NORSK INSTITUTT FOR VANNFORSKNING
Blindern

0-90/74

BISTAND VEDRØRENDE INDUSTRIUTSLIPP
A/S NORDISK ALUMINIUMINDUSTRI
HOLMESTRAND

Utfelling av aluminium ved nøytralisasjon med sjøvann og hydratkalk. Laboratorieforsøk.

Saksbehandler: Cand.real. Øivind Tryland
Medarbeidere: Seksjonsleder Rolf Tore Arnesen
Siv.ing. Arild Schanke Eikum, Ph.D.
Ingeniør Egil Rune Iversen

April 1975
INNHOLDSFORTEGNELSE

1. INNLEDNING 3
2. BAKGRUNN FOR Å BENYTTE SJØVANN 3
3. TIDLIGERE UNDERSØKELSER 4
4. EKSPERIMENTELT 4
 4.1 Prøver av forventede utslipp 4
 4.2 Nøytralisering med sjøvann 5
 4.3 Tilsetning av hydratkalk 5
 4.4 Tilsetning av sjøvann og hydratkalk 6
 4.5 Undersøkelse av sedimenteringshastighet 7
 4.6 Jartest 8
 4.7 Flotasjon 10
5. SLAMMENGER MED OG UTEN SJØVANNSTILSETNING 11
6. KONKLUSJON 12

TABELLFORTEGNELSE

1. Sammensetning til prøver 5
2. Mengde hydratkalk pr. liter avløpsvann for å få pH 3,0, 5,0 og 6,0 i blandingene 5
3. Nødvendig mengde sjøvann pr. liter avløpsvann for å få pH 6,0 når hydratkalk er tilsatt inntil pH 3,0 6
4. Slamvolum som funksjon av sedimenteringstid 8
5. Restinnhold av aluminium etter 1 og 2 timers sedimentering ved varierende sjøvannstilsetning (jartest) 9
6. Restinnhold av aluminium etter tilsetning av sjøvann og hydratkalk og 1 times sedimentering 9
7. Restinnhold av aluminium etter flotasjon 11
1. INNLEDNING

A/S Nordisk Aluminiumindustri i Holmestrand er pålagt å behandle prosessvann før det slippes ut i Holmestrandsfjorden. Norsk institutt for vannforskning (NIVA) er i den forbindelse engasjert av bedriften for å undersøke i hvilken utstrekning sjøvann kan benyttes sammen med hydratkalk for behandling av surt prosessavløpsvann.

Bedriften har to produksjonssteder; det ene nær sjøen i Holmestrand og det andre på Vesthøy ca. 2 km fra hovedfabrikken i Holmestrand. I Holmestrand foretas beising og eloksering av aluminiumvarer, og prosessavløpsvannet vil inneholde svovelmyrer, salpetersyre og natriumhydroksyd. På Vesthøy foretas kontinuerlig eloksering av brede aluminiumbånd, og prosessavløpsvannet har et høyt innhold av svovelmyrer. Det er behandlingen av dette sure prosessavløpsvannet med høyt aluminium- og sulfatinhold som denne rapporten gjelder.

Nøytralisering med sjøvann i et reseanlegg har såvidt vites tidligere ikke vært benyttet her i landet. I litteraturen er det heller ikke sett publikasjoner hvor denne løsning er vurdert.

Denne rapporten omfatter de viktigste resultatene fra laboratorieforsøkene som er gjort med prøver av avløpsvann fra bedriften. Utregningshastigheten og restinnhold av aluminium er undersøkt ved tilsetning av hydratkalk og sjøvann. Det er også foretatt noen enkle flotasjonsforsøk.

