SAMFUNN OG RESSURS

NATUR- OG SAMFUNNSVITENSKAPELIG GRUNNLAG FOR
FORVALTNING AV VASSDRAGSSYSTEMER.

- GLÅMA-PROJEKTET -

Ideutkast til et forskningsprosjekt
innenfor MAB.
FÖRORD

Etter initiativ fra MAB-utvalget i NTNFi har forskere fra ulike institutter diskutert et eventuelt engasjement i tilknytning til UNESCOs forskningsprogram, Man and the Biosphere.

Dette idéutkastet til et forskningsprosjekt er formulert på basis av kontakt mellom forskere ved NIVA, NILU og NIBR. I den siste fase av arbeidet har man også hatt kontakt med andre NTNFi-institutter, deriblant CMI og SI. En arbeidsgruppe fra NIBR bestående av Siv.ing. Halfdan Bufld, Mag.art. Tor Bysveen og Cand.real. Per Arild Christiansen har hatt ansvaret for den konkrete utformingen av utkastet.

Prosjektet kan karakteriseres som orientert grunnforskning. Formålet med det er dels å vinne ny kunnskap om prosesser i biosføren, dels å utvikle og anvende metoder som gjør det mulig å utnytte natur- og samfunnsvitenskapelig kunnskap som grunnlag for planlegging og beslutninger. Innenfor forskning på dette feltet vil prosjektet representere en ny fremgangsmåte.

Vi mener at det er viktig at man innenfor forskningsprogrammet Man and the Biosphere gir ulike institusjoner, ulike forskere og fagretninger en mulighet til å arbeide sammen, og tror de idéer som dette prosjektet bygger på vil være særlig fruktbar for å realisere et slikt samarbeid. På grunn av problemets kompleksitet og områdets størrelse er det nødvendig å utnytte all tilgjengelig informasjon. Vi vil derfor søke kontakt med de prosjekter og undersøkelser som pågår ulike steder i Glåmas nedbørfelt.

Det må understrekes at dette notatet er et idéutkast som forutsetter en videre bearbeiding til et ferdig forskningsprosjekt. Man har derfor lagt større vekt på å klarlegge formålet med og tanken bak prosjektet, enn å beskrive de enkelte oppgaver i detalj.
INNHOLD

FORORD
INNHOLD
SAMMENDRAG

1. BAKGRUNN OG FORMÅL FOR PROSJEKTET.
 1.1 To tankemodeller for MA3 s. 1
 1.2 Angrepsmåte s. 3

2. AVGRENSNING AV PROSJEKTET.
 2.1 Valg av tema s. 4
 2.2 Valg av geografisk område s. 4
 2.3 Avgrensning mot andre prosjekter s. 6

3. BESKRIVELSE AV OMRÅDET.
 3.1 Hydrologi og geologi s. 7
 3.2 Arealfordeling og befolkning s. 9
 3.3 Næringsvirksomhet s. 10
 3.4 Brukerinteresser i vassdraget s. 11

4. OPPGAVER, METODER OG ORGANISERING.
 4.1 Sammenligningsmetodikk (The Planning Balance Sheet) s. 16
 4.2 Andre hovedoppgaver s. 18
 4.3 Prosjektor organisering og tidsramme s. 22

5. NASJONALT OG INTERNASJONALT SAMARBEID.
 LITTERATURLISTE s. 25
 s. 26
SAMMENDRAG

For at oppgaven skal bli overkommelig har vi valgt å begrense prosjektet til naturressursen vann og til å la et nedbørfelt utgjøre den geogra- fiske begrensenden. Som spesielt objekt vil vi ta for oss Glåma-vas- draget og dets nedbørfelt. De viktigste årsakene til å velge Glåmasys- temet er at vassdraget viser stor økologisk variasjon, forurensnings- problemene er betydelige og at det er store interesseområder an- gående bruken av vassdraget. Videre foreligger allerede mye informasjon om vassdraget slik at en har et godt utgangspunkt m.h.t. datagrunnlaget.

Ved å velge et såvidt stort område vil en lettere kunne se ressursut- nyttelsen i sammenheng med nasjonale målsettinger. Samtidig er det tilstrekkelig stort til å være av interesse i et MAB-perspektiv.

Det er nødvendig å kunne undersøke enkelte forhold inngående. Til dette formål vil egne de i forområder av nedbørsfeltet velges ut for detaljerte studier.

Prosjektet vil få en utpragt tverrfaglig orientering og vil medføre en vekselvirkning mellom natur- og samfunnsvitenskapelige metoder.

Den integrerende metode vil være bruken av "Planning balance sheet". Denne metoden tar hensyn til at en bestemt ressursbruk vil innebære fordeler og ulemper for de enkelte brukergrupper. Disse kortsiktige resultater må vurderes mot de mer langsiktige konsekvenser ulik ressurs- bruk har på livet i biosfæren. Vi mener at metoden gir anledning til å behandle slike problemstillinger, idet det er mulig å redegjøre for konsekvenser av ulik prioritering.
En stor fordel med sammenligningsmetodikken er at den gir mulighet til en formidling av ellers vanskelig tilgjengelige data.

På den naturvitenskapelige siden vil prosjektet medføre en rekke oppgaver: kausal vassdragssanalyse, utvikling av forsøksstasjoner, studiet av fenomener i kontaktflaten luft, vann, jord og teksikologiske og epidemiologiske forhold.

I prosjektets første fase vil vi ta utgangspunkt i den eksisterende informasjon om nedbørfeltet. Resultatet av dette arbeidet vil avdekke de punkter hvor informasjonsgrunnlaget er utilstrekkelig og avklare behov for ny innsamling av grunnkunnskap.

Denne første fasen i prosjektet, utviklingen av sammenligningsmetoden, antas å kunne fullføres i løpet av en toårs periode. De naturfaglige undersøkelser og eksperimentelle arbeider vil ta vesentlig lang tid og vil innebære en tidsramme på ca.10 år.

På det nåværende tidspunkt er det vanskelig å si noe om bemanningen, men et foreløpig overslag tyder på at prosjektet vil kræve en basisinnsetting på ca.100 forskerårsverk over en 10-årsperiode.
1. **BAKGRUNN OG FORMÅL FOR PROSJEKTET**

1.1. **To tankemodeller for MAB.**

I omtalen og presiseringen av programmet synes man å basere seg på en noe enklere tankemodell. Denne kan skisseres slik.
Dette vil vi karakterisere som en nødvendig, men ikke tilstrekkelig modell. Vi vil understreke at MAB-programmet berører viktige spørsmål som etter vår mening ikke er kommet tilstrekkelig med. En hovedoppgave vil ligge på analysen av hvilke konsekvenser ulik handling, ulik bruk av ressursene vil få sett i sammenheng med biosføren og for aktivitetene i samfunnet. Vår tankemodell vil derfor være følgende utvidelse av den enklere modell.

: tilbakekobling-mekanismer.
Denne modellen illustrerer betydningen av å vurdere en handlings konsekvenser for samfunnet og konsekvenser for biosføren. I dette prosjektet vil vi sette oss inn i den valgsituasjon som i praksis eksisterer når man skal prioritere mellom ulike mål.

1.2. Angrepsmåte

Vårt opplegg tar sikte på å utvikle en integrerende metode hvor konsekvensene ved alternativ bruk av ressursene vurderes. Konsekvensene gjelder ikke bare for biologiske forhold, men også for bosetting, næringsliv og fritidsmuligheter. I et tenkt tilfelle kan vi finne en bedrift som slipper ut stoffer i vannet som vi helst vil unngå. Om vi påbyr bedriften å bygge renseanlegg kan utgiftene bli så høye at driften er i fare. Om bedriften ligger i et område hvor alternative virksomheter er vanskelige å opprette vil i praksis bedriften ofte få fortsette sine utslipp uten rensning. Kravet om sysselsetting og bosetting veier i dette eksemplet tyngre enn vernet om vannforekomstene.

Bedriften gir arbeid for de ansatte, mens den skader ressurser og lager vanskeligheter for nyttigjøring av vann lenger ned i vassdraget. Vi må kunne vise hvilke grupper i samfunnet som har fordel og ulemper av forskjellig bruk av ressursene. Dette vil hele tiden måtte vurderes mot den økologiske forståelse av begrensninger i biosføren. Gjennom en planleggingsmetodikk kalt "Planning Balance Sheet (PBS)" tror vi at vi kan gi en skisse av disse problemene. Styrken ved PBS er at vi kan sette opp alternativ bruk av ressursene på en systematisk og forhåpentligvis oversiktlig måte. Vi skal ikke lage noen konkret plan. Metoden kan bringe mer rasjonalitet inn i de avgjørelserne om våre fremtidige ressursbruk som må tas.

Med rasjonalitet menes her både at vurderingsgrunnlaget skal gjøres klart, og at man i diskusjonen av alternativer (og derigjennom både mål og problemer) lar de foreslåtte løsningene på målverensstemmelser være uttrykk for en konsekvent og bevisst prioritering.

2. AVGRENSING AV PROsjektet

2.1. Valg av tema

En annen grunn til å koncentrere seg om et vassdrag er den store økonomiske betydning utnyttelsen som drikkevannskilde, recipient, og til produksjon av kraft vassdragene har i vårt samfunn. Ved siden av å diskutere hvilken innvirkning slik utnyttelse har på biosføren, må man også diskutere hvilken virkning slike tiltak har for samfunnet.

Vi har valgt å begrense prosjektet til et nedbørfelt. Dette gir god kontakt med de globale sammenhenger. Hydrosføren består nettopp av et antall naturlige enheter som gjør det mulig å koncentrere seg om ett uten å gi opp kravet om generalitet.

2.2. Valg av geografisk område

Valget av Glåmas vassdragssystem er basert på en rekke forhold. Raskt oppsummet omfatter disse:

Økologisk variasjon: Glåmavassdraget er et av de vassdrag i Norge hvor geologien og de fysiske omgivelsene er nokså ulike nedover vassdraget. Dette påvirker i stor grad vannets egenskaper og følgelig også mulighetene for ulike typer livsutfoldelse i og nær vassdraget.

Forurensningsproblemer: Glåma er et av de mest påvirkede norske vassdrag med vanskeligheter av tildels akutt karakter.
Interesseomsetningene: Vassdraget utnyttes til flere ulike formål og på en rekke steder er det uenighet om bruken og disponeringen av vassdraget.

Institusjonelle forhold: P.g.a. områdets størrelse i forhold til de lokale beslutningsenheter har det vært nødvendig å diskutere ulike typer samarbeid. De samarbeidsformer som er utviklet (vassdragsforbund, avløpsamband) er under stadig debatt. Vassdraget er interessant i forbindelse med en drøfting av mulighetene for å løse problemene gjennom bedre planlegging og kontroll.

Datagrunnlag: Glåma er et av de vassdrag som det er samlet inn mest informasjon om. Ved å bygge videre på de opplysninger institusjoner, departementer og fylkene utbyggsavdelinger sitter inne med, kan man begrense innsamlingen av oversiktsdata. På den annen side vil det ha stor betydning for mer spesielle oppgaver som krever ytterligere observasjoner at det er mulig å basere seg på målinger over lengre tidsrom.

På tross av disse momenter som alle tilsier at Glåma er et fornuftig valg er det nødvendig å ta direkte stilling til de problemer og vanskeligheter et så stort vassdrag medfører om man vil studere forholdet samfunn - ressursutnyttelse etter den metode som er skissert. Det er imidlertid flere forhold som taler for valg av et så stort område.

For det første må man tenke på at selvom Glåmavassdraget utgjør ca. 12-13% av Norges areal så er det antagelig av rimelig størrelse sett i et internasjonalt perspektiv. For det andre betyr områdets størrelse at mål for ressurs-utnyttelse lettere kan sees i sammenheng med nasjonale målsettinger og perspektiver. Dessuten kan det nevnes som et tredje argument at erfaring indikerer at de økologiske fenomener ikke blir fundamentalt enklere om man forsøker å studere dem i mindre skala.
2.3. **Avgrensning mot andre prosjekter**

Den institusjonelle avgrensningen av dette prosjektet, dvs. avgrensningen i forhold til lignende prosjekter er grei nok på det internasjonale plan der Unesco har gitt klare regler for hva som faller inn under MAB og hva som tilhører andre internasjonale forskningsprogrammer. Det er mulig å tenke seg at disse prinsipper også følges på det nasjonale nivå, salthom man der trenger en videre diskusjon.

I forhold til dette prosjektet synes det f.eks. naturlig å vurdere i hvilken utstrekning diskusjonen av virkemidler, tiltak og organisering i forbindelse med den praktiske vassdragsforvaltning bør inkluderes i prosjektet; eventuelt om slike spørsmål bør tas opp i et senere prosjekt med annen finansiering.
3. BESKRIVELSE AV OMRÅDET.

3.1. Hydrologi og geologi

Glåma er Norges største vassdrag med et nedbørfelt på ca 42.000 km² eller ca 13% av samlet landareal. Gjennomsnittlig vannføring målt ved Langnes syd for Øyeren er ca 690 m³/sek.

Nedbørfeltet har innlandsklima med lange kalde vinter og relativt varme somre. Største delen av nedbørfeltet ligger i et av landets nedbørfattige områder. I den nordsIDE delen som omfatter Røros-området og Nord-Østerdal er den normale nedbørmengde 300-500 mm/år. De største nedbørmengdene kommer normalt i sommermånedene juli og august. Videre ørver tilter nedbørmengden til ca 680 mm ved Vormsund og ca 840 mm ved Sarpsborg.

En rekke mindre innsjøer på Rørosvidda danner tilsammen tilsigene til innsjøen Rien, 762 m.o.h. Først etter utløpet fra Rien er det vanlig å kalle elven Glåma. På strekningen ned til Elverum får Glåma en rekke større og mindre tilløp. Spesielt kan nevnes Folla med en middelere vannføring på ca 28 m³/sek. ved Alvdal, og Atma med middelere vannføring på 24 m³/sek. ved innmunning i Glåma.

Rena er den største tilløpselven til Glåma i Østerdalen med en middelere vannføring på 60 m³/sek. før samløpet. På strekningen fra Elverum til Ånes er det Flisa med middelere vannføring på 23 m³/sek. og Oppstadelva fra Storåsåen i Odalen som utgjør de viktigste tilløp.

Glåmas nedbørfelt før samløpet med Vorma er 20.670 km² og den middelere vannføring er 320 m³/sek. Vorma - Lågenvassdraget har et nedbørfelt på 17.294 km² og en middelere vannføring på 332 m³/sek.

På grunn av fallforholdene i Østerdalen er mulighetene for effektiv regulering av vassdraget her små. Dette fører til at det er store forskjeller mellom flomvannføringer og lavvannføringer i Glåma. Til tross for de relativt omfattende reguleringer som er gjennomført i Gudbrandsdalen, og det store magasin Mjøsa representerer, har det i de senere år vært flere flomperioder som har gitt alvorlige skader bl.a. i området rundt Øyeren.
Fig. 1 Glåma med sidevæsdrag og nedbarfelt
Tallene angir nedbarfeltens areal i km²

Målestokk 0 20 40 60 80 100 km

Langnes
Fredrikstad
Sarpsborg

NIVA-68
Geologisk kan den nordre delen dvs. ned til Alvdal i Østerdalen og ned til syd for Dovre i Lågens dal formeres med til Trondersheimfeltet. Lågens bierver fra vest fører imidlertid med seg materiale fra Jorunheimens gabbro- og gneisbergearter.

Øvre del av vasadraget er preget av mestige bresjøskedimentet. Glåmas dalformed er dekket av store glasifluviale avsetninger (sand, grus, silt) ned til Elverum, mens morene dominerer mer i Gudbrandsdalen og Mjøs-traktene. Like syd for Elverum og Mjøsa renner elvene gjennom områder med marine avsetninger, hovedsakelig leire. Israndavsetninger ved Mysen og Sarnsberg har påvirket vasadraget og elveløpet.

3.2. Areaalfordeling og befolkning.

Den prosedivise areaalfordeling i nedbørfeltet er på mange måter svært lik fordelingen i landet forøvrig; men serlig skog og dyrket mark har en større andel enn for Norge sett under ett.

<table>
<thead>
<tr>
<th>Areaalfordeling i Glåmas nedbørfelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbørfeltets samlede areal</td>
</tr>
<tr>
<td>Dyrket mark</td>
</tr>
<tr>
<td>Skog</td>
</tr>
<tr>
<td>Myr</td>
</tr>
<tr>
<td>Vann</td>
</tr>
<tr>
<td>Impediment</td>
</tr>
<tr>
<td>Befolkningstetthet</td>
</tr>
</tbody>
</table>
I nedbørsfeltet bor det i alt ca. 600.000 mennesker eller 16 % av landets befolkning. Fra 1960 til 1970 har det vært en økning på 13 %. Som det fremgår har tilveksten innen de enkelte delene vært svært forskjellig. Øst-Trøndelag 0 %, Hedmark 2 %, Oppland 16 %, Akershus 33 % og Østfold 7 %. Byene har hatt følgende vekst i samme periode (1960-1970). Hamar 17 %, Gjøvik 9 %, Lillehammer 10 %, Kongsvinger 7 % og Sarpsborg og Fredrikstad 0 %. Dette materialet viser at befolkningveksten har foregått i nedbørsfeltets midtre deler; Mjøsområdet og Romerike og med noe vekst i Østfold ovenfor Sarpsborg.

3.3 Næringsvirksomhet.

I nordre del av nedbørsfeltet dominerer husdyrbruket, og den dyrkede mark består vesentlig av fulldyrket eng, bare enkelte steder dyrkes noe bygg. Jordbruket får tiltagende betydning nedover vassdraget, og innenfor de marine områder finner vi de store jordbruksarealer med muligheter for allsidig drift.

Skogbruket er særlig viktig fra Tynset og sydover til Elverum, og gir næringsgrunnlag for en stor del av befolkningen i dette området.

I vassdragets øvre del er det gruvevirksomhet ved Røros og Follidal. I tilknytning til landbruket er det en betydelig industrivirksomhet i form av meierier, slakterier og halmlutningsanlegg.

Treforedlingsindustri med stor produksjon er en sponplatefabrikk på Røros og en kartongfabrikk på Rena, samt et tresliperi på Skarnes. Ellers er treforedlingsindustrien konsentrert langs Glåmas nedre del, i Sarpsborg - Fredrikstad-distriktet.

Flere tettbebyggelser og byer som Elverum, Kongsvinger, Skarnes og Årnes har variert industri med utslip av avløpsvann fra bedrifter innen jern- og metallbearbeiding, konfeksjon- og tekstilindustri, halmluting, bryggerier og mineralvannfabrikker.
I lågen og Vormas nedbørfelt er jord- og skogbruk de viktigste næringsveiene. I dalhørene er husdyrhold dominerende, mens korn-dyrking er av størst betydning i Mjøsområdene. Industrien i nedbørfeltet er særlig knyttet til landbruksprodukter, f.eks. melierier, ysterier, hamnublingsanlegg, slakterier og næringsmiddelfabrikker. Videre tjener skogen som råstoffkilde for en rekke sagbruk, trevare- og møbelfabrikker, i den nedre del av nedbørfeltet for bedrifter som fremstiller cellulose, papir, vallboard osv. Tettbebyggelse og industri i Mjøsbyene Lillehammer, Hamar, Gjøvik og Brumunddal forårsaker store forurensningsproblemer som følge av utslipp.

Utmøer Øyeren er industrien en viktig del av næringsgrunnenget, og det ligger i dette området flere store bedrifter, særlig innen jern- og metall- samt kjemisk industri. Ellers finnes en rekke bedrifter innen tekstilindustrien; konfeksjon- og trikotasjefabrikker. Her er det også flere næringsmiddelfabrikker.

I vassdragets nedre del er det foruten de før nevnte treforedlingsbedriftene store næringsmiddelfabrikker, kjemisk industri og jern- og metallbearbeidende industri.

Generelt er næringsvirksomheten i nedbørfeltet brukt på å være "natur-orientert" med stort råstoffinntak og utslipp av avfallsstoffer.

3.4 Brukerinteresser i vassdraget.

En av de viktigste brukerinteresserne er vannforsyning både til drikkevann, industri og jordbruksformål. For industrien spiller kostnadene ved vannrening stor rolle selv om det ikke foreligger noe kvantitativt uttrykk for dette på det nåværende tidspunkt. Drikkevannsproblemet er særlig fremtredende på partiet Øyeren - Fredrikstad hvor ca 100.000 mennesker er avhengig av vann fra Glåma. I dalhørene vil oftest drikkevannsproblemet kunne løses ved grunnvannsboringar.
Vassdraget utnyttes i betydelig grad til produksjon av elektrisk kraft. I 1971 var produksjonen ca 7000 GWh, ca 12 % av landets samlede kraftproduksjon. Dette representerer en førstehandsverdi på 100 - 110 mill. kr. Kraftproduksjonen forutsetter en betydelig regulering av vassdraget og dette kan utnyttes til flomdæmning.

Yrkesfiske og tømmerfløting har på det nåværende tidspunkt relativt liten betydning, men vi må ikke tape av syne den store mulige verdi som disse bruksmåteene har. Tatt i betraktning verdens matvaresituasjon er vassdragets evne til produksjon av fisk en ressurs som det bør legges vekt på.

En vil finne eksempler på de ovenfor skisserte konflikter flere steder i vassdraget men som et konkret eksempel vil Nordre Øyeren-området bli trukket frem. Dette området er et grunn førskvannsdelta med et rikt og interessant dyre- og planteliv bl.a. 22 av Norges 24 arter av førskvannsfisk, et rikt fugleliv og meget interessante botaniske
Fig. 2. Områder foreslått vernet mot ytterligere kraftutbygging.
forhold. Området blir benyttet til rekreasjon, jakt og fiske samt vannforsyning fra Øyeren. Disse bruksmåter harmonerer i stor utstrekning med hverandre. På den annen side er området utsatt for store forurensningsåvirkninger slik at konflikter oppstår.

