td>
<td>-0.406</td>
<td>0.281</td>
<td>0.389</td>
<td>0.204</td>
<td>0.495</td>
</tr>
<tr>
<td>KOND</td>
<td>0.021</td>
<td>0.997</td>
<td>-0.109</td>
<td>-0.099</td>
<td>0.026</td>
</tr>
<tr>
<td>ALK</td>
<td>-0.144</td>
<td>0.944</td>
<td>-0.073</td>
<td>-0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>ASID</td>
<td>0.696</td>
<td>0.128</td>
<td>0.337</td>
<td>0.035</td>
<td>-0.234</td>
</tr>
<tr>
<td>TOCCHOD</td>
<td>0.034</td>
<td>-0.124</td>
<td>0.943</td>
<td>-0.045</td>
<td>-0.065</td>
</tr>
</tbody>
</table>

FACTOR CORRELATIONS FOR ROTATED FACTORS

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
<th>FACTOR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR 1</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACTOR 2</td>
<td>-0.183</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACTOR 3</td>
<td>-0.087</td>
<td>0.113</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACTOR 4</td>
<td>-0.069</td>
<td>0.051</td>
<td>-0.170</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>FACTOR 5</td>
<td>-0.250</td>
<td>0.190</td>
<td>-0.002</td>
<td>-0.013</td>
<td>1.000</td>
</tr>
</tbody>
</table>
For å gjøre tolkbarheten av faktorene enda lettere har man tatt utgangspunkt i faktorladningene gitt ovenfor. Først har man satt de ladninger med absoluttverdi mindre eller lik 0,25 lik 0. Deretter har man sortert de variable etter avtagende absoluttladninger, etter tur for faktor 1, 2 osv. Denne sortering er gjort bare for de ladninger som har absoluttverdier større eller lik 0.5. Dette har resultert i:

Sorted Rotated Factor Loadings (Pattern)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC</td>
<td>5</td>
<td>0.997</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>TOX-AL</td>
<td>2</td>
<td>0.904</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>BOD7-N</td>
<td>4</td>
<td>0.869</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ASID</td>
<td>11</td>
<td>0.696</td>
<td>0.000</td>
<td>0.337</td>
<td>0.000</td>
</tr>
<tr>
<td>KOND</td>
<td>9</td>
<td>0.000</td>
<td>0.997</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ALK</td>
<td>10</td>
<td>0.000</td>
<td>0.944</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Cu</td>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.943</td>
<td>0.000</td>
</tr>
<tr>
<td>TOCROD</td>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.519</td>
<td>0.279</td>
</tr>
<tr>
<td>TOX-MI</td>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.938</td>
</tr>
<tr>
<td>Cr</td>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>PH</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

I det følgende vil vi karakterisere sammenhengen mellom faktorer og variable med adjektivene sterk, middels og svak samt positiv og negativ for positive og negative ladninger henholdsvis. Med sterk mener vi at en ladning har absoluttverdi større enn 0.75, med middels menes absoluttverdi mellom 0.5 og 0.75, mens det med svak menes absoluttverdi mellom 0.25 og 0.5.

Etter dette får vi følgende sammenheng:

1. **faktor:** sterk, positiv : TOC, TOX-AL, BOD7-N
 middels, " : ASID
 svak, negativ : PH

2. faktor: sterk, positiv : KOND, ALK
 middels, " : CU
 svak, " : PH

3. faktor: sterk, positiv : TOCBOD
 middels, negativ : TOX-MI
 svak, positiv : ASID, PH

4. faktor: sterk, positiv : CR
 middels, " : CU
 svak, " : TOX-MI

5. faktor: sterk, positiv : TOX-FI
 middels, negativ : TOX-MI
 svak, positiv : PH, CU

For å kunne avgjøre om denne oppsplittingen er vettig eller ikke, må man ha gode kunnskaper om de variable som er benyttet samt kjennskap til prøvene. Siden de to siste faktorer bare har en variabel med sterk tilknytning, kan det være nyttig å foreta tilsvarende analyser med 4 eller 3 faktorer.

Siste skritt i analysen er å studere faktorscorene for å se hvilke prøver som er ekstreme på de ulike faktorene. Dette kan benyttes til å gruppere prøvene.

De estimerte faktorscorene ble:

<table>
<thead>
<tr>
<th>CASE</th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
<th>FACTOR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-.610</td>
<td>.812</td>
<td>-.336</td>
<td>.053</td>
<td>2.691</td>
</tr>
<tr>
<td>3</td>
<td>-.473</td>
<td>.032</td>
<td>-1.300</td>
<td>-.392</td>
<td>-1.163</td>
</tr>
<tr>
<td>8</td>
<td>-.564</td>
<td>2.640</td>
<td>.494</td>
<td>.152</td>
<td>-0.297</td>
</tr>
<tr>
<td>9</td>
<td>-.734</td>
<td>-.539</td>
<td>2.329</td>
<td>-.271</td>
<td>-0.046</td>
</tr>
<tr>
<td>11</td>
<td>-.794</td>
<td>-.298</td>
<td>-.191</td>
<td>-.411</td>
<td>-0.500</td>
</tr>
<tr>
<td>12</td>
<td>-.723</td>
<td>-.089</td>
<td>.579</td>
<td>.360</td>
<td>.459</td>
</tr>
<tr>
<td>16</td>
<td>-.041</td>
<td>-.222</td>
<td>-.339</td>
<td>-.514</td>
<td>-.122</td>
</tr>
<tr>
<td>25</td>
<td>-.115</td>
<td>-.504</td>
<td>-.395</td>
<td>3.001</td>
<td>-.456</td>
</tr>
<tr>
<td>27</td>
<td>1.937</td>
<td>-.710</td>
<td>-.578</td>
<td>-.361</td>
<td>-.548</td>
</tr>
<tr>
<td>28</td>
<td>1.917</td>
<td>.131</td>
<td>1.087</td>
<td>-.200</td>
<td>-1.169</td>
</tr>
<tr>
<td>29</td>
<td>-.658</td>
<td>-.795</td>
<td>.103</td>
<td>-.689</td>
<td>-.227</td>
</tr>
<tr>
<td>30</td>
<td>-.705</td>
<td>-.657</td>
<td>-.352</td>
<td>-.729</td>
<td>.013</td>
</tr>
</tbody>
</table>
Faktorscorene kan fremstilles i to dimensjonale diagrammer hvor man plotter scorene for to og to faktorer ad gangen. Et eksempel på et slikt diagram er vist nedenfor for 1. og 2. faktor henholdsvis.

