NORSK INSTITUTT FOR VANNFORSKNING
Blindern

0-4/77

STRØM- OG SPREDNINGSFORHOLD I HOLSFJORDEN
SETT I FORHOLD TIL PLANLAGT VANNUTTAK

Forsøk på en teoretisk vurdering

Blindern, 14. november 1977

Saksbehandler: siv.ing. Birger Bjerkeng

Instituttsjef Kjell Baalsrud
FORORD

Den 17.11.1976 ble det holdt et møte ved Norsk institutt for vannforskning (NIVA) hvor representanter for Teknisk komité for Holefjordprosjektet, NIVA, Holefjordutvalget og Hydroconsult deltok.

På møtet ble drøftet opplegg for videre undersøkelser i forbindelse med de planlagte vannutak til drikkevannsforebygning og vanningsanlegg, og NIVA ble bl.a. bedt om å utføre en teoretisk vurdering av strømningsforholdene i Holefjorden/Tyrifjorden ved hjelp av eksisterende data. Dette sa NIVA seg villig til, og bestillingen ble bekreftet i PM fra møtet v/ Rolf Snarset, Hydroconsult. Oppdraget er bestilt av Teknisk komité for Holefjordprosjektet og formidlet av Hydroconsult.

Resultatet av den teoretiske vurderingen presenteres i denne rapporten.

[Birger Bjørkeng]

Blindern, 14. november 1977

Birger Bjørkeng
INNHOLDSFORTEGNELSE

<table>
<thead>
<tr>
<th>FORORD</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INNLEDNING</td>
<td>7</td>
</tr>
<tr>
<td>2. PROBLEMSTILLING</td>
<td>8</td>
</tr>
<tr>
<td>3. OPPLEGG OG ARBEIDSMETODIKK</td>
<td>8</td>
</tr>
<tr>
<td>4. BAKGRUNNSDATA</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Geografiske forhold</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Volum- og arealforhold</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Ferskvannstilførsel</td>
<td>9</td>
</tr>
<tr>
<td>4.4 Planlagt vannuttak</td>
<td>14</td>
</tr>
<tr>
<td>4.5 Forurensningstilførsler</td>
<td>17</td>
</tr>
<tr>
<td>4.5.1 Generelt</td>
<td>17</td>
</tr>
<tr>
<td>4.5.2 Utslipp i søndre del av Holsfjorden</td>
<td>21</td>
</tr>
<tr>
<td>5. TIDLIGERE UNDERSKUDELSER</td>
<td>22</td>
</tr>
<tr>
<td>5.1 Generelt</td>
<td>22</td>
</tr>
<tr>
<td>5.2 Fysisk-kjemiske forhold</td>
<td>23</td>
</tr>
<tr>
<td>5.2.1 Temperatur og tetthet</td>
<td>23</td>
</tr>
<tr>
<td>5.2.2 Kjemiske parametre</td>
<td>27</td>
</tr>
<tr>
<td>5.3 Bakteriologiske undersøkelser</td>
<td>32</td>
</tr>
<tr>
<td>5.3.1 Presentasjon av data</td>
<td>32</td>
</tr>
<tr>
<td>5.3.2 Drøfting av resultatene</td>
<td>40</td>
</tr>
<tr>
<td>5.3.2.1 Vurdering av bakterieutbredelse</td>
<td>40</td>
</tr>
<tr>
<td>5.3.2.2 Vurdering av observert bakteriemengde</td>
<td>43</td>
</tr>
<tr>
<td>6. VIRKNINGER AV VANNUTTAKET</td>
<td>45</td>
</tr>
<tr>
<td>6.1 Dypvannsstrømmer generert av ferskvannsuttaket</td>
<td>45</td>
</tr>
<tr>
<td>6.1.1 Generelt</td>
<td>45</td>
</tr>
<tr>
<td>6.1.2 Presentasjon av teori</td>
<td>46</td>
</tr>
<tr>
<td>6.1.3 Beregning for uttak i Holsfjorden</td>
<td>48</td>
</tr>
</tbody>
</table>
6.2 Endringer i generell vannbalanse .. 50
7. SAMMENFATNING OG KONKLUSJON 52
8. REFERANSER .. 56
APPENDIX .. 58
<table>
<thead>
<tr>
<th>Tabell</th>
<th>Beskrivelse</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabell 1.</td>
<td>Fordeling og gjennomsnittlig vannføring til Tyrifjorden</td>
<td>13</td>
</tr>
<tr>
<td>Tabell 2.</td>
<td>Vannføringsdata, Dramselva</td>
<td>14</td>
</tr>
<tr>
<td>Tabell 3.</td>
<td>Vannbehovet i år 2015, ved alternative driftsopplegg</td>
<td>16</td>
</tr>
<tr>
<td>Tabell 4.</td>
<td>Grovt estimat over forurensningstilførsler til Tyrifjordens nærere nedslagsfelt</td>
<td>18</td>
</tr>
<tr>
<td>Tabell 5.</td>
<td>Grovt anslått fordeling av forurensningstilførsler til Tyrifjordens vestre del og Holsfjorden/Steinsfjorden</td>
<td>21</td>
</tr>
<tr>
<td>Tabell 6.</td>
<td>Registrerte coli-bakterier pr. 100 ml i Holsfjorden, etter NIVA (1970a)</td>
<td>33</td>
</tr>
<tr>
<td>Tabell 7.</td>
<td>Bakteriologiske forhold i Holsfjorden utenfor Toverud i Sylling, april - desember 1971</td>
<td>35</td>
</tr>
<tr>
<td>Tabell 8.</td>
<td>Coliforme bakterier (fullstendig prøve) pr. 100 ml, Holsfjorden 12. mai 1975 iflg. SIFF 1976</td>
<td>37</td>
</tr>
<tr>
<td>Tabell 9.</td>
<td>Coliforme bakterier (fullstendig prøve) pr. 100 ml, Holsfjorden 1. september 1975 iflg. SIFF 1976</td>
<td>38</td>
</tr>
<tr>
<td>Tabell 10.</td>
<td>Uttapping av dypvann ved ferskvannssutak i Holsfjorden. Teoretisk beregning</td>
<td>49</td>
</tr>
<tr>
<td>Tabell 11.</td>
<td>Endring av oppholdstid T for dypvannet pga. dypvannssutak ved forskjellige verdier på T</td>
<td>50</td>
</tr>
</tbody>
</table>
FIGURFORTEGNELSE

Figur 1. Tyrifjorden - Oversiktskart over nedbørfelt med stasjonsplassering for NIVA (1970a) .. 10

Figur 2. Tyrifjorden (NIVA 1970a) .. 11

Figur 3. Areal som funksjon av dyp i Tyrifjorden .. 12

Figur 4. Øvre og nedre grenser for gjennomsnittlig supplerings-uttak til Asker og Bærum som funksjon av midlingsperioden .. 15

Figur 5. Tyrifjorden - Temperaturobservasjoner i °C 1967 (NIVA 1970a) ... 24

Figur 7. Tyrifjorden - Temperaturobservasjoner i °C 1968 (NIVA 1970a) ... 26

Figur 8. 90% konfidensintervaller for tidsgjennomsnitt av relativt avvik fra øyeblikksmidler over alle stasjoner ... 29

Figur 10. 90% konfidensintervaller for tidsgjennomsnitt av relativt avvik fra øyeblikksmidler over alle stasjoner ... 42
1. INNLEDNING

Kommunene Asker, Bærum og Oslo har i flere år arbeidet med planer for utnyttelse av Tyrifjorden til vannforsyning, enten som tilskudd til, eller erstatning for eksisterende vannkilder. Vannuttaket er planlagt på dypt vann i den sørrøstlige armen av fjorden, i Holsfjorden.

I tillegg er det på tale med uttak fra overflatelaget av Holsfjorden til vanningsanlegg for jordbruken i Lierdalen.

Tidligere undersøkelser av sjøen har konkludert med at vannkvaliteten i dag er tilfredsstillende for drikkevannsforsyning både kjemisk og biologisk. Bakteriologiske undersøkelser har imidlertid vist forekomst av coli-bakterier (tarm-bakterier) i dypvannet i den sørlige delen av Holsfjorden. Dette betyr at vannmassene her må være påvirket av kloakkutslipp.

Statens institutt for folkehelse (SIFF) (brev av 20.3.1975) og Helsedirektoratet i Sosialdepartementet (brev av 12.6.1975) har reist spørsmålet om den påviste bakterieforurensningen kan skyldes påvirkning fra Tyrifjordens vestlige del, hvor både ferskvannsgjennomstrømning og forurensningstilførsler er konsentrert. På den tid da de bakteriologiske undersøkelsene ble gjort gikk et mekanisk renset utslipp ut i sørenden av Holsfjorden, ved Sylling, men Helsedirektoratet antar i sitt brev at dette neppe kan forklare bakterietallene alene, og uttrykker engstelse for at en eventuell påvirkning fra den nordvestlige del av innsjøen ved "ukjente strømningsforhold" kan øke som følge av ferskvannsuttaket i sørenden.

På bakgrunn av dette har Teknisk komité for Holsfjordprosjektet gjennom Hydroconsult, siv.ing. Erik Røstad A/S, bedt NIVA foreta en teoretisk vurdering av:

- hvilken innflytelse vannuttaket kan få på vannkvaliteten i Holsfjorden, og
- hvilke naturgitte strømninger man må regne med ved bestemmelse av rensetiltak for uttaket.

Den foreliggende rapporten er et forsøk på en slik vurdering.
2. **PROBLEMSTILLING**

Følgende spørsmål skal behandles:

1. Hvordan er strømforholdene i Holsfjorden i dag? Hvor stor kontakt er det mellom Tyrifjordens vestligste del og den sørlige del av Holsfjorden, og hvilken betydning har denne kontakten for vannkvaliteten?

2. Hvilke følger kan de prosjekterte vannuttak få for strømningsmønstret og derved eventuelt for kvaliteten på det vannet som tas ut?

Det er særlig kvaliteten på dypere vannlag, dvs. under 20-30 meter som har interesse. Det vil bli lagt særlig vekt på å drøfte forurensning av colibakterier.

Med det datamaterialet som foreligger for Holsfjorden er det ikke mulig å gi noe bestemt svar på de nevnte spørsmål. Formålet med denne rapporten må derfor bli å avgrense hva som er sannsynlig, eller teoretisk mulig. Dessuten vil det bli drøftet hvilke videre undersøkelser som kan være aktuelle.

3. **OPПLEGG OG ARBEIDSMETODIKK**

Det vil først bli gitt nødvendige bakgrunnsdata for Tyrifjorden.

Deretter utføres en analyse av noen resultater fra tidligere undersøkelser, for å se om de kan si noe om dagens strømforhold.

Spørsmålet om virkning av vannuttaket og av endrede forurensningstilførslers må behandles teoretisk. For ferskvannsuttaket kan endringene i dypvannsstrømmerne anslås ved hjelp av hydraulisk teori, mens endringer i total vannbalance anslås ved enkle volumbetraktninger. Virkningen av endrede forurensningstilførslers vurderes generelt ut fra det en kan slutte om nåværende og fremtidige strømforhold.

Til slutt gis en sammenfattende drøfting av de to spørsmålene, og eventuelle videre undersøkelser blir vurdert.
4. BAKGRUNNSDATA

4.1 Geografiske forhold

Kart over Tyrifjordens nedslagsfelt er vist i fig. 1, og Tyrifjorden mer detaljert i fig. 2, med dybdekoter og en del stedsnavn angitt. Vannuttaket til Holsfjordprosjektet er planlagt ved Toverud i den sørlige delen av Holsfjorden, se fig. 2.

4.2 Volum- og arealforhold

Tyrifjorden, inkludert Steinsfjorden, har en overflate på 134 km^2, og et volum på ca. $14 \times 10^9 \text{ m}^3$. Største dyp i Holsfjorden er 296 meter, mens Steinsfjorden er ca. 20 m dyp. Areal som funksjon av dyp er vist i fig. 3. Kurven er funnet ved planimetrisering av fig. 2.

4.3 Ferskvannstilførsel

Tyrifjordens nedslagsfelt er ca. 10^4 km^3, normaltilrenningen ca. $170 \text{ m}^3/s$ totalt.

Av dette kommer så å si alt i nordenden, hvor Storelva har utløp. Storelva dannes av Ådalselva som renner ut av Sperillen, og Randsehva som kommer fra Randsfjorden (kfr. fig. 1 og 2). Ca. 90% av ferskvannet til Tyrifjorden, dvs. ca. $150 \text{ m}^3/s$, kommer fra disse to innsjøene. I tillegg mottar Storelva ca. 6-7 $\text{ m}^3/s$ fra det lokale nedslagsfeltet rundt Tyrifjorden.

Den nest største elva, Sokna, renner også ut i nordenden, den har en vannføring som kan anslås til ca. $9 \text{ m}^3/s$ ut fra nedbørfelt og spesifikk avrenning.
Fig. 1 TYRIFJORDEN
Oversiktsskart over nedbørfelt med stasjonsplassering for NIVA (1970a)
Fig. 2

Tyrifjorden
(NIVA 1970a)

Toverud,
prosjektert
vannuttak
Fig. 3 Areal som funksjon av dyp i Tyrrifjorden
Resterende vannføring fordeler seg rundt vestre Tyrifjord, Holsfjorden og Steinsfjorden.

I tabell 1 er vist omtrentlig fordeling av ferskvannstilførsel på de ulike deler av nedslagsfeltet.

Tabell 1. Fordeling av gjennomsnittlig vannføring til Tyrifjorden

<table>
<thead>
<tr>
<th>Resipient</th>
<th>Nedslagsfelt</th>
<th>Gj.snittlig avrenning, m³/s</th>
<th>Kilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestre del av</td>
<td>Til Sperillen</td>
<td>91,6</td>
<td>NIVA 1965</td>
</tr>
<tr>
<td>Tyrifjorden</td>
<td>Til Randsfjorden</td>
<td>58,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Til Storelva lokalt</td>
<td>ca. 6</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Til Sokna</td>
<td>" 9</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Tyristrand</td>
<td>" 1,5</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>TOTALT</td>
<td>166,7</td>
<td></td>
</tr>
<tr>
<td>Holsfjorden/</td>
<td>TOTALT</td>
<td>3,5</td>
<td>x</td>
</tr>
<tr>
<td>Steinsfjorden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyrfjorden</td>
<td>TOTALT</td>
<td>170,2</td>
</tr>
</tbody>
</table>

* Anslått ut fra nedslagsfeltets størrelse i fig. 1, og spesifikk avrenning iflg. NVE (1958).

Tyrifjordens utløp går til Dramselva ved Vikersund. Gjennomstrømmingen av ferskvann er derfor konsentrert til den vestlige delen, mens Holsfjorden er uten direkte tilløp og avløp.

I tabell 2 på neste side er angitt registrerte vannføringsvariasjoner i Dramselva.
Tabell 2. Vannføringsdata, Dramselva

<table>
<thead>
<tr>
<th>Kilde</th>
<th>År</th>
<th>Stasjon</th>
<th>Årsmínimum (m³/s)</th>
<th>Årssnitt (m³/s)</th>
<th>Årsmaksimum (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NVE 1958)</td>
<td>1920-34<sup>1)</sup></td>
<td>Geithus</td>
<td>32-86</td>
<td>100-260</td>
<td>390-1050</td>
</tr>
<tr>
<td>(NIVA 1970a)</td>
<td>1967</td>
<td>Gravfoss</td>
<td>80</td>
<td>220</td>
<td>926</td>
</tr>
<tr>
<td>"</td>
<td>1968</td>
<td>"</td>
<td>65</td>
<td>141</td>
<td>319</td>
</tr>
</tbody>
</table>

1) Etter siste angitte regulering.