Øyeren og elvene er reiperter for avløpsvann fra boliger og industri. I tillegg har en luftforurensninger som på grunn av de uheldige meteorologiske forholdene kan bli svært alvorlige ved en økt boligreisning og industriutbygging.

Etter krigen har det skjedd en sterk forsøvning av befolkningssutviklingen fra Oslo til omegnskommunene, bl.a. til kommunene rundt Nordre Øyeren. Denne utviklingen ser ut til å fortsette. Inntillingen fra Østlandskomitéen angir at de fire kommunene Lørenskog, Skedsmo, Rølingen og Hønefoss i sine generalplaner foreslår en samlet økning på 100 %.

Denne byutviklingen vil kunne føre til en sterk økning av forurensningsbelastningen på Nordre Øyeren. Dette vil påvirke de biologiske forholdene i ugunstig retning. Det har også store konsekvenser for vassdraget gjennom Østfold.
4. OPPGAVER, METODER OG ORGANISERING.

Med utgangspunkt i den målsettingen som innledningsvis er presentert for prosjektet, er det klart at hovedprosjektet består i en vekselvirkning mellom bruk av samfunnsvitenskapelige og naturvitenskapelige problemstillinger og metoder. Intensjonen er at man i dette prosjektet hovedsakelig skal koncentrere seg om å utarbeide en fremgangsmåte, en metode som dekker begge retninger. Prosjektet blir imidlertid av en slik størrelsesorden og ambisjonene er så store at vi må dele opp prosjektet i programmer. Noen av programmene vil i hovedsak inneholde data av naturvitenskapelig art, mens hovedrekten i andre programmer vil legges på data som samles inn gjennom bruk av samfunnsvitenskapelige metoder. Både de natur- og samfunnsvitenskapelige undersøkelser vil måtte strekke seg over flere år.

Arbeidet med å utvikle og anvende en integrerende metode (P.B.S.) synes det riktig å koncentrere i tid. Dette skyldes et ønske om at man allerede tidlig i prosjektet kan fastslå hvilke tilleggsopplysninger som mangler for å kunne belyse de problemer som ved nærmere studium kommer til synne. Denne type dialog tror vi vil være av stor betydning for bl.a. de mer langsiktige naturvitenskapelige eksperimenter.

Ved siden av disse argumenter synes det rimelig også å legge vekt på muligheten til en grundig diskusjon og analyse av hva man har fått ut av P.B.S ved anvendelse på dagens datagrunnlag. At diskusjonen blir stortidig i prosjektet gjør at det er mulig å foreta til dels vesentlige endringer før metoden anvendes som ledd i en eventuell avsluttende syntese. En slik avsluttende syntese vil være meget naturlig om man får et vesentlig bedre datamateriale når de langsiktige naturvitenskapelige prosjekter er avsluttet.
4.1. **Sammenligningsmetodikk (The Planning Balance Sheet)**

PBS kan også sees som en metode for å sammenstille data man har skaffet tilveie. Man må legge et vesentlig arbeid i å fremkalle data av både samfunnsvitenskapelig og naturvitenskapelig art. De virksomhetene som finnes i studieområdet vil gi virkninger på vannkvaliteten og dermed innvirke på biosføren. Dette er opplysninger som det må være en naturvitenskapelig oppgave å legge frem. Den samfunnsvitenskapelige oppgave vil ved siden av engasjementet i P.B.S. også bestå i å fremkalle data om næringsgrunnlag og befolkningsutvikling, samt en kartlegging av de lokale problemer knyttet til utnyttelsen av vassdraget og hvorledes man lokalt oppfatter disse.
På dette punktet i diskusjonen kan det imidlertid være på sin plass å peke på at datainsamling- og dataoversiktsfasene neppe blir så enkle som denne fremstillingen gir inntrykk av. For å unngå å trekke inn for store datamasser må man passe på at insamlingen hele tiden er relevant i forhold til de hovedproblemer som skal diskuteres. På den annen side må man ikke begrense de problemstillinger som kan besvares ut fra ett og samme datamateriale. Da arbeidet med insamling og lagring av data er nye forbundet med den metode som velges, synes det fornuftig at institusjoner som har kompetanse på dette feltet innbys til å delta i opprettelsen av et informasjonsystem, et register for dette spesielle prosjektet.

En stor fordel med sammenligningsmetodikken er at den gir mulighet til formidling av ellers vanskelig tilgjengelige data. Den gir også et mer helhetlig bilde av situasjonen i et område enn ved å presentere data om enkelte problemer separat. I dette prosjektet vil selvsagt områdets størrelse bety at man ikke kan studere alle deler av det like detaljert. Dette er tenkt løst ved bevisst å arbeide på flere nivåer hva angår detaljering og nivåene kan i syntesen bindes sammen.

I valget av delområder må vi ta hensyn til i hvilke deler av vassdraget problemene idag synes størst, samtidig som vi bør sikre oss at delområdene er representative for vassdraget.

NIBR har høyst gode erfaringer med bruk av den type metode som foreslås anvendt i dette prosjektet. P.B.S. er benyttet i arbeidet med Tromsø Generalplan og i vurderingen av ulike lokaliseringer for den nye hovedflyplassen på Østlandet. Instituttet vil også bruke metoden i sitt engasjement i Norsk Vegplan 2. Med de tilpasninger som kreves til hvert enkelt tema har PBS virket som en god metode for å diskutere konsekvenser av ulik prioritering og planlegging.

Det må understrekes at sammenligningsmetodikken mer er en angrepsmåte enn en klart definert metode. Målet med dette prosjektet er bl.a. å utvikle et redskap, en velforinnet modell med utgangspunkt i en slik angrepsmåte.
4.2. Andre hovedoppgaver.

Noen av oppgavene som hører til i vårt felles MAD-opplegg er av en slik karakter at de kanskje bør behandles separat av hvert institutt, og at de andre instituttene holdes orientert om resultatene av oppgavene. Gjennom den første fase hvor vi samordner våre prosjekter og kommer frem til et vurderingsskjema vil vi også finne ut hvilke typer data som er mangelfullt utviklet. Denne erfaringen kan da benkes å korrigere utviklingen av de enkelte oppgaver. På nåværende tidspunkt kan vi skissere følgende oppgaver.

Kausal vassdragsanalyse

Dette innebærer undersøkelse av hydrologiske og hydrobiologiske faktorer i vassdraget og sette dem i sammenheng. I en slik undersøkelse vil man få fysiske, kjemiske og biologiske parametre, og det er samspillet mellom de som er av størst betydning for å kunne forstå tilstanden i vassdraget.

De fysiske-kjemiske og biologiske data skal gi kvantitative og kvalitative uttrykk for den økologiske tilstanden i vassdraget på en slik måte at dataene er praktisk anvendbare. Dette er en forutsætning for å kunne utnytte vassdraget på en forsvarlig måte slik at vi vil være tjent med forholdene i fremtiden, enten det gjelder vann til husholdning, til industri og jordbruk, som recipient eller til trivsels- og rekreasjonsformål.

Utvikling av forsøksstasjoner

Ved å gjennomføre eksperimenter og observasjoner i forsøksstasjoner ved vassdraget er det mulig å skaffe til veile kunnskap som ikke er tilgjengelig på annen måte. Det kan utføres forsøk med ulike påvirkninger av vannmassene under kontrollerbare betingelser, og tildeles med målbare miljøbetingelser. Arbeidsområdene for slike forsøksstasjoner omfatter utredning av sammenheng mellom ulike påvirkninger.
Figur 3. Prinsipper for vassdragsobservasjoner.

- Observasjoner i vassdraget.
- Forsøksstasjoner.
Kontaktflassen. Jord - luft - vann

Helse.

Det vil være behov for forskning på en rekke felter av menneskers og dyrs helse. Her skal bare nevnes epidemiologiske og teknologiske problemer knyttet til forurensning og bruken av vann og vassdrag. Her bør vi søke kontakt med institusjoner som har kompetanse på dette feltet.

Lokalsamfunnenes rolle i ressursforvaltning.

Delprosjektene som har et utpreget naturvitenskapelig siktepunkt er nødvendige for å skaffe data som myndighetene må bygge sine beslutninger på. Myndighetene må være orientert om de data som legges fram. For at dataene skal bli nyttet i den stadig ønskeligere planlegging må de bygges inn i myndighetenes arbeidssutikker i spørsmålet som engår behandling av vannressursene.

Et meget vesentlig spørsmål er hvilke oppgaver innen ressursforvaltning de enkelte instanser skal ta seg av. De viktigste i dette arbeidet vil bli kommunene. Uten kommunenes positive og aktive medvirkning blir det sterke begrensninger for hva f.eks. naturvernet kan oppnå i praksis. Planlegging etter bygningsloven vil derfor i fremtiden få en enda sterkere plas som et redskap for styring av utnyttelsen av kommunenes ressurser. Vi må også holde oss orientert i de foreslåkene på samskapsom behandling av vannressursene som skisses på det regionale og fylkeskommunale plan.
Systemanalyse og ressursbudsjetter.

Unesco's ekspertgruppe på systemanalyse har formulert sin oppfatning av systemanalyse som meget kort går ut på at man etter å ha avgrenset et system og dets subsystemer formulerer en rekke kausale slutninger i et matematisk språk. Med dette som grunnlag kan man simulere ulike tilstander og konsekvenser i systemet.

Vi vil understreke at den form for systemanalyse Unesco's ekspertgruppe har formulert eiger seg best i et system med ikke-tønkeaktører. Med tønkeaktører(mennesker) i systemet finner vi det av mindre verdi å bygge opp et nettverk av kausale slutninger og ikle de en matematisk språkbruk. Derimot vil systemanalysen som en tønkebruk kunne gi oss imputer. Systemanalysen kan hjelpe oss å avgrense systemet i rom, vi kan splitte systemets komponenter i håndterbare enheter hvor vi har mulighet for å si noe om komponentenes inntydes relasjoner, og vi kan klart avgrense hva vi velger å holde utenfor systemet og kalle omgivelser. Vi kan tenke oss en systemanalyse hvor systemet ikke er lukket, og hvor relasjonen med dets omgivelser inngår som en sentral del av analysen.

Et område som synes egnet for bruk av systemanalyse er utarbeidelsen av ressursbudsjetter. Ved å beregne f.eks. stoff- og energibudsjetter for et avgrenset geografisk område har man fremskaffet verdifulle data som kan nyttes i planlegging. Stoff- og energibudsjetter kan gi oss en oversikt over tilstanden i et område når det gjelder biomasne. Men å fremskaffe stoff- og energibudsjetter er ikke noe mål i seg selv, vi må ved siden av å gi en oversikt over ressursbeholdningen også diskutere ressursstrømmene. Resultater fra et slikt arbeid gjør det mulig å diskutere utnyttelsen av ressursene i nedbørfeltet i et globalt perspektiv. En mulighet er å forsøke å koordinere dette innenfor MAB. Dette arbeidet kan ved siden av å være en måte å diskutere området under ett på, også settes sammen med arbeidet i P.B.S. Figuren nedenfor antyder en måte å sette resultatene fra disse analyser sammen.
Figur 4. Forenklet diagram av ressursstrømmen og samfunnsutnyttelse.

4.3. Prosjektorganisering og tidsramme.

Som nevnt innledningsvis i dette avsnittet innebærer dette prosjektet en litt spesiell organisering av oppgaver og innsats. Som det fremgår av diskusjonen av metoder og spesielle oppgaver er noe av grunnene prosjektets dynamikk. Denne betyr at man ikke idag med sikkerhet (med unntak av skisseringer av spesielle oppgaver) kan si noe om hva som vil være viktigst etter at prosjektet på å videreutvikle F.B.S. er gjennomført. Intensjonen er tvertimot at man under og som resultat av dette arbeidet skal kunne peke ut områder som krever videre forskning. Dette er grunnen til at man vanskelig kan diskutere en langsiktig prosjektstrategi i detalj. For likevel å illustrere organiseringen av prosjektet er hovedtrekkene vist på figur 5. UNESCO har anført en maksimal tidsramme på ca. 10 år, vi har med utgangspunkt i dette skissert variert for de ulike deler av prosjektet og altså delte det opp i faser. Ved slutten av hver fase burde man være i stand til å vurdere den videre fremdrift av prosjektet.
Figur 5. Prinsipper for organisering av prosjektet.
I tillegg til de faser som her er nevnt eksisterer også en fase 0, som er perioden til det tidspunkt prosjektet starter. Denne tiden bør benyttes til å utbygge kontakten mellom de forskere og de institusjonen som har deltatt i de forberedende drøftelser, samt til å diskutere og legge til rette for samarbeid også med nye interesserte både i og utenfor NTNF. En måte å bidra til dette på er å etablere en seminarserie som mer bør få karakter av et arbeidsseminar enn et debattseminar. Samtidig bør man også sørge for finansiering for en videre planlegging av prosjektet og etablere en tverrfaglig og tverrinstitusjonell arbeidsgruppe med dette som oppgave.

Det faglige arbeidet i denne fasen vil i stor utstrekning bestå i å diskutere og redegjøre nærmere for den integrerende metode (P.B.S.) som foreslås anvendt i prosjektet.

Noe eksakt budsjett og bemanningsplan er det vanskelig å gi. For likevel å gi inntrykk av størrelsensorden, type ekspertise og vekten på de ulike faser er det antydet antall forskerårsverk som vil medgå i hver fase.

<table>
<thead>
<tr>
<th>Fag</th>
<th>Fase I 1975-76 2 år</th>
<th>Fase II 1975-80 5 år</th>
<th>Fase III 1981-82 2 år</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturvitenskap</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>Teknikk</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Samfunnsvitenskap</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Sum</td>
<td>25</td>
<td>50</td>
<td>23</td>
<td>98</td>
</tr>
</tbody>
</table>

Dette er en basisinnsats som NTNF-instituttene bør delta med. En slik innsats vil tilsvare omkostninger på omkring 3 millioner kroner årlig. I tillegg til dette vil det komme spesielle utgifter som følge av informasjonsbehandling, og som følge av utstyr- og instrumentkostnader.
5. NASJONALT OG INTERNASJONALT SAMARBEID.

LITTERATURLISTE

Hovedflyplassutvalget

Kommunal- og arbeids-departementet

Oversikt over faget miljøvern ved universiteter og høyskoler. Oslo 1971.

Kontaktutvalget kraft-utbygging-naturvern

Lichfield, N.

Lichfield, N.

MHI

Trolle

Harry Gangvik A/S

NILU

NIVA

NIVA

Project Aqua, Norsk ISP/PF

Berkyttelse av vannforskomster i Norge med naturvitskapelig interesse. Oslo 1971?

Ressursutvalget

Skulberg, O.M.

Experimental methods suitable for the observation and monitoring of pollution in water resource studies. IFH i Norden 1972, nr. 9, s. 173-78.
Smith, D.V.

Smith, D.V.
Technology, ecosystems, and planning: Thoughts on contradictions in industrial Norway and a procedure for planning. Oslo, NIBR, 1972.

UNESCO

UNESCO

Østlandskomitéen

St. 547/72
PAC/rs
6.10.72
Til orientering for Styret i NIVA

Bakgrunnsmateriale om NAB.

NATUR- OG SAMFUNNSVITENSKAPELIG GRUNNLAG FOR FORVALTNING AV VASSDRAGSSYSTEMER.
- GLAMAPROJEKTET -

Blindern, 16. oktober 1972
Olav Skulberg

NORSK INSTITUTT FOR VANNFORSKNING
BLINDERN
INNHOLDSFORTEGNELSE

1. SAMFUNN OG RESSURS.
 Natur- og samfunnsvitenskapelig grunnlag for forvaltning av vassdragssystemer.
 - Glåmaprosjektet -
 Idéutkast til et forskningsprosjekt innenfor MAB.
 Odd Skogvold Egil Tombre Kjell Baalsrud
 NILU NIBR NIVA

 Blindern, september 1972.
 Ved Per Arild Christiansen, Tor Bysveen og Halfdan Buflod.

2. VASSDRAGSSYSTEM OG RESSURSFORVALTNING.
 - Glåmaprosjektet -
 Forslag til et forskningsprosjekt innenfor MAB.
 NTNF-utvalget for MAB, Blindern 17. august 1972.
 Ved Olav Skulberg.

3. VASSDRAGSSYSTEM OG RESSURSFORVALTNING - GLÅMAPROSJEKTET.
 FORBEREDELSER TIL ET FORSKNINGSPROSJEKT.
 Notat til NTNF-utvalget for MAB, 23. mai 1972.
 Ved Olav Skulberg.

4. VASSDRAGSSYSTEM OG RESSURSFORVALTNING - GLÅMAPROSJEKTET.
 Notat til NTNF-utvalget for MAB, 7. mars 1972.
 Ved Olav Skulberg.

5. EXPERIMENTAL METHODS SUITABLE FOR THE OBSERVATION AND MONITORING OF POLLUTION IN WATER RESOURCE STUDIES.
 Ved Olav Skulberg, IBP i Norden, No. 9, mai 1972.

6. MOMENTER OM HOVEDPROBLEMER SOM FORDRER FORSKNINGSMESSIG BEHANDLING OG LØSNING INNENFOR OMRÅDET VANN OG FORURENSNINGER.
 Notat til NTNF-utvalget for MAB, 27. januar 1972.
 Ved Olav Skulberg.
7. FORSLAG OM ENKELTE EMNER FOR UTARBEIDELSE TIL MULIGE NORSKE MAB-PROSJEKTER.
Notat til NTNF-utvalget for MAB, 6. januar 1972.
Ved Olav Skulberg.

8. ENVIRONMENT AND REGIONAL PLANNING. THE IMPLICATIONS FOR REGIONAL PLANNING OF WASTES GENERATION IN THE GLOMMA RIVER BASIN. AN OUTLINE OF RESEARCH.
Norsk institutt for by- og regionforskning, desember 1971.
Ved Douglas V. Smith.

9. INGENIØRMESSIGE ASPEKTER VED AVFALLSDISPONERING OG PRINSIPPER FOR RENSING AV VANNTRANSPORTERTE FORURENSNINGER.
Foredrag Industriseminaret ved Universitetet i Oslo: "Vann- og luftforurensning i norsk industri", november 1970.
Ved avd. sjef Terje Simensen.

10. BEHOVET FOR KONTINUERLIGE VASSDRAGSUNDERSØKELSER I NORGE.
Ved Olav Skulberg.

Ved Norsk interimskomité for MAB.
SAMFUNN OG RESSURS

NATUR- OG SAMFUNNSVITENSKAPELIG GRUNNLAG FOR
FORVALTNING AV VASSDRAGSSYSTEMER.

-- GLÅMA-PROSJEKTET --

Ideenkast til et forskningsprosjekt innenfor MAB.
FORORD

Etter initiativ fra MAB-utvalget i NTNF har forskere fra ulike institusjoner diskutert et eventuelt engasjement i tilknytning til UNESCO's forskningsprogram, Man and the Biosphere.

Dette idéutkastet til et forskningsprosjekt er formulert på basis av kontakt mellom forskere ved NIVA, NILU og NIBR. I den siste fase av arbeidet har man også hatt kontakt med andre NTNF-institusjoner, deriblant CMI og SI. En arbeidsgruppe fra NIBR bestående av Siv.ing. Halfdan Buflod, Mag.art. Tor Bysveen og Cand.real. Per Arild Christiansen har hatt ansvaret for den konkrete utformingen av utkastet.

Prosjektet kan karakteriseres som orientert grunnforskning. Formålet med det er å vinne ny kunnskap om prosesser i biosfæren, dels å utvikle og anvende metoder som gjør det mulig å utnytte natur- og samfunnsvitenskapelig kunnskap som grunnlag for planlegging og beslutninger. Innenfor forskning på dette feltet vil prosjektet representere en ny fremgangsmåte.

Vi mener at det er viktig at man innenfor forskningsprogrammet Man and the Biosphere gir ulike institusjoner, ulike forskere og fagretninger en mulighet til å arbeide sammen, og tror de idéer som dette prosjektet bygger på vil være særlig fruktbare for å realisere et slikt samarbeid. På grunn av problemets kompleksitet og områdets størrelse er det nødvendig å utnytte all tilgjengelig informasjon. Vi vil derfor søke kontakt med de prosjekter og undersøkelser som pågår ulike steder i Glåmas nedbørfelt.

Det må understrekes at dette notatet er et idéutkast som forutsetter en videre bearbeiding til et ferdig forskningsprosjekt. Man har derfor lagt større vekt på å klarlegge formålet med og tanken bak prosjektet, enn å beskrive de enkelte oppgaver i detalj.

Odd Skogvold
NILU

Egil Tombre
NIBR

Kjell Baalsrud
NIVA
INNHOLD

FORORD

INNHOLD

SAMMENDRAG

1. **BAKGRUNN OG FORMÅL FOR PROSJEKTET.**
 1.1 To tankemodeller for MAB s. 1
 1.2 Angrepsmåte s. 3

2. **AVGRENSNING AV PROSJEKTET.**
 2.1 Valg av tema s. 4
 2.2 Valg av geografisk område s. 4
 2.3 Avgrensning mot andre prosjekter s. 6

3. **BESKRIVELSE AV OMRÅDET.**
 3.1 Hydrologi og geologi s. 7
 3.2 Arealfordeling og befolkning s. 9
 3.3. Næringsvirksomhet s. 10
 3.4 Brukerinteresser i vassdraget s. 11

4. **OPPGAVER, METODER OG ORGANISERING.**
 4.1 Sammenligningsmetodikk (The Planning Balance Sheet) s. 16
 4.2 Andre hovedoppgaver s. 18
 4.3 Prosjektorganisering og tidsramme s. 22

5. **NASJONALT OG INTERNASJONALT SAMARBEID.** s. 25
 LITTERATURLISTE s. 26
SAMMENDRAG

For at oppgaven skal bli overkommelig har vi valgt å begrense prosjektet til naturressursen vann og til å la et nedbørfelt utgjøre den geografiske begrensningen. Som spesielt objekt vil vi ta for oss Glåma-vassdraget og dets nedbørfelt. De viktigste årsakene til å velge Glåmsystemet er at vassdraget viser stor økologisk variasjon, forurensningsproblemen er betydelige og at det er store interessemotsetninger angående bruken av vassdraget. Videre foreligger allerede mye informasjon om vassdraget slik at en har et godt utgangspunkt m.h.t. datagrunnlaget.