X-axis is Factor 1, Y-axis is Factor 2
Vi ser av diagrammet at det er prøve nr. 27, 28 og dels nr. 11 som genererer 1. faktor, mens prøve nr. 8 og dels nr. 2 genererer 2. faktor. Ut fra dette er det rimelig å tro at disse prøvene har ekstreme standardscorer på minst en av de variable som har sterk sammenheng med vedkommende faktor. Dette ser også ut til å stemme med betraktninger over standardscorene gitt i begynnelsen av analysen.

Sammenhengen mellom faktorer og prøver kan kort oppsummeres slik:

1. faktor er sterkt påvirket av prøve nr: 27, 28 og 11
2. faktor " " " 8 og 2
3. faktor " " " 9, 28 og 3
4. faktor " " " 25 og 12
5. faktor " " " 2, 3 og 28

Følgende tabell viser hvilke prøver som er med til å generere de ulike faktorer.

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Prøve nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>x</td>
</tr>
</tbody>
</table>

Analyze 2

Denne analyse er foretatt for 10 prøver og 14 variable. Prøvene er nr. 2, 3, 8, 9, 11, 12, 16, 25, 29 og 30, mens variablene er: TOX-FISK, TOX-ALGER, TOX-MIKRO, BOD7-N, TOC, FETTLØS TOT, FETTLØS PERS, CU, CR, PH, KOND, ALK, ASID og TOC/BOD.

Analysen gir en faktorløsning med 5 faktorer som forklarer 90.2 % av den totale variasjonen i dataene. Antall faktorer er også her en høyest diskutabel sak, idet det ikke fins noe klart sprang i egenverdiene for korrelasjonsmatrisen. Av restkorrelasjonene for en 5 faktor løsning fremgår det at FETTLØS TOT fremdeles er noe ufullstendig forklart av en 5 faktor modell, mens de øvrige variable er relativt bra forklart.

Av resultatene vil vi her bare presentere standardscorene, de sorterte roterte faktorladninger samt faktorscorene for en løsning basert på 5 faktorer.

STANDARD SCORES: VARIABLE INDICES

<table>
<thead>
<tr>
<th>LABEL</th>
<th>NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.8</td>
<td>-5</td>
<td>-8</td>
<td>-5</td>
<td>-5</td>
<td>1.1</td>
<td>-2</td>
<td>-9</td>
<td>-2</td>
<td>1.4</td>
<td>-7</td>
<td>-5</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-3</td>
<td>-3</td>
<td>1.7</td>
<td>-4</td>
<td>-5</td>
<td>1.9</td>
<td>-2</td>
<td>-8</td>
<td>-2</td>
<td>1.2</td>
<td>-1</td>
<td>-7</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-5</td>
<td>-6</td>
<td>-5</td>
<td>-9</td>
<td>-8</td>
<td>1.6</td>
<td>-3</td>
<td>1.0</td>
<td>2.5</td>
<td>2.6</td>
<td>-5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-3</td>
<td>-3</td>
<td>-5</td>
<td>-6</td>
<td>-4</td>
<td>-6</td>
<td>-5</td>
<td>-5</td>
<td>-7</td>
<td>-3</td>
<td>2.7</td>
<td>2.6</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>-3</td>
<td>2.2</td>
<td>2.0</td>
<td>2.6</td>
<td>-5</td>
<td>-5</td>
<td>-8</td>
<td>-3</td>
<td>-1.2</td>
<td>-1</td>
<td>-6</td>
<td>2.7</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-3</td>
<td>-3</td>
<td>-5</td>
<td>-5</td>
<td>-3</td>
<td>1.7</td>
<td>1.0</td>
<td>-8</td>
<td>-1</td>
<td>-8</td>
<td>-4</td>
<td>-3</td>
<td>-5</td>
<td>-1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>-3</td>
<td>1.5</td>
<td>1.3</td>
<td>3</td>
<td>-3</td>
<td>-8</td>
<td>-8</td>
<td>-3</td>
<td>-1</td>
<td>-7</td>
<td>-5</td>
<td>-4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>2.3</td>
<td>-5</td>
<td>1.4</td>
<td>1.6</td>
<td>-2</td>
<td>-2</td>
<td>2.4</td>
<td>1.2</td>
<td>2.8</td>
<td>-3</td>
<td>-7</td>
<td>-5</td>
<td>-8</td>
<td>-3</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>2.3</td>
<td>-5</td>
<td>-7</td>
<td>-6</td>
<td>-4</td>
<td>-1</td>
<td>-6</td>
<td>-8</td>
<td>-3</td>
<td>-1.0</td>
<td>-8</td>
<td>-6</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>2.3</td>
<td>-4</td>
<td>-8</td>
<td>-6</td>
<td>-5</td>
<td>-8</td>
<td>-8</td>
<td>-3</td>
<td>-6</td>
<td>1.0</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-6</td>
</tr>
</tbody>
</table>