2. BAKGRUNN FOR Å BENYTTE SJØVANNSTILSETNING

Sjøvann er svakt alkalisk og pH er vanligvis i området 8,1-8,3 for sjøvann som er i likevekt med luft. Sjøvann kan derfor benyttes for nøytralisering av sure komponenter, men har ikke fått noen bred anvendelse da de nødvendige sjøvannsmengdene som regel blir meget store. Kjemikaliumengdene som trengs for nøytralisering av sert avløpsvann, kan imidlertid reduseres ved en eventuell sjøvannstilsetning. Dette er hovedgrunnen til at sjøvann er vurdert for behandling av sert prosessavløpsvann.
Nøytralisasjon av svovelsurt avløpsvann med kalk kan føre til utfelling av gips (CaSO₄·2H₂O), og ved økende sulfatinthold øker denne gipsutfellingen. Ved behandling av prosessavløpsvann fra Vesthøy fører dette til at de samlede slammengder som må deponeres, blir meget store (600-800 m³/år som 30% TS). Ved nøytralisasjon med kaustik soda (NaOH) vil det kun dannes aluminiumholdig slam. Kaustik soda er kostbar og kjemikalieutgiftene vil derfor være meget høye (i heltidige fall kr. 200-300,000,- pr. år) sammenlignet med kjemikalieutgiftene for nøytralisering med hydratkalk. Det var derfor aktuelt å undersøke utfelling av aluminium og de produserte slammengder ved nøytralisering med sjøvann og hydratkalk.

3. TIDLIGERE UNDERSØKELSER

4. EKSPERIMENTELT

Forsøkene er utført i laboratoriet ved romtemperatur (20-25°C). Sjøvannet som er benyttet, er tatt fra 40 m dyp ved Drøbak. Hydratkalken er levert av Mjøndalen Kalkfabrikk A/S.

4.1 Prøver av forventede utslipp

Prøvene som er lagt til grunn for forsøkene, er preparert av Nordisk Aluminiumindustri A/S. Disse prøvene (5 stk.) representerer de fremtidige prosessavløpsvanntyper som kan forekomme fra Vesthøy i 1976 (tabell 1).
Prøvene består av skyllevann fra svovelsure eloksalbad og inneholder svovelsyre og oppløst aluminiumsulfat i varierende mengder.

Tabell 1. Sannsynlighet til prøver.

<table>
<thead>
<tr>
<th>Prøvenr.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surhetsgrad pH</td>
<td>1,35</td>
<td>1,4</td>
<td>1,65</td>
<td>1,75</td>
<td>1,5</td>
</tr>
<tr>
<td>Aluminium, mg Al/l</td>
<td>424</td>
<td>390</td>
<td>170</td>
<td>205</td>
<td>380</td>
</tr>
<tr>
<td>Sulfat, mg SO₄/1</td>
<td>6800</td>
<td>5300</td>
<td>2600</td>
<td>2100</td>
<td>4100</td>
</tr>
</tbody>
</table>

Usikkerheten i sulfatverdierne er her forholdsvis stor.

4.2 Nøytralisering med sjøvann.

Titrering av sjøvann med avløpsvann viste at det måtte tilsettes fra 53 l til 140 l med sjøvann pr. liter avløpsvann for å få pH 6,0 i blandingene. Nøytralisering med bare sjøvann vil føre til at de totale vannmengdene som skal behandles, blir meget store. Derfor vil det antagelig være nødvendig å tilsette kalk e.l. i tillegg til sjøvann.

4.3 Tilsetning av hydratkalk.

Porsjoner av hver av de fem prøvene ble tilsatt hydratkalk, og nødvendig tilsetning av hydratkalk for å få pH 3,0, 5,0 og 6,0 ble bestemt (tabell 2).

Tabell 2. Mengde hydratkalk pr. liter avløpsvann for å få pH 3,0, 5,0 og 6,0 i blandingene.

<table>
<thead>
<tr>
<th>Prøve nr.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram hydratkalk pr. liter pH 3,0</td>
<td>5,3</td>
<td>4,2</td>
<td>1,9</td>
<td>1,4</td>
<td>3,1</td>
</tr>
<tr>
<td>kalk pr. liter pH 5,0</td>
<td>7,4</td>
<td>5,8</td>
<td>2,5</td>
<td>2,1</td>
<td>4,5</td>
</tr>
<tr>
<td>prøve pH 6,0</td>
<td>7,7</td>
<td>5,9</td>
<td>2,6</td>
<td>2,2</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Forskjellen i nødvendig mengde hydratkalk for justering av pH fra 3,0 til 6,0 er altså i området 0,7 g/l til 2,4 g/l og er størst for de sureste prøvene.
4.4 Tilsetning av sjøvann og hydratkalk.