Ved å velge et såvidt stort område vil en lettere kunne se ressursutnyttelsen i sammenheng med nasjonale målsettinger. Samtidig er det tilstrekkelig stort til å være av interesse i et MAB-perspektiv.

Det er nødvendig å kunne undersøke enkelte forhold inngående. Til dette formål vil egnede delområder av nedslagsfeltet velges ut for detaljerte studier.

Prosjektet vil få en utprøget tverrfaglig orientering og vil medføre en vekselvirkning mellom natur- og samfunnsvitenskapelige metoder.

Den integrerende metode vil være bruken av "Planning balance sheet". Denne metoden tar hensyn til at en bestemt ressursbruk vil innebære fordeler og ulemper for de enkelte brukergrupper. Disse kortsiktige resultater må vurderes mot de mer langsiktige konsekvenser ulik ressursbruk har på livet i biosfären. Vi mener at metoden gir anledning til å behandle slike problemstillinger, idet det er mulig å redegjøre for konsekvenser av ulik prioritering.
En stor fordel med sammenligningsmetodikken er at den gir mulighet til en formidling av ellers vanskelig tilgjengelige data.

På den naturvitenskapelige siden vil prosjektet medføre en rekke oppgaver: kausal vasadragsanalyse, utvikling av forsøksstasjoner, studiet av fenomener i kontaktflaten luft, vann, jord og toksikologiske og epidemiologiske forhold.

I prosjektets første fase vil vi ta utgangspunkt i den eksisterende informasjon om nedbørfeltet. Resultatet av dette arbeidet vil avdekke de punkter hvor informasjonsgrunnlaget er utilstrekkelig og avklare behov for ny innsamling av grunnkunnskap.

Denne første fasen i prosjektet, utviklingen av sammenligningsmetoden, antas å kunne fullføres i løpet av en to-års periode. De naturfaglige undersøkelsere og eksperimentelle arbeider vil ta vesentlig lang tid og vil innebære en tidsramme på ca.10 år.

På det nåværende tidspunkt er det vanskelig å si noe om bemanningen, men et foreløpig overslag tyder på at prosjektet vil kreve en basisinnsats på ca.100 forskerårsverk over en 10-årsperiode.
1. BAKGRUNN OG FORMÅL FOR PROSJEKTET

1.1. To tankemodeller for MAB.

I omtalen og presiseringen av programmet synes man å basere seg på en noe enklere tankemodell. Denne kan skisseres slik.
Dette vil vi karakterisere som en nødvendig, men ikke tilstrekkelig modell. Vi vil understreke at MAB-programmet berører viktige spørsmål som etter vår mening ikke er kommet tilstrekkelig med. En hovedoppgave vil ligge på analysen av hvilke konsekvenser ulik handling, ulik bruk av ressursene vil få sett i sammenheng med biosfæren og for aktivitetene i samfunnet. Vår tankemodell vil derfor være følgende utvidelse av den enklere modell.

--- : tilbakekobling-mekanismer.
1.2. Angrensmøte

Vårt opplegg tar sikte på å utvikle en integrerende metode hvor konsekvensene ved alternativ bruk av ressursene vurderes. Konsekvensene gjelder ikke bare for biologiske forhold, men også for bosetting, næringsliv og fritidsmuligheter. I et tenkt tilfelle kan vi finne en bedrift som slipper ut stoffer i vannet som vi helst vil unngå. Om vi påbyr bedriften å bygge renseanlegg kan utgiftene bli så høye at driften er i fare. Om bedriften ligger i et område hvor alternative virksomheter er vanskelige å opprette vil i praksis bedriften ofte få fortsette sine utslipp uten renring. Kravet om sysselsetting og bosetting veier i dette eksemplet tyngre enn vernet om vannførekomstene.

Bedriften gir arbeid for de ansatte, mens den skaper ressurser og lager vanskeligheter for nyttiggjøring av vann lenger ned i vassdraget. Vi må kunne vise hvilke grupper i samfunnet som har fordel og ulemper av forskjellig bruk av ressursene. Dette vil hele tiden måtte vurderes mot den økologiske forståelsen av begrensninger i biosførene. Gjennom en planleggingsmetodikk kalt "Planning Balance Sheet (PBS)" tror vi at vi kan gi en skisse av disse problemene.

Styrken ved PBS er at vi kan sette opp alternativ bruk av ressursene på en systematisk og forhåpentligvis oversiktlig måte. Vi skal ikke lage noen konkret plan. Metoden kan bringe mer rasjonalitet inn i de avgjørelsene om vår fremtidige ressurstruk som må tas.

Med rasjonalitet menes her både at vurderingsgrunnlaget skal gjøres klart, og at man i diskusjonen av alternativer (og derigjennom både mål og problemer) lær de foreslåtte løsningene på måluoverensstemmelser være uttrykk for en konsekvent og bevisst prioritering.

Oppgaven består ikke bare i en videre utbygging av slike metoder. Man må også utprøve dem i praksis. Dette medfører at man må ta i bruk natur- og samfunnsvitenskapelige metoder for å fremkalle og utnytte den informasjon som foreligger. Videre må man komplettere det man vet med resultater av nye eksperimenter og nye undersøkelser.
2. AVGÆRLING AV PROSJEKTET

2.1. Valg av tema

Samtidig som man p.g.a. angrepsmåte og metode er interessert i å diskutere en helhet må man allerede i den første fase begrense prosjektet noe. Vi har valgt å legge hovedvekten av prosjektet i analysen av et utsnitt av biosfaren knyttet til det hydrologiske kretsløp. Når et vannsystem er valgt til forskningsobjekt, er det gjort ut fra forståelsen av vannet som et nøye bindeledd mellom levende og død, nedbørfelt og vassdrag. Forbindelsene mellom nedbørfelt og vassdrag er av fundamental natur og utgjør slående eksempler på sammenhengen mellom økosystemer innenfor geografiske områder.

En annen grunn til å konsentrere seg om et vassdrag er den store økonomiske betydning utnyttelsen som drikkevannskilde, respondent, og til produksjon av kraft vassdragene har i vårt samfunn. Ved siden av å diskutere hvilken innvirkning slik utnyttelse har på biosfaren, må man også diskutere hvilken virkning slike tiltak har for samfunnet.

Vi har valgt å begrense prosjektet til et nedbørfelt. Dette gir god kontakt med de globale sammenhenger. Hydrofaren består nettopp av et antall naturlige enheter som gjør det mulig å konsentrere seg om ett uten å gi opp kravet om generalitet.

2.2. Valg av geografisk område

Valget av Glåmas vassdragssystem er basert på en rekke forhold. Raskt oppsummert omfatter disse:

Økologisk variasjon: Glåmavassdraget er et av de vassdrag i Norge hvor geologien og de fysiske omgivelsene er nokså ulike nedover vassdraget. Dette påvirker i stor grad vannets egenskaper og følgelig også mulighetene for ulike typer livsutfoldelse i og nær vassdraget.

Forurensningsproblemer: Glåma er et av de mest påvirkede norske vassdrag med vanskeligheter av tildels akutt karakter.
Interessemotsetninger: Vassdraget utnyttes til flere ulike formål og på en rekke steder er det uenighet om bruken og disponeringen av vassdraget.

Institusjonelle forhold: P.g.a. områdets størrelse i forhold til de lokale beslutningsenheter har det vært nødvendig å diskutere ulike typer samarbeid. De samarbeidsformer som er utviklet (vassdragsforbund, avløpsamband) er under stadig debatt. Vassdraget er interessant i forbindelse med en drifting av mulighetene for å løse problemene gjennom bedre planlegging og kontroll.

Datagrunnlag: Glåma er et av de vassdrag som det er samlet inn mest informasjon om. Ved å bygge videre på de opplysninger institutter, departementer og fylkenes utbyggingsavdelinger sitter inne med, kan man begrense innsamlingen av oversikts-data. På den annen side vil det ha stor betydning for mer spesielle oppgaver som krever ytterligere observasjoner at det er mulig å basere seg på målinger over lengre tidsrom.

På tross av disse momenter som alle tilsier at Glåma er et fornuftig valg er det nødvendig å ta direkte stilling til de problemer og vanskeligheter et så stort vassdrag medfører om man vil studere forholdet samfunn - ressursutnyttelse etter den metode som er skissert. Det er imidlertid flere forhold som taler for valg av et så stort område.

For det første må man tenke på at selvom Glåmavassdraget utgjør ca 12-13% av Norges areal så er det antagelig av rimelig størrelse sett i et internasjonalt perspektiv. For det andre betyr områdets størrelse at mål for ressurs-utnyttelse lettere kan sees i sammenheng med nasjonale målsettinger og perspektiver. Dessuten kan det nevnes som et tredje argument at erfaring indikerer at de økologiske fenomener ikke blir fundamentalt enklere om man forsøker å studere dem i mindre skala.
2.3. Avgrensning mot andre prosjekter

Den institusjonelle avgrensningen av dette prosjektet, dvs. avgrensningen i forhold til lignende prosjekter er grei nok på det internasjonale plan der Unesco har gitt klare regler for hva som faller inn under MAB og hva som tilhører andre internasjonale forskningsprogrammer. Det er mulig å tenke seg at disse prinsipper også følges på det nasjonale nivå, selvom man der trenger en videre diskusjon. I forhold til dette prosjektet synes det f.eks. naturlig å vurdere i hvilken utstrekning diskusjonen av virkemidler, tiltak og organisering i forbindelse med den praktiske vassdragsforvaltning bør inkluderes i prosjektet; eventuelt om slike spørsmål bør tas opp i et senere prosjekt med annen finansiering.
3. **BESKRIVELSE AV OMRÅDET.**

3.1. **Hydrologi og geologi**

Glåma er Norges største vassdrag med et nedbørfelt på ca. 42.000 km² eller ca. 13% av samlet landareal. Gjennomsnittlig vannføring målt ved Langnes syd for Øyeren er ca. 690 m³/sek.

Nedbørfeltet har innlandsklima med lange kalde vinter og relativt varme somre. Størstedelen av nedbørfeltet ligger i et av landets nedbørfattige områder. I den nordlige delen som omfatter Røros-området og Nord-Østerdal er den normale nedbørmengde ca. 300-500 mm/år. De største nedbørmengdene kommer normalt i sommermånedene juli og august. Videre strekker til delsområderne til ca. 680 mm ved Vormsund og ca. 840 mm ved Sarpsborg.

En rekke mindre innsjøer på Rørosvidda danner tilsammen tilsigene til Glåma i Rien, 762 m.o.h. Først etter utløpet fra Rien er det vanlig å kalde elven Glåma. På strekningen ned til Elverum får Glåma en rekke større og mindre tilløp. Spesielt kan nevnes Folla med en midlere vannføring på ca. 28 m³/sek. ved Alvadal, og Atna med midlere vannføring på 24 m³/sek. ved innsunken i Glåma.

Fena er den største tilløpselven til Glåma i Østerdalen med en midlere vannføring på 60 m³/sek. før samløpet. På strekningen fra Elverum til Arnes er det Flisa med midlere vannføring på 23 m³/sek. og Oppstadelva fra Storsjøen i Odalen som utgjør de viktigste tilløp.

Glåmas nedbørfelt før samløpet med Vorma er 20.670 km² og den midlere vannføring er 320 m³/sek. Vorma - Lågenvassdraget har et nedbørfelt på 17.294 km² og en midlere vannføring på 332 m³/sek.

På grunn av fallforholdene i Østerdalen er mulighetene for effektiv regulering av vassdraget her små. Dette fører til at det er store forskjeller mellom flomvannføringen og lavvannføringen i Glåma. Til tross for de relativt omfattende reguleringer som er gjennomført i Gudbrandsdalen, og det store magasin Mjøsa representerer, har det i de senere år vært flere flomperioder som har gitt alvorlige skader bl.a. i området rundt Øyeren.
Fig. 1 Glåma med sidevassdrag og nedbørfelt

Tallene angir nedbørfeltens areal i km²

Målestokk
0 20 40 60 80 100 km

Langnes
Fredrikstad
Sarpsborg

NIVA-68
Geologisk kan den nordre delen dvs. ned til Alvdal i Østerdalen og ned til syd for Dovre i Lågens dalføre regnes med til Trondheimsfeltet. Lågens bielver fra vest fører imidlertid med seg materiale fra Jorunheimens gabbro- og gneisbergharter.

Øvre del av vassdraget er preget av mektige bresjøsedimenter. Glåmas dalføre er dekket av store glasifluviale avsetninger (sand, grus, silt) ned til Elverum, mens morene dominerer mer i Gudbrandsdalen og Mjøsa-traktene. Like syd for Elverum og Mjøsa renner elvene gjennom områder med marine avsetninger, hovedsakelig leire. Israndavsetninger ved Mysen og Sarpsborg har påvirket vassdraget og elvedøpet.

3.2. Areaelfordeling og befolkning.

Den prosentvis areaelfordeling i nedbørfeltet er på mange måter svært lik fordelingen i landet forøvrig, men særleg skog og dyrket mark har en større andel enn for Norge sett under ett.

Areaelfordeling i Glåmas nedbørfelt.

<table>
<thead>
<tr>
<th>Areal</th>
<th>Antall km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbørfeltets samlede areal</td>
<td>41.767 km²</td>
</tr>
<tr>
<td>Dyrket mark</td>
<td>5 %</td>
</tr>
<tr>
<td>Skog</td>
<td>34 %</td>
</tr>
<tr>
<td>Myr</td>
<td>5 %</td>
</tr>
<tr>
<td>Vann</td>
<td>4 %</td>
</tr>
<tr>
<td>Impediment</td>
<td>52 %</td>
</tr>
<tr>
<td>Befolkningstetthet</td>
<td>14 personer/km²</td>
</tr>
</tbody>
</table>
I nedbørsfeltet bor det i alt ca. 600.000 mennesker eller 16% av landets befolkning. Fra 1960 til 1970 har det vært en økning på 13%. Som det fremgår har tilveksten innen de enkelte delene vært svært forskjellig. Sør-Trøndelag 0%, Hedmark 2%, Oppland 16%, Akershus 33% og Østfold 7%. Byene har hatt følgende vekst i samme periode (1960-1970). Hamar 17%, Gjøvik 9%, Lillehammer 10%, Kongsvinger 7% og Sarpsborg og Fredrikstad 0%. Dette materialet viser at befolkningsveksten har foregått i nedbørsfeltets midtre deler; Mjøsmarka og Romerike og med noe vekst i Østfold ovenfor Sarpsborg.

3.3 Næringsvirksomhet.

I nordre del av nedbørsfeltet dominerer husdyrbruket, og den dyrkede mark består vesentlig av fulldyrket eng, bare enkelte steder dyrkes noe bygg. Jordbruken får tiltagende betydning nedover vasadraget, og innenfor de marine områder finner vi de store jordbruksarealer med muligheter for allsidig drift.

Skogbruket er særlig viktig fra Tynset og sydover til Elverum, og gir næringsgrunnlag for en stor del av befolkningen i dette området.

I vasadragets øvre del er det gruvevirksomhet ved Røros og Folldal. I tilknytning til landbruken er det en betydelig industrivirksomhet i form av meierier, slakterier og halmlutningsanlegg.

Treforedlingsindustri med stor produksjon er en sponplatefabrikk på Røros og en kartongfabrikk på Rena, samt et tresliperi på Skarnes. Ellers er treforedlingsindustrien konsentrert langs Glåmas nedre del, i Sarpsborg - Fredrikstad-distriktet.

Flere tettbebyggelser og byer som Elverum, Kongsvinger, Skarnes og Ånes har variert industri med utslipp av avløpsavvik fra bedrifter innen jern- og metallbearbeiding, konfeksjon- og tekstilindustri, halmluting, bryggerier og mineralvanns- fabrikker.
I Lågen og Vormas nedbørfelt er jord- og skogbruk de viktigste næringsveiene. I daldførene er husdyrkhold dominerende, mens korn-dyrking er av størst betydning i Mjøsområdene. Industrien i nedbørfeltet er særlig knyttet til landbruksprodukter, f.eks. meierier, ysterier, halmlutingsanlegg, slakterier og næringsmiddelfabrikker. Videre tjener skogen som råstoffkilde for en rekke sagbruk, trevare- og møbelfabrikker, i den nedre del av nedbørfeltet for bedrifter som fremstiller cellulose, papir, wallboard osv. Tettbebyggelse og industri i Mjøsbyene Lillehammer, Hamar, Gjøvik og Brumunddal forårsaker store forurensningsproblemer som følge av utslipp.

Omringer Øyeren er industrien en viktig del av næringsgrunnlaget, og det ligger i dette området flere store bedrifter, særlig innen jern- og metall- samt kjemisk industri. Ellers finnes en rekke bedrifter innen tekstilindustrien; konfeksjon- og trikotasjefabrikker. Her er det også flere næringsmiddelfabrikker.

I vassdragets nedre del er det foruten de før nevnte treforselingsbedriftene store næringsmiddelfabrikker, kjemisk industri og jern- og metallbearbeidende industri.

Generelt er næringsvirksomheten i nedbørfeltet preget av å være "naturorientert" med stort råstoffinntak og utslipp av avfallsstoffer.

3.4 Brukerinteresser i vassdraget.

En av de viktigste brukerinteressene er vannforsyning både til drikkevann, industri og jordbruksformål. For industrien spillar kostnadene ved vannrensing stor rolle selv om det ikke foreligger noe kvantitativt uttrykk for dette på det nåværende tidspunkt. Drikkevansproblemet er særlig fremtredende på partiet Øyeren – Fredrikstad hvor ca 100.000 mennesker er avhengig av vann fra Glåma. I daldførene vil oftest drikkevansproblemet kunne løses ved grunnvannsboringen.
Vassdraget utnyttes i betydelig grad til produksjon av elektrisk kraft. I 1971 var produksjonen ca 7000 GWh, ca 12% av landets samlede kraftproduksjon. Dette representerer en førstehåndsverdi på 100 - 110 mill. kr. Kraftproduksjonen forutsetter en betydelig regulering av vassdraget og dette kan utnyttes til flomdemping.

Yrkesfiske og tømmerfløting har på det nåværende tidspunkt relativt liten betydning, men vi må ikke tape av synse den store mulige verdi som disse bruksmåtene har. Tatt i betraktning verdens naturresurssituasjon er vassdragets evne til produksjon av fisk en ressurs som det bør legges vekt på.

En vil finne eksempler på de ovenfor skisserte konflikter flere steder i vassdraget men som et konkret eksempel vil Nordre Øyeren-området bli trukket frem. Dette området er et grunn ferskvannsdelta med et rikt og interessant dyre- og planteliv bl.a. 22 av Norges 24 arter av ferskvannsfisk, et rikt fugleliv og meget interessante botaniske
Fig. 2. Områder foreslått vernet mot ytterligere kraftutbygging.

Etter krigen har det skjedd en sterk forskyvning av befolkningsutviklingen fra Oslo til omegnskommunene, bl.a. til kommunene rundt Nordre Øyeren. Denne utviklingen ser ut til å fortsette. Innstillingen fra Østlandskomitéen angir at de fire kommunene Lørenskog, Skedsmo, Høringen og Hittedal i sine generalplaner forutsetter en samlet økning på 100 %.

Denne byutvikling vil kunne føre til en sterk økning av forurensningsbelastningen på Nordre Øyeren. Dette vil påvirke de biologiske forholdene i ugunstig retning. Det har også store konsekvenser for vassdraget gjennom Østfold.
4. OPPGAVER, METODER OG ORGANISERING.

Med utgangspunkt i den målsettingen som innledningsvis er presentert for prosjektet, er det klart at hovedprosjektet består i en vekselvirkning mellom bruk av samfunnsvitenskapelige og naturvitenskapelige problemstillinger og metoder. Intensjonen er at man i dette prosjektet hovedsakelig skal konsentrere seg om å utarbeide en fremgangsmåte, en metode som dekker begge retninger. Prosjektet blir imidlertid av en slik størrelsesorden og ambisjonene er så store at vi må dele opp prosjektet i programmer. Noen av programmene vil i hovedsak inneholde data av naturvitenskapelig art, mens hovedvekten i andre programmer vil legges på data som samles inn gjennom bruk av samfunnsvitenskapelige metoder. Både de natur- og samfunnsvitenskapelige undersøkelser vil måtte strekke seg over flere år.

Arbeidet med å utvikle og anvende en integrerende metode (P.B.S.) synes det riktig å konsentrere i tid. Dette skyldes et ønske om at man allerede tidlig i prosjektet kan fastslå hvilke tilleggsopplysninger som mangler for å kunne belyse de problemer som ved nærmere studium kommer til synne. Denne type dialog tror vi vil være av stor betydning for bl.a. de mer langsiktige naturvitenskapelige eksperimenter.