Av denne matrisen kan vi se hvilke prøver som er ekstreme for de enkelte variable.
SORTED ROTATED FACTOR LOADINGS (PATTERN)

<table>
<thead>
<tr>
<th></th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
<th>FACTOR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC</td>
<td>.985</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>ASID</td>
<td>.923</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>TOX-AL</td>
<td>.908</td>
<td>.267</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>BOD7-N</td>
<td>.852</td>
<td>.464</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CR</td>
<td>.000</td>
<td>.956</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>FETPER</td>
<td>.000</td>
<td>.399</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CU</td>
<td>.000</td>
<td>.000</td>
<td>.570</td>
<td>.909</td>
<td>.275</td>
</tr>
<tr>
<td>KOND</td>
<td>.000</td>
<td>.000</td>
<td>.986</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>ALK</td>
<td>.000</td>
<td>.000</td>
<td>.929</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>TOCBOD</td>
<td>.000</td>
<td>.000</td>
<td>.252</td>
<td>.789</td>
<td>.000</td>
</tr>
<tr>
<td>FETTOT</td>
<td>.000</td>
<td>.000</td>
<td>.722</td>
<td>.338</td>
<td>.000</td>
</tr>
<tr>
<td>TOX-MI</td>
<td>.347</td>
<td>.282</td>
<td>.000</td>
<td>.604</td>
<td>.933</td>
</tr>
<tr>
<td>TOX-FI</td>
<td>.000</td>
<td>.000</td>
<td>.275</td>
<td>.488</td>
<td>.537</td>
</tr>
<tr>
<td>PH</td>
<td>-.269</td>
<td>.000</td>
<td>.000</td>
<td>.488</td>
<td>.537</td>
</tr>
</tbody>
</table>

Med samme notasjon som for forutgående analyse får vi her følgende sammenheng:

1. **faktor** sterk, positiv : TOC, ASID, TOX-AL, BOD7-N
 svak, positiv : TOX-MI
 svak, negativ : FETTOT, PH

2. **faktor** sterk, positiv : CR, FETPER
 middels, positiv : CU
 svak, positiv : BOD7-N, TOX-MI
 svak, negativ : TOX-AL

3. **faktor** sterk, positiv : KOND, ALK
 middels, positiv : CU
 svak, positiv : PH
 svak, negativ : TOCBOD
4. faktor
sterk, negativ : TOCBOD
middels, positiv : FETTOT, TOX-MI
svak, negativ : PH

5. faktor
sterk, positiv : TOX-FI
middels, positiv : PH
svak, positiv : CU
svak, negativ : TOX-MI

Også her får vi to faktorer med sterk tilknytning til bare en variabel. Dette indikerer at det kan være verdt bryt et foreta en tilsvarende analyse med 4 eller 3 faktorer for å få fram alternative grupperinger hvor de variable er noe jevnere representert på samtliga faktorer.

De estimerte faktorscorer ble:

<table>
<thead>
<tr>
<th>CASE</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LABEL</td>
<td>NO.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-.497</td>
<td>-.611</td>
<td>.596</td>
<td>.164</td>
<td>2.641</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-.464</td>
<td>-.359</td>
<td>-.274</td>
<td>2.033</td>
<td>-.649</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>-.411</td>
<td>-.108</td>
<td>2.636</td>
<td>-.610</td>
<td>-.338</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>-.607</td>
<td>-.324</td>
<td>-.114</td>
<td>1.952</td>
<td>-.185</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>2.545</td>
<td>-.391</td>
<td>-.217</td>
<td>.233</td>
<td>.383</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>-.831</td>
<td>.417</td>
<td>-.430</td>
<td>.318</td>
<td>.692</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>.692</td>
<td>-.676</td>
<td>-.117</td>
<td>-.134</td>
<td>-.271</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>.359</td>
<td>2.665</td>
<td>-.242</td>
<td>.403</td>
<td>-.542</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>-.392</td>
<td>-.621</td>
<td>-.765</td>
<td>-.097</td>
<td>-.502</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>-.353</td>
<td>-.611</td>
<td>-.472</td>
<td>-.162</td>
<td>-.456</td>
</tr>
</tbody>
</table>

Etter dette kan sammenhengen mellom faktorene og prøvene oppsummeres slik:

1. faktor er sterkt påvirket av prøve nr. : 11 og 16
2. faktor " " " : 25 og 12
3. faktor " " " : 8 og 2
4. faktor " " " : 3 og 9
5. faktor " " " : 2 og 12
Hvilke prøver som påvirker faktorene vil fremgå av følgende tabell:

<table>
<thead>
<tr>
<th>Faktor</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>16</th>
<th>25</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Her er det bare prøve nr. 29 og 30 som ikke er sterkt med til å generere faktorer, mens de øvrige prøver er med i minst en faktor.
Analyse 3

Her analyseres 11 prøver på 15 variable. Prøvene er nr. 2, 3, 7, 14, 16, 17, 18, 21, 22, 24 og 28, mens variablene er TOX-AL, BOD2, BOD5, BOD7, BOD7-N, BOD10, BOD20, TOC, CU, CR, PH, KOND, ALK, ASID og TOC/BOD.

Analysen gir en løsning basert på 4 faktorer som forklarer 88,1 av den totale variasjon i dataene. Siden det her fins et lite sprang i egenverdiene mellom de 4 største og de resterende egenverdiene, er en løsning basert på 4 faktorer noe mer begrunnet her enn i de forutgående tilfeller. Ut fra restkorrelasjoner å dømme ser CR og delvis CU ut til å være noe dårlig forklart ved en 4 faktor løsning.