4.4 Planlagt vannuttak

Vannuttaket til drikkevannsforsyning er planlagt på dypt vann ved Toverud i Sylling (fig.2). Et inntaksdyp på 40 meter er antatt i forprosjektet (Hydroconsult 1972). Data om vannuttakets størrelse foreligger i brev fra Hydroconsult til NIVA 10.2.1977.

Uttaket skal enten supplere eller erstatte dagens vannkilder for kommunene Oslo, Asker og Bærum.

Asker og Bærums behov er simulert for 100 av i alt 390 4-ukers perioder, lengste sammenhengende tidsserie går over 10 perioder. I fig. 4 er øvre og nedre grenser for gjennomsnittlig uttak vist som funksjon av det tidsrom gjennomsnittet tas over. Det er bare midlet innenfor sammenhengende tidsserier. Figuren viser at en må regne med gjennomsnittlige uttak på over 1 m³/s selv for perioder opp mot ½ år (27 uker). For perioder lengre enn 3-4 måneder vil gjennomsnittlige uttak sjelden være under 0,6 m³/s. Gjennomsnitt av alle verdier er 0,67 m³/s.
Fig. 4 Øvre og nedre grenser for gjennomsnittlig suppleringsuttak til Asker og Bærum som funksjon av midlingsperioden

Bare observasjoner over sammenhengende perioder er benyttet.
Beregning av midlere årsforløp synes å vise markert lavere verdier om sommeren enn i resten av året, men dette er ikke klart signifikant statistisk, og en bør ikke legge for stor vekt på det.

For Oslo er bare 7 perioder å 4 uker simulert. I disse periodene er vannbehovet for Oslo gjennomsnittlig ca. 3 ganger større enn for Asker og Bærum. Vi antar at dette forholdet er representativt for Oslos vannbehov ved suppleringsalternativet.

Ved erstatningsalternativet kan en anta et konstant uttak i år 2015 på $146 \times 10^6 \text{m}^3/\text{år}$ for Oslo, $38 \times 10^6 \text{m}^3/\text{år}$ for Asker og Bærum.

Data om vannbehovet er oppsummert i tabell 3 nedenfor.

Tabell 3. Vannbehovet i år 2015, ved alternative driftsopplegg

<table>
<thead>
<tr>
<th></th>
<th>Asker og Bærum</th>
<th>Oslo</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m3/s</td>
<td>m3/s</td>
<td>m3/s</td>
</tr>
<tr>
<td>Supplering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Største 4-ukers gj.snitt</td>
<td>1,3</td>
<td>3,9</td>
<td>5,2</td>
</tr>
<tr>
<td>Største $\frac{1}{2}$-års gj.snitt</td>
<td>1,1</td>
<td>3,3</td>
<td>4,4</td>
</tr>
<tr>
<td>Middel av alle verdier</td>
<td>0,67</td>
<td>2,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Middel av gj.snittlig årsforløp</td>
<td>0,61</td>
<td>1,8</td>
<td>2,4</td>
</tr>
<tr>
<td>2. minste $\frac{1}{2}$-års gj.snitt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstatning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>1,25</td>
<td>4,6</td>
<td>5,85</td>
</tr>
</tbody>
</table>

Av tabellene ser vi at vi uansett alternativ må regne med at uttaket over lengre perioder kan komme opp i ca. 1,3 m3/s bare for Asker og Bærum, 5-6 m3/s hvis også Oslo skal dekkes.
I tillegg til ferskvannsuttaking kan det bli aktuelt med uttak av 2-3 m³/s fra overflatelaget om sommeren til vanningsanlegg i Lierdalen.

4.5 Forurensningstilførsler

4.5.1 Generelt

Den samlede befolkning i hele Tyrifjordens nedslagsfelt er oppgitt til ca. 85 000 personer. Viktige forurensningskilder ellers er skogbruk, jordbruk og industri, spesielt treforedling.

Ca. 85% av nedslagsfeltet sokner til Tyrifjorden indirekte via innsjøene Sperillen og Randsfjorden. Disse sjøenes selvrensingsevne vil redusere belastningen fra denne delen av nedslagsfeltet vesentlig. Vannkvaliteten i Randsfjorden er undersøkt av NIVA (1970b), og funnet kjemisk tilfredsstillende for drikkevannsformål. Den lange oppholdstiden i sjøen (ca. 3,3 år gjennomsnittlig) gir stor selvrensing og forholdsvis jevnt kvalitet på avrenningsvannet. Bakteriekonsentrasjonene var forholdsvis lave, i området 0-20/100 ml colibakterier. For Sperillen foreligger ikke tilsvarende data, men da den er så å si uten forurensningstilførsler bør forholdene her være enda bedre enn i Randsfjorden.

Selv om vi ikke vet hvordan situasjonen i Randsfjorden og Sperillen er i dag, er det mest naturlig å betrakte forurensningene herfra som bakgrunnskonsentrasjoner i vannmassene.

1) Ca. 3500 personer ved Vikersund og omegn er ikke regnet med.
Utslipp fra annen industri er ikke spesifisert.

Tabell 4 nedenfor viser et forsøk på å beregne forurensningstilførslerne fra det lokale nedslagsfelt til Tyrfjorden for næringsstoffene fosfor (P), nitrogen (N) og organisk stoff målt som biologisk oksygenforbruk (BOF7).

Tabell 4. Grovt estimat over forurensningstilførsler til Tyrfjordens nær nedslagsfelt

<table>
<thead>
<tr>
<th>KILDE</th>
<th>STØRRELSE</th>
<th>N</th>
<th>P</th>
<th>BOF7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spesifik</td>
<td>Totalt t/År</td>
<td>Spesifik</td>
</tr>
<tr>
<td>Dyrket mark</td>
<td>113 km²</td>
<td>1000-1200 kg/km² år</td>
<td>110-135</td>
<td>8-20 kg/km² år</td>
</tr>
<tr>
<td>Skog og myr</td>
<td>1050 "</td>
<td>200 "</td>
<td>210</td>
<td>6,0 "</td>
</tr>
<tr>
<td>Utmark</td>
<td>390 "</td>
<td>120</td>
<td>50</td>
<td>3,2 "</td>
</tr>
<tr>
<td>Treforedling: (papir)</td>
<td></td>
<td></td>
<td></td>
<td>>10t/km²</td>
</tr>
<tr>
<td>Follum fabrikker</td>
<td>155-175000 t/År</td>
<td>30 "</td>
<td>8-9</td>
<td>90 "</td>
</tr>
<tr>
<td>Skjærdalen bruk</td>
<td>8000 t/År</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befolkning</td>
<td>34000 p.e.</td>
<td>12 g/p.e.døgn</td>
<td>150</td>
<td>3 g/p.e.døgn</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>530-550</td>
<td>60-65</td>
<td>3300-3400</td>
</tr>
</tbody>
</table>

Tallene for spesifikk avrenning fra landarealer er hentet fra NIVA (1974), og er bare generelle estimerer, forholdene kan variere en del for forskjellige avrenningsarealer.

1) I dag er produksjonen omtrent den samme, men med en kapasitetsutnyttelse på bare 70-75%.
Alle kildene er ikke tatt med, og estimatene skulle derfor være nedre grenser. Til gjengjeld er det ikke tatt hensyn til rensetiltak eller til selvrensing etter utslipp ved infiltrasjon i jordsmønn, nedbrytning av organisk stoff etc. og bare en del av de beregnede tilførsler vil derfor nå Tyrifjorden.

Tallene er bare grove, usikre anslag for forurensningstilførslene i nedbørsfeltet. Ut fra tabellen synes det som om nitrogentilførslene vesentlig skyldes avrenning fra landarealer og kloakkutslipp. Fosforutslipp er dominert av treforedlingsindustri og kommunale utslipp.
For organisk stoff ser det ut til at naturlig avrenning kan dominere, men treforedling og kommunalt avløp bidrar også vesentlig.

Det datamaterialet som er benyttet er fra opp til 10 år tilbake og situasjonen kan ha endret seg noe fram til i dag.

For å kunne vurdere datamaterialet fra Holsfjorden er det også viktig å vite hvordan forurensningene fordeler seg på vestre del av Tyrifjorden og på Holsfjorden og Steinsfjorden.

Det lokale nedslagsfeltet til Holsfjorden og Steinsfjorden kan anslås til ca. 1/8 av det nære nedslagsfeltet til Tyrifjorden (nedenfor Sperillen og Randsfjorden). Treforedlingsindustrien kan en regne med er konsentrert til vestre del av Tyrifjorden. Av den totale befolkning på ca. 34 000 i Tyrifjordens nære nedslagsfelt sokner ca. 6 000 personer til Holsfjorden/Steinsfjorden, mens ca. 28 000 finnes i områdene rundt vestre del av Tyrifjorden, i Hønefossområdet og ved Sokna, Ådalselv og Randselva (NGO 1975).
For nitrogen og fosfor må også tas med bakgrunnsmengdene i vannet fra Sperillen og Randsfjorden. Bakgrunnsverdiene for BOP₇ antas å kunne neglisjeres.

Data fra Randsfjorden (NIVA 1970b) gir en gjennomsnittlig overflatekonsentrasjon av fosfor på ca. 9 μg P/l i den sørlige del av hovedvannmassene.

Nitrogen er analysert som nitrat (inkludert nitritt) og som bundet og fri ammonium (BFA). For overflatelaget i sørlige delen finnes gjennomsnittsverdier på henholdsvis 220 og 160 μg N/l, hvis vi bruker summen som anslag for total nitrogenmengde får vi ca. 390 μg N/l som bakgrunnsverdi i vannmassene.

For Sperillen finnes ikke tilsvarende data, men ut fra en orienterende undersøkelse av Numedalslågen (NIVA 1976) skal vi prøve å anslå bakgrunnsverdier, selv om det blir nokså spekulativt. Randsfjordens nedslagsfelt har en befolkning på ca. 17 000, konsentrert langt opp i vassdraget rundt Fargernes. Numedalslågen ovenfor Kongsberg har et nedslagsfelt på ≈ 4 200 km², befolkningen er ca. 7 000 p.e., spredt langs hele vassdraget¹). Vannføring kan anslås til ca. 80 m³/s. Forholdet mellom befolkning og vannføring er for Randsfjorden ca. 600 P/(m³/s). Sperillen skulle ut fra dette ligge nærmest Numedalslågen ovenfor Kongsberg mht. vannkvalitet, muligens med noe høyere konsentrasjoner. Verdier her var 7-8 μg P/l og ca. 160 μg N/l. Sannsynlige verdier for totalfosfor og totalnitrogen i Sperillen kan være ca. 8 μg P/l og i størrelsesorden 200 μg N/l. Sammenlikningen er svært grov, omfatter ikke alle faktorer av betydning og bygger på data bare for ett tidspunkt for Numedalslågen.

Ut fra konsentrasjonstall og vannføringsdata kan bakgrunnstilførsler til Storelv-vassdraget anslås.

En fordeling av tilførslene til Tyrifjorden ut fra antakelsene foran er vist i tabell 5.

¹) Befolkningsdata iflg. NGO (1975).
Tabell 5. Grovt anslått fordeling av forurensningstilførsler til Ty rifjordens vestre del og Holsfjorden/Steinsfjorden. Selvrensing eller rensetiltak er ikke tatt hensyn til nedenfor Sperillen og Randsfjorden
Alle tallene er usikre

<table>
<thead>
<tr>
<th>Resipient</th>
<th>N</th>
<th>P</th>
<th>BOF$_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ty rifjordens vestre del</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperillen/Randsfjorden</td>
<td>ca. 1260 t/år</td>
<td>ca. 40 t/år</td>
<td>-</td>
</tr>
<tr>
<td>Lokalt</td>
<td>ca. 470 t/år</td>
<td>55-60 t/år</td>
<td>2950 t/år</td>
</tr>
<tr>
<td>Totalt</td>
<td>ca. 1730 t/år</td>
<td>95-100 t/år</td>
<td>2950 "</td>
</tr>
<tr>
<td>Holsfjorden/Steinsfjorden</td>
<td>ca. 70-75 t/år</td>
<td>7-8 t/år</td>
<td>360 t/år</td>
</tr>
<tr>
<td>Forholdstall:</td>
<td>23-25</td>
<td>10-15</td>
<td>ca. 8</td>
</tr>
</tbody>
</table>

En ser at forholdstallet er relativt likt for alle tre komponenter. Ut fra de store usikkerhetene i beregningene er det ingen signifikant forskjell.

4.5.2 Utslipp i søndre del av Holsfjorden

Pga. de registrerte bakteriekonsentrasjonene i den søndre delen av Holsfjorden er utslippsforholdene her av spesiell interesse.

Ifølge NGO (1975) bor det ellers ca. 1000 personer spredt langs begge sider av Holsfjorden. Enkeltheter om disse utslippene er ikke kjent.

1 Telefoniske opplysninger fra ing. Eriksen, Lier kommune.
5. TIDLIGERE UNDERSØKELSER

5.1 Generelt

Av de mange undersøkelser som er gjort av Tyrifjorden og tilhørende vassdrag, refereres her bare til noen få av nyere dato.

Senere er det utført en biologisk undersøkelse (NIVA 1972) hvor også bakterieinholdet i den sørlige del av Holsfjorden ble målt ved noen tidspunkter. Statens institutt for folkehelse utførte i 1975 omfattende bakteriemålinger langs hele Holsfjorden ved to tidspunkter (SIFF 1976). 1)

I de følgende avsnitt blir en del av resultatene fra disse undersøkelsene omtalt og drøftet og det gjøres visse overslagsberegninger for å se hvilke konklusjoner som kan trekkes.

5.2 Fysisk-kjemiske forhold

5.2.1 Temperatur og tetthet

I fig. 5, 6 og 7 er vist temperaturprofiler for stasjon 1-5 (fig. 1) ved forskjellige tidspunkter. Figurene viser at sprangsjiktets beliggenhet kan variere innbyrdes mellom stasjonene med opptil 10-20 meter.

3.-6. juli 1967 lå sprangsjiktet markert høyere på stasjon 2 og 1 i den sørlige delen av Holsfjorden enn lengder nord på stasjon 3, 4 og 5. Dette kan f.eks. skyldes svingninger pga. vindpåvirkning eller være en effekt av den store vårflokken dette året.

I måneds-skiftet august/september samme år var forholdene mer like over hele innsjøen. I begge disse tilfellene var overfløtetemperaturen på stasjon 4 og 5 høyere enn på de andre stasjonene. Dette kan indikere at disse stasjonene er mer påvirket av vannmassene fra Storelva enn Holsfjorden ellers. Om someren vil en kanske vente at elvevannet, som ikke påvirkes av dypereliggende kaldt vann, oppnår en noe høyere temperatur og blir lettere enn overfløtetalaget i innsjøen. Vi har imidlertid ikke data for vassdraget som kan bekrefte dette.
Fig. 5. Tyrifjorden - Temperaturobservasjoner i °C 1967 (NIVA 1970a)
Fig. 6. Tyrifjorden - Temperaturobservasjoner i °C 1967 (NIVA 1970a)
Fig. 7. Tyrifjorden - Temperaturobservasjoner i °C 1968 (NIVA 1970a)
I høst, vinter- og vårsituasjoner med svak sjiktning kan sprangsjiktets beliggenhet variere sterkt fra stasjon til stasjon. Dette er naturlig, fordi en skråttstilling av sprangsjiktet krever mindre energi jo svakere sjiktningen er.