Ved siden av disse argumenter synes det rimelig også å legge vekt på muligheten til en grundig diskusjon og analyse av hva man har fått ut av PBS ved anvendelse på dagens datagrunnlag. At diskusjonen blir tatt tidlig i prosjektet gjør at det er mulig å foreta til dels vesentlige endringer før metoden anvendes som ledd i en eventuell avsluttende syntese. En slik avsluttende syntese vil være meget naturlig om man får et vesentlig bedre datamateriale når de langsiktige naturvitenskapelige prosjekter er avsluttet.
4.1. Sammenligningsmetodikk (The Planning Balance Sheet)

PES kan også sees som en metode for å sammenstille data man har skaffet tilveie. Man må legge et vesentlig arbeid i å fremkaffe data av både samfunnsvitenskapelig og naturvitenskapelig art. De virksomhetene som finnes i studieområdet vil gi virkninger på vannkvaliteten og dermed innvirke på biosføren. Dette er opplysninger som det må være en naturvitenskapelig oppgave å legge frem. Den samfunnsvitenskapelige oppgave vil ved siden av engasjementet i P.E.S. også bestå i å fremkaffe data om næringsgrunnlag og befolkningsutvikling, samt en kartlegging av de lokale problemer knyttet til utnyttelsen av vasadraget og hvorledes man lokalt oppfatter disse.
På dette punktet i diskusjonen kan det imidlertid være på sin plass å peke på at datainsamling- og dataoversiktsfasene neppe blir så enkle som denne fremstillingen gir inntrykk av. For å unngå å trekke inn for store datamasser må man passe på at innsamlingen hele tiden er relevant i forhold til de hovedproblemer som skal diskuteres. På den annen side må man ikke begrense de problemstillingene som kan besvares ut fra ett og samme datamateriale. Da arbeidet med innsamling og lagring av data er nøye forbundet med den metode som velges, synes det fornuftig at institusjonen som har kompetanse på dette feltet innbys til å delta i opprettelsen av et informasjonssystem, et register for dette spesielle prosjektet.

En stor fordel med sammenligningsmetodikken er at den gir mulighet til formidling av ellers vanskelig tilgjengelige data. Den gir også et mer helhetlig bilde av situasjonen i et område enn ved å presentere data om enkelte problemer separat. I dette prosjektet vil selvsagt områdets størrelse bety at man ikke kan studere alle deler av det like detaljert. Dette er tenkt løst ved bevisst å arbeide på flere nivåer hva angår detaljering og nivåene kan i syntesen bindes sammen.

I valget av delområder må vi ta hensyn til i hvilke deler av vassdraget problemines idag synes størst samt i samtidig som vi bør sikre oss at delområdene er representativ for vassdraget.

NIBR har høystet gode erfaringer med bruk av den type metode som forelå slås anvendt i dette prosjektet. P.B.S. er benyttet i arbeidet med Tromsø Generalplan og i vurderingen av ulike lokaliseringer for den nye hovedflyplassen på Østlandet. Instituttet vil også bruke metoden i sitt engasjement i Norsk Vegplan 2. Med de tilpasninger som kreves til hvert enkelt tema har PBS virket som en god metode for å diskutere konsekvenser av ulik prioritering og planlegging.

Det må understrekes at sammenligningsmetodikk mer er en angrepsmåte enn en klart definert metode. Målet med dette prosjektet er bl.a. å utvikle et redskap, en veldefinert modell med utgangspunkt i en slik angrepsmåte.
4.2. **Andre hovedoppgaver.**

Noen av oppgavene som hører til i vårt fælles MAB-opplæg er av en slik karakter at de kanskje bør behandles separat av hvert institutt, og at de andre instituttene holdes orientert om resultatene av oppgavene. Gjennom den første fase hvor vi samordner våre prosjekter og kommer frem til et vurderingsskjema vil vi også finne ut hvilke typer data som er mangelfullt utviklet. Dette erfaring kan da tenkes å korrigere utviklingen av de enkelte oppgaver. På nåværende tidspunkt kan vi skissere følgende oppgaver.

Kausal vassdragsanalyse

Dette innebærer undersøkelsler av hydrologiske og hydrobiologiske faktorer i vassdraget og sette dem i sammenheng. I en slik undersøkelse vil man få fysiske, kjemiske og biologiske parametre, og det er samspillet mellom de som er av størst betydning for å kunne forstå tilstanden i vassdraget.

De fysiske-kjemiske og biologiske data skal gi kvantitative og kvalitative uttrykk for den økologiske tilstanden i vassdraget på en slik måte at dataene er praktisk anvendbare. Dette er en forutsetning for å kunne utnytte vassdraget på en forsvarlig måte slik at vi vil være tjent med forholdene i fremtiden, enten det gjelder vann til husholdning, til industri og jordbruk, som recipient eller til trivsels- og rekreasjonsformål.

Utvikling av forsøksstasjon

Ved å gjennomføre eksperimenter og observasjon i forsøksstasjoner ved vassdraget er det mulig å skaffe til veie kunnskap som ikke er tilgjengelig på annen måte. Det kan utføres forsøk med ulike påvirkninger av vannmassene under kontrollerbare betingelser, og tildels med målbare miljøbetingelser. Arbeidsområdene for slike forsøksstasjoner omfatter utredning av sammenheng mellom ulike påvirkninger.
Figur 3. Prinsipper for vassdragsobservasjoner.

Observasjoner i vassdraget. Forsøksstasjonen.
Kontaktflassen. Jord - luft - vann

Helse.

Det vil være behov for forskning på en rekke felter av menneskers og dyres helse. Her skal bare nevnes epidemiologiske og toksikologiske problemer knyttet til forurensning og bruken av vann og vassdrag. Her bør vi søke kontakt med institusjoner som har kompetanse på dette feltet.

Lokalsamfunnens rolle i ressursforvaltning.

Delprosjektene som har et utpreget naturvitenskapelig siktepunkt er nødvendige for å skaffe data som myndighetene må bygge sine beslutninger på. Myndighetene må være orientert om de data som legges fram. For at dataene skal bli nyttet i den stadig ømseggripende planlegging må de bygges inn i myndighetenes arbeidsrutiner i spørsmål som angår behandling av vannressursene.

Et meget vesentlig spørsmål er hvilke oppgaver innen ressursforvaltning de enkelte instanser skal ta seg av. De viktigste i dette arbeidet vil bli kommunene. Uten kommunenes positive og aktive medvirkning blir det sterke begrensninger for hva f.eks. naturvernet kan oppnå i praksis. Planlegging etter bygningsloven vil derfor i fremtiden få en enda sterkere plass som et redskap for styring av utnyttelsen av kommunenes ressursene. Vi må også holde oss orientert i de forøvgebene på samarbeid om behandling av vannressursene som skisseres på det regionale og fylkeskommunale plan.
Systemanalyse og ressursbudsjetter.

Unesco's ekspertgruppe på systemanalyse har formulert sin oppfatning av systemanalyse som meget kort går ut på at man etter å ha avgrenset et system og dets subsystemer formulerer en rekke kausale slutninger i et matematisk språk. Med dette som grunnlag kan man simulere ulike tilstander og konsekvenser i systemet.

Vi vil understreke at den form for systemanalyse Unesco's ekspertgruppe har formulert egner seg best i et system med ikke-tenkende aktører. Med tenkende aktører (mennesker) i systemet finner vi det av mindre verdi å bygge opp et nettverk av kausale slutninger og ikle de en matematisk språkbruk. Derimot vil systemanalysen som en tankemodell kunne gi oss impulser. Systemanalysen kan hjelpe oss å avgrense systemet i rom, vi kan splitte systemets komponenter i håndterbare enheter hvor vi har mulighet for å si noe om komponentenes innbyrdes relasjoner, og vi kan klart avgrense hva vi velger å holde utenfor systemet og kalle omgivelser. Vi kan tenke oss en systemanalyse hvor systemet ikke er lukket, og hvor relasjonen med dets omgivelser inngår som en sentral del av analysen.

Figur 4. Forenklet diagram av ressursstrømmer og samfunnsutnyttelse.

4.3. Prosjektor organisering og tidsramme.

Som nevnt innledningsvis i dette avsnittet innebærer dette prosjektet en litt spesiell organisering av oppgaver og innsats. Som det fremgår av diskusjonen av metoder og spesielle oppgaver er noe av grunnen prosjektets dynamikk. Denne betyr at man ikke idag med sikkerhet (med unntak av skisseringer av spesielle oppgaver) kan si noe om hva som vil være viktigst etter at prosjektet på å videreutvikle P.B.S. er gjennomført. Intensjonen er tvertimot at man under og som resultat av dette arbeidet skal kunne peke ut områder som krever videre forskning. Dette er grunnen til at man vanskelig kan diskutere en langsiktig prosjektstrategi i detalj. For likevel å illustrere organiseringen av prosjektet er hovedtrekkene vist på figur 5. Unesco har antydet en maksimal tidsramme på ca 10 år, vi har med utgangspunkt i dette skissert varighet for de ulike deler av prosjektet og altså delt det opp i faser. Ved slutten av hver fase burde man være i stand til å vurdere den videre fremdrift av prosjektet.
Figur 5. Prinsipper for organisering av prosjektet.
I tillegg til de faser som her er nevnt eksisterer også en fase 0, som er perioden til det tidspunkt prosjektet starter. Denne tiden bør benyttes til å utbygge kontakten mellom de forskere og de institusjoner som har deltatt i de forberedende årsaksutkast, samt til å diskutere og legge til rette for samarbeid også med nye interesserte både i og utenfor NTHF. En måte å bidra til dette på er å etablere en seminarserie som mer bør få karakter av at arbeidsseminar enn et debattseminar. Samtidig bør man også sørge for finansiering for en videre planlegging av prosjektet og etablere en tverrfaglig og tverrinstitusjonell arbeidsgruppe med dette som oppgave.

Det faglige arbeidet i denne fasen vil i stor utstrekning bestå i å diskutere og redigere nærmere for den integrerende metode (F.B.S.) som foreslås anvendt i prosjektet.

Nære eksakte budsjett og bemanningsplan er det vanskelig å gi. For likevel å gi inntrykk av størrelsesorden, type ekspertise og vekten på de ulike faser er det antydet entall forskarårsverk som vil medgå i hver fase.

<table>
<thead>
<tr>
<th>Fag</th>
<th>Fase I 1973-74 2 år</th>
<th>Fase II 1975-80 5 år</th>
<th>Fase III 1981-82 2 år</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturvitenskap</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>Teknikk</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Samfunnsvitenskap</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Sum</td>
<td>25</td>
<td>50</td>
<td>23</td>
<td>98</td>
</tr>
</tbody>
</table>

Dette er en basisinnsats som NTHF-instituttene bør delta med. En slik innsats vil tilsvarer omkostninger på omkring 3 millioner kroner årlig. I tillegg til dette vil det komme spesielle utgifter som følge av informasjonsbehandling, og som følge av utstyr- og instrumentkostnader.
5. NASJONALT OG INTERNASJONALT SAMARBEID.

Allerede i Fase 0 vil vi søke kontakt med disse fagmiljøer. Prosjektet gir grunn til og bredde i problemstillinger også muligheter for deltagelse fra forskere som tidligere ikke har interessert seg for ressursforvaltning.

Dette vil gi prosjektet et internasjonalt perspektiv, og bl.a. besvare spørsmålet om vi lager en metode og fyrer en diskusjon som er knyttet til problemene i et velstands-samfunn, eller om metoden også vil være fruktbar for analyse av ressursbruk under andre samfunnsforhold, med andre målsettinger og problemer.
LITTERATURLISTE

Hovedflyplassutvalget

Kommunal- og arbeidsdepartementet

Oversikt over faget miljøvern ved universiteter og høyskoler. Oslo 1971.

Kontaktutvalget kraftutbygging-naturvern

Lichfield, N.

Lichfield, N.

NIBR

TøI

Harry Gangvik A/S

KILU

NIVA

NIVA

Project Aqua.

Korsk LEP/FF

Bevakkelse av vannforskomster i Norge med naturvitenskapelig interesse. Oslo 1971?

Ressursutvalget

Skulberg, O.H.

Experimental methods suitable for the observation and monitoring of pollution in water resource studies. Intern. Tidsskr 1972, nr.9, s.173-76.
Smith, D.V.

Smith, D.V.
Technology, ecosystems, and planning: Thoughts on contradictions in industrial Norway and a procedure for planning. Oslo,NIBR,1972.

UNESCO

UNESCO

Østlandskomiteen
VASSDRAGSSYSTEM OG RESSURSFORVALTNING

- GLÅMA-PROsjektet

Forslag til et forskningsprosjekt innenfor MAB

MINF-utvalget for MAB
Blindern, august 1972
FORORD

Dette er en sammenstilling av det materiale om Glåma-prosjektet som er fremkommet gjennom NTNF-utvalgets arbeid frem til august 1972. Hensikten er at utkastet kan bli gjenstand for en videre bearbeiding til et moden produkt.

Formålet er tosidig, å lage en fremstilling som kan benyttes ved drøftelser med personer og institusjoner som kan bidra aktivt i gjennomføring av et program, og å forberede et forslag til Norsk Interimskomite for MAÜ, som kan oversendes innen 1. oktober 1972.

Blindern, 17/8-1972

Olav Skulberg
INNHOLDSFORTEGNELSE:

1. INNLEDNING 4
2. PROBLEMSTILLING OG MÅLSETTING 5
 2.1 Oppgave 5
 2.2 Problemer og målsetting 5
 2.3 Tilknytning til NAV 9
3. GLÅMA-VASSDRAGET SOM FORSKNINGSOBJEKT 10
4. FORSKNINGSPROGRAMMETS INNHOLD 14
 4.1 Kausal vassdragsanalyse 15
 4.2 Utforskning av primærphenomener i kontakt-
 flatene luft – jord – vann 17
 4.3 Utvikling av forsøksstasjoner for observa-
 sjoner av endringer i organismesamfunn og
 biologisk produksjon 18
 4.4 Studier av nedbørfeltets ressurser og
 ressursbruk 19
 4.5 Undersøkelser i tilknytning til helseforskning 19
 4.6Utforskning av problemer i sammenheng med
 regionalplanlegging 20
 4.7 Utvikling av teoretiske og empiriske modeller
 til forvaltning av nedbørfelt og vassdrags-
 system som sammenhengende naturressurs 20
5. FORSKNINGSPROGRAMMETS GJENNOMFØRING 24
6. OVERSIKT OVer BILAG 25
1. INNLEDDNING

Unesco-dokumentet 16 C/78 "Plan for a longterm intergovernmental and interdisciplinary programme on man and the biosphere", NAB, formulører målsetting og problemområder for forskning om rasjonell bruk og bevaring av biosfærens ressurser. Behovet for intensivert internasjonal forskning på dette felt er sprunget ut fra en allmenn erkjennelse av den omseggripende miljøforstyrrelse og naturødelæggelse som finner sted.

Høyt fremdrevet teknologi og bestående samfunnsstruktur medfører i vår tid naturinnkrepp av et omfang og i et tempo som innebærer fare for menneskets og det levendes fortsatte eksistens på jorden. Forståelsen av sammenheng mellom det levende og miljøet det utfolder seg i, er et hovedresultat av biologisk forskning. Ny utvikling innenfor naturvitenskap kan gjøre det mulig i større utstrekning enn hittil å anvende økologisk kunnskap i sammenheng med ressursforvaltning og naturbruk. Imidlertid må også problemene som knytter seg til samfunnsstruktur og menneskets forhold til mennesket, løses for at varige resultater skal kunne oppnås.

Den tildels omfattende norske forsøkning som hittil er utført omkring de aktuelle problemområder (Kommunal- og arbeidsdepartementet: "Oversikt over faget miljøvern ved universiteter og høgskoler", Oslo, august 1971) har vært knyttet til bestemte sektorer (f.eks. jord, vann, luft). Kravet om å vurdere sammenheng og helhet har vært lite tilgodesett. Det synes nærliggende i det videre forskningsarbeid å utvikle områdene mellom de enkelte fagdisipliner og problemsektorer.

Det gjelder best mulig å fremkaffe en syntese av kunnskaper som hjelpemiddel og redskap for ressursforvaltning og samfunnsplanlegging.

Forslaget til emne for et forskningsprogram innenfor MAB som formuleres i det følgende, har dette utgangspunkt. Det tar sikte på en oppgaverettet forskning hvor naturfaglig, medisinsk og samfunnsvitenskapelig innsikt forsøkes å bygges sammen. Når et vannsystem er valgt til forskningsobjekt, er det gjort ut fra forståelsen av vannet som et nøye bindeledd mellom levende og dødt, nedbørfelt og vassdrag.

Forbindelsene mellom nedbørfelt og vassdrag er av fundamental natur og utgjør slående eksempler på sammenhengen mellom økosystemer innenfor geografiske områder.

2. PROBLEMSTILLING OG MÅLSETTING

2.1 Oppgave

Fremkaffe et naturfaglig grunnlag og utvikle teoretiske modeller til forvaltning av vassdragssystem (Glåma) og nedbørfelt som sammenhengende naturressurs (røyseonell bruk og vern av vassdraget).

2.2 Problemer og målsetting.

Hovedtendensen i dagens utvikling viser at det er en problematisk sammenheng mellom det som planlegges og utføres i vassdragenes nedbørfelt, og det praktisk oppnåelige av beskyttelse mot skadelige påvirkninger. Vernet av vassdragene møter store vanskeligheter. Det er manglende kunnskap om sammenheng mellom påvirkningenes art og
størrelse og biologiske og andre konsekvenser for vassdraget. Det
foreligger heller ikke nødvendige metoder og fremgangsmåter som
binder sammen observasjonen i vassdraget med disposisjoner og tiltak
som gjøres for å beskytte mot skader på ressurser knyttet til vannet.

Glåma-vassdraget gir i utproget grad eksempler på dette. I Østerdalen
og rundt Mjøsa foregår det i flere områder rask by- og tettstedsvekst.
Jord- og skogbruk omlegges i stigende grad til intensiv drift med nye
metoder. På Romerike og ved Øyeren er byutvikling en markert tendens.

Industrireising og boligutvikling har en rekke steder i Norge som
i verden for øvrig en markert tilbøyelighet til å finne sted i vass-
dragenens delta- og estuarområder. Dette reiser en rekke problemer.

UNESCO-programmet tillegger slik forskning en sentral plass innenfor
Project No. 5, hvor det heter:

"Deltas, estuaries and the coastal zone (including intertidal
marshes, the seaweed zone and the waters of the continental
shelves) are naturally productive areas which supply a signi-
ficant proportion of the world's food protein and are
important recreational areas. Human settlements tend to be
concentrated on major lakes, rivers, estuaries, deltas and
costlines, and human activity is threatening the productivity
of these zones."

I Glåma-systemet har Norge enestående muligheter til forsknings-
aktivitet på dette felt. I Nordre Øyeren har en et delta utformet i
ferskvennsmiljø, mellom Østfold-landet og Hvaler-øyene et delta -
estuarområde utformet i saltvannsmiljø. I begge områdene er det i gang urbanisering som lager store praktiske vanskeligheter for vern av vannforekomstene og bionessursene knyttet til dem.

Vassdraget hører til de grunnleggende forutsetninger for samfunnsutviklingen. Påvirkningene av vassdraget - som er umiddelbare konsekvenser av utnyttelsen av nedbørfeltet - lager vanskeligheter for den fortsatte bruk av vassdraget og har direkte ruinering av bioressurser som følge. Det er et nødvendig behov å kunne forhindre at forhold i vassdraget som det er vanskelig å opprettholde, ikke blir ødelagt gjennom denne samfunnsutviklingen.

Sækelyset retter seg mot hvordan dette kan gjøres. En viktig forutsetning er å skaffe til veie et naturlig grunnlag for å kunne ta avgjørelser av vidtrekkende betydning for vassdraget. Biologiske realiteter må stilles sammen med de samfunnsmessige behov i teoretiske og empiriske modeller som gjør det mulig å vurdere konsekvensene av alternative utnyttelsesmønstre av nedbørfelt og vassdragssystem. Den forskning som skal være til hjelp, må bli faglig omfattende. Velkoordinerte samarbeidsprosjekter vil som resultat kunne gi et grunnlag for helhetsvurdering av nedbørfelt og vassdragssystem.

Noen momenter om hovedproblemer som fordre forskningsmessig behandling og løsning innenfor området vann og forurensninger, kan nevnes.

Moderne lovgivnon skal gi beskyttelse mot vannforurensning, formu- lerer gjørne som nåssetting å verne vannforekomstene av hensyn til menneskers og dyrhelse og trivsel, vannforekomstenes anvendelse
og et effektivt natur- og landskapsvern. Det er imidlertid frendeles ikke mulig å presisere det faglige innhold av slike formuleringer på en eksakt måte. Uten en naturfaglig tolkning med bruk av begreper som muliggjør en kvantifisering, vil det ikke foreligge et tilfredsstillende utgangspunkt for å planlegge eller utføre praktiske tiltak mot vann-
forurensninger.

Det er en forskningsmessig viktig oppgave å gjøre en bearbeidelse av de aktuelle problemstillinger og avklare de faglige forutsetninger for et vern av vannforekomstene.

Selv om det hadde vært mulig å gi våre bestrebelsler for å verne vann-
forekomstene et eksakt innhold, ville det støte på store vanskeligh-
heter å sette tiltakene ut i livet. Manglende kunnskap om sammenheng mellom forurensningenes art og mengde og biologiske og andre konse-
kvenser for vannforekomstene, setter begrensninger. Det foreligger heller ikke nødvendige metoder og fremgangsmåter som binder sammen observasjoner i vannforekomstene med rensetekniske eller andre praktiske tiltak som kan gjøres for å løse et forurensningsproblem.

Det er nødvendig å utforske betingelsene for at de funksjonelle en-
heter av planter, dyr og miljøer kan opprettholdes i vannforekomstene.
Oppgavene innenfor biologisk vannforskning bør konsentreres om å frembringe kunnskap som muliggjør en forståelse av vannforekomstene som økologiske systemer.

Kunnskapsmessig står biologisk forskning nærmest uten holdepunkter for å kunne gi utsagn om de krav som naturlig vegetasjon og fauna har for å beholde livsmulighetene i ulike vannforekomster.