Systemet som undersøkes består av tre variable, dvs. mengdene av avløpsvann, hydratkalk og sjøvann, og hver variabel har innvirkning på løsningens pH-verdi. Ved å holde to av disse variable konstant, f.eks. mengde avløpsvann og sjøvann, kan den tredje variable, mengde hydratkalk, varieres. Det er da mulig å komme frem til de nødvendige tilsetninger av sjøvann og hydratkalk pr. liter avløpsvann for å få den nødvendige pH i blandingen.

På dette trinnet i forsøkene ble det valgt å tilsette hydratkalk til avløpsvann før sjøvann inntil pH 2,0 og pH 3,0. Det viste seg senere at denne fremgangsmåten var noe tungvint og gav dessuten forskjellige resultater for utfellingshastigheten av aluminium enn omvendt tilsetningsrekkefølge.

Det ble ikke satt noen bestemt grense for volum sjøvann pr. liter avløpsvann, men ved hydratkalktilsetning inntil pH 2,0 syntes sjøvannsvolumene å bli for store. Hver av de fem typene avløpsvann ble derfor tilsatt hydratkalk inntil pH 3,0 for å få redusert sjøvannstilsetningen. Volumene sjøvann som da måtte tilsettes for å få pH 6,0, ble bestemt ved titrering av sjøvann med pH-justert avløpsvann (tabell 3).

Tabell 3. Nødvendig mengde sjøvann pr. liter avløpsvann for å få pH 6,0, når hydratkalk er tilsatt inntil pH 3,0.

<table>
<thead>
<tr>
<th>Prøve nr.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liter sjøvann pr. liter avløpsvann</td>
<td>37</td>
<td>30</td>
<td>13,5</td>
<td>13,5</td>
<td>31</td>
</tr>
</tbody>
</table>

Tilsetning av hydratkalk til pH 3,0 fører til at sjøvannstilsetningen kan reduseres til ca. 1/4. For å unngå å behandle altfor store vannmengder i renseanlegget kan det være nødvendig å tilsette mer hydratkalk enn mengden som tilsvarer pH 3,0 ved behandling av prosessavløpsvann med høyest svovelsyreinnhold.
4.5 Undersøkelse av sedimenteringshastighet

Sedimenteringshastigheten av aluminiumhydroksyd ble undersøkt i et 1 m langt cylinderisk rør med diameter 0,13 m og volum ca. 12 l. Prøver for analyse av aluminium ble tappet av røret i forskjellige høyder. Røret er utstyrt med røreverk som benyttes for blanding og flokkulering. Ved å undersøke restkonsentrasjonene av aluminium som funksjon av sedimenteringstiden kan man få et inntrykk av hvor raskt partiklene av aluminiumhydroksyd synker. Prøver ble tatt ut på dypene 0,1, 0,5 og 0,9 m unntatt ved nøytrialisering med hydratkalk da prøvene ikke kunne tas ut fra alle dypene på grunn av slam. Forsøkene viste at det gjennomsnittlige Al-innhold var ca. 0,2 mg Al/l høyere på 0,5 m enn på 0,1 m og ca. 0,6 mg Al/l høyere på 0,9 m enn på 0,1 m. Resultatene nedenfor refererer til prøver tatt ut fra 0,1 m.

Ved nøytrialisering av prøve med sjøvann uten andre tilsetninger viste det seg at partiklene sedimenterte langsomt. Etter 4 timers sedimentering (pH 6,0) var aluminiumsinnholdet bare redusert med ca. 64% for prøve V. Dette er i samsvar med tidligere resultater, og det er derfor nødvendig med kjemikaliertilsetning.

Sedimenteringshastigheten ble undersøkt i prøvene III og V ved tilsettning av hydratkalk inntil pH 3,0 og sjøvannstilsetning inntil pH 6,0. Dette resulterte i noe raskere sedimentering enn bare sjøvannstilsetting (prøve V). Aluminiumsinnholdet var redusert med 83% for prøve III og 79% for prøve V etter 4 timers sedimentering. Blandforholdene mellom avløpsvann og sjøvann var da 1/13,5 for prøve III og 1/31 for prøve V.