Temperaturene synes å vise at overflatevannet i Tyrifjorden ikke kan betraktes som fullstendig blandet. Det ser imidlertid ut til at det kan være nokså store bevegelser i vannmassene, med skråttstilling av sprangsjiktet og horisontal sirkulasjon innenfor hvert lag. Vi har for få data til å kunne si noe om hvor sterk en slik sirkulasjon er, og hvor stor den horisontale blandingen er ut fra temperaturmålingene.

5.2.2 Kjemiske parametre

Målinger av kjemiske parametre utført av NIVA (1970a) viste små variasjoner både horisontalt og vertikalt i innsjøen.

Appendix la til 3b viser noen av måleresultatene. Gjennomsnittsverdier er beregnet både over alle stasjoner ved gitt tidspunkt og over tid for hver stasjon. De angis ved et 90% konfidensintervall, dvs. at en med 90% sannsynlighet skal kunne si at gjennomsnittet vil ligge i dette intervall til hvis antall observasjoner øker ubegrenset. Beregningsmetoden fortsetter at observasjonene er stokastisk uavhengige og normalfordelt i tid og rom. Hvis variasjonene delvis er lovmessige i tid og rom vil de ikke lenger være uavhengige, og fordelingen kan også avvikje fra normalfordelingen. Vi kan derfor ikke anta 90% konfidensnivå i praksis, men kan regne med at det er stor sannsynlighet for at intervallene omfatter gjennomsnittet.

En ser av tabellene at selv om verdiene for ett tidspunkt kan variere sterkt fra en stasjon til en annen, adskiller gjennomsnittsverdiene seg lite fra hverandre for de forskjellige stasjoner. Det synes ikke som om noen av stasjonene var vesentlig mer påvirket av forurensninger enn andre. Det syntes å være en viss tendens til høyere verdier på stasjon 4 og 5 for turbiditet og farge som kan tas som når på partikkellinhold og organisk stoff. For næringssaltet nitrat var det en svak tendens andre

1) Se f.eks. Kreyzig 1967, s. 793.
vei, mens totalfosfor ikke viste noen tegn til systematiske forskjeller mellom stasjonene. Bare for farge på 1 m dyp var forskjellen signifikant mellom stasjon 4 og 5 og de andre stasjonene ved denne analysen.

Tabellene viser imidlertid at de gjenomsnittlige forholdene kan variere signifikant fra ett tidspunkt til et annet. Det betyr at variasjonene i tid dels er parallele over alle stasjonene. Når vi beregner gjennomsnittet på hver stasjon over tid vil de systematiske variasjoner innå i den beregnede usikkerhet og kamufliere forskjellen mellom stasjonene. For å få forskjellene klarere fram har vi for hvert tidspunkt korrigert de observerte verdiene ved å trekke fra gjenomsnittet over alle stasjoner og dividere på tilhørende standardavvik. På den måten får vi for hvert tidspunkt et sett av verdier med gjenomsnitt 0 og standardavvik 1, som uttrykker relativt avvik fra gjenomsnittsverdi på de forskjellige stasjonene.

Hvis det ikke er systematiske forskjeller mellom stasjonene bør gjenomsnittlig avvik ikke være signifikant forskjellig fra stasjon til stasjon og ikke signifikant forskjellig fra 0 for noen stasjon.

Appendix 4a til 6b viser korrigerte data med 90% konfidensintervall for gjenomsnitt utregnet. Resultatene er vist grafisk i fig. 8. Forskjellene mellom stasjonene viser seg nå tydeligere. For farge i 1 m dyp har stasjon 4 og 5 signifikant høyere verdier enn 3 og 1, som igjen har høyere verdier enn stasjon 2. Turbiditet på 1 m dyp er signifikant større på stasjon 4 og 5 enn på stasjon 1, 2 og 4, men det er ingen gradient fra stasjon 1 til 2. For større dyp, 4 og 30 meter, er det signifikante forskjeller i farge mellom stasjon 5 og 2, på 4 meter også mellom stasjon 5 og 1.

Ellers er det få klart signifikante forskjeller. For turbiditet og nitrat+nitritt på 4 m dyp er en stasjon (henholdsvis 3 og 5) signifikant under gjennomsnittet. Siden det bare dreier seg om en av fem stasjoner kan det ikke tillegges særlig vekt når konfidensnivået er 90%.
Fig. 8 90% konfidensintervaller for tidsgjennomsnitt av relativt avvik fra øyeblikksmidler over alle stasjoner
Etter tabell 9-11
Antakelsene om uavhengighet og normalfordeling vil antakelig gjelde bedre for de beregnede avvik enn for de observerte verdiene, og vi kan med større sikkerhet gå ut fra at signifikansnivået er omkring 90%.

I de øverste metre av overflatelaget er altså den nordvestre delen av Tyrifjorden signifikant mer påvirket av partikler og fargestoff enn Holsfjorden forøvrig, og det er rimelig å knytte dette til forurensningen av organisk stoff fra Storelva. Farge i overflaten avtar sørøstover langs hele Holsfjorden. Ellers viser ikke de data vi har analysert noen klare forskjeller fra stasjon til stasjon.

At forholdene i Tyrifjorden/Holsfjorden er såpass jevne kan skyldes flere ting.

Tabell 5 viste forhold på 10-20:1 mellom forurensningstilførselene til den vestre del av Tyrifjorden og til Holsfjorden/Steinsfjorden. Av tabell 1 ses at det tilsvarende forholdstall er ca. 50:1 for ferskvannstilrenningen. Dette innebærer at forurensningstilførsler i forhold til ferskvannstilrenningen kan være mer enn dobbelt så stor i Steinsfjorden/Holsfjorden som i den vestre del av Tyrifjorden. En kunne derfor vente å finne vesentlig sterkere forurensningsbelasting i de østre deler av Tyrifjorden enn i den nordvestlige delen. Nå er begge forholdstall usikre, og vi kan ikke påstå at det er noen klar forskjell i tilførsel pr. tilrenning. Dessuten vil selv en forholdsvis liten horisontal utskiftning av vann mellom vestlige og østlige deler bety en sterk utjevning av forskjeller. Hvis bare ca. 10% av gjennomstrømningen, dvs. 17 m³/s, blander seg med vannmassene østover i Holsfjorden, ville forskjellen i konsentrasjon reduseres fra 100% til 20% for et konservativt stoff.

De målte forurensningsparametrene er imidlertid ikke konservative. Selvrensningssprocesser ved infiltrasjon i jordmonn, ved sedimentering av partikler og døde organismer på bunnen i vassdrag og innsjøer og nedbrytning av organisk materiale vil føre til at bare en del av de opprinnelige forurensningene vil gjenfinnes i vannmassene. Selvrensningen er bare effektiv for konsentrasjoner som ligger over et naturlig likevektssnivå. Tyrifjorden er svakt belastet, og det er naturlig å anta at selvrensningen relativt sett er sterkest i de mest belastede områder.
Dette vil virke utjevnende på vannkvaliteten.

Fosfortilførslene er foran stipulert til ca. 135 t/år totalt, fordelt på ca. 40 t/år i vannet fra Sperillen og Randsfjorden, og ca. 95 t/år i det lokale nedslagsfeltet. Totalfosforinnholdet i overflatelaget ved stasjon 5 nærmest utløpet er 8-10 μg P/l i gjennomsnitt for de observerte tilfeller, dvs. at ca. 45-55 t/år transporteres ut med avrenningen til Dramselva. Det ser altså ut til at ca. 80-90 t/år forsvinner ut av systemer ved selvrensningsprosesser, eller 85-95% av de lokale tilførslene.

Alle tallene her er usikre, men viser likevel at selvrensningen kan være stor.

Ut fra drøftingen foran ville vi vente en tendens til større konsentrationsjoner av forurensningskomponenter i Holsfjorden/Steinsfjorden, om enn nokså svak. Imidlertid har også hastigheten på selvrensningen betydning for tilstanden i vannmassene. For Tyrifjordens vestre del er oppholds- tiden av overflatelaget antakelig vesentlig kortere enn for de østre deler av Holsfjorden. Selvrensningen vil derfor være mindre effektiv her, og dette kan bevirke at en faktisk får størst konsentrationsjoner i nordvestre del av Tyrifjorden. Særleg viktig er dette for organisk stoff (BOF₇) hvor bakgrunnsbelastningen antakelig betyr mindre enn for næringssaltene N og P.

De faktorer som her er nevnt kan altså forklare at de registrerte forskjeller er små. Det er derfor ikke grunn til å tro at den jevne vann- kvaliteten må skyldes sterk horisontal blanding. En kan godt ha forholds- vis lange transporttider fra øst til vest og prosentvis svak vannfor- nyelse for vannmassene i Holsfjorden uten at dette gir seg utslag i særlig merkbare konsentrationsforskjeller.

En sammenlikning mellom de 5 stasjonene i hovedbassenget og Steinsfjorden viste større forskjeller, spesielt for fosfor, som var 20-50 % høyere i Steinsfjorden enn i Holsfjorden. Med godt kjennskap til forurensnings- tilførsler og farkvannstilrenning til de to områdene og vannutskiftningen
mellom dem, ville en muligens ved hjelp av en del grove antakelser kunne anslå en omtrentlig nedre grense for vannutskiftningen mellom Holsfjorden og Steinsfjorden. Å gjøre det på eksisterende grunnlag vil ha liten mening.

5.3 Bakteriologiske undersøkelser

5.3.1 Presentasjon av data

Ved alle de tre refererte undersøkelser ble det foretatt bakterimålinger. Bakterieinnhold kan måles på flere måter. Vi skal her konsentrere oss om coli-bakterier, dvs. tarmbakterier fra dyr og mennesker, som best indikerer påvirkning av kloakkutslipp.

Levetiden for coli-bakterier i ferskvann varierer med bl.a. lysforhold og temperatur, men antas å ligge omtrent innenfor området 2 uker til 2 måneder. Etter denne tiden skal ca. 90% av bakteriene være utdødd. Usikkerheten i en enkelt bakterieprøve er stor, forskjellen mellom to enkeltprøver må være minst en størrelsesorden (1:10) for at en kan si den er signifikant. Analysemetodene er ikke standardisert, og resultatene behøver ikke å være fullstendig sammenliknbare for de forskjellige undersøkelsene.

1) Opplysningene er gitt muntlig av siv. ing. Kari Ormerød, leder av biologiseksjonen ved NIVA.
Tabell 6. Registrerte coli-bakterier pr. 100 ml i Holsfjorden, etter NIVA (1970a). Stasjonsplassering kfr. fig. 1

<table>
<thead>
<tr>
<th>Dyp (m)</th>
<th>St.4 5.5.67</th>
<th>St.5 5.5.67</th>
<th>St.3 27.4.67</th>
<th>St.1 26.4.67</th>
<th>St.2 26.4.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>9</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6.7.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>163</td>
<td>20</td>
<td>2</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>114</td>
<td>36</td>
<td>6</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>29</td>
<td>5</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>39</td>
<td>31</td>
<td>11</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>21</td>
<td>5</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>50</td>
<td>17</td>
<td></td>
<td>1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>30.8.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>75</td>
<td>23</td>
<td>52</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>77</td>
<td>28</td>
<td>92</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>18</td>
<td>39</td>
<td>50</td>
<td>240</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>14</td>
<td>15</td>
<td>21</td>
<td>190</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>26.10.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>≥ 150</td>
<td>45</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>≥ 150</td>
<td>44</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>≥ 170</td>
<td>45</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>≥ 170</td>
<td>49</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>≥ 250</td>
<td>63</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>77</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>70</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>90</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>61</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resultatene viser et svært skiftende bilde, både når det gjelder størrelsesorden og fordeling. Den første situasjonen, 26.4.-5.5.67 er fra fullsirkulasjonsperioden om våren, med ca. 4°C over alt i vannmassen. Det var da jevnt lave bakterietall over alt (1-10), med en tendens til høyere verdier på stasjon 4 nærmest Storelvas munning, og stasjon 2 i sørørenden av Holsfjorden. Lav temperatur, dvs. kort overlevelsestid, og sterk vertikal blanding av vannmassene er antakelig grunnen til de lave tallene. Målingene ble gjort ved en vannføring på 200 m³/s, før den store vårflommen, så det er ikke stor vannføring som er årsak til de lave tallene.

I begynnelsen av juli var tallene mye større, spesielt i overflatelaget på stasjon 4, men også ellers ned til 50 m dyp. Temperaturen var da ca. 11°C i middel i overflatelaget, nær den optimale temperaturen for bakteriene. Dette kan være noe av forklaringen på de forholdsvis høye tallene. Det var en forholdsvis klar tendens til høyere verdier på stasjon 4 og 5 og stasjon 2, med lavere verdier på de mellomliggende stasjonene 1 og 3 midt i Holsfjorden. Stasjon 3 hadde gjennomgående laveste verdiene i denne situasjonen. Overflate-temperaturen var størst på stasjon 9 og 5, 13-14°C, og lavere på de andre stasjonene (12°C). 30.8.-1.9 var det også høye verdier, men nå høyest i sørørenden av Holsfjorden ved stasjon 2. Overflatekonsentrasjonene for de andre stasjonene viste ikke noen klar gradient, men det ser ut til at bakterieforekomsten var spredt lengre nedover i vannmassen jo nærmere stasjon 2 en kom. Det var lav vannføring, 120 m³/s, og overflate-temperaturen var 16-17°C, varmest i den vestlige delen, stasjon 4 og 5.

I tillegg til de gjengitte resultater ble det gjort noen ufullstendige måleserier. De viser omtrent samme variasjonsområde, men gir ikke så godt bilde av variasjonen langs Holsfjorden fordi stasjoner mangler.

Senere har NIVA (1972) målt bakterieinnholdet i vannet ved Toverud utenfor det planlagte vanninntaksstedet. Dette er mellom stasjon 1 og 2 i NIVAs første undersøkelse. Resultatet for coliforme bakterier vises på neste side i tabell 7.
Tabell 7. Bakteriologiske forhold i Holsfjorden utenfor Toverud i Sylling, april-desember 1971

Coliforme bakterier (antall pr. 100 ml)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>7</td>
<td>50</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Resultatene ligger i samme område som de tidligere verdiene. Mens resultatene fra 1967 viste en tendens til sterkere konsentrasjoner i overflatelaget (1-16 m), viste målingene i 1971 en tendens motsatt vei. Noen klar forskjell er det imidlertid ikke.