Standardscorene er:

<table>
<thead>
<tr>
<th>LABEL</th>
<th>NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-.5</td>
<td>.1</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.5</td>
<td>-.6</td>
<td>2.4</td>
<td>-.4</td>
<td>1.9</td>
<td>1.1</td>
<td>2.3</td>
<td>-.3</td>
<td>-.5</td>
<td>.5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-.2</td>
<td>-1.4</td>
<td>.7</td>
<td>.3</td>
<td>-.2</td>
<td>-.0</td>
<td>-.4</td>
<td>-.4</td>
<td>-.3</td>
<td>-.3</td>
<td>.0</td>
<td>1.1</td>
<td>-.3</td>
<td>.9</td>
<td>.7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-.5</td>
<td>-.3</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>1.5</td>
<td>-.3</td>
<td>-.6</td>
<td>-.6</td>
<td>-.6</td>
<td>-.3</td>
<td>.2</td>
<td>.8</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
<td>-.3</td>
<td>.5</td>
<td>-.3</td>
<td>-.4</td>
<td>-.3</td>
<td>-.4</td>
<td>-.4</td>
<td>-.3</td>
<td>1.6</td>
<td>2.3</td>
<td>1.0</td>
<td>.3</td>
<td>.7</td>
<td>.3</td>
<td>.7</td>
</tr>
<tr>
<td>7/8</td>
<td>5</td>
<td>1.5</td>
<td>1.7</td>
<td>2.8</td>
<td>2.7</td>
<td>.9</td>
<td>1.5</td>
<td>1.6</td>
<td>.2</td>
<td>-.4</td>
<td>-.3</td>
<td>.5</td>
<td>-.2</td>
<td>-.3</td>
<td>-.2</td>
<td>.7</td>
</tr>
<tr>
<td>7/8</td>
<td>6</td>
<td>-.5</td>
<td>.1</td>
<td>-.6</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>-.4</td>
<td>3.0</td>
<td>-.7</td>
<td>.9</td>
<td>-.6</td>
<td>-.3</td>
<td>-.5</td>
<td>.5</td>
</tr>
<tr>
<td>7/8</td>
<td>7</td>
<td>-.5</td>
<td>.1</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>-.4</td>
<td>-.3</td>
<td>-.5</td>
<td>-.6</td>
<td>-.3</td>
<td>-.6</td>
<td>.4</td>
<td>.4</td>
</tr>
<tr>
<td>7/8</td>
<td>8</td>
<td>-.5</td>
<td>.1</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>-.4</td>
<td>-.3</td>
<td>-.5</td>
<td>-.6</td>
<td>-.3</td>
<td>-.6</td>
<td>.4</td>
<td>.4</td>
</tr>
<tr>
<td>7/8</td>
<td>9</td>
<td>-.5</td>
<td>.1</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>-.4</td>
<td>-.3</td>
<td>-.5</td>
<td>-.6</td>
<td>-.3</td>
<td>-.6</td>
<td>.4</td>
<td>.4</td>
</tr>
<tr>
<td>7/8</td>
<td>10</td>
<td>-.5</td>
<td>.1</td>
<td>-.5</td>
<td>-.6</td>
<td>-.5</td>
<td>-.6</td>
<td>-.6</td>
<td>-.4</td>
<td>-.3</td>
<td>-.5</td>
<td>-.6</td>
<td>-.3</td>
<td>-.6</td>
<td>.4</td>
<td>.4</td>
</tr>
<tr>
<td>7/8</td>
<td>11</td>
<td>2.3</td>
<td>-1.4</td>
<td>-.6</td>
<td>.9</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
<td>3.0</td>
<td>-.4</td>
<td>-.3</td>
<td>-1.2</td>
<td>-.1</td>
<td>-.6</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Sorted Rotated Factor Loadings (Pattern):

<table>
<thead>
<tr>
<th></th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD 7-N</td>
<td>.992</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>TOC</td>
<td>.974</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>BOD 10</td>
<td>.942</td>
<td>.000</td>
<td>.272</td>
<td>.000</td>
</tr>
<tr>
<td>ASID</td>
<td>.938</td>
<td>.000</td>
<td>-.363</td>
<td>.000</td>
</tr>
<tr>
<td>BOD 20</td>
<td>.935</td>
<td>.000</td>
<td>.292</td>
<td>.000</td>
</tr>
<tr>
<td>TOX-AL</td>
<td>.932</td>
<td>.000</td>
<td>.293</td>
<td>.000</td>
</tr>
<tr>
<td>BOD 7</td>
<td>.581</td>
<td>.000</td>
<td>.719</td>
<td>.000</td>
</tr>
<tr>
<td>KOND</td>
<td>.000</td>
<td>.379</td>
<td>.000</td>
<td>-.299</td>
</tr>
<tr>
<td>ALK</td>
<td>.000</td>
<td>.370</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>PH</td>
<td>-.277</td>
<td>.751</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CU</td>
<td>.000</td>
<td>.596</td>
<td>-.314</td>
<td>.000</td>
</tr>
<tr>
<td>BOD 5</td>
<td>.000</td>
<td>.971</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>BOD 2</td>
<td>-.366</td>
<td>.000</td>
<td>.561</td>
<td>.634</td>
</tr>
<tr>
<td>TOC/BOD</td>
<td>.000</td>
<td>-.257</td>
<td>-.323</td>
<td>.635</td>
</tr>
<tr>
<td>CR</td>
<td>.000</td>
<td>-.436</td>
<td>.000</td>
<td>-.523</td>
</tr>
</tbody>
</table>
Faktorladningene indikerer følgende sammenheng:

1. faktor: Sterk, positiv : BOD7-N, TOC, BOD10, ASID, BOD20, TOX-AL
 Middels, positiv: BOD7
 Svak, negativ : BOD2, pH

2. faktor: Sterk, positiv : KOND, ALK, PH
 Middels, positiv: CU
 Svak, negativ : CR, TOCBOD

3. faktor: Sterk, positiv : BOD5, BOD7
 Middels, positiv: BOD2
 Svak, positiv : TOX-AL, BOD20, BOD10
 Svak, negativ : ASID, TOCBOD, CU

4. faktor: Sterk, positiv : TOCBOD
 Middels, positiv: BOD2
 Svak negativ : CR
 ALK

Her ser 4. faktor ut til å ha sterkt tilknytning til bare en variabel. Dette indikerer at man burde ha en tilsvarende analyse for en 3-faktor modell som alternativ ved en vurdering av grupperingene.

De estimerte faktorscoret ble:

<table>
<thead>
<tr>
<th>CASE</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABEL NO.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>-0.462</td>
<td>2.210</td>
<td>-0.381</td>
<td>-0.147</td>
</tr>
<tr>
<td>3</td>
<td>-0.015</td>
<td>0.039</td>
<td>0.166</td>
<td>-1.419</td>
</tr>
<tr>
<td>7</td>
<td>-0.367</td>
<td>0.219</td>
<td>-0.589</td>
<td>-1.199</td>
</tr>
<tr>
<td>14</td>
<td>-0.356</td>
<td>1.430</td>
<td>0.220</td>
<td>-0.041</td>
</tr>
<tr>
<td>16</td>
<td>-0.767</td>
<td>0.049</td>
<td>2.730</td>
<td>0.521</td>
</tr>
<tr>
<td>17</td>
<td>-0.520</td>
<td>-1.235</td>
<td>-0.674</td>
<td>-1.654</td>
</tr>
<tr>
<td>18</td>
<td>-0.454</td>
<td>-0.634</td>
<td>-0.265</td>
<td>-1.497</td>
</tr>
<tr>
<td>21</td>
<td>-0.475</td>
<td>-0.468</td>
<td>-0.323</td>
<td>0.541</td>
</tr>
<tr>
<td>22</td>
<td>-0.455</td>
<td>-0.572</td>
<td>-0.267</td>
<td>-0.084</td>
</tr>
<tr>
<td>24</td>
<td>-0.459</td>
<td>-0.569</td>
<td>-0.186</td>
<td>2.134</td>
</tr>
<tr>
<td>28</td>
<td>2.796</td>
<td>-0.469</td>
<td>-0.916</td>
<td>0.147</td>
</tr>
</tbody>
</table>
Ut fra faktorscorene ser det ut til at følgende prøver er sterkt dominerende ved generering av faktorene. Konklusjonen er summert i tabellen nedenfor:

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Prøve nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 3 7 14 16 17 18 21 22 24 28</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
</tr>
</tbody>
</table>

Her er prøve 7, 18, 21 og 22 relativt lite dominerende ved generering av faktorer, mens de øvrige prøver er med i minst en faktor.
Analyse 4:

Denne analysen gjelder 20 observasjoner av 10 variable. Prøvene er nr. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 19, 22, 25, 29, 30 og 31, mens variablene er TOX-MIKRO, FETTLØS. TOT., FETTLØS. PERS., CU, CR, PH, KOND, ALK, ASID og TOC/BOD.

Analysen gir en løsning med 4 faktorer som forklarer 79,5% av den totale variasjon i dataene. Antall faktorer er også her en høyest diskutabel sak, idet det ikke finnes noe klart sprang i egenverdiene. Restkorrelasjonene tyder på at variablene TOX-MI og FETTOT er noe dårlig forklart av faktormodellen basert på 4 faktorer.

Standardscorene, de roterte faktorladningene samt faktorscorene er som følger:

<table>
<thead>
<tr>
<th>STANDARD SCORES</th>
<th>VARIABLE INDICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABEL NO. 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>
SORTED ROTATED FACTOR LOADINGS (PATTERN)

<table>
<thead>
<tr>
<th></th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOND</td>
<td>.914</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>ALK</td>
<td>.947</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>CU</td>
<td>.704</td>
<td>.000</td>
<td>.000</td>
<td>.563</td>
</tr>
<tr>
<td>TOCBOD</td>
<td>.000</td>
<td>.818</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>TOX-MI</td>
<td>.000</td>
<td>-.593</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>PH</td>
<td>.416</td>
<td>-.556</td>
<td>-.381</td>
<td>.257</td>
</tr>
<tr>
<td>GR</td>
<td>.000</td>
<td>.000</td>
<td>.856</td>
<td>.000</td>
</tr>
<tr>
<td>ASID</td>
<td>.000</td>
<td>-.295</td>
<td>.798</td>
<td>.000</td>
</tr>
<tr>
<td>BETPER</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.942</td>
</tr>
<tr>
<td>FETT tot</td>
<td>.284</td>
<td>-.369</td>
<td>-.405</td>
<td>.478</td>
</tr>
</tbody>
</table>

Estimerte faktorscores:

<table>
<thead>
<tr>
<th>CASE LABEL NO.</th>
<th>FACTOR 1</th>
<th>FACTOR 2</th>
<th>FACTOR 3</th>
<th>FACTOR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.237</td>
<td>.407</td>
<td>-.470</td>
<td>.904</td>
</tr>
<tr>
<td>3</td>
<td>-.287</td>
<td>-.361</td>
<td>-.944</td>
<td>.425</td>
</tr>
<tr>
<td>4</td>
<td>-.314</td>
<td>-.166</td>
<td>-.099</td>
<td>-.082</td>
</tr>
<tr>
<td>5</td>
<td>-.335</td>
<td>.320</td>
<td>.125</td>
<td>-.465</td>
</tr>
<tr>
<td>6</td>
<td>-.612</td>
<td>-.028</td>
<td>3.375</td>
<td>-.545</td>
</tr>
<tr>
<td>7</td>
<td>.214</td>
<td>.361</td>
<td>.173</td>
<td>-.647</td>
</tr>
<tr>
<td>8</td>
<td>3.195</td>
<td>.453</td>
<td>-.070</td>
<td>-.256</td>
</tr>
<tr>
<td>9</td>
<td>-.326</td>
<td>2.414</td>
<td>-.114</td>
<td>.036</td>
</tr>
<tr>
<td>10</td>
<td>-.318</td>
<td>1.663</td>
<td>-.153</td>
<td>-.177</td>
</tr>
<tr>
<td>11</td>
<td>-.245</td>
<td>1.398</td>
<td>1.382</td>
<td>-.819</td>
</tr>
<tr>
<td>12</td>
<td>-.041</td>
<td>.362</td>
<td>-.655</td>
<td>2.043</td>
</tr>
<tr>
<td>14</td>
<td>1.761</td>
<td>.282</td>
<td>-.510</td>
<td>-.551</td>
</tr>
<tr>
<td>15</td>
<td>-.089</td>
<td>-.310</td>
<td>-.377</td>
<td>-.700</td>
</tr>
<tr>
<td>16</td>
<td>-.696</td>
<td>-.200</td>
<td>-.050</td>
<td>-.550</td>
</tr>
<tr>
<td>19</td>
<td>-.594</td>
<td>-.331</td>
<td>.771</td>
<td>-.061</td>
</tr>
<tr>
<td>22</td>
<td>1.123</td>
<td>-.814</td>
<td>-.977</td>
<td>.749</td>
</tr>
<tr>
<td>25</td>
<td>-.195</td>
<td>-.927</td>
<td>1.225</td>
<td>2.046</td>
</tr>
<tr>
<td>29</td>
<td>-.761</td>
<td>-.033</td>
<td>-.135</td>
<td>-.619</td>
</tr>
<tr>
<td>30</td>
<td>-.497</td>
<td>-.178</td>
<td>-.219</td>
<td>-.846</td>
</tr>
<tr>
<td>31</td>
<td>-.273</td>
<td>.484</td>
<td>-.736</td>
<td>.317</td>
</tr>
</tbody>
</table>

Faktorladningene indikerer følgende sammenheng:

1. faktor: Sterk, positiv : KOND, ALK
Middels, positiv: CU
Svak, positiv : PH
Svak, negativ : FETT tot

2. faktor: Sterk, positiv : TOCBOD
Middels, positiv: PH
Middels, negativ: TOX-MI
Svak, negativ : FETT tot, ASID
3. faktor: Sterk, positiv : CR, ASID
Svak, negativ : FETTOT, PH

4. faktor: Sterk, positiv : FETPER
Middels, positiv: CU
Svak, positiv : FETTOT, PH

Her ser det også ut til å være behov for alternative analyser basert på henholdsvis 3 eller 2 faktorer, idet både faktor 2 og 4 bare er sterkt påvirket av en variabel.

Faktorscorene tyder på at følgende prøver er sterkt dominerende ved generering av faktorene. Konklusjonen følger av tabellen nedenfor:

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Prøve nr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Her er prøvene 5, 7, 16, 18, 19, 29, 30 og 31 relativt lite dominerende med hensyn til generering av faktorene.
5.2 Statistisk konklusjon

Faktoranalyse brukt på den måten som vist i analysene ovenfor, må betraktes mer som en eksplorere og deskriptiv metode i dataanalysen enn som en metode til å verifisere visse teorier og hypoteser med. Ved en slik bruk er faktoranalyse nyttig både til å gruppere variablene ut fra faktorladningene og til å gruppere prøvene ut fra faktorscorene. Metoden gir også verdifull informasjon om sammenhengen mellom de to former for gruppering.

Resultatene fra de ulike analysene beskrevet ovenfor er opplagt avhengige, siden flere prøver og variable blir benyttet i samtlige analyser. I analysene har man delvis benyttet forskjellige prøver og variable. Dette gjør det meget vanskelig å trekke generelle konklusjoner for hele datamaterialet ut fra de fire analysene. Hvis den opprinnelige datamatrisen derimot hadde vært fullstendig, ville vi kunne utført bare en faktoranalyse og dermed unngått dette problemet.

For lettere å kunne oppnå en fælles konklusjon for de 4 analyseene, er det benyttet de samme metodene i alle analysene. Av den grunn, men også fordi vi i noen analyser har hatt færre prøver enn variable, er det ikke benyttet mer avanserte estimeringsmetoder som f.eks. sannsynlighetsmaksimering.

Ut fra betraktninger for reproduserbarhet av løsninger er det lite heldig at en eller noen få prøver er sterkt dominerende med hensyn til å generere faktorene. Hvis dette siste er tilfelle, vil vanligvis resultater fra to ulike faktoranalyser foretatt på forskjellige prøver kunne være nokså forskjellige. Følgelig vil stabiliteten i resultatene fra en analyse til en annen ofte være lav.

Det er vanskelig å vurdere reproduserbarheten av resultatene for de 4 foreliggende analysene, siden mange av prøvene er benyttet i alle analysene. Man kan her lett bli fristet til å tro at reproduserbarheten fra analyse til analyse er større enn den i virkeligheten er.