2.3 Tilknytning til MAB

Emnet representerer en typisk oppgave i UNESCO-programmet som er understreket som særlig betydningsfull. Et sitat fra Draft final report, 9.-19. november 1971, side 5, viser dette:

"Intergrating units such as a river basin illustrate well the interactions and inter-relations that occur between ecosystems. For example, the water which falls on high mountains and high forests drains to the lowland forest, grazing land, agricultural systems on alluvial soils, and eventually to the lakes and rivers. Human activity modifies the inter-relations between these systems, and this is reflected in changing patterns of productivity and of transport of dissolved and suspended particulate matter. The integrated effects of these changes are felt in estuaries, deltas and adjacent coastal waters. Thus, in studies on broad physiographic regions such as river basins, the main drive will be to identify problem areas in human management of these systems and to make proposals which will ensure that deterioration under the growth of human populations is kept to a minimum, and that productivity and the quality of the environment are maintained and enhanced."
3. GLÅMA-VASSDRAGET SOM FORSKNINGSOBJEKT

Glåma er vårt største vassdrag, og av Norges samlede landareal utgjør nedbørfeltet 13%.

Hydrologiske data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbørfeltets samlede areal</td>
<td>41.767 km²</td>
</tr>
<tr>
<td>Gjennomsnittlig vannføring ¹⁾</td>
<td>606 m³/sek</td>
</tr>
<tr>
<td>Alminnelig lavvannføring ¹⁾</td>
<td>114 m³/sek</td>
</tr>
<tr>
<td>Største vannføring ¹⁾</td>
<td>3.432 m³/sek</td>
</tr>
<tr>
<td>Største kjente vannføring (1789) ca.</td>
<td>4.700 m³/sek</td>
</tr>
<tr>
<td>(1860)</td>
<td>4.200 m³/sek</td>
</tr>
</tbody>
</table>

¹⁾Observasjoner ved Langnes i perioden 1911 - 1950.

En rekke mindre innsjøer på Rørosvidda danner til sammen tilsigene til innsjøen Rien, 762 m.o.h. Først etter utløpet fra Rien er det vanlig å kalle elven Glåma. Fra Rien renner Glåma mot sør ned i Aursunden, som er regulert med en regularingshøyde på 5,9 m mellom kotene 684,1 og 690 m.o.h. Ved utløpet av Aursunden er midlere vannføring i Glåma 20 m³/sek. På strekningen ned til Elverum får Glåma en rekke større og mindre tilløp. Spesielt kan nevnes Folla med en midlere vannføring på 28 m³/sek ved Alvdal, og Atna med midlere vannføring på 24 m³/sek ved innsamlingen i Glåma.

Rena er den største tilløpselven til Glåma i Østerdalen med en midlere vannføring på 60 m³/sek før samløpet. På strekningen fra Elverum til Årnes er det Flisa med midlere vannføring på 23 m³/sek og Oppstadelva fra Storsjøen i Odalen som utgjør de viktigste tilløp.
Glåmas nedbørfelt ved Nestangen før samløpet med Vorma er 20.670 km², og den midlere vannføring er 320 m³/sek. Vorma - Lågenvassdraget har et nedbørfelt på 17.294 km² og en midlere vannføring på 332 m³/sek. Når Glåma renner inn i Øyeren ved Fetsund, har den en middelvannføring på noe over 650 m³/sek.

På grunn av fallforholdene i Østerdalen er mulighetene for effektiv regulering av vassdraget her små. Dette fører til at det er store forskjeller mellom flomvannføringer og lavvannføringer i Glåma. Til tross for de relativt omfattende reguleringer som er gjennomført i Gudbrandsdalen, og det store magasin Mjøsa representerer, har det i de senere år vært flere flomperioder som har gitt alvorlige skader bl.a. i områdene rundt Øyeren.

Landskapet er stort sett karakterisert av flate fjellvidder med avrundede toppar på ca. 1.000 m.o.h., hvor berggrunnen er dekkt av sand- og grusavleiringer. I dalene ligger store løsmasser med sand og grus.

Berggrunnen i Midtre Østerdalen fra Alvdal-området til Åsta-området består hovedsakelig av sparagmitformasjoner. Landskapet er preget av slakte åser og avrundede fjell. Berggrunnen er også her dekkt av sandholdig bregrus, og i dalene finnes elveavleiringer av sand og grus.
Fra Åsta til samløpet med Vorma tilhører Glåmas nedbørfelt det sørøstnorske grunnfjellområdet som består av gneiser og gneisgranitter. Løsavsetningen i denne del av nedbørfeltet består i stor utstrekning av sandholdig bregrus; men østover mot svenskegrensen er det store områder med torvjord (lynghumus). I dalen ned til Braskereidfoss er det innsjøavleiringer i form av sand og grus, mens det lengre ned er marin sand og grusavleiringer med spredte områder av leire. Den marine grense ligger her ca. 190 - 200 m.o.h. Landskapet preges av slake, skogkledde åser.

Vorma og Lågens nedbørfelt er i nord bygd opp av høyfjell bestående av gneis og gabbro. Den midtre delen av nedbørfeltet består stort sett av sparagrmitter som går opp i høyder på over 2.000 m.o.h. (Róndane).

Rundt Mjøsa er berggrunnene i den nordlige del bygd opp av sparagmitter og i den midtre del av kambro-siluriske sedimentbergarter. Lengre sør er det i øst grunnfjell og i vest eruptive dyptbergarter. Nedbørfeltet er i likhet med Glåmas, i det vesentligste dekket av sandholdig bregrus og med innsjø- og elveavleiringer av sand og grus i dalen over den marine grense. Rundt den nordlige del av Mjøsa er det store områder med leiholdig bregrus, og under den marine grense som ved Minnesund ligger på ca. 200 m.o.h., er det langs Vorma mektige havavleiringer av sand, grus og leire.

I Glåmas nedbørfelt fra samløpet med Vorma til utløpet ved Fredrikstad består berggrunnen hovedsakelig av grunnfjell.

Den marine grense ligger i området mellom 208 m.o.h. ved Ullensaker, og rundt 170 m.o.h. ved Fredrikstad. Store deler av nedbørfeltet
her ligger derfor under den marine grense, og løsavsetningene består i hovedsaken av leire. Sør for Hurdalssjøen forekommer store avsetninger av sand og grus.

Den prosentvis arealfordeling i nedbørfeltet er på mange måter svært lik fordelingen i landet for øvrig; men særlig skog og dyrket mark har en større andel enn for Norge sett under ett.

Arealfordeling i Glåmas nedbørfelt

<table>
<thead>
<tr>
<th>Arealfordeling</th>
<th>Nedbørfeltets samlede areal</th>
<th>41.767 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyrket mark</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Skog</td>
<td>34 %</td>
<td></td>
</tr>
<tr>
<td>Myr</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Vann</td>
<td>4 %</td>
<td></td>
</tr>
<tr>
<td>Befolkningstetthet</td>
<td>12 personer/km²</td>
<td></td>
</tr>
</tbody>
</table>

I nedbørfeltet bor det i alt 510 - 520.000 mennesker, og en rekke industribedrifter er lokalisert ved vassdraget.

Befolkningen er fordelt stort sett på følgende måte:

- I Glåmas nedbørfelt ovenfor samløpet med Vorma: 93.000 pers.
- I Gudbrandsdalslågens og Vormas nedbørfelt: 205.000 "
- I nedbørfeltet nedenfor samløpet mellom de to elvene og ovenfor utløpet av Øyeren: 100.000 "
- I Glåmas nedbørfelt nedenfor Øyeren bor det: 120.000 "
Bilagene 1 og 2 stiller sammen opplysninger om Glåma-vassdraget.

4. FORSKNINGSPROGRAMMETS INNHOLD

Det kan foreløpig bare bli gitt en første anntydning av programmets innhold. Men det vil likevel kunne danne utgangspunkt for klarlegging av oppgaven og mulig fremgangsmåte for oppgavens løsning.

Skjematisk kan programmet deles i syv hovedområder:

1. Kausal vassdragsanalyse.
2. Utforskning av primærfenomener i kontaktflatene mellom luft - jord - vann.
3. Utvikling av forsøksstasjoner for observasjoner av organismer og biologisk produksjon.
4. Studium av nedbørfeltets ressurser og ressursbruk.
5. Undersøkelser i tilknytning til helseforskning.
6. Utforskning av problemer i sammenheng med regionalplanlegging.
7. Utvikling av teoretiske og empiriske modeller til forvaltning av nedbørfelt og vassdragssystem som sammenhengende naturressurs.
Nedenfor blir det gitt noen momenter omkring de enkelte hovedområder av programmet.

4.1 Kausal vassdragsanalyse

Dette innebærer undersøkelser av hydrologiske og hydrobiologiske faktorer i vassdraget og sette dem i sammenheng.

Det er praktisk å dele parameterspekteret i fysiske parametre, kjemiske parametre og biologiske parametre.

Disse parametergrupper kan hver for seg gi informasjoner som er verdi-fulle ved vurdering av tilstanden i et vassdrag. Likevel er det samspillet mellom dem som er av størst betydning for å kunne forstå tilstanden i vassdraget.

Undersøkselsene av vannets fysiske og kjemiske egenskaper i vassdraget skal tjene tre formål:

1) Resultatene skal brukes til å bestemme vannets fysisk-kjemiske kvalitet, noe som det er nødvendig å kjenne til for å vurdere vannets brukbarhet som drikkevann, industrevann, vann til jordbruk o.l.

2) Resultatene beskriver økologiske faktorer som inngår ved de biologiske undersøkselsene, og gir dermed muligheter for å sette de biologiske effektene som måles i vassdraget, i relasjon til forandringene av de fysiske og kjemiske faktorene som skyldes menneskelige påvirkninger.
3) Resultatene skal kunne brukes rent vitenskapelig for å få et bedre kjennskap til de naturlige variasjoner i de fysisk-kjemiske forhold.

For at disse formål skal kunne oppfylles, må arbeidet gjennomføres på en slik måte at følgende krav tilfredsstilles:

1) Undersøkelsen må være av en slik art og foretas på en slik måte at man kan forstå faktorenes årsakssammenheng og klarlegge variasjonene i tid og rom.

2) Den fysisk-kjemiske undersøkelse må gjennomføres slik at den er tilfredsstillende for den økologiske vurdering av vassdraget. Det er relasjonene mellom de biotiske og abiotiske faktorene som er avgjørende for forståelsen av vassdragets økologiske tilstand. Dette kravet er avgjørende for undersøkelsens verdi både i forskningsmessig og praktisk sammenheng.

Disse formål og krav til den fysisk-kjemiske undersøkelse må en ta hensyn til ved bestemmelsen av prøvetakingssteder, prøvetakingsfrekvens og ved valg av fysiske og kjemiske parametre.

De biologiske undersøkelsene skal også tjene tre formål:

1) De biologiske data skal gi kvantitative og kvalitative uttrykk for den økologiske tilstanden i vassdraget på en slik måte at dataene er praktisk anvendbare. Dette er en forutsetning for å kunne utnytte vassdraget på en forsvarlig måte slik at vi vil være tjent med forholdene i fremtiden, enten det gjelder vann til husholdning,
til industri og jordbruk, som resipient eller til trivsels-
og rekreasjonsformål.

2) De biologiske data skal sammen med de fysisk-kjemiske
bli et erfaringsmateriale som skal danne grunnlaget for
å vurdere og forstå aktuelle forurensningspåvirkninger
når slike oppstår. Likedan vil de være bakgrunn for å
forstå virkningen av tiltak som iverksettes for å beskytte
vassdraget mot forurensninger.

3) De biologiske data skal gi detaljert kjennskap til
organismeliv og livsprosesser i vassdraget.

De samme krav som ble stillet til de fysisk-kjemiske undersøkelsene,
gjelder også for de biologiske.

Det vises for øvrig til bilag 3.

Bilag 3. Behovet for kontinuerlige vassdragsundersøkelser i
Foredrag SNI Studiekonferanse.

4.2 Utfordring av primærfenomener i kontaktflatene luft -
jord - vann

Organismesamfunnene knyttet til jord, vann og luft kan betraktes
som biologiske filtere for stoffer og forurensninger. I de senere
år har det vært økning i konsentrasjonen av kjemiske forurensninger
i luft og nedbør. Kunnskapene om luftforurensningenes virkning på
jord, vegetation og vann er sterkt begrenset. Med den stadig økning
av emisjoner til atmosfæren er det derfor et stort behov for forskning som kan klarlegge disse forhold.

4.3 Utvikling av forsøksstasjoner for observasjoner av endringer i organismesamfunn og biologisk produksjon

4.4 Studium av nedbørfeltets ressurser og ressursbruk

Studiet vil være omfattende. En kan her bare oppsummere noen hoved-punkter av nødvendige registreringer og analyser.

Vannsyklus.

a) Nedbør og klimaforhold
b) Dreneringsforhold (overflatevann - grunnvann)
c) Vannføring
d) Beskrivelse av innsjøers morfometriske forhold.

Nedbørfeltet og forhold som angår dette.

a) Landskapsutforming og topografi
b) Geologi og kvartærgeologi
c) Biologiske forhold
d) Arealutnyttelse
e) Bosetting og menneskelige aktiviteter
f) Vann- og avløpsforhold.

Det skal understrekes at det foreligger allerede et godt materiale av data som belyser disse forhold.

4.5 Undersøkelser i tilknytning til helseforskning

Det vil være behov for forskning på en rekke felter av menneskers og dyres helse. Her skal bare fremheves epidemiologiske og toksikologiske problemer knyttet til forurensning og bruken av vann og vassdraget.
4.6 Utfordringer av problemer i sammenheng med regionplanlegging

Datagrunnlaget for planlegging av arealbruk og virksomheter i nedbørfeltet analyseres. Faktorer som påvirker befolkningens lokaliseringvalg og trivsel undersøkes. Forskning knyttet til ressursutnyttingen i nedbørfeltet og industriens lokaliseringvalg blir en sentral oppgave. Regionalplanlegging må kunne bidra til vassdragsforvaltning.

Det vises til St.meld. nr. 27 (1971-72) "Om regionalpolitikken og lands- og landsdelsplanleggingen", pp. 147-150, Kommunal- og arbeidsdepartementet.

4.7 Utvikling av teoretiske og empiriske modeller til forvaltning av nedbørfelt og vassdragssystem som sammenhengende naturressurs

Et sentralt og viktig ledd i dette arbeidet vil være den forskningsvirksomhet som har til mål å bringe frem kvantitative opplysninger om de fysiske, kjemiske og biologiske prosessene som foregår i vassdraget. Den praktiske behandling av dagens vassdragsproblemer er mer basert på erfaring og en kvalitativ dokumentasjon av eksisterende forhold enn på direkte eksperimentelt og teoretisk arbeid som tar sikte på en kvantifisering av problemene. Om det skal være håp om å komme raskt videre mot en bedre og mer velegnet ressursforvaltning, er det behov for å sette de mange observasjonssystemene sammen og i forhold til hverandre ved hjelp av numeriske relasjoner som kan gi grunnlag for en mer avgrenset og klar beskrivelse av de enkelte fenomenene. En slik oppbygging av matematiske modeller av så vel biologiske som kjemiske og fysiske prosesser vil, med de forutsetninger som er til stede i dag når det gjelder faglig insikt, generell
systemanalytisk kunnskap og hjelp av datamaskinteknikk, kunne føre et raskt og betydelig skritt videre i retning av kvantitativt å forutsi eventuelle endringer i akvatiske økosystemer som følge av virksomhet i nedbørfeltet og forurensningspåvirkning. Det meste arbeidet som hittil er utført i utviklingen av slike modeller, ligger innenfor det fysiske og kjemiske området, men det begynner etter hvert også å bli stor interesse og aktivitet omkring oppbyggingen av biologiske modeller. Høyt utviklede og avanserte økosystemmodeller vil nødvendigvis kreve en omfattende og langvarig arbeidsinnsats. I første omgang bør imidlertid arbeidet være målrettet, slik at det hurtig kan bli mulig å trekke ny kunnskap inn i alle de praktiske problemstillingene som må finne sin løsning. Med utgangspunkt i den erfaring som foreligger, synes muligheten å ligge til rette for f.eks. å etablere empiriske interimsmodeller for akvatiske biosystemer.

En del momenter i argumentasjonen for den praktiske bruk av matematiske modeller kan være:

a) Et praktisk middel til å forutsi eventuelle endringer i et vassdragssystem på tross av et ofte begrenset observasjonsmateriale.

b) Gir et bedre grunnlag for å planlegge resipientundersøkelser - parametervalg, observasjonsfrekvens, parametrenes relative viktighet etc.

c) Tilsvarende pkt. b) når det gjelder å foreslå og å planlegge målrettede forskningsprosjekter.

d) Modellene påviser de kunnskapsmessig svake leddene i systemet.
e) Gir grunnlag for omfattende numeriske løsninger med brødt variasjonsmønster i parametrenes relative størrelse.

Det er imidlertid også grunn til å understreke begrensningene som ligger i bruk av matematiske modeller.

Bilagene 4 og 5 behandler disse forhold og gir eksempel på systemtenkning og utvikling av matematiske modeller.

En skissemessig fremstilling av forskningsprogrammets innhold og praktiske tilknytninger er gjort på side 23.
Vassdragssystem og ressursforvaltning
Glåma - prosjektet

Forskningsmessig sammenheng

Geologi
Fysikk
Kjemi
Botanikk
Zoologi
Hydrologi
Geografi
Sosiologi
Medisin

Praktisk sammenheng

Samfunnspplanlegging
Jord- og skogbruk
Industri
Vannforsyning
Resipientbruk
Helse og trivsel
Praktisk fiskeribiologi
Vassdragsregulering
Vassdragstilsyn
Administrasjon
Planleggingsarbeidet må videreføres. Dette vil mest hensiktsmessig skje gjennom en serie med symposier hvor de som arbeider innen de forskjellige fagfeltet, bringes sammen.

Følgende faser og avsnitt for et eventuelt prosjekt kan antydes:

Fase 1. Forberedelse til et forskningsprosjekt innenfor MAB. Gjennomføres til 1. februar 1973.

Svarte faser. Innhold og gjennomføring av disse planlegges på grunnlag av resultater og erfaringer som innvinnes. Prosjektet avsluttes i 1983.

Organiseringen av prosjektet må tidlig vies stor oppmerksomhet. Erfaringene fra IBP og IMD må legges til grunn for dette.
6. OVERSIKT OVER BILAG

Bilag 1. Norsk institutt for vannforskning:
Beskrivelser og undersøkelser av vannforekomster.

Bilag 2. Norsk institutt for vannforskning:
En undersøkelse av Glåma i Østfold.
Delrapport 5. Sammenfattende del.
Blindern, august 1970.

Bilag 3. Behovet for kontinuerlige vassdragsundersøkelser
Foredrag SNI Studiekonferanse.

Bilag 4. Ingeniørmessige aspekter ved avfallsdisponering og
prinsipper for rensing av vanntransporterte forurensninger.
Avd. sjef Terje Simensen, november 1970.
Foredrag Industriiseminar i Universitetet i Oslo.
Vann- og Luftforurensning i Norsk Industri.

Bilag 5. Environment and Regional Planning. The Implications
for Regional Planning of Wastes Generation in the
Glomma River Basin. An Outline of Research.
Douglas V. Smith, Norsk institutt for by- og
NOTAT

til NTNF-utvalget for M.A.B.
ved Olav Skulberg

VASSDRAGSSYSTEM OG RESSURSFORVALTNING - GLÅMA-PROSJEKTET.
FORBEREDELSER TIL ET FORSKNINGSPROSJEKT

1. OVERSIKT

MAB skal gjennomføres i samarbeid mellom NTNF, NLVF og NAVF. Et begrenset antall forskningsprosjekter vil kunne bli utført. Emnet som blir foreslått av NTNF-utvalget for MAB, representerer en typisk oppgave i UNESCO-programmet og er understreket som særlig betydningsfull i MAB-sammenheng.

MAB-programmet skal etter planen strekke seg over ti år.

Følgende faser og avsnitt for et eventuelt prosjekt kan antydes:

Fase 1. Forberedelse til et forskningsprosjekt innenfor MAB.
Gjennomføres til 1. september 1972.

Fase 3. Feltundersøkelser, eksperimentelle undersøkelser, bearbeiding av materiale, databehandling.

Øvrige faser. Innhold og gjenomføring av disse planlegges på grunnlag av resultater og erfaringer som innvinneres.
Prosjektet avsluttes i 1983.
2. FORSLAG TIL FASE 1

Fase 1. Forberedelser til et forskningsprosjekt innenfor MAB

Klarlegging av oppgaven.

Formulering av innhold og omfang.
Hovedproblemer og delproblemer.
Forskningsmessig og praktisk betydning.
Utvelgelse, avgrensning og sammendrag.

Fremgangsmåte for løsning.

Hovedskjema for utførelse.
Organisering av arbeidet.
Fremdriftsplan.
Økonomisk ramme, kostnader.

3. FORSLAG TIL GJENNOMFØRING AV FASE 1

a. En arbeidsgruppe bestående av én forsker fra NIVA, NILU og NIBR utarbeider kjernen til et forskningsprogram.

b. Arbeidsgruppen tar kontakt og drøfter programmet med personer/institusjoner som kan bidra aktivt i gjennomføring av et program.

c. Programmets utforming blir gjort i nært samråd med NTNF-utvalget for MAB.

d. Programmet gjøres ferdig for fremlegging 1. september 1972 og dekker en tidsramme for tre år.

Blindern, 23. mai 1972

Olav Skulberg
Notat

til NTNF-utvalget for M.A.B.
ved Olav Skulberg

VASSDRAGSSYSTEM OG RESSURSFORVALTNING - GLÅMA-PROSJEKTET

Oppgave: Fremskaffe et naturfaglig grunnlag og utvikle teoretiske model-ler til forvaltning av vassdragssystem (Glåma) og nedbørfelt som sammen-hengende naturressurs (rasjonell bruk og vern av vassdraget).

Problem: Hovedtendensen i dagens utvikling viser at det er en problematisk sammenheng mellom det som planlegges og utføres i vassdragenes nedbørfelt, og det praktisk oppnåelige av beskyttelse mot skadelige påvirkninger.
Vernet av vassdragene møter store vanskeligheter. Det er manglende kunn-skap om sammenheng mellom påvirkningenes art og størrelse og biologiske og andre konsekvenser for vassdraget. Det foreligger heller ikke nødvendige metoder og fremgangsmåter som binder sammen observasjoner i vassdraget med tekniske og andre tiltak som kan gjøres for å beskytte mot skader på ressurser knyttet til vannet.