I tabell 8 og 9 er en del av måleresultatene for fullstendig prøve (coliforme bakterier) gjengitt. Tabellene er en grov fremstilling av et snitt langs sørvestsiden av Holsfjorden. Der det er flere stasjoner på tvers av lengderetningen er stasjonen nærmest nordøstbredden angitt i parentes. Snittet er antydet i fig. 9.
Fig. 9
Prövetakingsstasjoner for bakterieanalyser (SIFF 1976)
Tabell 8. Coliforme bakterier (fullstendig prøve) pr. 100 ml, Holsfjorden 12. mai 1975

<table>
<thead>
<tr>
<th>Dyp i m</th>
<th>Stasjons-nummer</th>
<th>2</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>60</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>130</td>
<td>0</td>
<td>130</td>
<td>2</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>4,5</td>
<td>7,8</td>
<td>2</td>
<td>2</td>
<td>4,5</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>4,5</td>
<td>4,5</td>
<td>0</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>7,8</td>
<td>0</td>
<td>7,8</td>
<td>0</td>
<td>7,8</td>
<td>7,8</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>6,8</td>
<td>2</td>
<td>6,8</td>
<td>2</td>
<td>6,8</td>
<td>6,8</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>4,5</td>
<td>2</td>
<td>4,5</td>
<td>2</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>0</td>
<td>4,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Stasjonene er ordnet i snitt langs Holsfjordens lengdeaksje. Stasjonen i og data satt i parentes gjelder den nordligste bredde, de andre stasjonene ligger langs sørvestbredden. Stasjoner i samme kolonne ligger tvers over hverandre (vgl. fig. 9).
Tabell 9. Coliforme bakterier (fullstendig prøve) pr. 100 ml, Holsfjorden 1. september 1975, ifølge SIFF, 1976

Stasjonene er ordnet i snitt langs Holsfjordens lengdeakse. Stasjonsnr. og data satt i parentes gjelder den nordøstlige bredden, de andre stasjonene ligger langs ørvestbredden. Stasjoner i samme kolonne ligger tvers overfor hverandre (kfr. fig. 9).

<table>
<thead>
<tr>
<th>Dyp i m</th>
<th>35</th>
<th>34</th>
<th>33</th>
<th>(31)</th>
<th>30</th>
<th>29</th>
<th>27</th>
<th>(25)</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>(18)</th>
<th>16</th>
<th>(15)</th>
<th>13</th>
<th>(9)</th>
<th>(6)</th>
<th>(3)</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>7</td>
<td>11</td>
<td>(13)</td>
<td>2</td>
<td>7,8</td>
<td>4,5</td>
<td>(2)</td>
<td>4,5</td>
<td>2</td>
<td>4,5</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>(0)</td>
<td>4,5</td>
<td>(2)</td>
<td>0</td>
<td>(2)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>4,5</td>
<td>33</td>
<td>(6,8)</td>
<td>7,8</td>
<td>0</td>
<td>0</td>
<td>(2)</td>
<td>6,8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(2)</td>
<td>2</td>
<td>(0)</td>
<td>2</td>
<td>(0)</td>
<td>13</td>
<td>(2)</td>
<td>(4,5)</td>
<td>130</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(0)</td>
<td>1,8</td>
<td>0</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4,5</td>
<td>(13)</td>
<td>11</td>
<td>(7,8)</td>
<td>130</td>
<td>(0)</td>
<td>49</td>
<td>(2)</td>
<td>(49)</td>
<td>13</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4,5</td>
<td>2</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(13)</td>
<td>0</td>
<td>(32)</td>
<td>(79)</td>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(2)</td>
<td>4,5</td>
<td>(2)</td>
<td>(79)</td>
<td>2</td>
<td>240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sørvestover fant en avtakende konsentrasjoner og på stasjon 27 (10 km fra nordvestbredden) var det bare en svak antydning til signifikante konsentrasjoner (>2). Over de neste 10 km sørvestover fantes bare noen få spredte registreringer > 2.

Fra stasjon 16-18 og sørover, dvs. i de sørligste 5 km av Holsfjorden, fantes imidlertid igjen jevnt over konsentrasjoner > 2, opp mot 10-15 (en enkeltverdi opp mot 50 i overflaten har antakelig rent lokale årsaker).

Både i den nordvestlige og søroystlige delen av Tyrifjorden var bakterieinholdet spredt over hele det målte dypområdet. Dette henger sammen med at det 12. mai 1975 var fullsirkulasjon i Holsfjorden, og sterk vertikal blanding av vannmassene.

Det sørlige området strakk seg fra sørenden til stasjon 16-19, omtrent som 12. mai. De høyeste konsentrasjonene, og også den største vertikalspredningen, ble funnet lengst sø, på stasjon 1. Lenger nordover (stasjon 4-16), var bakterieforekomstene hovedsakelig konsentrert mellom 30 og 60 m dyp. I overflatelaget (2 og 10 m dyp) var det bare spredte registreringer, også lengst sø.

I det nordlige området derimot fantes colibakterier så å si bare i overflatelaget, ned til mellom 10 og 30 meter. Området strakk seg fra stasjon 35 til stasjon 22. Stasjon 25 hadde lavere verdier enn 22, og
det ser ut til at påvirkningen er størst langs sørvestbredden.

De registrerte verdiene i det nordlige området var stort sett i området 2–20, med et par analyser rundt 40. I det sørlige området ble funnet verdier opp mot 250, flere verdier var over 50.

5.3.2 Drøfting av resultatene
5.3.2.1 Vurdering av bakterieutbredelse

Bakteriemålingene er de eneste som ser ut til å gi store forskjeller fra sted til sted i Holsfjorden. Dette er naturlig, da det naturlige bakgrunnsnivå for coli-bakterier er 0, og fordi nedbrytningen går så raskt i forhold til den gjennomsnittlige oppholdstiden i vannmassene, beregnet til ca. 2,6 år (NIVA 1970a).

Resultatene viser at en vanligvis ikke har fullstendig horisontal blanding i løpet av bakterienes levetid. I resultatene fra 1967 er konsentrasjonene alment høyere i nordvest- og sørovestenden av Hols-
fjorden enn på mellomliggende stasjoner. Dersom de høye konsentrasjonene i sør indikerer vann fra Storelva, må disse vannmassene ha passert de mellomliggende områder med høyere bakterietall enn det en finner i sørenden. Det virker lite sannsynlig at dette skulle skje såvidt ofte som målingene i sør gir inntrykk av uten at det ble registrert på stasjon 1 og 3. Hvis vann fra Storelva var årsaken ville vi vente at det gjennomsnittlig var lavest konsentrasjoner i sørenden, og stigende nordvestover i Holsfjorden.

I Appendix 7 er vist resultatene av en statistisk analyse på coli-
bakterier tilsvarande den som ble gjort for kjemiske parametre foran. Bare tidspunkter med målinger på alle stasjoner er med, prøver fra 1 m, 16 m og 30 m er behandlet under ett for å få større statistisk materiale. Siden variasjonene nå er såpass store i forhold til de absolutte verdiene vil en antakelig ha en skjev, ikke-normal fordeling av verdiene, og angitt konfidensnivå for beregnet gjennomsnitt er derfor noe usikkert.
En kan likevel med stor sannsynlighet fastslå at stasjon 1 og 3 har lavere gjennomsnittskonsentrationsier enn stasjon 2 og 4. Stasjon 5 ser ut til å ha en verdi mellom 3 og 4, men forskjellen til stasjon 4 kan ikke påstås å være signifikant. Stasjon 3 ser ut til å ha lavest konsentrationsier, men forskjellen mellom stasjon 3, 1 og 5 er ikke helt klar. Materialet viser ingen tegn til at stasjon 2 har lavere verdier enn stasjon 4 gjennomsnittlig, de ser ut til å ligge på samme nivå.

Appendix 8 viser resultater for farge med samme prøvetidspunkter og dyp som coli-bakteriene. En ser at konsentrationsierne avtar signifikant fra stasjon 4 til 3, derfra videre øver er det ingen signifikant forskjell mellom stasjonene. Dersom Storelva var opphavet til all forurenings av bakterier ville vi vente at gradienten for farge og bakterier skulle gå samme vei. Forskjellen i variasjonsbilde for farge og bakterier bestyrker derfor antakelsen om at bakteriekonsentrationsierne i sørøstenden av Holsfjorden har vært lokalt betinget, og at de ikke skyldes en urregistrert transport av vann fra Storelva. Resultatene er vist grafisk i fig. 10.

I 1967 ble det bare målt ned til 50 meters dyp. SIFFs resultater fra 1975 går ned til 100 meters dyp og omfatter langt flere stasjoner. De gir et bedre bilde av forholdene ved et gitt tidspunkt enn NIVAs målinger, selv om statistikkene over tid er dårligere. Målingene bekrefter NIVAs resultater mht. størst konsentrationsier i nordvest- og sørøstenden, og viser at det i alle fall ned til 100 meter ikke er noe sammenhengende bakterieforurenset område fra Storelva og til Toverud/Sylling.

Fig. 10 90\% konfidensintervaller for tidsgjennomsnitt av relativt avvik fra øyeblikksmidler over alle stasjoner. Etter tabell 16-17.
For det første vil innlagringsforholdene kunne variere sterkt med temperatur i innsjøen og i avløpsvannet, dessuten vil bakteriene antakelig for en stor del transporteres mot overflaten bundet til flytestoffer, og mot dypet av sedimenterbare partikler.

SIFFs målinger viser jevn vertikalfordeling 12. mai 1975 ved fullsirkulasjon, mens det 1. september var størst verdier i gjennomsnitt og størst horisontal utbredelse fra 30 til 60 meters dyp i den sørøstre del av Holsfjorden. I den nordlige delen var bakteriene konsentrert i overflatelaget.

Alt i alt må også den vertikale utbredelsen av bakterier tas som indikasjon på at bakterieforekomsten i sørøstenden skyldes lokal påvirkning fra Syllingutslippet og ikke vann fra Storelva.

Det ser i det hele ut til å være lite sannsynlig at bakteriekonsentrasjonene i sørenden av Holsfjorden skulle skyldes vann fra Storelva. Det gjenstår å finne ut om det er sannsynlig at utslippet i Sylling kan forårsake de bakteriekonsentrasjonen som er observert. I det følgende skal vi se litt på dette.

5.3.2.2 Vurdering av observert bakteriemengde

Tidspunktet tilsier at prøvene er tatt i den siste fasen av vårflommen, vannføringen kan ha vært over gjennomsnittet, men også under, anslagsvis 150 m³/s - 300 m³/s. Det totale antall coli-bakterier tilsatt Holsfjorden kan da anslås til (1.5-3)x10⁷/s. Med en total befolkning langs
Storelva, Ádalselva og Randselva på ca. 20 000 vil dette si
(0.75-1.5)x10^4/s person.

Utslippet ved Sylling er på ca. 1000 p.e.1) Antas samme bakterietall
pr. person som observert i Storelva, blir totalt antall tilførte coli-
bakterier (0,75-1,5)x10^7/s. Antar vi at antall som dør er proporsjonal
med bakteriemengden (eksponentiell nedbrytning) vil vi ha likevekt
når

\[s = k \cdot m \]

hvor

\[s = \text{antall bakterier tilført/s} \]
\[k = \text{dødsrate, s}^{-1} \]
\[m = \text{totalt antall bakterier} \]

Dødsraten k kan bestemmes som \(k = \frac{\ln 10}{T} \) hvor \(T = \text{den tid det tar før 90\%} \)
av bakteriene er utdødd. Med \(T = 2 \) uker til 2 måneder får vi
\(k = 0,35-1,85 \times 10^{-6} \) s\(^{-1}\).

Den totale bakteriemengde vi ville vente å observere i Holsfjorden på
grunn av bakterieutslippet i Sylling er derfor

\[m = \frac{s}{k} = (0,5-5) \times 10^{13} \]

Ut fra SIFFs resultater kan vi beregne omtrent hvor mange bakterier som
finnes fra 0 til 100 m dyp i den sørøstre delen. Den 12. mai 1975
strakte bakteriekonsentrasjonen seg nordover til stasjon 16 og 18, dvs.
en lengde av ca. 5 km, og over hele dybdeintervallet. Bredden på sjøen
her kan anslås å variere fra ca. 2 km ved 0 m dyp til 1 km ved 100 m dyp.
Det berørte vannvolum er derfor ca. 50000x100x1500 = 7,5x10^8 m\(^3\).
Bakteriekonsentrasjonene i dette vannvolumet lå stort sett på 5-10
pr. 100 ml, dette gir 3-8x10^{13} bakterier totalt i vannvolumet.

1. september 1975 var den horisontale og vertikale utbredelsen noe
mindre, til gjengjeld var konsentrasjonene større. En beregning av

1) Diffuse utslipp til søndre Holsfjorden er neglisjert, da de i stor
ustrekning kan være infiltrert i grunnen, med stor rensegrad for
coli-bakterier.
bakteriemengden er noe vanskeligere her, men hvis vi anslår volumet til 3000x30x1500 = 1,35x10^8 m^3, og gjennomsnittlige konsentrasjoner til 20-50 pr. 100 ml skulle vi ha omtrent rett størrelsesorden. Total bakteriemengde blir da 2,7-7x10^{13}.

Overensstemmelsen mellom forventet og observert bakteriemengde er påfallende god tatt i betraktning de grove beregningsmetodene, og det er derfor ingen grunn til å påstå at bakterieinnholdet i Holsfjordens sørovere del ikke kan skyldes kloakkutslippet ved Sylling.

6. VIRKNINGEN AV VANNUTTAKET

6.1 Dypvannsstrømmer generert av ferskvannsuttaket

6.1.1 Generelt

Ferskvannsuttaket vil modifisere de naturlige strømmingene i dypvannet med en nettostrøm inn mot uttaksstedet. Nærmest uttaket vil denne strømmen gå radielt inn mot uttakspunktet. Lenger unna vil strømmen styres av topografien, i det aktuelle tilfelle vil det vesentlig gå en strøm sørover langs Holsfjorden mot Toverud.

Vannet vil trekkes fra et sjikt av en viss tykkelse, som bestemmes av vannføringen i uttaket og tetthetsforholdene i innsjøen. Tykkelsen av sjiktet vil være avgjørende for i hvor stor grad sjiktet vil tappes ut mellom hver sirkulasjonsperiode, og for endringene i strømbildet. Økende tykkelse gir avtakende uttapningsgrad og transporthastighet i forhold til de naturlige transportene.

Vi skal se på den teori som finnes for å beregne sjikt-tykkelse og strømehastigheter ved dypvannsuttak fra et tetthetssjiktet reservoar, anvende dette på Holsfjorden for det aktuelle uttaket og drøfte resultatet sett i sammenheng med de naturlige strømmer en må regne med.
6.1.2 Presentasjon av teori

Tettheten antas å øke lineært med dypet innenfor det sjiktet innstrømmingen foregår i, og innstrømmingen forutsettes ubegrenset av overflate og bunn. Utenom det innstrømmende sjiktet forutsettes stillestående vannmasser. Den vertikale utstrekningen av uttaket må være mye mindre enn sjikttykkelsen.

Under disse forutsetningene angis følgende uttrykk for sjikttykkelse d som funksjon av avstand x fra uttaket:

Når utslippet, eller uten friksjon og turbulens:

\[d = 2,7 \cdot a \] \hspace{1cm} \text{(1)}

For turbulent tilfelle:

\[d = 8,4 \cdot a \left(k_2 \cdot \frac{x}{a} \right)^{1/4} \]
\[\text{når } 2,7 < d \leq 13,7 \] \hspace{1cm} \text{(2)}

\[d = 7,14 \cdot a \left(k_2 \cdot \frac{x}{a} \right)^{1/3} \]
\[\text{når } d > 13,7 \] \hspace{1cm} \text{(3)}
her er:

\[a = \left(\frac{(Q/B)^2}{g \frac{1}{\rho} \frac{dp}{dz}} \right)^{1/4} \] = karakteristisk lengde

\[Q \] = vannuttak (volum/tidsenhet)
\[B \] = bredden av reservoaret
g = tyngdens akselerasjon = 9,81 m/s²
\[\rho (z) \] = vannets tetthet som funksjon av dyp \(z \)
\[k_2 = \frac{E_m}{Q/B} \] hvor \(E_m = \) turbulent diffusjonskoeffisient
\[k_2 \approx 10^{-3} \] er anslått, men verdien er usikker.