Hydratkalk ble i de forannevnte sedimenteringsforskene tilsatt prøvene før sjøvannet. Det viste seg imidlertid i neste forsøk at tilsetningsrekkefølgen var av stor betydning for sedimenteringen. Ved tilsetning av hydratkalk etter at sjøvann var tilsatt prøven sank partiklene betydelig raskere enn ved omvendt tilsetningsrekkefølge. Etter 2 timers sedimentering med prøve III var aluminiumsinnholdet redusert med 88% og etter 4 timer var det redusert med 92%; restinnholdet av aluminium var da 1,0 mg Al/l. Blandingsforholdet mellom avløpsvann og sjøvann var 1/13,5 og doseringen av hydratkalk tilsvarte 1,9 g/l prøve.
Forsøk med ren kalsiumhydroksyd og sjøvannstilsetning i forholdet 1/13,5 til prøve II gav omtrent samme resultat som ved tilsetning av hydratkalk.

Nøytralisering bare med hydratkalk resulterte i rask utfelling av aluminiumhydroksyd og gips. Aluminiuminnholdet var med prøve I etter 1, 2 og 4 timers sedimentering (pH 6,0) redusert til henholdsvis 99%, 99,5% og 99,9% av oprinnelig mengde, og det tilsvarende restinnhold av aluminium var fra 3,7 mg Al/l til 0,5 mg Al/l. Det utfelte slammet opptok et meget stort volum og slamvolumets andel av det totale vannvolum ble målt som funksjon av tiden (Tabell 4).

Tabell 4. Slamvolum som funksjon av sedimenteringstid.

<table>
<thead>
<tr>
<th>Sedimenteringstid (timer)</th>
<th>½</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slamvolum, % av totalt volum</td>
<td>77</td>
<td>54</td>
<td>30</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

Etter en sedimenteringstid på 1 time opptok altså det utfelte slammet over halvparten av det totale volum.

Sedimenteringshastigheten ble undersøkt med et fåttall av prøvene, men tilsvarende forsøk vil etter alt å dømme gi nær de samme resultater fordi prøvene har lignende sammensetning.

4.6 Jartest

Utfellingen av aluminium ble undersøkt mer i detalj ved å benytte jartest-utstyr. Dette består av 6 stk. 1 liters begerglass med tilhørende røreværk. I alle forsøkene ble sjøvann tilsatt prøvene før hydratkalk. Etter tilsetning av sjøvann og hydratkalk (oppslemt løsning) ble prøvene omrørt, først i 2 min ved 100 rpm, deretter flokkulering i 10 min ved 15 rpm. Etter henstand i 1-4 timer ble det tatt prøver for analyse av restinnhold av aluminium.

Utfellingen ble først undersøkt ved forskjellige pH-verdier ved å variere blandingsforholdet mellom prøve- og sjøvannsvolum. Resul-
tatene er vist i tabell 5. Doseringen av hydratkalk tilsvarte 4,2 g/l for prøve II og 1,9 g/l for prøve III.

Tabell 5. Restinnhold av aluminium etter 1 og 2 timers sedimentering ved varierende sjøvannstilsetning (jårest).

<table>
<thead>
<tr>
<th>Prøve nr.</th>
<th>Prøve/sjøvann</th>
<th>Blandforhold</th>
<th>pH</th>
<th>Restinnhold mg Al/l</th>
<th>% Reduksjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>1/27</td>
<td>6,5</td>
<td>1,03</td>
<td>0,98</td>
<td>85</td>
</tr>
<tr>
<td>II</td>
<td>1/18</td>
<td>6,1</td>
<td>1,33</td>
<td>1,25</td>
<td>86</td>
</tr>
<tr>
<td>II</td>
<td>1/15</td>
<td>5,9</td>
<td>1,88</td>
<td>1,60</td>
<td>85</td>
</tr>
<tr>
<td>II</td>
<td>1/10</td>
<td>5,5</td>
<td>2,80</td>
<td>-</td>
<td>84</td>
</tr>
<tr>
<td>III</td>
<td>1/33</td>
<td>6,0</td>
<td>1,55</td>
<td>1,10</td>
<td>87</td>
</tr>
<tr>
<td>III</td>
<td>1/28</td>
<td>5,8</td>
<td>2,10</td>
<td>1,85</td>
<td>85</td>
</tr>
</tbody>
</table>