Vassdraget hører til de hovedsaklige forutsetninger for denne sam-funnsutvikling. Påvirkningene av vassdraget - som er uniddelbare konsekwenser av utviklingen - lager vanskeligheter for den fortsatte bruk av vassdraget og har direkte ruining av bioressurser som følge. Det er et nødvendig behov å kunne forhindre at forhold i vassdraget som det er ønskelig å opprettholde, ikke blir ødelagt gjennom denne samfunnsutvikling.

Søkelyset retter seg mot hvordan dette kan gjøres. En viktig forut-setning er å skaffe tilveie et naturfaglig grunnlag for å kunne ta

Fremgangsmåte: For å kunne løse oppgavene er det behov for en gjen-sidig vekselvirkning mellom flere forskningsfelter. Dette gjelder bl.a.

1. Matematisk modellbygging.
2. Biologisk modellbygging.
4. Praktiske hydrodynamiske og biologiske undersøkelser i vassdraget og eksperimentelle undersøkelser.
5. Sammenbinding av biologiske og ingeniørfaglige resultater med resultater av plan- og regionforskning.

Forurensning tilkjenner seg som biologiske forandringer på samme måte som naturlige miljøforandringer lager biologiske forandringer. Disse biologiske forandringer skyldes livsprossesser som kan uttrykkes ved hjelp av matematiske funksjoner. Må et renseanlegg blir satt inn ved et vassdrag, vil de prosessene som foregår der, kunne uttrykkes rent matematisk ved hjelp av økologisk teori. Renseanlegget kan betraktes og vurderes som en økologisk enhet. Fordi renseanlegget kan betraktes som et kompleks av miljøfaktorer og effekten kan måles og settes inn i økologisk sammenheng med tilsvarende målinger i resipien-ten, vil en kunne vurdere hvilken type renseanlegg en skal benytte og bedømme hvilken utvikling en får i vassdraget ved bruk av forskjellige renseanlegg.

Blindern, 6. mars 1972.
Olav Skulberg
REPRINT FROM PROCEEDINGS OF NORDIC SYMPOSIUM ON BIOLOGICAL PARAMETERS FOR MEASURING GLOBAL POLLUTION

IBP I NORDEN

OLAV M. SKULBERG:
EXPERIMENTAL METHODS SUITABLE FOR THE OBSERVATION AND MONITORING OF POLLUTION IN WATER RESOURCE STUDIES

IBP I NORDEN No. 9 MAY 1972
4.2.18. EXPERIMENTAL METHODS SUITABLE FOR THE OBSERVATION AND MONITORING OF POLLUTION IN WATER RESOURCE STUDIES

Olav M. Skulberg

INTRODUCTION AND BACKGROUND

From the point of view of this symposium, it is essential to think of water as the hydrological cycle and as a main requirement for life on the earth. Water resources are continuous systems in time and space. They must be managed and utilized as such. In most areas of the world the water resources have already been exploited to such an extent that chemical and biological changes are evident and give rise to problems of considerable practical and economic importance in the use of water.

On the basis of experience gained over a period of several years by the Norwegian Institute for Water Research in experimental investigations of water pollution, it is felt to be urgent to direct attention to the use of such methods for observation and monitoring pollution of water resources. The application of experimental biological methods has several possibilities (Skulberg 1962, 1968).

Important tasks to solve are among others:

1) to express the general state of pollution in aquatic environments,

2) to characterize qualitatively and quantitatively the biological processes involved in the self-purification of water,

3) to evaluate the development in water resources and to
express their biological conditions as consequences of chemical and physical factors.

Descriptive biological methods are now increasingly used in the assessment of pollution. They lead to results which may be a suitable documentation of actual conditions in lakes and rivers. Investigations based on descriptive methods are useful for the observation of changes and development of water resources. They are limited, however, by the difficulty of expressing numerical relationships between the characteristics of water quality and the biological conditions under various degrees of pollution to which water resources are subject. Experimental approaches using laboratory and field methods are aids in the attempt to solve this problem.

EXPERIMENTAL FIELD METHODS. OBSERVATIONS OF CHANGES IN ORGANISM COMMUNITIES AND BIOLOGICAL PRODUCTION

Experimental investigations under laboratory and field conditions have shown that knowledge may be gained of the relationship between pollution load and the biological response of the receiving water (Baalsrud 1966). Such knowledge is of special interest for the practical handling of pollution problems. The understanding of the recipient water's reaction to pollution is a necessary background for technical solutions which will not have disagreeable effects on the aquatic environment.

Numerous ecological variables are involved in the development of natural populations making them extremely difficult to study. The individual results from various chemical and physical investigations cannot uniformly express the conditions of water courses. The results gained from physical and chemical analyses must in many cases be interpreted or evaluated from a biological point of view. The effect of
the pollution on organisms living in the aquatic environment can be investigated only by direct biological methods. When using artificial populations in field experiments the investigator exercises a certain control. By performing observations in experimental biota (e.g. channels) at stations along water courses, it is possible to obtain information which gives an important supplement to the results of the ordinary field methods. Experimental facilities at river stations can offer good opportunities for studies in systems where environmental factors and organisms interact in similar ways to those in the actual recipient. However, these are still artificial systems and so it is necessary to be very cautious when using the results and applying them to the situation in the water course.

The advantages offered by observations in channels at river stations includes the following. The development of the artificial community proceeds in the actual river water. The changes in water quality with meteorological conditions and seasons can be followed and in addition the effect on important biological processes can be measured. Short time phenomena may be studied in detail. Environmental factors are either controllable (water flow, water velocity, pollution load) or can be measurable. Hydrodynamic conditions for the biological observations may be defined. The gradual growth and development of organisms in the channel biota takes place with the same species as in the water course. There is a good opportunity to study the organisms and their biotic inter-relationship and also their relation to pollution problems.

Biological observations in channel systems at river stations should be developed as a routine method of monitoring pollution in water courses. On the basis of the experience already gained it should be possible to construct suitable experimental facilities for the purpose.
GROWTH EXPERIMENTS WITH TEST ORGANISMS. BIOASSAY METHODS FOR INVESTIGATIONS OF WATER POLLUTION

To obtain appropriate quantitative data expressing the relationship between the pollution load and the biological response of the receiving water, bioassay methods seem absolutely necessary. Chemical analysis provides information on the water quality and on concentrations of substances present, but supplies no knowledge of their influence on the water as a growth medium for organisms. However, experimental cultures of test organisms give possibilities for a fruitful combination of chemical and biological methods resulting in such information. The culture population is regarded rather as a miniature analogue of a natural population. Using experiments with cultures analytical explanations are sought. However, the results have to be verified by observations of natural populations under the actual environmental conditions.

For some time, algae have been used as test organisms in culture experiments for the assessment of eutrophication (Skulberg 1964). The major factor determining population density of algae is the quantity of available plant nutrients. Through the application of algal culture methods, the amounts of plant nutrients in the water can be quantitatively related to the "richness" and "quality" of the water (Skulberg 1967, 1970).

Culture experiments with selected test organisms of different taxonomic and physiological nature should be included in the routine monitoring of pollution in water resources.

CONCLUSIONS AND RECOMMENDATIONS

1) For monitoring purposes, observations of biological populations in artificial channels operated at river
stations can furnish important information supplementing results from conventional field methods.

2) Culture experiments with test organisms should be regularly included in comparative investigations of water quality and the impact of pollution on aquatic life.

3) Comparative investigations using bioassay and experimental field methods should be performed in reference areas selected within different geographic regions.

REFERENCES

DISCUSSION

RØNNING: It seems to me that it would be very simple to set out dialysis cultures of algae in watercourses for studying absorption into these cultures. Methods have been developed recently where the algae can be kept in "cages" and then placed in strategic places for accumulation of e.g. heavy metals and other pollutants. The advantage of such dialysis cultures are that they are present in the water to be investigated and also that samples can be taken when needed. It is a very simple matter to extract a sample with an injection syringe. This can be combined with the experiments mentioned by Skulberg.

SKULBERG: Yes, this is one of many methods to choose from. In each case the most suitable methods should be employed. Culture experiments with test organisms and observations of biological populations in channels operated at river stations should be included as supplements to conventional field methods for the purpose of monitoring.
NOTAT

til NTNF-utvalget for M.A.B.
ved Olav Skulberg.

MOMENTER OM HOVEDPROBLEMER SOM FORDRER FORSKNINGSMESSIG BEHANDLING OG LØSNING INNENFOR OMråDET VANN OG FORURENSNINGER

Det er i denne sammenheng nødvendig å tenke på vannet som del i den hydrologiske syklus og som en hovedforutsetning for det levende på jorden. Vannforekomstene utgjør et sammenhengende hele, og slik må de også forvaltes og brukes. Vannforekomstene er allerede i dag utsatt for så store påvirkninger av menneskelig virkelighet at kjemiske og biologiske forandringer av forholdene er påvissbare i de fleste områder av jorden. Dette fører en rekke steder til store praktiske vanskeligheter, og er i sin ytterste konsekvens årsak til problematik som er alvorlige for opprettholdelsen av livsmulighetene.

Gjentatte ganger er det laget oversikter over de forurensningsårsaker og -virkninger som har ødeleggende følge for vannforekomstene som naturressurser. Disse kan systematiseres på forskjellig måte (f.eks. saprobiering, eutrofiering, giftvirkninger osv.), og de kan bedømmes etter sine konsekvenser (f.eks. farlige, skadelige, uønskede etc.). Det er imidlertid stadig den erfaring å gjøre at i de fleste vannforekomster opptrer alle disse forurensningsårsaker og -virkninger ved siden av hverandre. Det blir en mangfoldig reaksjon, hvor følgene for vannet og det levende er betinget av hvordan de enkelte påvirkninger setter seg sammen i helheten. Ved den forskningsmessige behandling av disse problematik vil det være nødvendig både å gå inn på de enkelte årsaks-sammenhenger og reaksjonsmønstre og å bruke mer overordnede fremgangsmåter.

Det er en forskningsmessig viktig oppgave å gjøre en bearbeidelse av de aktuelle problemstillingen og avklare de faglige forutsetninger for et vern av vannforekomstene.

2. Selv om det hadde vært mulig å gi våre bestrebelsler for å verne vannforekomstene et eksakt innhold, ville det støtt på store vanskeligheter å sette tiltakene ut i livet. Manglende kunnskap om sammenheng mellom forurensningenes art og mengde og biologiske og andre konsekvenser for vannforekomstene, setter begrensninger. Det foreligger heller ikke nødvendige metoder og fremgangsmåter som binder sammen observasjoner i vannforekomstene med rensetekniske eller andre praktiske tiltak som kan gjøres for å løse et forurensningsproblem.

Forskningsinnsats i området mellom hydrobiologi og ingeniørfag må intensiveres betydelig; bare på denne måten kan det være mulig å komme frem til hvordan resultater fra resipientundersøkelser rasjonelt kan benyttes som grunnlag for ingeniørmessige tiltak mot forurensninger.

3. Det er nødvendig å utforske betingelsene for at de funksjonelle enheter av planter, dyr og miljøer kan opprettholdes i vannforekomstene. Oppgavene innenfor biologisk vannforskning bør konsentreres om å frembringe kunnskap som muliggjør en forståelse av vannforekomstene som økologiske systemer.

Kunnskapssmessig står biologisk forskning nærmest uten holdepunkter for å kunne gi utsagn om de krav som naturlig vegetasjon og fauna har for å beholde livsmulighetene i ulike vannforekomster.

5. Tilbakeføring av avfallsstoffer i et naturlig eller industrielt kretsløp er et hovedprinsipp for behandling av forurensningsproblemmene. Alle avfallsstoffer belaster naturen. Egentlig kan avfallsstoffer
hverken tilintetgjøres eller fjernes. Gjennom utstrakt ny anvendelse av stoffer i avfall, kan knapphet på restoffer delvis avverges og begrensning av forurensningsvirkninger oppnås.

Det er nødvendig med en systematisk utforskning av de muligheter som foreligger for en slik disponering og anvendelse av avfall.

Konklusjon:

Blindern, 28. januar 1972

Olav Skulberg
NOTAT

til NTNF-utvalget for M.A.B.
ved Olav Skulberg.

FORSLAG OM ENKELTE EMNER FOR UTARBEIDELSE TIL MULIGE NORSKE M.A.B.-PROSJEKTER

Blant de 13 formulerte prosjektområder i UNESCO-programmet er det tre prosjektområder som har klar tilknytning til forskningsvirksomhet som utføres i dag av NTNF-instituttene NILU, NIBR og NIVA. Disse er:

Project No. 5 - The ecological effects of human activities in urban, industrial and rural areas on the value of lakes, marshes, rivers, deltas, estuaries and coastal zones, as resources for food production and for amenity, recreation and wildlife conservation.

Project No. 9 - Ecological assessment of pest management and fertilizer use on terrestrial and aquatic ecosystems.

Project No.10 - Effects on Man and his Environment of Engineering Works.

Tre øvrige prosjektområder har en mer uklar grenseflate mot denne forskningsvirksomhet (prosjektene 11, 12 og 13).

I det følgende behandles fem mulige emner som foreslås til videre utarbeidelse til M.A.B.-prosjekter. Disse emner er innenfor forskningsfelt hvor NTNF-instituttene allerede har skaffet et godt faglig grunnlag som muliggjør fruktbar videreføring av forskningen. Selv om M.A.B. ikke kommer til utførelse, vil det uten tvil være nødvendig å bearbeide disse oppgavene videre. En særlig stilling har emnet under forslag 5. Dette er tatt med som et eksempel på en forskningsoppgave som er særlig omfattende og som nødvendiggjør organisering av forskning på en ny måte.
Forslag 1. Økosystemforskning som grunnlag for vassdragsforvaltning

Dette forslag har allerede vært drøftet innenfor NTNF-utvalget for M.A.B.
NIVA og NIBR har gjensidig behandlet det faglige innhold av dette emnet.
NILU vil naturlig komme inn i sammenheng med arbeidet.

Emnet representerer en typisk oppgave i UNESCO-programmet som er under-
streket som særlig betydningsfull. Et sitat fra Draft final report;
9. - 19. november 1971, side 5, viser dette:

"Integrating units such as a river basin illustrate well the
interactions and inter-relations that occur between ecosystems.
For example, the water which falls on high mountains and high
forests drains to the lowland forest, grazing land, agricultural
systems on alluvial soils, and eventually to the lakes and rivers.
Human activity modifies the inter-relations between these systems,
and this is reflected in changing patterns of productivity and of
transport of dissolved and suspended particulate matter. The
integrated effects of these changes are felt in estuaries, deltas
and adjacent coastal waters. Thus, in studies on broad physiographic
regions such as river basins, the main drive will be to identify
problem areas in human management of these systems and to make
proposals which will ensure that deterioration under the growth of
human populations is kept to a minimum, and that productivity and
the quality of the environment are maintained and enhanced."

Den praktiske anvendelse av økologiske metoder ved behandling av
forurensningsproblemer er i øyeblikket mer basert på erfaring enn på
direkte eksperimentelt og teoretisk grunnlag. Kjennskap til organismeliv
under ulike miljøforhold har vært kanskje den viktigste forutsetning hittil.
Utviklingen innenfor moderne økologi gjør det nå mulig i større utstrekning
å anvende nye, eksakte fremgangsmåter. Dette bør innarbeides også i Norge
gjennom forskningsvirksomhet i tiden fremover.
Forslag 2. Forvaltning av bioressurser i vassdrages delta- og estuarområder.

Industrireising og boligutvikling har en rekke steder i Norge som i verden forsvirr en markert tilbyelighet til å finne sted i vassdrages delta- og estuarområder. Dette reiser en rekke problemer, bl.a. med ødeleggelse av viktige bioressurser som en direkte følge. Hovedtendensen i dagens situasjon viser at det er en problematisk sammenheng mellom det som planlegges i slike områder og det som er praktisk oppnåelig av tiltak for å beskytte naturressursene. Det er en meget viktig oppgave å forskningsmessig belyse disse forhold.

UNESCO-programmet tillegger emnet en sentral plass innenfor Project No. 5, hvor det heter:

"Deltas, estuaries and the coastal zone (including intertidal marshes, the seaweed zone and the waters of the continental shelves) are naturally productive areas which supply a significant proportion of the world's food protein and are important recreational areas. Human settlements tend to be concentrated on major lakes, rivers, estuaries, deltas and coastlines, and human activity is threatening the productivity of these zones."

Forslag 3. Eksperimentelle biologiske metoder for overvåking av resipient-tillstander.

Enkeltpåverk av ulike kjemiske og fysiske undersøkelsesresultater kan vanskelig uttrykke vassdragstilstander på en enhetlig måte. Ved å gjennomføre eksperimenter og observasjoner i rennaanlegg ved vassdraget, er det mulig å skaffe til veile kunnskap som ikke er tilgjengelig på annen måte. Slike forsøksopptakninger muliggjør gjennomføring av samtidige

1. Det bør arbeides frem felles fremgangsmåter for bioassay med algekulturer til bruk ved monitoring av vann og vassdrag.

2. Mulighetene for bruk av eksperimentelle feltmetoder, bl.a. basert på forsøksoppstillinger i og ved vannforekomstene som hjelpemidler ved monitoring av vassdragstilstander, bør forskningsmessig utredes.

Forslag 4. Utforskning av præmerenomener i biosfærens luft - jord - vannkontaktflater.

Et forskningsprosjekt om dette emnet er allerede i gang i dag i samarbeid mellom NVE, NILU, NISK og NIVA. Det er enkelt å tenke dette videreført i et M.A.B.-prosjekt.
Forslag 5. Atlanterhavslaksen som biressurs, utforsknin av de naturfaglige og forvaltningsmessige forhold knyttet til dens bevaring og utnyttelse.

Blindern, 6. januar 1972.

Olav Skulberg
Appendix 5: Algebra of the Economic Model

The following pages present a detailed statement of the linear programming model being constructed as part of this study. Another appendix is being written to deal with the hydrological-ecological aspects of the study but attention is called to equation set seven of this appendix which represents the linkages between the economy and the natural ecology of the region.
Indices

\(a \) = index of development regions: \(a = 1, \ldots, u \).
These \(u \) regions will normally be political subdivisions, each
with its own claim on government attention. Thus employment
generated in each of these regions may be of interest in
evaluating alternative policies. For this study the regions
are defined by fylke boundaries and there are four regions
\((u = 4)\): the portions of Østfold, Akershus, Hedemark, and
Oppland within the Glåma basin.

\(i \) = index of products: \(i = 1, \ldots, m \). These \(m \) products may be either
elements of final demand or intermediate requirements of
production.

\(j \) = index of production plants, treatment plants, and communities.
To distinguish between these three types of establishments the
index runs as follows, for each river reach \(r \):

- Production plants: \(j = 100r + 1, \ldots, 100r + n \);
- Treatment plants: \(j = 100r + 51, \ldots, 100r + 50 + n' \);
 and
- Communities: \(j = 100r + 21, \ldots, 100r + 20 + n'' \).

In addition, call the set of \(j \) denoting production plants \(I \);
that denoting treatment plants \(I' \), and that denoting communities
\(I'' \).

\(k \) = index of processes: \(k = 1, \ldots, m'(i, j) \). For each production
plant and each product there will be a set of \(m' \) \((i, j)\) alter-
native processes. The model will choose the "best" of these
processes when costs and environmental impacts are considered.

\(t \) = index of wastes: \(t = 1, \ldots, w \). In this analysis we consider
five wastes \((w = 5)\): chlorides, organic load \((BO_5)\), phosphorus,
suspended solids, and nitrogen.
\(q = \) index of water (or environmental) quality criteria; \(q = 1, \ldots, w' \). In this study we consider four criteria \(w' = 4 \): dissolved oxygen, organics, chlorides and transparency.

\(r = \) index of river reaches; \(r = 1, \ldots, v \). The division of the river into reaches is accomplished by considering the uniformity of the hydraulic characteristics in each reach and the activity in the reach hinterlands.

Variables

\(D_{kr} = \) discharge of waste \(k \) into reach \(r \), in grams. This quantity is computed from equation 8 and is a function of \(x, y, \) and \(z \).

\(X_{ijk} = \) level of production of product \(i \) in plant \(j \) using process \(k \), in kroner.

\(Y_j = \) capacity of treatment plant \(j \), in cubic meters.

\(Y_{jj} = \) amount of effluent transferred from plant \(j \) (production plant, community, or lower-level treatment plant) to plant \(j \) (treatment plant), in cubic meters.

\(Z_{jj} = \) capacity of transport facility (usually a pipe) from plant \(j \) in reach \(r \) to plant \(j \) in reach \(r' \), in cubic meters.

\(Z_{jj} = \) volume of effluent transferred from treatment plant \(j \) in reach \(r \) to treatment plant \(j' \) in reach \(r' \), in cubic meters.

Either plant \(j \) or plant \(j' \) or both may be dummy plants, that is collection points only.