Den antas av Brooks og Koh å variere mellom \(10^{-4} \) og \(10^{-2} \). Dette gir en usikkerhetsfaktor på ca. 2 for sjikttykkelsen.

Ifølge teorien vil hastigheten variere symmetrisk rundt uttaksdypet, med størst hastighet midt i sjiktet, avtakende til null hastighet i kanten av sjiktet. Uttapningen i den midtre delen av sjiktet vil være noe større enn gjennomsnittlig for hele sjiktet, anslagsvis 50-100%.

For vannuttak i et punkt med radiell strøm inn mot uttaket, som er den mest realisticke tilnærmelsen nær uttaket, refererer Brooks og Koh bare en kvalitativ teoretisk løsning. Den er ikke bekreftet og kvantifisert av eksperimenter og kan ikke anvendes i beregninger på samme måte som ligningene foran.

Et stykke unna uttaket vil strømbildet nærme seg til det to-dimensjonale, og kan behandles som strøm mot et uttak tvers over hele bredden av reservoaret, med en vertikal utstrekning bestemt av den videre strøm inn mot uttakspunktet. Hvis sjikttykkelsen i stedet beregnes for et uttak av neglisjerasbar utstrekning vil beregnet tykkelse bli mindre enn den reelle, dvs. en nedre grense. Jo lenger unna uttaket en kommer jo mindre vil forskjellen bli.

Dersom reservoarbredden varierer i lengderetning vil sjikttykkelsen variere i forhold til beregnet. Økende bredde med økende avstand fra uttaket vil antakelig føre til større tykkelse enn beregnet ved konstant
bredde under vanlige strømforhold (underkritisk strøm).

Hvis tettheten ikke varierer lineært med dypet vil innstrømningen forskyve seg vertikalt i den retningen hvor tetthetsgradienten avtar, som regel vil det si mot økende dyp for et vannuttak under sprangsjiktet.

Verdien på k_2 er anslått for turbulens skapt av innstrømningen mot uttaket. Turbulens skapt av naturlige strømninger i resipienten vil øke k_2, og derved også øke sjikttykkelsen.

6.1.3 Beregning for uttak i Holsfjorden

I appendix 9 og 10 er sjikttykkelsen d beregnet 1, 5, 20 og 20 km unna. uttaket ved hjelp av det gitte formelsettet. Beregningene er gjort for uttaksdyp på ca. 40 meter og ca. 75 meter og for uttak på 1 m3/s og 5 m3/s. Temperaturdata fra stasjon 1, NIVA (1970a) er benyttet for å bevege tettheten.

Ifølge avsnitt 4.4 tilsvarer et uttak på 1 m3/s omtrent Asker og Bærum behov alene, mens 5 m3/s tilsvarer uttak til Oslo, Asker og Bærum samlet. Øvre grense for suppleringsalternativ for gjennomsnitt over 1/2 år tilsvarer omtrent gjennomsnittet ved erstatningsalternativet, slik at en ikke behøver å skille mellom dem.

I tabell 10 er vist variasjonsområde for alle beregnede sjikttykkelsene for alternative uttak, og gjennomsnittlig sjikttykkelse over alle tidspunkter, 5 km fra uttaket. Videre er gjennomsnittlig uttapningstid for et sjikt av denne tykkelsen angitt.
Tabell 10. Uttapping av dypvann ved ferskvannsuttak i Holsfjorden.
Teoretisk beregning for stillestående vannmasser

<table>
<thead>
<tr>
<th>Uttaksmengde (m³/s)</th>
<th>Uttaksdyp (m)</th>
<th>Variasjonsområde for sjikttykkelse (m)</th>
<th>Gjennomsnittlig sjikttykkelse (km) fra uttak</th>
<th>Volum av gjennomsnittssjikt (10⁸m³)</th>
<th>Uttapnings-tid (år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>4-30</td>
<td>10</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>5-35</td>
<td>14</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>7-50</td>
<td>18</td>
<td>12,6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>10-65</td>
<td>25</td>
<td>14,5</td>
<td>9</td>
</tr>
</tbody>
</table>

Resultatene er bare en teoretisk beregning av sjikttykkelse og uttappingstider. De feilkilder som er drøftet i forrige avsnitt vil stort sett trekke i retning av større sjikttykker enn beregnet. Usikkerheten i k₂ går begge veier, men virkning av turbulens fra naturlige strømninger gjør at en vil vente verdier på k₂ > 10⁻³ framfor avvik den andre veien.

De naturlige vertikale bevegelsene i vannmassene pga. vindpvirkning, ifølge avsnitt 5.2.1 opp til ± 10 m, vil medføre at uttaket trekker vann fra forskjellige lag til forskjellige tidspunkter, og dette kan medføre at effektiv sjikttykkelse blir vesentlig større enn beregnet for stillestående vannmasser.

Hvis vi antar at sjikttykkelsene i tabell 20 er omtrent riktige, vil vi for strøm i en bredde av 2 til 5 km få en største strømhastighet (2x middelhastighet) som er av størrelseseorden 0,01 cm/s. Dette ligger langt under normale naturlige strømhastigheter i innsjøer. Bakterieanalysene antyder spredningshastigheter av størrelseseorden 5 km på 2 mndr. eller mer, dvs. ≥ 0,1 cm/s og strømhastighetene vil være større enn spredningshastighetene.

Konklusjonen må bli at dypvannsuttaket ikke vil endre det naturlige strømbildet vesentlig. Vannuttaket vil trekke ut en liten del av de vannmasser som strømmer fram og tilbake forbi uttaksstedet i forbindelse med

Uttaket vil altså trekke vann fra et så tykt sjikt at det bare blir snakk om 5-10% uttapping pr. år. Siden en hvert år har fullsirkulasjon fra overflate til bunn i løpet av høsten, vil uttaket i praksis trekke vann fra hele dypvannmassen. Uttaket vil ikke endre de horisontale vanntransporter vesentlig, men bare påvirke den generelle vannbalansen i innsjøen.

6.2 Endringer i generell vannbalanse

Dypvannsuttaket vil hente vann fra hele dypvannmassen. Dette innebærer at dypvannet tappes noe ned mellom hver fullsirkulasjon, og at overflatelaget øker tilsvarende.

Volumøkningen av overflatelaget i løpet av et halvt år blir ca. 0,8x10^8 m^3 med et uttak på 5 m^3/s. I tillegg kan det bli snakk om overflateuttak til vannning på 2-3 m^3/s om sommeren, maksimalt ca. 0,45x10^8 m^3 i løpet av et halvt år. I alt må altså overflatevannet tilføres ca. 8 m^3/s som et maksimum i sommerhalvåret. Dette vil delvis hentes fra den lokale tilrenningen til Holsfjorden/Steinsfjorden, og da ikke ha noen innvirkning på oppholdstiden. I tørre sommerperioder vil imidlertid mesteparten hentes ved Økt netto innstrømming fra nordvest.

For helt stillestående overflatevann ville fornyelsen av overflatevannet bli ca. 5-6% i løpet av et halvt år. Sannsynligvis vil dette være uvesentlig i forhold til de naturlige strømmene.

Bare vannstandssvariasjonene (se NIVA 1970a, fig.4) innebærer en netto fram- og tilbakestrøm til Holsfjorden/Steinsfjorden på ca. 10 m^3/s forsiktig regnet. Vertikale sprangsjiktssvingninger, vindssirkulasjoner etc.
vil antakelig bety at bruttostrømmene er mye større.

Med de små forskjeller i vannkvalitet en har i Holsfjorden vil på-virkningen av overflatelaget i løpet av et halvår neppe kunne merkes i det hele tatt.

Tabell 11. Endring av oppholdstid T for dypvannet pga. vannuttak ved forskjellige verdier på T. Dypvannsvolum $12 \times 10^8 \text{m}^3$.

\[
\text{Dypvannsuttak } 5 \text{ m}^3/\text{s}, \text{ overflateuttak } 3 \text{ m}^3/\text{s}.
\]

<table>
<thead>
<tr>
<th>Nåværende oppholdstid</th>
<th>Oppholdstid med vannuttak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 år</td>
<td>0,98 år</td>
</tr>
<tr>
<td>2,5 "</td>
<td>2,4 "</td>
</tr>
<tr>
<td>10 "</td>
<td>8 "</td>
</tr>
<tr>
<td>20 "</td>
<td>14 "</td>
</tr>
<tr>
<td>100 "</td>
<td>32 "</td>
</tr>
<tr>
<td>Ubegrenset</td>
<td>48 "</td>
</tr>
</tbody>
</table>

Dypvannets oppholdstid vil altså ikke endres merkbart hvis den er 10 år eller lavere. Bare hvis den er mer enn 20 år vil den minskes vesentlig, men fremdeles da være rundt 15 år eller større. Det er lite trolig at oppholdstiden har mye å si for selvrensningsgraden så lenge den er 10-20 år eller mer. Vi kan derfor slutte at dypvannsuttaket ikke kan påvirke oppholdstiden vesentlig innenfor det området hvor den har betydning for selvrensningseffekten.

Dypvannsuttaket vil derfor ikke kunne påvirke kvaliteten av dypvannet merkbart. Ved en eventuell forverring av vannkvaliteten i Holsfjorden som følge av økte forurensningsstilførsler ville vannutakene bare innebære små forskyvninger av de generelle endringene i sjøen og neppe bidra vesentlig til forverringen.
7. SAMMENFATNING OG KONKLUSJON

Analysen av resultater fra tidligere undersøkelser har vist at det i 1967-68 var statistisk signifikante forskjeller langs Holsfjordens lengdeakse i overflatelaget for parametrene farge og turbiditet. For farge sank verdiene sørøstover langs hele Holsfjorden. For turbiditet var det en tendens til at de steg litt igjen fra stasjon 1 til 2, men ikke opp mot verdiene på stasjon 4 og 5 når det i det hele tatt var noen klare forskjeller. Forskjellene var små i forhold til absolutt-verdiene, og delvis kamuflert av tidsvariasjoner, og har derfor betydde lite for vannkvalitetaten. De er imidlertid en indikasjon på at Storelva hadde ulik innvirkning langs Holsfjorden, og antyder variasjonsmønsteret for parametre tilknyttet elvevannet. De intensivmålinger av farge i overflaten som ble gjort av NIVA (1970a) tyder på at dette er en parameter nær knyttet til elvevannet. For andre forurensningskomponenter som i hovedsak tilføres med elva ville en derfor vente kvalitativt samme sprednings bilde, med avtakende verdier sørøstover.

Bakteriemålingene viser mye større forskjeller langs Holsfjorden både i overflaten og i dypere lag. Dette er naturlig, fordi det ikke finnes noe naturlig bakgrunnsnivå > 0, og fordi nedbrytningstiden (levetiden) er såpass kort. Hvis bakteriene hovedsakelig kom fra Storelva ville vi derfor vente ennå mer markert det bildet fargemålingene gir. Statistisk analyse viser imidlertid at det både i sør- og nordenden var signifikant høyere bakterietall enn i midtre del av Holsfjorden, hvor det ved en del tidspunkter var stort sett bakteriefritt vann. Dessuten var verdiene i sørenden minst like høye som i nordenden. Hvis bakteriene i sørenden av Holsfjorden kom fra Storelvas vannmasser måtte konsentrasjonene statistisk sett avta sørøver langs Holsfjorden fordi vannet fortynnes og bakteriene nedbrytes med tiden. Det er derfor lite sannsynlig at Storelvas vannmasser har bidratt vesentlig til bakterieforurensningene i sørenden av Holsfjorden. SIFFs resultater fra 1975 bekrefter denne konklusjonen.

De bakteriemengder som er observert i søndre Holsfjorden ser dessuten ut til å stemme godt med den en kan vente ut fra størrelsen av utslippet i Sylling. En sanering av dette utslippet skulle derfor være tilstrekkelig
for å gi tilfredsstillende bakterietall i dypvannsmassene i den sørlige del av Holsfjorden. Dette er til dels allerede gjort ved infiltrasjon av utslippet, selv om overlopet, når det er i bruk, fremdeles vil kunne gi bakteriepåvirkning.

Den horisontale blandingen er tilstrekkelig til å spre bakteriene over en avstand av ca. 5 km innenfor deres levetid, dvs. innenfor et tidsrom av ca. 2 uker til 2 måneder, varierende med tiden.

Hydrauliske beregninger av strømmen inn mot dypvannsutetaket viser at en i ellers stillestående vannmasser ville få strømstørrelser opp mot 0,01 cm/s. Dette er bare en brøkdel av de naturlige strømninger en må regne med. Uttaket vil derfor bli uvesentlig sammenliknet med de vannmasser som strømmer fram og tilbake forbi uttaksstedet, og ikke kunne påvirke strømmålinger i stor grad. Den horisontale blandingen, som ut fra bakterietallene kan anslås ved en spredningsstørrelse av størrelsesorden 0,1 cm/s eller mer, vil sannsynligvis bli uendret.

Dypvannsutetaket vil i realiteten trekke vann fra hele dyplaget, og derfor bare gi små endringer i den generelle vannbalansen. Både dette uttaket og evt. overflateuttak til vanning vil kunne øke tilførselen av nytt vann noe til overflatelaget i løpet av sommerhalvåret, og øke fornyelsen av dypvannet. Det blir i begge tilfeller snakk om en forholdsvis uvesentlig endring av oppholdstiden. Overflateelaget kan få en økt tilførsel av vann fra nordvest på ca. 6% av overflatelagets volum pr. halvår. Et samlet uttak på 8 m³/s vil bare få nevneverdig virkning på dyplagets oppholdstid dersom den fra før er 20 år eller mer. En reduksjon vil da sannsynligvis ha lite å si for innsjøens selvrensingsprosesser. Med de små forskjeller det er i vannkvaliteten vil fornyingsvannet adskille seg lite fra det som tappes ut.

De planlagte vannuttak vil derfor neppe kunne påvirke vannkvaliteten i Holsfjorden merkbart, verken når det gjelder årstidsvariasjoner i overflateelaget eller midlere forhold i dyplaget.

Det synes ikke å være behov for ytterligere feltundersøkelser mht. virkn- ningen av vannuttakene på vannkvaliteten. En undersøkelse av strømforholdene i innsjøen ville kunne underbygge eller korrigere de resultatene vi er kommet fra til her, men det er lite sannsynlig at de ville endre konklusjonene.
En generell vurdering av faren for at Holsfjorden skal endre karakter pga. økte forurensningstillførslor vil selvfølgelig måtte bygge på bl.a. strøm- og spredningsstudier.

Bakteriemålingene bør fortsettes for å kontrollere de konklusjoner som er gjort og for å se om saneringen av Sylling-utslippet er tilfredsstillende. Kanskje kunne en foreta en mer intensiv undersøkelse i den sørlige del av Holsfjorden, med hyppige bakterieregistreringer ved Sylling og Toverud parallellett med registrering av vannmengder i overløpet over en periode.
8. REFERANSER

Selective withdrawal from density-stratified reservoirs.
1369-1400.