For å forsøke å gi en oversikt over prøvene og de variable som inngår i analysene er det satt opp følgende to tabeller. Her angir x at en prøve er
dominerende med hensyn til å generere en faktor eller at en variabel har sterkt tilknytning til minst en faktor, mens + angir at en prøve eller variabel er med i en analyse.

| Variable |
| --- | --- |
| Analyse |
TOX-AL	TOX-MI	TOX-FL	TOC	CR	ASID	FETTOT	FETPER	PH	KOND	ALK	TOCBOD	BOD2	BOD5	BOD7	BOD7-N	BOD10	BOD20
1	x	x	x	x	+	x	x	x	x								
2	x	x	x	x	+	x	x	x	x	x							
3	x	x	+	x	x	x	x	x	x	x	x						
4	+	x	x	x	+	x	x	x	x	x	x	x					

Analyse	Prøver																											
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	x	x	x	x	+	x	x	x	+																			
2	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	

Vi ser av første tabell at noen variable, f.eks. TOX-AL, TOX-FI, TOC, FETPER, KOND, ALK, TOCBOD, BOD5, BOD7, BOD7-N, BOD10 og BOD20, har sterk tilknytning til minst en faktor i alle analysene der disse variable er med. Andre variable, f.eks. TOX-MI, CU, FETTOT og BOD2, har ikke sterk tilknytning til noen faktor i noen analyser der disse variable er med. Den tredje mulighet representert ved CR, ASID og PH forekommer også og er på ingen måte selvmotsigende. Disse variable kan ha ekstreme verdier for noen prøver som er med i noen analyser, men ikke i de øvrige.

Når det gjelder prøvene, så er nr. 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 17, 24, 25, 27 og 28 dominerende med hensyn til å generere faktorer for alle analyser der prøvene er med, mens prøve nr. 5, 7, 18, 19, 21, 29 og 30 er lite dominerende. Her er prøve nr. 16 og 22 dominerende i enkelte analyser, men ikke i andre. Dette kan skyldes at disse prøvene har ekstreme verdier på noen variable som er med i enkelte analyser, men ikke med i de øvrige.
En sammenligning av faktorene i de 4 analysene viser som det er rimelig å vente, en stor grad av overensstemmelse.

For analyse 1 og 2 ser første faktor ut til å være sterkt relatert til variablene TOC, TOX-AL, BOD7-N og ASID. Det samme ser ut til å være tilfelle for analyse 3, men her er gruppen blitt forsterket med to nye variable BOD10 og BOD20. I analyse 4 derimot er disse variable dårlig representert. En mulig konsekvens av dette kan være at ASID blir blandet med CR i en 3. faktor i sistnevnte analyse.

I analyse 1 ser 2. faktor ut til å være nær relatert til KOND og ALK og noe svakere til CU. Denne faktor kommer igjen i analyse 2 som faktor 3, i analyse 3 som faktor 2 og i analyse 4 som faktor 1. Variablen PH ser også ut til å ha en noe varierende tilknytning til denne faktoren.

Analyse 1 gir en 3. faktor relatert til TOCBOD og TOX-MI. Denne faktor finner vi igjen som 4. faktor både i analyse 2 og 3 og som 2. faktor i analyse 4.

Variablene CR og delvis CU danner 4. faktor i analyse 1. Denne gruppen blir i analyse 2 forsterket med variablen FETPER slik at gruppen genererer 2. faktor her. I analyse 3 er denne faktor splittet dels på 2. faktor og dels på 4. faktor. Denne splittning er neppe helt god, idet variablene CR og CU ser ut til å ha de største restkorrelasjonene i analyse 3. I analyse 4 får vi likeledes en oppsplitting, men på faktor 3 og 4. Denne oppsplitting kan muligens her skyldes ASID som opptrer som eneste represen
tant for den gruppen som genererer 1. faktor i analyse 1, 2 og 3.

I analyse 1 og 2 har vi også en 5. faktor som er sterkt relatert til TOX-FI og noe svakere relatert til TOX-MI, PH og CU. Det er mulig at disse rela-
sjoner i fravær av TOX-FI og TOX-MI er representert i 2. faktor i analyse 3, mens man for analyse 4 i fravær av TOX-FI har fått en oppsplitting på 1. og 2. faktor.

I analyse 3 har vi fått ut en faktor generert av BOD5, BOD7 og delvis BOD2. Denne faktor finner vi ikke igjen i de øvrige analysene der ingen av disse variable er med.
Det ser altså ut til at flere faktorer går igjen i samtlige analyser. Faktorenes nummer som til en viss grad indikerer rekkefølgen av relevans i analysene, ser derimot ut til å variere mer. Det er grunn til å tro at dette siste avhenger av hvor godt de ulike grupper av variable som genererer faktorene, er representert i hver analyse og en slags inbyrdes relevans mellom gruppene.

Det sentrale spørsmål som nå gjenstår er om de ovenfor antydede faktorer er noenlunde vettige ut fra kjemisk-biologiske betraktninger. Dette spørsmål må derfor vurderes av kjemikerne og biologene.
6. SAMMENFATTENDE KONKLUSJON

Metodene

Det analyseopplegget som er benyttet synes å gi et brukbart grunnlag for å evaluere de prøvene som er valgt fra tekstile delprosesser, slik at en tre-delt karakterisering "RENT - TOKSISK - og BOD-VANN", er mulig. Et visst skjønn synes imidlertid nødvendig.

Vurderingsopplegget, som gitt på skjemaene foran, tok sikte på en innledende screeningtest. Disse innledende analysene, som foruten de mer tradisjonelle fysisk- kjemiske parametrene også omfattet toksisitetstest overfor mikroorganismer og bestemmelse av mengde persistente forbindelser synes ikke å tilfredsstille de forutsatte "screeningkrav" når det prøvematerialet som er benyttet legges til grunn.