Costs

\(c_{ij} = \) capital costs (converted to equivalent uniform annual cost) and annual capacity - dependent maintenance cost of treatment plant \(j \), in Kr/cubic meter capacity. This assumes that within what we consider to be a relevant range of the capacity variable, \(Y_j \), costs increase linearly with capacity. Since there are decreasing costs to scale for treatment plants this is a delicate assumption.
\[c_{jk}^{ij} = \text{unit cost of production of product } i \text{ in plant } j \text{ using process } k, \text{ in } \text{Kr}/\text{Kr}. \]

\[c_{j}^{ij} = \text{unit operating cost of transport of effluent from plant } j \text{ to treatment in plant } j, \text{ and unit operating cost of treatment in plant } j, \text{ in } \text{Kr}/\text{cubic meter}. \]

\[c_{j}^{ij} = \text{unit operating cost of effluent transport from treatment plant } j \text{ in reach } r \text{ to treatment plant } j \text{ in reach } r', \text{ in } \text{Kr}/\text{cubic meter}. \]

\[c_{j}^{ij} = \text{unit cost of sludge disposal from treatment plant } j, \text{ in } \text{Kr}/\text{gram}. \]

\[c_{ij}^{jl} = \text{unit production of waste } k \text{ from product } i \text{ made by process } k \text{ in plant } j, \text{ in grams/Kr}. \]

\[x = \text{total production of waste } k \text{ from community } j, \text{ in grams}. \]

\[e_{j}^{ij} = \text{percentage removal of waste } k \text{ in plant } j. \]

\[f_{j}^{ij} = \text{concentration of waste } k \text{ in the effluent from plant } j, \text{ in grams/cubic meter}. \]

\[G_{i} = \text{total increased demand for product } i \text{ to be manufactured locally, in Kr:} \]

\[= \sum_{l} \sum_{k} \sum_{ij} x_{ijkl} + \sum_{l} \sum_{j} g_{ij}^{l} (x_{ijl} + \sum_{k} g_{ij}^{lk} + \sum_{l} g_{ij}^{ll} + \sum_{l} g_{ij}^{ll}). \]

\[G_{i}^{ljk} = \text{increased demand for product } i \text{ to be manufactured regionally, caused by a unit shift in the production of product } i \text{ in plant } j \text{ from use of the current production process to use of process } k, \text{ in } \text{Kr}/\text{Kr}. \]
\[e_{ij} = \text{increased demand for product } i \text{ to be manufactured regionally, caused by a unit increase in volume of treatment plant } j, \text{ in } \text{Kr}/\text{cubic meter}. \]

\[e_{ij}^* = \text{increased demand for product } i \text{ to be manufactured regionally, caused by a unit increase in volume of effluent transport facility } j^*, \text{ in } \text{Kr}/\text{cubic meter}. \]

\[H_a = \text{Minimum amount of employment required in area } a, \text{ in man-days}. \]

\[h_{ijk} = \text{unit labor requirement for product } i \text{, using process } k \text{ in plant } j, \text{ in man-days/Kr}. \]

\[h_j = \text{unit labor requirement of treatment plant } j, \text{ in man-days}. \]

\[p_i = \text{current demand for product } i, \text{ in Kr}. \]

\[q_{qr} = \text{minimum level of water (or environmental) quality in reach } r \text{ as measured by criterion } a, \text{ in appropriate units (such as transparency in meters)}. \]

\[s_{jj} = \text{unit mass of sludge produced when effluent from plant } j \text{ is treated in plant } j, \text{ in grams/cubic meter}. \]

\[t_{rr}^* = \text{transfer of waste } i \text{ from reach } r \text{ to reach } r \text{ by natural river processes, in grams. } \]

It is in the computation of this quantity that the hydraulic-ecologic models are used, normally we expect to employ a diffusion model which with non-degradable and certain types of degradable wastes produces a linear relation between discharge at reach } r \text{ and concentration at reach } r^*, \text{ thus}

\[t_{rr}^* = Y_{rr} D_{rr}, \text{ where} \]

\[Y_{rr} \text{ is a "transfer coefficient".} \]

\[x_{ijk} = \text{production capacity for product } i \text{ in plant } j \text{ by process } k, \text{ in Kr}. \]
Model

Objective Function

The objective function represents the total change in costs due to new environmental quality regulations. It is to be minimized subject to several constraints which themselves represent objectives (such as employment generation or environmental protection) conflicting with cost minimization. It is for convenience only that we elevate cost minimization alone to the objective function.

\[
\text{Min}\left\{ \sum_{j \in I} c_{I} \sum_{i,j,k} c_{ijk} x_{ijk} - \min_{j,k} (c_{ijk}) G_i \right\}
\]

increased production costs

least cost of producing new goods demanded by changes in production and treatment

-(Current Production Costs) + \sum_{j \in J'} c_{j} y_{j}

a constant

capital costs of treatment plants

+ \sum_{j \in J''} c_{jj} y_{jj}

operating costs of treatment plants

sludge disposal costs

+ \sum_{j \in J''} c_{jj} y_{jj}

capital costs of transport facilities

Operating cost of transport facilities

Constraint:

1. Production of product \(i \) in plant \(j \) using process \(k \) cannot exceed capacity;

\[
x_{ijk} \leq X_{i,k,j} \quad \forall i, k, j \in I.
\]

For the most part these constraints are not necessary since \(x_{ijk} \) is automatically minimized by the objective function.
subject only to demand constraints. Constraints (2) are required
only if some new demand (for sewage treatment equipment for
example) were to increase greatly as a result of pollution
control or if there can be a shift in production between plants.

2. Load of effluents in treatment plant j cannot exceed plant
capacity;

\[\sum_{j > j'} \frac{y_{ji} - y_{j'i'}}{\bar{y}_{ji'}} \leq \bar{y}_{j'i'} \quad (3) \]

3. Transfer of effluent from treatment plant j (which may be a
collection point only) in reach r to plant j in reach f cannot
exceed capacity of the transport facility;

\[z_{ij} \leq z_{ij} \quad \forall j-j' \text{ pairs under consideration.} \quad (4) \]

4. Production of product i must equal demand;

\[\sum_{i \in I} \sum_{k \in K} x_{ik} = P_{i} + \sum_{i \in I} \sum_{k \in K} g_{i'k} x_{i'k} \]

\[+ \sum_{j \in J} g'_{ij} \left(\sum_{j' \in J} y_{j'j} \right) + \sum_{j \in J} g''_{ij} z_{ij} \quad \forall i. \quad (5) \]

5. Employment generated in area a must exceed level \(H_{a} \);

\[\sum_{j \in \text{area } a} \sum_{i \in I} \sum_{k \in K} h_{ijk} x_{ijk} + \]

\[\sum_{j \in \text{area } a} \sum_{j \in \text{area } a} h'_{jj} y_{jj} \geq H_{a} \quad \forall a. \quad (6) \]

6. Quality of the water (or environment) according to criterion
q must exceed level \(Q_{q} \) in reach r;
\[\phi \left(\sum_{qr} (D + T - T)_{qr} \right) \geq q_r \quad (7) \]

\(\forall q, r \), where \(\phi_{qr} \) (-) is a functional relation between waste concentration and water quality according to criterion \(q \).

7. Discharge, \(D_{kr} \), of waste \(l \) into reach \(r \) is equal to the waste from communities and industrial plants in \(r \) less removal in \(r \) of wastes originating there less transport of waste \(l \) out of \(r \) plus transport of waste \(l \) into \(r \) (excluding natural processes of river transport) plus waste remaining in effluents treated in \(r \) but originating outside.

\[D_{kr} = \sum_{l} c_{lcr} \left(\sum_{ij} x_{ijk} + \sum_{j} d_{jlk} \right) \quad (8) \]

\[e \left(I''_{cr} \right) \left[\begin{array}{cc} \sum_{l} e_{l} & f_{lj} \\ g_{l} & \sum_{j} g_{lj} \end{array} \right] \quad \forall l, r. \]

8. Cost of wastes reduction to plant \(j \in I \) or to community \(j \in I'' \) must not exceed a maximum level. Since the precise algebraic form of this constraint is difficult to write in general terms because of the multitude of fiscal transfers and cost-sharing schemes possible we merely note the existence of the constraint and include it in the model for specific cases of interest only where the financial arrangements are clearly specified. The following "extensions" indicate the forms this constraint might take.

Extensions

I. If effluent charges, they are based on

\[f_{jk} y_{jkl} = \text{quantity of wastes of type } l \text{ from plant } j, \text{ in grams:} \]

\[c_{l} = \text{charge, in Kr/gram; so we add to objective function a term:} \]
\(\bar{c}_j \sum (1 - e_{jj}) f_{jj} y_{jj} \). This assumes no in-plant treatment but centrally administered and supported treatment.

If \(j \neq j \) for some set of \(j \), i.e., for some treatment plants one and only one production plant is implied, and vice versa, then effluent charge could be applied to "final" effluent.

For one production plant, \(j \), and one treatment plant, \(j \), the charge is:

\[\bar{c}_j \sum (1 - e_{jj}) f_{jj} y_{jj} \]

Note that there could be several treatment plants in series and serving one production plant. Call the set of such plants \(\bar{J} \).

Then, effluent charge become:

\[\sum \bar{c}_j (1 - e_{jj}) f_{jj} y_{jj} \]

where \(j \) is the production plant, or \(j \in \bar{J} \).

II. If uniform treatment is required, there are two ways of setting the requirements:

\[(1 - e_{jj}) \sum \bar{c}_j (e - \bar{n}) f_{jj} y_{jj} \]

\[\sum_{j \in \bar{J}} \bar{c}_j (1 - e_{jj}) f_{jj} y_{jj} \]

\[\sum_{j \in \bar{J}} e_{jj} e_{jj} e_{jj} ... \geq \beta, \]

production units.

This makes the treatment a function only of the production plant effluent.

(2) Current production and effluent conditions are stated and used as a base for comparison. Thus, final effluent given a new combination of treatment and process charges is compared with current effluent. For one production plant, \(j \), and one treatment plant, \(j \),

\[(1 - e_{jj}) f_{jj} y_{jj} \geq \beta \]

for all production units.
Ingeniørmessige Aspekter ved Avfalls- Disponering og Prinsipper for Rengjøring av Vanntransporterte Forurensninger.

Foreleser:
Avd. sjef Torje Simensen
Norsk institutt for matsikkerhet
1. Forurensningssituasjonen

Våre vannressurser er store sett i forhold til landets befolkning. Regnet som spesifikk avrenning, disponerer vi på landbasis nær enn 112 000 m³ pr. person og år.

Da omlag 57% av befolkningen bor i tettsteder og større bysentra, vil imidlertid enkelte vassdrag eller vassdragsavsnitt bli særlig sterkt utnyttet. Både på Østlandet og i landet forøvrig er stort sett situasjonen slik at de største bykonsentrasjonene - og derfor også forurensningsbildene - er å finne i nedre del av vassdragene.

Den spesifikke avrenningen fra Glommas nedbørfelt som helhet er ca. 43 000 m³/p. år, men bare 8400 m³/p.år for den del av feltet som ligger nedenfor Glommas utløp i Øyeren.

For sammenlikning har vi følgende overslagstall for endel andre europeiske land: Sverige 25 000 m³/p.år, Sveits 7500 m³/p.år, Danmark 2500 m³/p.år, Tyskland 1200 m³/p.år og Holland 850 m³/p.år.

For Østlandet viser beregninger at omlag 0,48% av den totale vannmengde som årlig renner i havet, benyttes som vannforsyning til husholdningsformål. Selv om industrins vannforbruk er flere ganger større enn husholdningsforbruket, vil likevel utnyttelsen av vassdragene til vannforsyningsformål være bezkjen. For år 2000 er det tilsvarende tall beregnet til 1,08%. Overslagsberiginger over den prosentvisse utnyttelse både for kommunale og industrielle vannforsyningsformål i år 2000 gir derimot som resultat 7-9%. Dette høye tall viser at man i fremtiden vil måtte styrre bruken av vassdragene - og spesielt deres kvalitetsmessige påvirkning - langt sterkere enn hva som skjer i dagens situasjon. Samtidig vil det bli behov for en økonomisering med bruken av vannet.

I de fleste andre industrialiserte land, hvor folketettheten er av en annen størrelsesorden enn i Norge, preges det generelle forurensningsbildet av massive primærbelastninger med organisk stoff. Kontrollerende tiltak har derfor hittil i første rekke vært konsekrert om å redusere denne belastningen og dermed få løftet vannkvaliteten noe høyere opp på kvalitetsnivåen. Tiltervende situasjon vil vi også ha en del steder her i landet, spesielt i den nedre del av noen vare større vassdrag. Hovedsaksettingen for våre tiltak vil på
den annen side være å opprettholde den stort sett gode vannkvaliteten vi idag har når vi vurderer situasjonen på landsbasis. Man kan derfor si at vi arbeider i en annen ende av kvalitetsskalen i forhold til situasjonen i de mer tettbefolkede landene, og at vår oppgave på noe lengre sikt må preges av preventiv virksomhet fremfor den terapi som drives i industrielandene. Mens det terapeutiske arbeidet kan baneres på relativt enkle biologiske og tekniske betraktningssmåter, vil en preventiv virksomhet nødvendigvis gi mer nyanserte og vanskelige utfordringer. Dette forhold skyldes at en biologisk virkning eller reaksjon er størst i det minst påvirkede ukvitaske miljø.

2. Vassdragsforvaltning ("Water Management")

I fig. 1 er det fremstilt en del trinn i myndighetenes forvaltningsmessige behandling av forurensningsproblemer. Vår nåværende effektivitet i behandlingen av sakene varierer betydelig fra ett trinn til et annet. Effektiviteten avhenger imidlertid av tilgangen på kunnskap og de administrative apparatene som skal til. Begge faktorene er nå under sterk utvikling.

Når et vassdrag, innkjøtt eller fjordområde er eller vil bli påvirket av forurensninger, og det skal settes inn eller vurderes mulige regulerende tiltak, er det behov for kunnskap både om vannforekomsten og forurensningstilførselen samt hvordan tilførselen påvirker det naturlige vannsystemet.

Om vannkvaliteten kan karakteriseres ved hjelp av normale kjemiske, fysiske og biologiske parametre, vil dette ofte ikke utgjøre tilstrekkelig informasjon for at myndigheter skal kunne handle den foreliggende forurensningssituasjonen effektivt. Det vil i tillegg være nødvendig å skaffe oversikt over hvilke brukerinteresser og kvalitetskrav som bør være avgjørende for hvordan forurensningssituasjonen skal vurderes. Denne del av oppgaven har hittil vært lite påpekt, og den er også overordentlig vanskelig på grunn av alle de interesser som gjør seg gjeldende i forbindelse med bruken av vannforekomsten, og hvilke krav til kvalitet det er riktig å stille ut fra en økologisk og samfunnsmessig betraktning.

Hittil er det karakterisering av vannkvalitet ved hjelp av normale måleenheter som er blitt gjenstand for størst oppmerksomhet, og daglig står man overfor
vanskeligheten med å finne en sammenheng mellom en slik karakterisering og den bruk av vannet som vil være aktuell i fremtiden. For å kunne karakterisere brukerinteressene må man kople disse sammen med spesielle kvalitetskrav som er basert på en bred samfunnsmessig vurdering, hvor både miljømessige og økonomiske faktorer får betydning. Tilveiebringelse av kvalitetskrav for bruken av vann vil førlegelig kreve et utsevært bredt samarbeid av fagfolk med forskjellige kvalifikasjoner. En innsats av såvel samfunnsvitere og økonomer, som naturvitere, må bli avgjørende for resultatet.

Planleggingen og iverksettelsen av praktiske tiltak i form av eventuelle samfunnsmessige omstruktureringer eller teknisk inngrep, basert på tverrfaglige undersøkelser, er det som kan betegnes vassdragsforvaltning ("water Management").

3. Bruk av matematiske modeller

Et sentralt og viktig ledd i dette arbeidet vil være den foreskningsvirksomhet som har til mål å bringe frem kvantitative opplysninger om de fysiske, kjemiske og biologiske prosessene som utvikler seg i vannforskomstene. Den praktiske behandling av dagens forurensningsproblemer er mer basert på erfaring og en kvalitativ dokumentasjon av eksisterende forhold enn på direkte eksperimentelt og teoretisk arbeid som tar sikte på en kvantifisering av problemene. Om man skal ha håp om å komme raskt videre mot et bedre og mer velegnet arbeidsopplæg, er det behov for å sette de mange observasjonsparametrene sammen og i forhold til hverandre ved hjelp av numeriske relasjoner som kan gi grunnlag for en mer avgrenset og klar beskrivelse av de enkelte fenomenene. En slik oppbygning av matematiske modeller av såvel biologiske som kjemiske og fysiske prosesser vil, med de forutsetninger vi har idag når det gjelder faglig innsikt, generell systemanalytisk kunnskap og hjelp av datamaskinteknikk, kunne bringe oss et raskt og betydelig skritt i retning av kvantitativ å forutsi eventuelle endringer i våre akvatiske økosystemer som følge av forurensningsrelevantkningen. Det meste arbeidet som hittil er utført i utviklingen av slike modeller, ligger innenfor det fysiske/kjemiske området, men det begynner etterhvert også å bli stor interesse og aktivitet omkring oppbyggingen av biologiske modeller. Nevt utvikledes og avanserte økosommer vil nåværende kreve en omfattende og langvarig arbeidsinnsats. I første omgang bør imidlertid arbeidet være praktisk
målrettet, slik at det hurtig kan bli mulig å trekke ny kunnskap inn i alle de praktiske problemstillingene som må finne sin løsning. Med den erfaring man idag har fra fremstilling av økemodeller av enda andre biologiske systemer, synes muligheten å ligge tilrette for f.eks. å etablere empiriske interimsmodeller for akvatiske biosystemer, basert på statistisk behandling av foreliggende observasjonsmateriale. Et beskjedent forsøk på å utvikle slike empiriske modeller ble gjort i NIVA's behandling av Oslofjordens forurensningsproblemer. Modellene viste seg i dette tilfellet å være til stor nytte i den ingeniørmessige behandlingen av forurensningsproblemet. En del momenter i argumentasjonen for den praktiske bruk av matematiske modeller kan være:

a) Et praktisk middel til å forutse eventuelle endringer i et økosystem, på tross av et ofte begrenset observasjonsmateriale.

b) Gir et bedre grunnlag for å planlegge resipientundersøkelser - parametervalg, observasjonshyppighet, parametrenes relative viktighet, etc.

c) Tilsvarende pkt. b) når det gjelder å foreslå og å planlegge målrettede forskningsprosjekter.

d) Modellene påviser de kunnskapmessig svake leddene i systemet.

e) Gir grunnlag for omfattende numeriske løsninger med bredt variasjonsmønster i parametrenes relative størrelse.

4. Rensetekniske tiltak

For å tilfredsstille de krav til vannkvalitet som man etterhvert finner det riktig å fastsette for de enkelte vannforekomster eller deler av disse, er det en rekke tiltak som kan bli nødvendig. Et av de viktigste vil være å rense avløpsvann fra industri og boligomfunn. Det reelle tiltal av teknisk utviklede prosesser har vært relativt beskjedent helt opp til de siste årene. Gjennom alle år er det biologisk rensing som har vært mest benyttet, som den billigaste metoden for å reducere vannets innehall av organisk stoff. Etterhvert som først og fremst næringsstoffene har blitt tillagt stor betydning, har kjemisk/fysiske metoder kommet mer i forgrunnen. Det er allerede utviklet flere metoder for reduksjon av såvel fosfor- som nitrogenforbindelser, og det foregår mange steder i verden et omfattende forskningsarbeid på feltet.
Siden det primært betyrte kjemiske metoder for næringsstofffjerning, er det under norske forhold et interessant moment som kommer inn. Ved kjemisk felling av fosforforbindelser vil en betydelig del av de organiske forurensningene også fjernes fra avløpsvannet. Spørsmålet reiser seg derfor om det generelt kan anses riktigat å vente med å bygge biologiske renseanlegg som skal fjerne organisk stoff. Sideneutroficeringseffekten i de fleste tilfeller må ses på som det primære forurensningsproblemet, kan man muligens gjennom en kjemisk felling alene både få kontroll over næringsstofftilførselen og få fjernet det meste av de lett nedbryttbare organiske forurensningene. På kortere sikt kan sikkert en slik ordning være fullt tilfredsstillende en rekke steder her i landet. Om det er behov for en ytterligere reduksjon av innholdet av organisk stoff, kan dette gjøres enten ved å supplere med biologisk rensing på et senere tidspunkt eller å finne andre fysisk-kjemiske metoder for å oppnå samme resultat. Må kan tyde på at den siste metoden kansje vil vise seg å være den teknisk sett beste og kansje også den mest økonomiske.

Det bør imidlertid tilføyes at vi har så vidt mange avløp her i landet med stort innhold av organisk stoff at vi utvilsomt vil få behov for å benytte biologisk rensing en rekke steder. Dette gjelder særlig for våre mange industriellipp med betydelig innhold av lett nedbrytbart organisk stoff. For dette formålet er biologisk rensing forelspig den beste metoden.

For reduksjon av vannets innhold av store organiske stoffmengder samt fosforkomponenter, har vi stort sett tilfredsstillende anleggstyper å sette inn, såvel i driftsteknisk som prosessteknisk henseende. Må det gjelder andre næringsstoffer, så som nitrogenforbindelser, foregår det idag et omfattende utviklingsarbeid for å oppnå driftsteknisk og økonomisk akseptable prosesser.

For denne store gruppen av forurensningskomponenter som etterhvert kommer mer og mer i skjellet, nemlig mikroforurensninger av mange slag, er det forelspig utført lite arbeid for å finne ut hvor stor andel av slike komponenter som fjernes i de konvensjonelle kjemiske og biologiske renseanleggene. Vi vet imidlertid at en stor del kan passere og det nølde seg etterhvert et klart behov for utvikling av nye metoder for dette formålet.

For å gi en oversikt over hvilke prinsippielle prosesser man forelspig arbeider med på den rensetekniske sektor, er det i fig. 2 laget en oppstilling over ulike enhetsoperasjoner. Disse kan kombineres på mange forskjellige måter,
og undersøkelsen av kombinasjonssmønstrene representerer en utfordring i retning av å nå frem til teknisk og økonomisk gunstigste løsninger på de enkelte problemene.

Blant de oppførte enhetsoperasjonene er det bare de 4 – 6 øverste i rekken som har vært i praktisk bruk inntil idag. Disse representerer det som betegnes mekanisk-biologisk renseiing.

Dortsett fra biologisk denitrifikasjon representerer de resterende utelukkende fysisk-kjemiske systemer. Dette forholdet indikerer at fremtidige kombinasjoner av enhetsoperasjoner vil tendere i retning av en sterkere kjemiteknisk oppbygging.