Hydroconsult, 1972
Oslo vannforsyning. Tilskuddsvann fra Holsfjorden.

Kreyszig, E., 1967
Advanced engineering mathematics. Sec. ed., Wiley & Sons Inc.

NGO, 1975

NIVA, 1965
0-348 Undersøkelse av forurensningssituasjonen i Ådalselva,

NIVA, 1970a
0-15/64 Tyrifjorden, en limnologisk undersøkelse 1967-1968.

NIVA, 1970b
0-15/64 Randsfjorden, en limnologisk undersøkelse 1967-1968.

NIVA, 1972
0-143/70 Biologiske undersøkelser i Holsfjorden (Tyrifjorden)
1971.
NIVA, 1973

NIVA, 1974

NIVA, 1976

NVE, 1958

SIFF, 1976

BBJ/KAR
8.11.1977
APPENDIX
TABELLE: SAROE (mg Pt/L) I FJORDEN, I M DYP
OBSERVEDE VERDIER

<table>
<thead>
<tr>
<th>Dato</th>
<th>Stasjon 2</th>
<th>Stasjon 1</th>
<th>Stasjon 3</th>
<th>Stasjon 5</th>
<th>Stasjon 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>14.000</td>
<td>13.000</td>
<td>12.000</td>
<td>23.000</td>
<td>24.000</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>19.000</td>
<td>19.000</td>
</tr>
<tr>
<td>3-6/1 67</td>
<td>17.000</td>
<td>17.000</td>
<td>16.000</td>
<td>19.000</td>
<td>24.000</td>
</tr>
<tr>
<td>30/8-17/9 67</td>
<td>14.000</td>
<td>17.000</td>
<td>15.000</td>
<td>18.000</td>
<td>17.000</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>12.000</td>
<td>14.000</td>
<td>14.000</td>
<td>15.000</td>
<td>14.000</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>12.000</td>
<td>14.000</td>
<td>15.000</td>
<td>15.000</td>
<td>16.000</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>15.000</td>
<td>19.000</td>
<td>23.000</td>
<td>20.000</td>
<td>21.000</td>
</tr>
<tr>
<td>16-24/9 68</td>
<td>18.000</td>
<td>24.000</td>
<td>20.000</td>
<td>24.000</td>
<td>26.000</td>
</tr>
<tr>
<td>13-15/3 68</td>
<td>14.000</td>
<td>11.000</td>
<td>11.000</td>
<td>15.000</td>
<td>15.000</td>
</tr>
</tbody>
</table>

KOLONNE-
GJENOMSNITT,
GRENSER FOR 90%
KONF. INTERVALL
ØVERE: 16.121 18.599 18.481 20.746 22.276
Farge (mg Pt/L) i Tyrifjorden, 4 m dyp

Observerte verdier

<table>
<thead>
<tr>
<th>DATO</th>
<th>STASJON:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>2</td>
<td>13.000</td>
<td>15.000</td>
<td>14.000</td>
<td>18.000</td>
</tr>
<tr>
<td>26-4-5/5 67</td>
<td>1</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>16.000</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>3</td>
<td>18.000</td>
<td>19.000</td>
<td>17.000</td>
<td>21.000</td>
</tr>
<tr>
<td>30/6-1/9 67</td>
<td>5</td>
<td>15.000</td>
<td>14.000</td>
<td>16.000</td>
<td>19.000</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>7</td>
<td>12.000</td>
<td>13.000</td>
<td>14.000</td>
<td>14.000</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>9</td>
<td>13.000</td>
<td>14.000</td>
<td>17.000</td>
<td>17.000</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>11</td>
<td>23.000</td>
<td>20.000</td>
<td>23.000</td>
<td>21.000</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>13</td>
<td>24.000</td>
<td>15.000</td>
<td>16.000</td>
<td>22.000</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>15</td>
<td>22.000</td>
<td>28.000</td>
<td>11.000</td>
<td>22.000</td>
</tr>
</tbody>
</table>

Kolonne-
Gjennomsnitt,
Grenser for 90% KONF. INTERVAL

<table>
<thead>
<tr>
<th></th>
<th>NEDRE:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATO</td>
<td>STASJON:</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>14-16/2 67</td>
<td></td>
<td>13.000</td>
<td>15.000</td>
<td>12.000</td>
<td>14.000</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td></td>
<td>19.000</td>
<td>17.000</td>
<td>17.000</td>
<td>19.000</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td></td>
<td>14.000</td>
<td>15.000</td>
<td>15.000</td>
<td>16.000</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td></td>
<td>14.000</td>
<td>12.000</td>
<td>14.000</td>
<td>16.000</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td></td>
<td>14.000</td>
<td>13.000</td>
<td>14.000</td>
<td>17.000</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td></td>
<td>13.000</td>
<td>14.000</td>
<td>15.000</td>
<td>17.000</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td></td>
<td>15.000</td>
<td>19.000</td>
<td>17.000</td>
<td>15.000</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td></td>
<td>19.000</td>
<td>15.000</td>
<td>17.000</td>
<td>23.000</td>
</tr>
<tr>
<td>13-15/6 68</td>
<td></td>
<td>19.000</td>
<td>13.000</td>
<td>22.000</td>
<td>15.000</td>
</tr>
</tbody>
</table>

KOLONNE-
GJENNOMSNIKT, GRENSE FOR 90% KONF. INTERVALL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ØVERE:</td>
<td>17.199</td>
<td>16.121</td>
<td>17.920</td>
<td>18.571</td>
<td>17.442</td>
</tr>
<tr>
<td>Dato</td>
<td>Stasjon 2</td>
<td>Stasjon 3</td>
<td>Stasjon 4</td>
<td>Nedre Grense</td>
<td>Øvre Grense</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>14-16/2 67</td>
<td>0.600</td>
<td>0.600</td>
<td>0.300</td>
<td>1.500</td>
<td>0.500</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>1.000</td>
<td>1.300</td>
<td>0.800</td>
<td>1.300</td>
<td>1.100</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>1.300</td>
<td>1.200</td>
<td>1.000</td>
<td>1.500</td>
<td>1.700</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>0.500</td>
<td>0.300</td>
<td>0.100</td>
<td>0.600</td>
<td>1.000</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>0.400</td>
<td>0.500</td>
<td>0.700</td>
<td>1.100</td>
<td>0.500</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>1.000</td>
<td>1.500</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>1.000</td>
<td>0.600</td>
<td>1.200</td>
<td>1.500</td>
<td>2.500</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>1.400</td>
<td>0.600</td>
<td>1.700</td>
<td>1.800</td>
<td>3.100</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>0.300</td>
<td>0.200</td>
<td>0.300</td>
<td>0.400</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Kolonne-
Gjennomsnitt,
Grenser for 90%
Kons. Intervall

<table>
<thead>
<tr>
<th>Nedre</th>
<th>Øvre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.587</td>
<td>1.079</td>
</tr>
<tr>
<td>0.470</td>
<td>1.042</td>
</tr>
<tr>
<td>0.433</td>
<td>1.056</td>
</tr>
<tr>
<td>0.836</td>
<td>1.453</td>
</tr>
<tr>
<td>0.665</td>
<td>1.869</td>
</tr>
</tbody>
</table>
2 B
TURBIDITET (mg SiO₂/L) I TYRIFJORDEN, 4 M DYP
OBSERVED VERDIER

<table>
<thead>
<tr>
<th>DATO</th>
<th>2</th>
<th>1</th>
<th>STASJON:</th>
<th>3</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>0.600</td>
<td>0.900</td>
<td>0.400</td>
<td>1.100</td>
<td>0.400</td>
<td>0.383 0.977</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>0.900</td>
<td>0.600</td>
<td>0.700</td>
<td>1.200</td>
<td>1.200</td>
<td>0.696 1.184</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>1.400</td>
<td>1.300</td>
<td>1.100</td>
<td>2.100</td>
<td>1.500</td>
<td>1.121 1.839</td>
</tr>
<tr>
<td>30/6-1/7 67</td>
<td>0.900</td>
<td>0.500</td>
<td>0.100</td>
<td>0.700</td>
<td>1.500</td>
<td>0.247 1.233</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>0.600</td>
<td>0.600</td>
<td>0.900</td>
<td>0.800</td>
<td>0.800</td>
<td>0.612 0.868</td>
</tr>
<tr>
<td>2-5/12 67</td>
<td>0.600</td>
<td>1.100</td>
<td>0.700</td>
<td>0.600</td>
<td>0.600</td>
<td>0.562 0.958</td>
</tr>
<tr>
<td>1-27/2 68</td>
<td>5.600</td>
<td>1.000</td>
<td>1.100</td>
<td>1.500</td>
<td>1.900</td>
<td>0.388 4.052</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>2.200</td>
<td>1.500</td>
<td>1.700</td>
<td>1.800</td>
<td>3.100</td>
<td>1.495 2.665</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>2.500</td>
<td>5.300</td>
<td>0.200</td>
<td>2.000</td>
<td>0.500</td>
<td>0.161 4.039</td>
</tr>
</tbody>
</table>

KOLONNE-GJENNOMSNITT, GRENSE FOR 90% KONF. INTERVALL

<p>| NEARE | 0.725 | 0.497 | 0.455 | 0.960 | 0.746 |
| ØVRE | 2.719 | 2.347 | 1.078 | 1.662 | 1.309 |</p>
<table>
<thead>
<tr>
<th>Dato</th>
<th>Stasjon 1</th>
<th>Stasjon 2</th>
<th>Stasjon 3</th>
<th>Stasjon 4</th>
<th>Stasjon 5</th>
<th>Stasjon 6</th>
<th>Stasjon 7</th>
<th>Stasjon 8</th>
<th>Stasjon 9</th>
<th>Stasjon 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>0.600</td>
<td>0.600</td>
<td>0.500</td>
<td>0.600</td>
<td>0.500</td>
<td>0.508</td>
<td>0.612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>1.000</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>1.000</td>
<td>0.888</td>
<td>0.992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>0.600</td>
<td>0.100</td>
<td>0.700</td>
<td>0.100</td>
<td>0.900</td>
<td>0.737</td>
<td>1.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>0.600</td>
<td>0.600</td>
<td>1.100</td>
<td>1.000</td>
<td>0.800</td>
<td>0.134</td>
<td>0.626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>1.000</td>
<td>1.000</td>
<td>0.700</td>
<td>0.900</td>
<td>0.600</td>
<td>0.603</td>
<td>1.037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>0.600</td>
<td>0.500</td>
<td>0.400</td>
<td>0.600</td>
<td>0.500</td>
<td>0.667</td>
<td>1.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>1.300</td>
<td>1.200</td>
<td>0.700</td>
<td>1.200</td>
<td>2.300</td>
<td>0.440</td>
<td>0.600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>1.500</td>
<td>0.300</td>
<td>3.500</td>
<td>2.100</td>
<td>1.000</td>
<td>0.682</td>
<td>2.198</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kolonne- gjennomsnitt, grenser for 90% konf. interval.

Nedre: 0.702 0.432 0.482 0.586 0.576
Øvre: 1.120 0.857 1.652 1.259 1.447
TOTAL-FOSFOR (g/m²) I TYRFJORDEN, 4 m DYP

OBSERVERTE VERDIER

<table>
<thead>
<tr>
<th>DATO</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>RAD-GJENNOMSNITT</th>
<th>NEDRE</th>
<th>Øvre</th>
<th>GRENSE FOR 90%</th>
<th>KONF. INTERVALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16.2.67</td>
<td>8.000</td>
<td>22.000</td>
<td>15.000</td>
<td>12.000</td>
<td>15.000</td>
<td>9.515</td>
<td>19.285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.4-5.5</td>
<td>7.000</td>
<td>7.000</td>
<td>6.000</td>
<td>8.000</td>
<td>9.000</td>
<td>6.314</td>
<td>5.486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6.7</td>
<td>8.000</td>
<td>14.000</td>
<td>10.000</td>
<td>9.000</td>
<td>12.000</td>
<td>8.306</td>
<td>12.894</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.8-1.9</td>
<td>10.000</td>
<td>11.000</td>
<td>12.000</td>
<td>9.000</td>
<td>9.000</td>
<td>8.958</td>
<td>11.442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-31.10</td>
<td>11.000</td>
<td>11.000</td>
<td>8.000</td>
<td>9.000</td>
<td>7.000</td>
<td>7.496</td>
<td>10.904</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-26.2.68</td>
<td>10.000</td>
<td>8.000</td>
<td>11.000</td>
<td>9.000</td>
<td>17.000</td>
<td>7.632</td>
<td>14.368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-24.5</td>
<td>10.000</td>
<td>7.000</td>
<td>7.000</td>
<td>7.000</td>
<td>9.000</td>
<td>6.853</td>
<td>9.347</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-15.8</td>
<td>6.000</td>
<td>8.000</td>
<td>9.000</td>
<td>11.000</td>
<td>12.000</td>
<td>6.926</td>
<td>11.474</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KOLONNE-GJENNOMSNITT, GRENSE FOR 90% KONF. INTERVALL

<table>
<thead>
<tr>
<th>NEDRE</th>
<th>Øvre</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.573</td>
<td>7.394</td>
</tr>
<tr>
<td>9.927</td>
<td>14.406</td>
</tr>
<tr>
<td>11.706</td>
<td>10.312</td>
</tr>
<tr>
<td>8.188</td>
<td>8.958</td>
</tr>
<tr>
<td>13.542</td>
<td></td>
</tr>
<tr>
<td>DATO</td>
<td>STASJON 2</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>14-16/2 67</td>
<td>145.000</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>170.000</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>125.000</td>
</tr>
<tr>
<td>30/6-1/7 67</td>
<td>104.000</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>161.000</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>157.000</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>137.000</td>
</tr>
<tr>
<td>16-24/9 68</td>
<td>190.000</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>104.000</td>
</tr>
</tbody>
</table>

KOLONNEMEDGJENNOMSNITT

<table>
<thead>
<tr>
<th>NEDRE</th>
<th>ØVRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>125.11</td>
<td>161.822</td>
</tr>
<tr>
<td>126.183</td>
<td>170.039</td>
</tr>
<tr>
<td>122.850</td>
<td>163.817</td>
</tr>
<tr>
<td>108.692</td>
<td>154.863</td>
</tr>
<tr>
<td>115.304</td>
<td>164.252</td>
</tr>
</tbody>
</table>
Farge (mg Pt/l) i Tyrifjorden, 1 m dyp
Normalisert horisontalt

<table>
<thead>
<tr>
<th>Dato</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>RaD-gjennomsnitt</th>
<th>Nedre grense for 90% konf. intervall</th>
<th>Øvre grense for 90% konf. intervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>-0.551</td>
<td>-0.723</td>
<td>-0.896</td>
<td>0.999</td>
<td>1.171</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>-0.730</td>
<td>-0.730</td>
<td>-0.730</td>
<td>1.095</td>
<td>1.095</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>-0.666</td>
<td>-0.666</td>
<td>-0.343</td>
<td>0.000</td>
<td>1.115</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>30/8-17/9 67</td>
<td>-1.339</td>
<td>0.487</td>
<td>-0.730</td>
<td>1.095</td>
<td>0.437</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>-1.643</td>
<td>0.183</td>
<td>0.183</td>
<td>1.095</td>
<td>0.183</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>-1.543</td>
<td>-0.264</td>
<td>0.396</td>
<td>0.396</td>
<td>1.055</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>-1.551</td>
<td>-0.202</td>
<td>1.146</td>
<td>0.135</td>
<td>0.472</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>-1.339</td>
<td>0.487</td>
<td>-0.730</td>
<td>0.487</td>
<td>1.095</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>13-15/9 68</td>
<td>0.392</td>
<td>-1.073</td>
<td>-1.073</td>
<td>0.878</td>
<td>0.878</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
</tbody>
</table>