Restinnholdet av aluminium er her mellom 1 og 2 mg Al/l ved pH nær 6,0. Forskjellen mellom 1 og 2 timers sedimentering er forholdsvis liten; inntil 0,5 mg Al/l. Resultatene tyder på at den beste pH-verdien for utfellingen er nær pH 6,0.

Jårest viste at aluminium utfelles i nær samme grad i de fem prøvetypene ved nøytralisering med sjøvann og hydratkalk (tabell 6). Restinnholdet av aluminium er her redusert til under 1 mg Al/l ved pH 5,8 - 6,0 etter 1 times sedimentering. Dette tilsvarer en reduksjon av opprinnelig aluminiummengde på 93-96%.

Tabell 6. Restinnhold av aluminium etter tilsetning av sjøvann og hydratkalk og 1 times sedimentering.

<table>
<thead>
<tr>
<th>Prøve nr.</th>
<th>Prøve/sjøv.</th>
<th>Blandforh.</th>
<th>Hydratkalk g/l</th>
<th>Opprinnelig mg Al/l</th>
<th>pH</th>
<th>Restinnhold mg Al/l</th>
<th>% Reduksjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1/37</td>
<td>5,3</td>
<td>11,5</td>
<td>5,9</td>
<td>0,81</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1/30</td>
<td>4,2</td>
<td>12,9</td>
<td>5,85</td>
<td>0,93</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1/13,5</td>
<td>1,9</td>
<td>12,6</td>
<td>5,85</td>
<td>0,70</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>1/13,5</td>
<td>1,5</td>
<td>15,2</td>
<td>6,0</td>
<td>0,60</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1/31</td>
<td>3,1</td>
<td>12,6</td>
<td>5,8</td>
<td>0,85</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
Mengde hydratkalk som her ble tilsatt de enkelte prøvene tilsvarer pH 3,0. Sjøvann ble imidlertid tilsatt før hydratkalk i blandforhold fra 13,5 til 37 liter sjøvann pr. liter avløpsvann, pH-verdiene i blandingene var da i området 5,8-6,0.

Analyser av aluminiuminnholdet i disse prøvene etter 2 og 4 timers sedimentering tydet på at det ikke var noen ytterligere reduksjon av aluminiuminnholdet. Resultatene antyder derfor at en sedimenteringstid på mer enn 1 time ikke gir vesentlig større utfelling av aluminiumhydroksyd.

Sammenligning av utfellingen av aluminiumhydroksyd med natriumhydroksyd og hydratkalk viste at restinnholdet av aluminium var omtrent det samme ved begge typer kjemikalier. Sjøvann ble i begge tilfellene tilsatt prøvene før kjemikalierne. Når natriumhydroksyd brukes istedet for hydratkalk unngås gipsutfelling, og hensikten med tilsetning av sjøvann vil da være at kjemikaliemengden kan reduseres.

4.7 Flotasjon

Flotasjon av partikulært stoff er et alternativ til sedimentering. Teknisk sett er imidlertid et flotasjonsanlegg mer komplisert. Ved flotasjon bringes partiklene til overflaten ved hjelp av luftbobler som fester seg til partiklene, og slammet kan skrapes av overflaten. Vanskeligheten ved flotasjonsforsøk er ofte å få dannet luftbobler som ikke knuser fnøkkene av f.eks. aluminiumhydroksyd, og det kreves derfor spesiallaget utstyr.