Den statistiske vurdering av hele datamaterialet tilkjenngir en del interessante forhold m.h.t. det metodiske:

Toksisitetstester overfor mikroorganismer viser ikke klar sammenheng med de to andre toksisitetstestene (alger, fisk).

Det totale innhold av fettløselige organiske forbindelser viser ingen klar sammenheng med de øvrige parametrene, mens innholdet av persistente fettløselige stoffer viser en viss sammenheng.

Kobberanalysene viser ingen klar sammenheng med resten av parametrene. Dette forhold er viktig å fremheve fordi det klart viser datamaterialets utilstrekkelighet både m.h.t. prøvespektrum og m.h.t. differensierte kobber-analysen.

Toksisitetstest overfor alger synes å være bedre som screeningparametre enn toksisitetstesten overfor mikroorganismer.

De øvrige karakteriseringsparametrene må foreløpig ansees som relevante selv om mange i stor grad avledes av hverandre.
Ovenforstående kan sammenfattes:

 Testing av toksisitet overfor mikroorganismer antaes å være til-strekkelig dekket av BOD.

2. Den statistiske analysen synes å indikere at det kjemiske og biologiske analyseopplegget forøvrig er dekkende for behovet selv om prøvespekteret bør være en del videre og datamatriisen mer komplett.

Prøvene

Den manuelle prøveevaluering, basert på analyseresultatene og med støtte i en viss skjønnsmessig vurdering, karakteriserer 16 av totalantallet på 31 prøver, som TOKSISK, 14 som BOD-VANN, dvs. av en slik karakter at avløpsvannet fra de prosesser som prøvene representerer kan ledes til biologiske renseanlegg. 1 prøve er karakterisert som REN.

Karakteren TOKSISK innebærer at avløpsvannet bør gies særlig oppmerksomhet.

En karakterisering basert på screeningstestene og med følgende utgangspunkt

\[\frac{1}{\text{TTC}} < 0,005 \]

Cu og Cr < 2,5 mg/l

Totale fettløselige forbindelser < 20 mg/l
Persistente fettløselige forbindelser < 2,0 mg/l

\[\frac{\text{TOC}}{\text{BOD}} < 2,0 \]

 gir grunnlag for å karakterisere hele 28 av de 31 prøvene som TOKSISK.

Basert på det mer fullstendige analysematerialet og med ordning etter økende toksisitet overfor de tre organiske typer (mikroorganismer, alger og fisk)
er det særlig 6 prøver som skiller seg ut som særlig virksomme; disse prøvene er alle fra etterbehandlingsprosesser, nemlig:

Wash & Wear (prøvene 3 og 11)
Vannavstøtende - flammesikring (prøvene 16 og 27)
Flammesikring (prøve 28)

Den statiske analysen fremhever også disse prøvene (i tillegg til noen andre).

7. PLAN FOR NESTE PERIODE

I de følgende 6 måneder, frem til ca. 1.4.1979, vil arbeidet omfatte analyse etter "fullt program" av et 50 tall prøver fra tekstile delprosesser. Prøvene skal i stor grad velges ut blant de samme behandlingsbad som tidligere, men i tillegg vil avløp som "TOXIGUARD" (montert ved Borås Wafveri AB) gir respons på, bli analysert etter dette opplegg. I "prøvekolleksjonen" vil det bli lagt vekt på å innbefatte fra prosesser hvor carriers er benyttet og dessuten er det ønskelig at avløp fra forskjellige trykkingsprosesser, reaktivtrykk og pigmenttrykk inkluderes.

Resultatene vil i hovedsak bli behandlet som beskrevet ovenfor idet det taes sikte på å oppnå:

Tilstrekkelig basis og erfaringsgrunnlag for en kombinert kjemisk og biologisk evaluering av et avløpsvann slik at man med en betydelig grad av sikkerhet kan avgjøre om avløpet er egnet til omgjenbruk, eller slippes direkte til resipient, om det er egnet til biologisk rensing eller om det har en slik karakter at det bør gies særlig oppmerksomhet av hensyn til det biologiske reseanlegg eller den vannforekomst som avløpet til slutt ender i.

Det forutsettes at dette program kan følges opp av mer avanserte organiske analyser og dessuten at man skaffes maksimal kunnskap om resepturens som behandlingsbadet er basert på.

For å oppnå dette er det ventet at en statistisk bearbeidelse, på linje med den som er beskrevet foran, vil være av stor betydning.
En betingelse for at en innsats som denne skal kunne gi det ønskede utbytte, er et betydelig engasjement fra i alle fall delprosjektgruppens medlemmer. Dette er av betydning først og fremst fordi flest mulig må skaffe seg dette erfaringsgrunnlag.
8. REFERANSLER

En Oversikt over metoder i faktoranalyse.
Norsk Regnesentral, publ. nr. 576.

BMDP Biomedical computer programs.
Health Sciences Computing Facility. University of California Press,
Los Angeles.

Cattell, R.B. (1966):
The scree test for the number of factors.
Multivariate Behavioral Research, 1, 245-276.

Kaiser, H.F. (1960):
The application of electronic computers to factor analysis.
Educational and Psychological Measurement, 20, 141-151.

Gower, J. C. (1966):
Multivariate analysis and multidimensional geometry.

Gjessing, E., Efrainsen, H., Grande M., Kristoffersen T., Källqvist, T.,
Laake, M., Urdal I. (1977):
Innledende utprøving av et biologisk og kjemisk karakteriseringsopplegg.
Rapport nr. 18 fra totalprosjektet (Nord-textil-va).

GJE/TEI
10.10.1978