Kolonne-gjennomsnitt, grenser for 90% konf. intervall:

<p>| Nedre: | -1.419 | -0.633 | -0.164 | 0.415 | 0.619 |
| Øvre: | -0.588 | 0.072 | 0.147 | 0.958 | 1.192 |</p>
<table>
<thead>
<tr>
<th>DATO</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>-0.936</td>
<td>0.104</td>
<td>-0.416</td>
<td>1.664</td>
<td>-0.416</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>-0.671</td>
<td>-0.671</td>
<td>-0.671</td>
<td>0.447</td>
<td>1.565</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>-0.675</td>
<td>-0.193</td>
<td>-1.157</td>
<td>0.772</td>
<td>1.254</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>-0.535</td>
<td>-1.069</td>
<td>0.000</td>
<td>1.604</td>
<td>0.000</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>-1.565</td>
<td>-0.447</td>
<td>0.671</td>
<td>0.671</td>
<td>0.671</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>-1.230</td>
<td>-0.671</td>
<td>1.006</td>
<td>1.006</td>
<td>-0.112</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>0.920</td>
<td>-1.381</td>
<td>0.920</td>
<td>-0.614</td>
<td>0.153</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>0.780</td>
<td>-1.170</td>
<td>-0.953</td>
<td>0.347</td>
<td>0.997</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
<tr>
<td>13-15/3 68</td>
<td>0.361</td>
<td>1.262</td>
<td>-1.292</td>
<td>0.361</td>
<td>-0.691</td>
<td>-0.953 & 0.953</td>
<td></td>
</tr>
</tbody>
</table>

KOLONNE-GJENNOMSNITT, GRENSE FOR 90% KONF. INTERVALL

NEDRE: -0.941, -0.969, -0.767, 0.264, -0.103

ØVRE: 0.152, 0.028, 0.347, 1.127, 0.863
Farge (mg PhL) i Tyrestafjorden, 30 m dyb.

Normalisert horisontalt

<table>
<thead>
<tr>
<th>Dato</th>
<th>Stasjon</th>
<th>Rad-Gjennomsnitt</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Konf. Intervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>-0.614</td>
<td>0.920</td>
<td>-1.381</td>
<td>0.153</td>
<td>0.920</td>
</tr>
<tr>
<td>26-4-5/5 67</td>
<td>0.447</td>
<td>-1.043</td>
<td>-1.043</td>
<td>0.447</td>
<td>1.193</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>-1.493</td>
<td>-0.526</td>
<td>1.228</td>
<td>0.351</td>
<td>0.351</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>-0.338</td>
<td>-1.334</td>
<td>-0.308</td>
<td>0.718</td>
<td>1.231</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>-0.264</td>
<td>-0.923</td>
<td>-0.264</td>
<td>1.714</td>
<td>-0.254</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>-1.253</td>
<td>-0.593</td>
<td>0.396</td>
<td>1.385</td>
<td>0.066</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>-0.671</td>
<td>1.565</td>
<td>0.447</td>
<td>-0.671</td>
<td>-0.671</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>0.135</td>
<td>-1.214</td>
<td>-0.539</td>
<td>1.483</td>
<td>0.135</td>
</tr>
<tr>
<td>13-15/8 63</td>
<td>0.635</td>
<td>-0.952</td>
<td>1.428</td>
<td>-0.423</td>
<td>-0.688</td>
</tr>
</tbody>
</table>

**Kolonne-
Gjennomsnitt,
Grenser for 90% Konf. Intervall**

<p>| Nedre: | -0.871 | -1.082 | -0.596| 0.055| -0.294 |
| Øvre: | 0.059 | 0.171 | 0.590 | 1.091| 0.710 |</p>
<table>
<thead>
<tr>
<th>DATO</th>
<th>STASJON:</th>
<th></th>
<th></th>
<th></th>
<th>STASJON:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14-16/2 67</td>
<td>-0.216</td>
<td>-0.216</td>
<td>-0.863</td>
<td>1.725</td>
<td>-0.431</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>-0.471</td>
<td>0.943</td>
<td>-1.414</td>
<td>0.943</td>
<td>0.000</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>-0.148</td>
<td>-0.518</td>
<td>-1.258</td>
<td>0.592</td>
<td>1.332</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>30/6-1/9 67</td>
<td>0.000</td>
<td>-0.590</td>
<td>-1.180</td>
<td>0.295</td>
<td>1.474</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>-0.859</td>
<td>-0.901</td>
<td>0.215</td>
<td>1.647</td>
<td>-0.501</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>0.352</td>
<td>1.610</td>
<td>-0.654</td>
<td>-0.654</td>
<td>-0.654</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>-0.593</td>
<td>-1.061</td>
<td>-0.233</td>
<td>0.195</td>
<td>1.592</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>-0.354</td>
<td>-1.239</td>
<td>-0.022</td>
<td>0.089</td>
<td>1.527</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>-0.239</td>
<td>-1.434</td>
<td>-0.239</td>
<td>0.956</td>
<td>0.956</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
</tr>
</tbody>
</table>

RÅ-GJENNOMSNITT

NEDRE **ØVRE**

GRENSE FOR 90%

KONF. INTERVALL

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.482</td>
<td>-0.958</td>
<td>-0.991</td>
<td>0.169</td>
</tr>
<tr>
<td>ØVRE:</td>
<td>-0.060</td>
<td>0.290</td>
<td>-0.262</td>
<td>1.117</td>
</tr>
<tr>
<td>DATO</td>
<td>STASJON</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14-16/2 67</td>
<td>-0.257</td>
<td>0.706</td>
<td>-0.899</td>
<td>1.349</td>
</tr>
<tr>
<td>26-4/5 5 67</td>
<td>-0.072</td>
<td>-1.153</td>
<td>-0.793</td>
<td>1.009</td>
</tr>
<tr>
<td>3-6/1 67</td>
<td>-0.212</td>
<td>-0.478</td>
<td>-1.006</td>
<td>1.645</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>0.309</td>
<td>-0.464</td>
<td>-1.236</td>
<td>-0.077</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>-1.043</td>
<td>-1.043</td>
<td>1.193</td>
<td>0.447</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>0.193</td>
<td>1.640</td>
<td>-0.289</td>
<td>-0.772</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>1.758</td>
<td>-0.635</td>
<td>-0.362</td>
<td>-0.374</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>0.221</td>
<td>-0.882</td>
<td>-0.567</td>
<td>-0.410</td>
</tr>
<tr>
<td>13-15/3 68</td>
<td>0.196</td>
<td>1.572</td>
<td>-0.933</td>
<td>-0.049</td>
</tr>
</tbody>
</table>

KOLONNE-GJENNOMSNITT, Grenser for 90% Konf. Intervall
- NEDRE: -0.336 | -0.162 | -1.013 | -0.221 | -0.366
- Øvre: 0.530 | 0.599 | -0.124 | 0.836 | 0.828
5c
TURBIDITET (mg SiO2/L) I TYRIFJORDEN, 30 m DYP
NORMALISERT HORIZONTALT

<table>
<thead>
<tr>
<th>Dato</th>
<th>Stasjon</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>Rad-gjennomsnitt nedre</th>
<th>Øvre grenser for 90% konf. intervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td></td>
<td>0.730</td>
<td>0.730</td>
<td>-1.095</td>
<td>0.730</td>
<td>-1.095</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td></td>
<td>1.095</td>
<td>-0.730</td>
<td>-0.730</td>
<td>-0.730</td>
<td>1.095</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>3-6/7 61</td>
<td></td>
<td>0.416</td>
<td>-1.664</td>
<td>0.936</td>
<td>-0.104</td>
<td>0.416</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td></td>
<td>0.330</td>
<td>-1.046</td>
<td>0.606</td>
<td>-1.046</td>
<td>1.156</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>26-31/10 61</td>
<td></td>
<td>-0.965</td>
<td>-0.965</td>
<td>1.228</td>
<td>0.789</td>
<td>-0.088</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td></td>
<td>0.813</td>
<td>0.881</td>
<td>-0.771</td>
<td>0.330</td>
<td>-1.321</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td></td>
<td>0.956</td>
<td>-0.239</td>
<td>-1.434</td>
<td>0.956</td>
<td>-0.239</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td></td>
<td>-0.176</td>
<td>-0.302</td>
<td>-0.930</td>
<td>-0.302</td>
<td>1.709</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td></td>
<td>-0.146</td>
<td>-1.137</td>
<td>1.500</td>
<td>0.346</td>
<td>-0.560</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
</tbody>
</table>

Kolonne-
gjennomsnitt, grenser for 90% konf. intervall

| Grense nedre | -0.070 | -1.027 | -0.777 | -0.326 | -0.532 |
| Grense øvre | 0.763 | 0.034 | 0.623 | 0.542 | 0.770 |
TOTAL-FOSEØR (MYG P/L) I TYRIFFJORDEN, 4 M DYP
NORMALISERT HORIZONTALT

<table>
<thead>
<tr>
<th>Dato</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>Rad-gjennomsnitt nedre</th>
<th>Gjennomsnitt</th>
<th>Rad-gjennomsnitt øvre</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16.267</td>
<td>-1.248</td>
<td>1.482</td>
<td>0.117</td>
<td>-0.468</td>
<td>0.117</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>26.4-6.5</td>
<td>-0.351</td>
<td>-0.351</td>
<td>-1.228</td>
<td>0.526</td>
<td>1.403</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>4-6.7</td>
<td>-1.030</td>
<td>1.412</td>
<td>-0.249</td>
<td>-0.664</td>
<td>0.581</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>30.8-1.9</td>
<td>-0.153</td>
<td>0.614</td>
<td>1.381</td>
<td>-0.920</td>
<td>-0.920</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>26-31.10</td>
<td>1.006</td>
<td>1.006</td>
<td>-0.671</td>
<td>-0.112</td>
<td>-1.230</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>22-26.268</td>
<td>-0.283</td>
<td>-0.849</td>
<td>0.000</td>
<td>-0.566</td>
<td>1.697</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>16-24.5</td>
<td>1.414</td>
<td>-0.707</td>
<td>-0.707</td>
<td>-0.707</td>
<td>0.707</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>13-15.8</td>
<td>-1.340</td>
<td>-0.503</td>
<td>-0.084</td>
<td>0.754</td>
<td>1.173</td>
<td>-0.953</td>
<td>0.953</td>
</tr>
</tbody>
</table>

Kolonner

- Gjennomsnitt
- Grenser for 90%
- Konf. intervall

Nedre Grense

-0.938
-0.390
-0.700
-0.679
-0.272

Øvre Grense

0.429
0.916
0.339
0.140
1.154
<table>
<thead>
<tr>
<th>DATO</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-16/2 67</td>
<td>-0.502</td>
<td>0.752</td>
<td>0.176</td>
<td>-1.450</td>
<td>1.023</td>
</tr>
<tr>
<td>26/4-5/5 67</td>
<td>0.720</td>
<td>0.720</td>
<td>-0.227</td>
<td>0.436</td>
<td>-1.649</td>
</tr>
<tr>
<td>3-6/7 67</td>
<td>-0.242</td>
<td>1.337</td>
<td>0.705</td>
<td>-0.769</td>
<td>-1.032</td>
</tr>
<tr>
<td>30/8-1/9 67</td>
<td>1.646</td>
<td>-0.411</td>
<td>0.194</td>
<td>-0.895</td>
<td>-0.532</td>
</tr>
<tr>
<td>26-31/10 67</td>
<td>1.358</td>
<td>0.750</td>
<td>-0.568</td>
<td>-0.568</td>
<td>-0.973</td>
</tr>
<tr>
<td>4-5/12 67</td>
<td>-0.120</td>
<td>1.077</td>
<td>-1.615</td>
<td>0.329</td>
<td>0.329</td>
</tr>
<tr>
<td>21-27/2 68</td>
<td>-0.618</td>
<td>-0.455</td>
<td>1.333</td>
<td>-1.024</td>
<td>0.764</td>
</tr>
<tr>
<td>16-24/5 68</td>
<td>0.447</td>
<td>-1.789</td>
<td>0.447</td>
<td>0.447</td>
<td>0.447</td>
</tr>
<tr>
<td>13-15/8 68</td>
<td>1.426</td>
<td>0.454</td>
<td>-0.086</td>
<td>-1.167</td>
<td>-0.627</td>
</tr>
</tbody>
</table>

KOLONNE:
GJENNOMSNITT:
GRENSER FOR 90%
KONF. INTERVALL
NEDRE: -0.953 -0.953
Øvre: 1.000 0.880
<table>
<thead>
<tr>
<th>DATO, DYP</th>
<th>STASJON</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>3VÅRE</th>
<th>GRENSER FOR 90%</th>
<th>KONF. INTERVALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4-5.5,1</td>
<td>0.064</td>
<td>-0.899</td>
<td>-0.578</td>
<td>-0.257</td>
<td>1.670</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6.7,1</td>
<td>-0.304</td>
<td>-0.339</td>
<td>-0.598</td>
<td>-0.333</td>
<td>1.714</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,1</td>
<td>1.510</td>
<td>-0.162</td>
<td>-0.875</td>
<td>-0.403</td>
<td>-0.875</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.4-5.5,4</td>
<td>0.090</td>
<td>-0.535</td>
<td>0.000</td>
<td>-1.069</td>
<td>1.604</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6.7,4</td>
<td>-0.161</td>
<td>-0.164</td>
<td>-0.720</td>
<td>-0.049</td>
<td>1.694</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,4</td>
<td>1.506</td>
<td>0.299</td>
<td>-1.031</td>
<td>-0.012</td>
<td>-0.761</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.4-5.5,30</td>
<td>0.577</td>
<td>-0.289</td>
<td>-0.866</td>
<td>-0.866</td>
<td>1.443</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6.7,30</td>
<td>0.937</td>
<td>-0.579</td>
<td>-0.992</td>
<td>1.212</td>
<td>-0.579</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,30</td>
<td>1.745</td>
<td>-0.436</td>
<td>-0.148</td>
<td>-0.436</td>
<td>-0.125</td>
<td>-0.953</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KOLONNE-
GJENNOMSNITT,
GRENSER FOR 90%
KONF. INTERVALL