Det ble utført noen meget enkle flotasjonsforsøk med utstyr som ikke var spesielt godt egnet. Prøvene ble først tilsatt sjøvann og hydratkalk, og etter flokkulering med jartest-utstyr ble prøvene tilført luftmettet vann (4 kg/cm^2, 10-15% av totale volum). Ved trykkreduksjonen ble luftboblene frigjort og partikulært aluminiumhydroksyd flotte. Etter at luftboblene var steget til overflaten, dvs. 5-10 min etter trykkvannet var tilsatt, ble prøver utpippet for analyse av restinnholdet av aluminium (tabell 7).
Tabell 7. Restinnhold av aluminium etter flotasjon.

<table>
<thead>
<tr>
<th>Prøve nr.</th>
<th>Blandforhold</th>
<th>Opprinnelig mg Al/l</th>
<th>pH</th>
<th>Restinnhold mg Al/l</th>
<th>% Reduksjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1/37</td>
<td>11,5</td>
<td>5,9</td>
<td>4,5</td>
<td>61</td>
</tr>
<tr>
<td>II</td>
<td>1/30</td>
<td>12,9</td>
<td>5,9</td>
<td>4,2</td>
<td>67</td>
</tr>
<tr>
<td>III</td>
<td>1/13,5</td>
<td>12,6</td>
<td>5,9</td>
<td>3,2</td>
<td>75</td>
</tr>
<tr>
<td>IV</td>
<td>1/13,5</td>
<td>15,2</td>
<td>5,9</td>
<td>4,7</td>
<td>69</td>
</tr>
<tr>
<td>V</td>
<td>1/31</td>
<td>12,6</td>
<td>6,0</td>
<td>3,7</td>
<td>71</td>
</tr>
</tbody>
</table>

Flotasjonsforsøk med tilsetning av natriumhydroksyd i stedet for hydramatløsning gav tilsvarende resultat, dvs. restinnhold av aluminium på 3-5 mg Al/l. Forsøkene kan tyde på at flotasjon gir dårligere rense-effekt enn sedimentering. Det må imidlertid ikke legges stor vekt på disse resultatene. Et spesialbygget flotasjonsanlegg ville sansevis gitt betydelig bedre resultater.

5. SLAMMENGDER MED OG Uten SJØVANNSTILSETNING

Det ble preparert to forskjellige prøver av prøvetype II for sammenligning av de utfelte slammengder med og uten sjøvannstilsetning. Prøve A ble kun tilsatt hydratkalk (pH 6,0); B ble tilsett sjøvann (blandforhold 1/14) og hydratkalk (pH 6,0). Etter omrøring og flokkulering med jartestutstyr og henstand i 24 timer, ble prøvene filtrert og bunnfallet ble tørket ved 110°C og veid. Det ble benyttet Whatman GF/C filtre ved filtreringen, og denne type filter benyttes for bestemmelse av suspendert stoff i vann. Det kan antas at svært lite partikler av aluminiumhydroksyd eller gips passerer filtrtet ved filtreringen. De inneveide mengdene etter tørking ved 110°C representerer derfor den totale mengde partikulært stoff som 100% tørrstoff (TS). Tørrstoffmengdene beregnet pr. liter avløpsvann av prøve II var:

A (Hydratkalk) : 9,6 g/l
B (Sjøvann + hydratkalk) : 1,2 g/l

Slammet som utfelles vil inneholde mer enn 90% vann og er derfor volumen-gøst. For å få et mål for denne produserte slammengden ble tørrstoffmeng-
den veid etter filtrering og tørring. De innveide tørrstoffmengdene skulle derfor gi et visst inntrykk av slammproduksjonen i gram pr. liter prosessavløpsvann.

Resultatene tyder på at den produserte slammengden er betydelig mindre ved tilsetning av sjøvann. Tørrstoffmengdene er reduert til ca. åttenedeparten ved tilsetning av sjøvann i blandforhold 1/14 og hydratkalk til pH 6,0 sammenlignet med bare tilsetning av hydratkalk. Årsaken til dette er antagelig at løselighetsproduktet for kalsiumsulfat ikke overskrideres ved tilsetning av sjøvann. Verdien for det molare løselighetsproduktet for kalsiumsulfat er 1,95 \cdot 10^{-4} ved 10^0\circ C. Sjøvann inneholder ca. 2,65 g SO_4/1 og 0,4 g Ca/1. For beregning av de maksimale sulfat- og kalsiumkonsentrasjoner må disse konsentrasjonene korrigeres for sjøvannets høye ioneinnhold. Slike beregninger er her ikke foretatt, men det antas at dette er forklaringen til at gipsutfellingen vil reduseres ved sjøvannstilsetningen.