NEDRE: 0.158 -0.653 -0.904 -0.577 -0.039
ØVRE: 1.147 -0.214 -0.520 0.264 1.388
<table>
<thead>
<tr>
<th>DATO, DYP</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4-5.5.1</td>
<td>3.000</td>
<td>0.000</td>
<td>1.000</td>
<td>2.000</td>
<td>8.000</td>
</tr>
<tr>
<td>3-0.7.1</td>
<td>22.000</td>
<td>6.000</td>
<td>2.000</td>
<td>20.000</td>
<td>163.000</td>
</tr>
<tr>
<td>30.8-1.9.1</td>
<td>120.000</td>
<td>52.000</td>
<td>23.000</td>
<td>75.000</td>
<td>23.000</td>
</tr>
<tr>
<td>26.4-5.5.4</td>
<td>3.000</td>
<td>2.000</td>
<td>3.000</td>
<td>1.000</td>
<td>6.000</td>
</tr>
<tr>
<td>3-6.7.4</td>
<td>31.000</td>
<td>4.000</td>
<td>6.000</td>
<td>36.000</td>
<td>114.000</td>
</tr>
<tr>
<td>30.8-1.9.4</td>
<td>150.000</td>
<td>92.000</td>
<td>28.000</td>
<td>77.000</td>
<td>41.000</td>
</tr>
<tr>
<td>26.4-5.5.30</td>
<td>6.000</td>
<td>3.000</td>
<td>1.000</td>
<td>1.000</td>
<td>9.000</td>
</tr>
<tr>
<td>3-6.7.30</td>
<td>19.000</td>
<td>8.000</td>
<td>5.000</td>
<td>21.000</td>
<td>8.000</td>
</tr>
<tr>
<td>30.8-1.9.30</td>
<td>18.000</td>
<td>4.000</td>
<td>2.000</td>
<td>4.000</td>
<td>6.000</td>
</tr>
</tbody>
</table>

Rad-gjennomsnitt, grenser for 90% konf. intervallet

<p>| NEDRE: | 7.532 | -0.684 | 1.563 | 7.385 | 6.532 |
| Øvre: | 75.085 | 35.684 | 14.215 | 45.281 | 77.468 |</p>
<table>
<thead>
<tr>
<th>DATO, DYP</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4-5.5,1</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3-5.7,1</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,1</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>26.4-5.5,4</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3-6.7,4</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>21</td>
<td>22</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,4</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>26.4-5.5,30</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3-6.7,30</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>30.8-1.9,30</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

RÅD-GJENNOMSNITT
NEDRE ØVRE
GRENSER FOR 90% KONF. INTERVALL

KOLONNE-GJENNOMSNITT, GRENSER FOR 90% KONF. INTERVALL
NEDRE: 14.933 14.816 15.678 17.353 17.178
ØVRE: 17.239 17.406 17.211 19.314 20.993
8 B

FARVE (mg Pt/l) I TYSIFJORDEN 1957, 1,4 OG 30 M DYP
NORMALISERT HØRSONTALT

<table>
<thead>
<tr>
<th>DATO, DYP</th>
<th>STASJON:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | 2 | 1 | 3 | 4 | NEGRE ØVRE GRENSE FOR 90% KONF. INTERVAL
| 26.4-5.5,1| -0.730 | -0.730 | -0.730 | 1.095 | -0.953 0.953 |
| 3-6.7,1 | -0.636 | -0.666 | -0.343 | 0.000 | -0.953 0.953 |
| 30.8-1.9,1| -1.339 | 0.487 | -0.730 | 1.095 | -0.953 0.953 |
| 26.4-5.5,4| -0.671 | -0.671 | -0.671 | 0.447 | -0.953 0.953 |
| 3-6.7,4 | -0.675 | -0.193 | -1.157 | 0.772 | -0.953 0.953 |
| 30.8-1.9,4| -0.535 | -1.069 | 0.000 | 1.604 | -0.953 0.953 |
| 26.4-5.5,30| 0.447 | -1.043 | -1.043 | 0.447 | -0.953 0.953 |
| 3-6.7,30 | -1.403 | -0.526 | 1.226 | 0.351 | -0.953 0.953 |
| 30.8-1.9,30| -0.308 | -1.334 | -0.308 | 0.718 | -0.953 0.953 |

KOLONNE-GJENNOMSNITT, GRENSE FOR 90% KONF. INTERVAL

<table>
<thead>
<tr>
<th>NEGRE:</th>
<th>Øvre:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.994</td>
<td>-0.317</td>
</tr>
<tr>
<td>-0.975</td>
<td>-0.307</td>
</tr>
<tr>
<td>-0.861</td>
<td>0.027</td>
</tr>
<tr>
<td>0.426</td>
<td>1.025</td>
</tr>
<tr>
<td>0.629</td>
<td>1.347</td>
</tr>
<tr>
<td>DATO</td>
<td>TEMP. (CELS) FOR DYP</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>17/3-66</td>
<td>3.21</td>
</tr>
<tr>
<td>23.9-66</td>
<td>3.62</td>
</tr>
<tr>
<td>30.5-66</td>
<td>5.21</td>
</tr>
<tr>
<td>23.11-66</td>
<td>5.31</td>
</tr>
<tr>
<td>14.2-67</td>
<td>2.99</td>
</tr>
<tr>
<td>26.4-67</td>
<td>3.41</td>
</tr>
<tr>
<td>477-67</td>
<td>5.76</td>
</tr>
<tr>
<td>31.8-67</td>
<td>6.49</td>
</tr>
<tr>
<td>27.10-67</td>
<td>7.31</td>
</tr>
<tr>
<td>5.12-67</td>
<td>5.60</td>
</tr>
<tr>
<td>22.2-66</td>
<td>3.40</td>
</tr>
<tr>
<td>16.5-66</td>
<td>4.00</td>
</tr>
<tr>
<td>14.8-66</td>
<td>5.45</td>
</tr>
</tbody>
</table>

(): FORMEL NR.
.....: UBEGRUNDET
<table>
<thead>
<tr>
<th>DATO</th>
<th>TEMP.(CELS) FOR DYP</th>
<th>50.0</th>
<th>100.0</th>
<th>KARAKTERISTISK</th>
<th>LENGE(%)</th>
<th>SJIK-TYKKELSE D(#) FOR X=</th>
<th>10000. M</th>
<th>20000. M</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/3-66</td>
<td>3.54</td>
<td>3.79</td>
<td>1.24</td>
<td></td>
<td>9.36(2)</td>
<td>14.75(2)</td>
<td>17.74(3)</td>
<td>22.35(3)</td>
</tr>
<tr>
<td>23/5-66</td>
<td>3.80</td>
<td>3.78</td>
<td></td>
<td>***********</td>
<td>**********</td>
<td>******************</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.6-66</td>
<td>4.36</td>
<td>4.06</td>
<td>1.19</td>
<td></td>
<td>9.58(2)</td>
<td>14.32(2)</td>
<td>17.29(3)</td>
<td>21.76(3)</td>
</tr>
<tr>
<td>23.11-66</td>
<td>6.30</td>
<td>4.13</td>
<td>0.65</td>
<td>6.12(2)</td>
<td>1.21(3)</td>
<td>11.60(3)</td>
<td>14.61(3)</td>
<td></td>
</tr>
<tr>
<td>14.2-67</td>
<td>3.42</td>
<td>3.72</td>
<td>1.10</td>
<td></td>
<td>3.43(2)</td>
<td>16.37(3)</td>
<td>20.63(3)</td>
<td></td>
</tr>
<tr>
<td>26.4-67</td>
<td>3.44</td>
<td>3.43</td>
<td></td>
<td>***********</td>
<td>**********</td>
<td>******************</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/1-67</td>
<td>4.11</td>
<td>4.01</td>
<td>0.31</td>
<td></td>
<td>7.19(2)</td>
<td>10.75(2)</td>
<td>13.39(3)</td>
<td>16.88(3)</td>
</tr>
<tr>
<td>31.3-67</td>
<td>5.01</td>
<td>4.12</td>
<td>0.74</td>
<td>6.68(2)</td>
<td>9.99(2)</td>
<td>12.55(3)</td>
<td>15.82(3)</td>
<td></td>
</tr>
<tr>
<td>27.10-67</td>
<td>6.69</td>
<td>4.23</td>
<td>0.33</td>
<td>5.23(2)</td>
<td>8.01(3)</td>
<td>11.09(3)</td>
<td>12.72(3)</td>
<td></td>
</tr>
<tr>
<td>2.12-67</td>
<td>5.30</td>
<td>4.80</td>
<td>0.67</td>
<td>6.19(2)</td>
<td>9.30(3)</td>
<td>11.72(3)</td>
<td>14.16(3)</td>
<td></td>
</tr>
<tr>
<td>22.2-68</td>
<td>3.70</td>
<td>3.80</td>
<td>1.11</td>
<td>12.55(2)</td>
<td>16.77(2)</td>
<td>22.32(2)</td>
<td>27.70(3)</td>
<td></td>
</tr>
<tr>
<td>16.5-68</td>
<td>4.05</td>
<td>4.00</td>
<td>2.49</td>
<td>16.54(2)</td>
<td>24.88(2)</td>
<td>29.59(2)</td>
<td>35.58(3)</td>
<td></td>
</tr>
<tr>
<td>14.3-68</td>
<td>4.71</td>
<td>4.20</td>
<td>0.89</td>
<td>7.69(2)</td>
<td>11.50(2)</td>
<td>14.22(3)</td>
<td>17.91(3)</td>
<td></td>
</tr>
<tr>
<td>4.12-68</td>
<td>4.13</td>
<td>4.03</td>
<td>2.11</td>
<td>14.70(2)</td>
<td>21.97(2)</td>
<td>26.13(2)</td>
<td>31.86(3)</td>
<td></td>
</tr>
</tbody>
</table>

() FORMEL NK,
********** UBEGRENSET
10 A

Uttak: 5.0 kbm/sek
Dyp: 40.0 m
Strømingsbredde: 1500. m, k2 = 0.001

<table>
<thead>
<tr>
<th>Dato</th>
<th>Temp (Cel)</th>
<th>Dyp</th>
<th>Lengde (m)</th>
<th>Sjikt-Tykkelse D(m) for x=1000, 4000, 10000, 20000</th>
<th>10000 m</th>
<th>20000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/3-66</td>
<td>3.21</td>
<td>3.54</td>
<td>1.60</td>
<td>------ (1)</td>
<td>17.90(2)</td>
<td>21.28(2)</td>
</tr>
<tr>
<td>23.5-66</td>
<td>3.32</td>
<td>3.80</td>
<td>------</td>
<td>------</td>
<td>11.97(2)</td>
<td>------ (1)</td>
</tr>
<tr>
<td>30.6-66</td>
<td>5.21</td>
<td>4.36</td>
<td>1.15</td>
<td>9.34(2)</td>
<td>13.96(2)</td>
<td>15.90(3)</td>
</tr>
<tr>
<td>23.11-66</td>
<td>5.37</td>
<td>5.30</td>
<td>1.90</td>
<td>10.34(2)</td>
<td>20.32(2)</td>
<td>24.17(2)</td>
</tr>
<tr>
<td>14.2-67</td>
<td>2.90</td>
<td>3.42</td>
<td>1.32</td>
<td>13.94(2)</td>
<td>20.56(2)</td>
<td>33.96(2)</td>
</tr>
<tr>
<td>26.4-67</td>
<td>3.41</td>
<td>3.44</td>
<td>2.99</td>
<td>19.10(2)</td>
<td>15.46(2)</td>
<td>23.31(3)</td>
</tr>
<tr>
<td>477-67</td>
<td>5.76</td>
<td>4.81</td>
<td>1.00</td>
<td>19.44(2)</td>
<td>11.12(2)</td>
<td>15.37(3)</td>
</tr>
<tr>
<td>31.8-67</td>
<td>6.46</td>
<td>5.01</td>
<td>0.95</td>
<td>6.54(2)</td>
<td>12.55(2)</td>
<td>13.80(3)</td>
</tr>
<tr>
<td>27.10-67</td>
<td>7.31</td>
<td>6.00</td>
<td>0.78</td>
<td>7.25(2)</td>
<td>10.40(2)</td>
<td>13.00(3)</td>
</tr>
<tr>
<td>5.12-67</td>
<td>5.60</td>
<td>5.50</td>
<td>1.58</td>
<td>12.38(2)</td>
<td>18.52(2)</td>
<td>22.02(2)</td>
</tr>
<tr>
<td>22.2-68</td>
<td>3.43</td>
<td>3.70</td>
<td>1.50</td>
<td>13.07(2)</td>
<td>19.54(2)</td>
<td>23.24(2)</td>
</tr>
<tr>
<td>16.5-68</td>
<td>4.08</td>
<td>4.05</td>
<td>3.27</td>
<td>24.95(2)</td>
<td>37.31(2)</td>
<td>44.37(2)</td>
</tr>
<tr>
<td>14.8-68</td>
<td>5.45</td>
<td>4.71</td>
<td>1.11</td>
<td>9.07(2)</td>
<td>13.56(2)</td>
<td>16.46(3)</td>
</tr>
<tr>
<td>4.12-68</td>
<td>4.10</td>
<td>4.13</td>
<td>------</td>
<td>------</td>
<td>11.97(2)</td>
<td>------ (1)</td>
</tr>
</tbody>
</table>

() : Formel nr.
------: Uberegnet
<table>
<thead>
<tr>
<th>DATA</th>
<th>TEMP (CELS</th>
<th>FOR DYP</th>
<th>KARAKTERISTISK</th>
<th>SJIKT-TYKKELSE (MM) FOR X=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.07</td>
<td>100.07</td>
<td>LENGDE (%)</td>
<td>1000.0 m</td>
</tr>
<tr>
<td>17/3-66</td>
<td>3.54</td>
<td>3.79</td>
<td>2.17</td>
<td>16.03(2)</td>
</tr>
<tr>
<td>23.5-66</td>
<td>3.80</td>
<td>3.73</td>
<td>2.17</td>
<td>16.03(1)</td>
</tr>
<tr>
<td>30.8-66</td>
<td>4.36</td>
<td>4.06</td>
<td>2.06</td>
<td>17.22(2)</td>
</tr>
<tr>
<td>23.11-66</td>
<td>5.37</td>
<td>4.13</td>
<td>1.96</td>
<td>11.16(2)</td>
</tr>
<tr>
<td>14.2-67</td>
<td>3.42</td>
<td>3.72</td>
<td>2.46</td>
<td>16.48(2)</td>
</tr>
<tr>
<td>26.4-67</td>
<td>3.44</td>
<td>3.43</td>
<td>2.46</td>
<td>16.48(1)</td>
</tr>
<tr>
<td>47/7-67</td>
<td>4.31</td>
<td>4.01</td>
<td>1.62</td>
<td>13.15(2)</td>
</tr>
<tr>
<td>37.8-67</td>
<td>5.01</td>
<td>4.12</td>
<td>1.65</td>
<td>12.22(2)</td>
</tr>
<tr>
<td>24.1-67</td>
<td>6.00</td>
<td>4.23</td>
<td>1.19</td>
<td>12.02(2)</td>
</tr>
<tr>
<td>3.12-67</td>
<td>5.50</td>
<td>4.80</td>
<td>1.49</td>
<td>11.31(2)</td>
</tr>
<tr>
<td>22.2-66</td>
<td>3.70</td>
<td>3.80</td>
<td>3.62</td>
<td>22.56(2)</td>
</tr>
<tr>
<td>16.5-68</td>
<td>4.96</td>
<td>4.00</td>
<td>5.06</td>
<td>30.42(2)</td>
</tr>
<tr>
<td>14.8-68</td>
<td>4.11</td>
<td>4.20</td>
<td>1.99</td>
<td>14.05(2)</td>
</tr>
<tr>
<td>4.12-68</td>
<td>4.13</td>
<td>4.08</td>
<td>4.11</td>
<td>26.67(2)</td>
</tr>
</tbody>
</table>

() = FORMEL NR.
****** = UDEFORMERT