6. KONKLUSJON

Utfellingen av aluminium er undersøkt i fem typer avløpsvann ved nøytralisering med sjøvann og hydratkalk. Prøvene som er lagt til grunn for forsøkene, representerer de forventede typer prosessavløpsvann fra bedriftens kontinuerlige eloksering med svovelsyre av aluminiumsbånd på Vesthøy. Aluminiuminnholdet i prøvene varierte fra 420 til 170 mg Al/1 og pH-verdiene var i området 1,35 - 1,7.

Bakgrunnen for å benytte sjøvann for nøytralisering i tillegg til hydratkalk var at kjemikaliemengdene kan reduseres og at slammengdene antagelig ville bli mindre.

Forsøkene viste at nøytralisering bare med sjøvann førte til store vannvolum. Dessuten sedimenterte aluminiumhydroksyd meget langsomt. Det var derfor nødvendig med kjemikalietilsetning i tillegg til sjøvann.
Tilsetning av sjøvann til avløpsvannet før hydratkalk gav raskest sedimentering av aluminiumhydroksyd. Doseringen av hydratkalk bør derfor foregå etter innblanding av sjøvann.

Nøytralisering bare med hydratkalk til pH 6,0 krever tilsetninger i området 2,2 - 7,7 g hydratkalk pr. liter prøve for de fem typene avløpsvann. Ved tilsetning av sjøvann til avløpsvann i blandforhold 1/14-1/37 mellom avløpsvann og sjøvann kan tilsettingene reduseres til 1,4 til 5,9 g hydratkalk pr. liter prøve for de fem prøvetypene (pH 6,0). Ved nøytralisering av de sureste typene prosessavløpsvann kan det være nødvendig med større dosering av hydratkalk for å unngå for store vannvolumer.

Ved jartest ble aluminiuminnholdet i de fem typene avløpsvann redusert med inntil 93-96% etter 1 times sedimentering. De tilsvarende aluminiumkonsentrasjoner var fra 0,6 - 1,0 mg Al/l ved pH nær 6,0 og volumforhold mellom avløpsvann og sjøvann i området 1/14 - 1/37. Ytterligere sedimentering i 2 og 4 timer gav ingen vesentlig bedre utfelling av partikulært aluminiumhydroksyd. Hydratkalk ble da tilsatt avløpsvann i form av en oppslemmet løsning etter at sjøvann var tilsatt.

Mengden hydratkalk for nøytraliseringen kan antagelig reduseres med ca. 1 kg pr. m³ avløpsvann. Dette avhenger av mengden sjøvann som tilsettes.

Slammengdene som dannes ved nøytralisering med sjøvann og hydratkalk, synes å være betydelig mindre enn ved nøytralisering bare med hydratkalk idet gipsutfellingen reduseres. Forsøkene tyder på at slammengden beregnet som 100% tørrstoff ble redusert til ca. åttende delen ved sjøvannstilsetning. Ved nøytralisering bare med hydratkalk vil det utfelte slammet oppta en stor del av det totale vannvolumet, og volumet av utfelt slamm ble målt til 54% av det totale vannvolum etter én times sedimentering.

Med bakgrunn i de utførte laboratorieforsøkene kan det være aktuelt å benytte sjøvannstilsetning i tillegg til kjemikalier for behandling av surt prosessavløpsvann. Forsøkene er utført under betingelser som er valgt på skjønn. Fallingsbetingelsene som er valgt, kan derfor betrak-
tes som orienterende eksempler på de resultater som oppnås under gitte betingelser. Et forsøksanlegg vil i større grad klarlegge de optimale betingelser og vil kunne gi bedre holdepunkter for å avgjøre om sjøvannstilsettning er en teknisk/økonomisk gunstig løsning for behandling av prosessavløpsvann.