Som det fremgår av figuren, vil det – på mange forskjellige trinn i kombinasjonsrekken – foreligge reststoffer som må viderebehandles. Disse reststoffene kan enten foreligge i gass eller væskeform eller som faste stoffer. Behandlingen og den endelige disponering er avhengig av hvor de tas ut i det proses-tekniske kombinasjonssmønstret. De enkelte reststoffene har vidt forskjellig karakter, og må vurderes individuelt før å kunne deponeres i våre omgivelser på en slik måte at de ikke medfører en fortsatt miljøressurs Belasting.

Det er bare tre steder hvor det er praktisk mulig å foreta den endelige deponeringen, nemlig i atmosfæren, i jorden og i oceane. Før en slik deponering kan foregå uten skadelige følger for omgivelsene, må stoffene behandles. Hvilken kombinasjon av behandlingsmetoder som skal valges er – som for det rensetekniske feltet – en oppgave som må avpasses den endelige deponeringsmetoden, og derfor vurderes også i en økologisk sammenheng.

Det foreligger en rekke metoder for behandling av slam. Det er imidlertid bare få som hittil er teknisk tilfredsstillende utviklet. Spørsmålet om det behandles slarmets miljøpåvirkning har nemlig også begrenset kunnskap om. Metoder og mulige kombinasjonssmønstre er vist skematisk i fig. 3.

Med den verdiskala og form for srafunnsmessige prioritering som vi har idag, er kostnadene forbundet med renseiing et stadig tilhavende problem og diskusjonen hos myndigheter, byggherrer og prosjekterende ingeniører. For å gi en grov oversikt er det i tabell 1 fremstilt endel spesifikke kostnader for bygging og drift av renseanlegg. Tabellen er basert på erfaringstall hentet
Fig. 3. Behandling og disponering av sløm.
<table>
<thead>
<tr>
<th>Fjerning av</th>
<th>Spesifikke kostnader i kr/n³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>til drift</td>
</tr>
<tr>
<td>M a.</td>
<td>6</td>
</tr>
<tr>
<td>M a.</td>
<td>10</td>
</tr>
<tr>
<td>N a.</td>
<td>12</td>
</tr>
<tr>
<td>M a.</td>
<td>15</td>
</tr>
<tr>
<td>K b'</td>
<td>22</td>
</tr>
<tr>
<td>K c</td>
<td>25</td>
</tr>
<tr>
<td>E c²</td>
<td>30</td>
</tr>
<tr>
<td>M a.</td>
<td>42</td>
</tr>
</tbody>
</table>

\[K = \text{mek. rem.} \quad C = \text{ekt. hull} \quad B = \text{biol. rem.} \quad F = \text{elektrolytiske} \quad K = \text{kim. rem.} \quad I = \text{innbygging} \]
fra inn- og utland, og kan bare betraktes som rettslående. Lokale forhold vil i høy grad kunne gi årsak til avvik. Spesielt for de mest avanserte metodene er erfaringsmaterialet beskjedent og usikkerheten stor. Siden spesifikke kostnader er avhengig av anleggenes størrelse, er det oppgitt tall for to anleggsstørrelser på henholdsvis 15 000 og 75 000 personekvivalenter.

5. Tverrfaglig åpenhet og samarbeid

Uten en inngående kunnskap om vannforekomstens reaksjon på forurensninger og forståelse av hvilke tekniske og samfunnsmessige ingrep man til enhver tid råder over for å tilfredsstille eventuelle kvalitetskrav, vil vi i tiden frem- over stå i fare for å forstørre et miljømessige feilgrep. Vi er fremdeles inne i "procestadiet" når det gjelder forurensningskontroll, men de mange og lange diskusjoner omkring dette som et samfunnsproblem er sikkert nyttige. Imidlertid er det et alt for vanlig oppfatning blant fagfolk at deres faglige spesialområde er spesielt avgjørende for å oppnå riktig løsning på problemene. Denne oppfatningen gir årsak til en betydelig kompetansestrid og lite rasjonal behandling av de enkelte problemstillingene. Det synes derfor å være behov for å få utdannet fagfolk som har kunnskap om miljøvernproblemer lengst ut over sitt spesialområde. Innen tilgangen på slike "miljøspecialister" kan realiseres gjennom et bevisst undervisningsmessig opplegg, må de personene som allerede er engasjert i problemene, bli lært mer innstilt på felles innsats.

Hele fagområdet, kvalitetskontroll av vann, representerer en uvanlig stor utfordring til fagfolkene, og det kan bare løses ved et intimit tverrfaglig samarbeid hvor alle er villige til å respektere og forstå synspunktene hos kollegene innen andre fagområder.
SHI. Studiekonferanse 18. november 1971

BEHOVET FOR KONTINUERLIGE VASSDRAGSUNDERSETTELSE I NORGE

Ved Olav Skulberg, Norsk institutt for vannforskning

1. INNLEDNING

Vi befinner oss i Norge i dag ved inngangen til en tid da bruken av vannressursene og arbeidet med dem blir en mer bevisst og konkret oppgave i samfunnet. Det er flere årsaker til dette. Her skal bare nevnes faktorer som at vannressursenes betydning i økonomisk sammenheng er raskt voksende. Selv i det vannrike Norge merker vi at denne ressurs er begrenset, og forståelsen for nødvendigheten av å verne vannforekomstene er økende. Samtidig har forskningen på de mange fagfelt som bruken av vannressursene tar utgangspunkt i, først frem til kunnskap av stor praktisk betydning. Vi merker disse tendenser i de samfunnsmessige tiltak som gjøres, i lovverk og administrative bestrebelsler som angår behandlingen av vannproblemmene. Vi står foran en tid da vassdragsdrift skal realiseres. På samme måte som naturressursene jord og skog har en systematisk bruk og drives på en forskningsmessig underbygget måte, kommer etterhvert vannressursene til å bli gjenstand for tilsvarende drift ("water management") i samfunnet.

Måletsetningen for en slik vassdragsdrift vil måtte formuleres ut fra de mange interesser som knytter seg til vannforekomstenes bruk og ut fra deres rolle i natursammenheng. Hovedinnholdet vil inneholde elementer som:

- Å sikre tilgången på vann til husholdning, jordbruk og industri.
- Å opprettholde og verne om betydningen vannforekomstene har som natur.
- Å utvikle og nyttiggjøre ressurser som er knyttet til vannforekomstene (f.eks. biologisk produksjon).
- Å ivareta vitenskapelige og kulturelle verdier knyttet til vannforekomstene.
Formuleringen av forfalsparagrafen i lov av 26. juni 1970 om vern mot vannforurensning inneholder vesentlige sider av dette. I paragraf 1 heter det:

"Denne lov har som formål å verne grunnvann, vassdrag og sjø-områder mot forurensning samt å redusere eksisterende forurensning, særlig av hensyn til menneskers og dyrs helse og trivsel, vannforekomstenes anvendelse, og et effektivt natur- og landskapsvern."

2. ERFARINGER FRA DET UNDERSKUHELSESOPPELLEG SOM BENYTTES I DAG

I løpet av de siste tiår er det gjennomført en del undersøkelser som har stor betydning for vurdering av vassdragenes tilstand, utviklingsforløp og forurensningssituasjon. Formålet med undersøkelsene har vært mangesidige, fra rent vitenskapelige siktepunkter til løsning av praktiske problemer. Selv om resultatene av disse undersøkelsene har vært betydningsfulle og har verdi som dokumentasjon av tilstander i vannforekomstene, har nytten for en rekke viktige problemstillinger vært begrenset.

De viktigste årsakene til dette er følgende:

1) Undersøkelsene har ofte vært konsentrert om lokale områder eller spesielle problemstillinger. Dette har medført at undersøkelsene har vært av begrenset verdi ved vurderingen av hele vassdrag eller innsjøsystemer.

2) Undersøkelsene har ofte vært av så kort varighet at man har fått lite eller ingen informasjon om de naturlige variasjonsmønstre for de fysiske, kjemiske og biologiske forhold i vannforekomstene.

3) Den økonomiske ramme for undersøkelsene har vært begrensende for en videre bearbeiding av resultatene og en sikring av observasjonsmaterialet. Av den grunn har viktig faglig informasjon gått tapt.
4) Undersøkelsene er til dels foretatt før et tiltak som berører vassdraget, er satt i verk. Forholdene etterpå er sjelden blitt fulgt opp. Derved sitter man tilbake med få erfaringer om hvilken betydning det gjennomførte tiltak hadde for vassdraget.

5) På grunn av arten av det enkelte problem har f.eks. for få parametre blitt valgt, eller parametre som er lite dekkende for en vurdering av vannforekomstens tilstand i en videre sammenheng.

6) Behovet for å få kunnskap om vann- og vassdragstilstander i regional sammenheng blir stadig større. Med det nåværende opplegget for vassdragsundersøkelser blir dette behovet lite tilgodesett.

Sammenfattet innebærer dette at undersøkelsene ikke skaffer samfunnet det nødvendige erfaringsmateriale for å bygge opp tilfredsstillende viten om vann- og forurensningsproblemer i landet vårt. Et alternativ til det nåværende opplegg for vassdragsundersøkelser kan, ved siden av den umiddelbare praktiske nytte, skaffe til veie vitenskapelige fakta av stor verdi. Et fremskritt for forståelse og løsning av praktiske problemer er bare i mindre grad mulig innenfor rammen av det arbeidsopplegg som i dag foreligger for vassdragsundersøkelser.

3. BEHOV OG FORMÅL FOR VANN- OG VASSDRAGSUNDERSØKELSER

Det er alminnelig anerkjent i dag at de mangeartede virkemakter innenfor et moderne samfunn medfører skader og ødeleggelse av vårt naturmiljø. Da vann brukes som recipient for de fleste avfallsstoffer, er denne naturressursen alvorlig utsatt for påvirkninger. For å motivere en ødeleggelse av vannforekomstene, blir det på de tekniske fagområder arbeidet intensivt for å finne metoder som i størst mulig grad kan minske skadevirkninger. Likevel er det klart at selv de mest avanserte rensetekniske tiltak ikke er tilstrekkelige for å holde alle viktige forurensningskomponenter tilbake - det gjelder organisk stoff, gjødselstoffer, tekniske stoffer og sykdomsfremkallende organismer. Dessuten vil et vassdrag alltid
være utsatt for ukontrollerbare tilføyrsler av forurensningskomponenter via overflateavrenning, jordbruksavrenning og ved lekkasjer på avløpsnett o.l.

Ut fra de erfaringer man har innvunnet vei på grunn av det utstyr og de instrumenter man i dag kan ta i bruk, er det mulig å legge opp et arbeidsprogram for fremtidige vassdragsundersøkelser som kan skaffe til veie et bedre informasjonsmateriale om vassdragstilstanden og som samtidig på en beubre måte kan gi holdepunkter for hvordan vassdragene skal utnyttes. Råde arbeidsmessig og økonomisk vil det være fordelaktig å komme frem til faste programmer for vassdragsundersøkelser som kan legges til rette for år fremover.

Foruten å kunne bidra til å løse aktuelle vann- og forurensnings-problemer, skal resultatene av slike undersøkelser bygge seg sammen til systematisk kunnskap som for fremtiden muliggjør å bruke de store ressurser som ligger i vannforekomstene på en samfunnsvnittig og naturriktig måte.

Følgende hovedgrupper av belastninger og påvirkninger av vassdragene gjør seg gjeldende:

1) Ulgat og dødt materiale av organisk og uorganisk natur i grov- eller findispers forekomst.

2) Løste stoffer av enkle og sammensatte organiske og uorganiske forbindelser.

3) Organismer, gjerne saprofyttiske eller patogene.

4) Fysiske faktorer (f.eks. temperatur, vannføringsforandring).

Det foreligger en rekke metoder til å bøttene den mengdemessige forekomst av forurensninger. Særlig langt er metode utviklet når det gjelder de uorganiske forurensninger. Med hensyn til organiske stoffer i vann er
det nesten utelukkende summariske analyse-parametre som anvendes.
Dette er en stor svakhet i sammenheng med bruken av resultatene for biologiske tolkninger.

Viktige arbeidsoppgaver ved en resipientundersøkelse omfatter:

1) Deskriptivt uttrykke resipientenes tilstand.

2) Kvalitativt og kvantitativt karakterisere resipientenes evne til selvrensning.

3) Vurdere utviklingen i resipientene og redegjøre for de miljøfaktorer som tekniske tiltak bør kontrollere for å opprettholde eller sanere resipientenes tilstand.

4) Uttrykke tallmessige relasjoner mellom vannmassenes egenskaper og deres biologiske tilstander som kan være anvendbare ved en dimensjonering av renseanlegg.

5) Ved kontrollundersøkelser fastslå virkninger av gjennomførte tekniske tiltak og få erfaring om disse.

Etter hvert som man skaffer til veie kunnskap innenfor disse arbeidsområder, vil man kunne konstruere en empirisk klassifisering av forurensningssituasjonen. Ved hjelp av en slik klassifisering kan man sette én spesiell resipient og dens problemer inn i en større sammenheng. Ved systematisk å samle resultatene fra feltarbeid i de ulike vassdrag og bearbeide dem ut fra et slikt siktpunkt, er det mulig å utvikle kunnskap med regional gyldighet.

Imidlertid er resultatene som kommer frem gjennom disse undersøkelser, bare begrenset anvendbare ved den praktiske behandling av forurensningsproblemen. For en teknisk løsning er det nødvendig å ha brukbare parametre som binder sammen målsetting for et vassdrag og forholdsregler mot forurensning.

Fysiske og kjemiske faktorer vil være bestemmede for de biologiske forhold i resipienten, samtidig som organismelivet vil virke tilbake på vannmassenes egenskaper. Med andre ord, den fysisk-kjemiske komponent av selvrengjøringsprosessen lar seg ikke skille fra den biologiske, de utgir et
hele. Resultatet av dette sammenspill av prosesser kommer til synse i suk-
sesjonen av organismer i resipienten nedenfor et utslipp.

Med utgangspunkt i det som er sagt ovenfor, kan de formål og krav man
setter til vassdragssøknadene formuleres i følgende tre hoved-
punkter:

1. Å skaffe til veie et materiale som representerer de fysiske,
kjemiske og biologiske (økologiske) forhold i vassdraget.
Dette materialet må være slik at det kan gi informasjoner
om vassdragets forurensningsstilstand. Videre må det kunne
brukes ved vurdering av hvilke konsekvenser en fortsatt
bruk av vassdraget som resipient for avløpsvann har, eller
hva tiltak som berører vassdraget vil medføre for de fysisk-
kjemiske og biologiske forhold.

2. Ved valg av parametre må det i første rekke tas hensyn til
at resultatene skal være av en slik art at de har direkte
verdi ved bestemmelse av hvilke tekniske og andre praktiske
tiltak som vil være mest fordelsaktige i en gitt situasjon.
Videre må det tas hensyn til at resultatene skal kunne brukes
som vurderingsgrunnlag ved forurensningslovgivning, ved plan-
legging av bosettingsmønster o.l., og bakgrunn ved beslutninger
som angår vassdragene.

3. Materialet må være slik at det uten videre både i praktisk
og vitenskapelig sammenheng kan brukes som et dokumentasjons-
materiale om vassdragstilstanden. Det må også kunne bli
et viktig erfaringsmateriale for hvordan forholdene kan
utvikle seg i et vassdragssystem.

4. OPPBYGNING AV KONTINUERLIGE VASSDRAGSUNDERSKELSER

Foreløpt kan en vassdragssøknad teoretisk inndeles i
tre hovedavsnitt:
1. Orienterende eller forberedende undersøkelser
2. Hovedundersøkelse

Orienterende eller forberedende undersøkelse

Denne delen av undersøkelsen vil omfatte befaringer, dataregistreringer og analyser som er nødvendige å foreta for å planlegge en hovedundersøkelse.

Hovedundersøkelse

Hovedundersøkelsen skal planlegges og gjennomføres på en slik måte at resultatene tilfredsstiller de krav som er stillet ved formålsformuleringen.

Kontroll- eller oppfølgingsundersøkelse

På bakgrunn av de resultater som er fremkommet ved hovedundersøkelsen, utarbeides det programmer for rutinemessige kontrollundersøkelser (monitoring stations). Arbeidet omfatter en kontinuerlig rutineinnsamling av fysisk-kjemiske og biologiske data bestemt ut fra hovedundersøkelsen.

Opplegget for denne del av vassdragsundersøkelsen vil være bestemt av sin hensikt:

1) Kontroll av tiltak i nedbørfeltet (vassdraget) og av tiltak i forbindelse med utslipp av avløpsvann.

 a) Undersøkelsen gjennomføres slik at man kan følge utviklingen i et vassdrag etter at praktiske tiltak er gjennomført

 b) Ved undersøkelsen vil man til en viss grad ha bakgrunn for tilsyn med at eventuelle iverksatte tiltak virker eller etterleves
c) Undersøkelsen kan gi informasjon om eventuelle ukontrollerte forurensninger (gjennom overflatevann, lekkasjer, jordbruksavrenning o.l.) og hvordan de virker på vassdragene.

d) Man vil til enhver tid ha et aktuelt observasjonsmateriale som kan brukes i sammenheng med samfunnsplanlegging. Muligheten for mer vassdragsvennlig planlegging som bygger på kunnskaper om vassdraget, er derved til stede. Planleggingsarbeidet kan bli mer rasjonelt, idet man ikke trenger å iverksette et større undersøkelsesprogram for å skaffe til veie det observasjonsmateriale man behøver.

2) Oppsamling av erfaringsmateriale.

a) Selv om det samles inn et relativt grundig observasjonsmateriale gjennom hovedundersøkelsen, kan det likevel være vanskelig å foreslå gode løsninger på f.eks. avløpsproblemer i en gitt situasjon. En påfølgende, rutinemessig oppfølging av forholdene i vassdraget vil kunne gi muligheter for sikrere konklusjoner.

b) Hittil foreligger få kunnskaper om langtidsvariasjoner av økologiske forhold i norske vassdragsystemer. Kunnskaper om slike forhold er nødvendige for en god vassdragsplanlegging.

c) Vitenskapelig vil en oppfølgingundersøkelse være av verdi ved å gi beskrivelse av fenomener og skaffe til veie materiale som dokumenterer prosesser som foregår og har foregått i et vassdrag.

Det er praktisk å dele parameterspakketet i tre, nemlig:

a) Fysiske parametre
b) Kjemiske parametre
c) Biologiske parametre.
Disse parametergrupper kan hver for seg gi informasjoner som er verdifulle ved vurdering av tilstanden i et vassdrag. Likevel er det samspillet mellom dem som er av størst betydning for å kunne forstå tilstanden i en vannforekomst og hvordan utviklingen videre fremover vil bli.

Undersøkelsene av vannets fysiske og kjemiske egenskaper i et vassdrag skal tjene tre formål:

1) Disse data skal brukes til å bestemme vannets fysisk-kjemiske kvalitet, noe som det er nødvendig å kjenne til før å vurdere vannets brukbarhet som drikkevann, industrivann, vann til jordbruk, o.l.

2) Disse data beskriver økologiske faktorer som inngår ved de biologiske undersøkelsene, og gir dermed muligheter for å sette de biologiske effektene som måles i vassdraget, i relasjon til forandringene av de fysiske og kjemiske faktorene som skyldes menneskelige påvirkninger.

3) Disse data skal kunne brukes rent vitenskapelig for å få et bedre kjennskap til de naturlige variasjoner i de fysisk-kjemiske forhold i vassdragene.

For at disse formål skal kunne oppfylles, må arbeidet gjennomføres på en slik måte at følgende krav tilfredsstilles:

1) Undersøkelsen må være av en slik art og foretas på en slik måte at man kan forstå faktorenes årsakssammenheng og klarlegge variasjonene i tid og rom.

2) Den fysisk-kjemiske undersøkelse må gjennomføres slik at den er tilfredsstillende for den økologiske vurdering av vassdraget. Det er relasjonene mellom de biotiske og abiotiske faktorene som er avgjørende for forståelsen av vassdragets økologiske tilstand. Dette kravet er avgjørende for undersøkelsens verdi både i forskningsmessig og praktisk sammenheng.
Disse formål og krav til den fysisk-kjemiske undersøkelse må en ta hensyn til ved bestemmelsen av prøvetakingssteder, prøvetakingsfrekvens og ved valg av fysiske og kjemiske parametre.

De biologiske undersøkelsene skal også tjene tre formål:

1) De biologiske data skal gi kvantitative og kvalitative uttrykk for den økologiske tilstanden i vassdraget på en slik måte at dataene er praktisk anvendbare. Dette er en forutsetning for å kunne utnytte vassdraget på en forsvarlig måte slik at vi vil være tjenet med forholdene i fremtiden, enten det gjelder vann til husholdning, industri og jordbruk, som resipient eller til trivsels- og rekreasjonsformål.

2) De biologiske data skal sammen med de fysisk-kjemiske, bli et erfaringsmateriale som skal danne grunnlaget for å vurdere og forstå aktuelle forurensningsvirkninger når slike oppstår. Likedan vil de være bakgrunn for å forstå virkningen av tiltak som iverksettes for å beskytte vassdraget mot forurensninger.

3) De biologiske data skal gi detaljert kjennskap til organismeliv og livsprosesser i vassdragene våre.

De samme krav som ble stillet til de fysisk-kjemiske undersøkelsene, gjelder også for de biologiske.

Utgangspunktet eller basis for de biologiske undersøkelsene blir en kvalitativ og kvantitativ innsamling av organismer kombinert med eksperimentelle undersøkelser på laboratoriet og i felten. Prøvematerialet fra felt- og laboratorieeksperimentene skal underkastes kvalitative og kvantitative bearbeidelser basert på kunnskap om taxonomi, autokologi, synskologi, energi-strøm og massetransport.

5. BEHOV FOR SAMARBEID MELLOM INSTITUSJONER

Et viktig ledd ved gjennomføringen av de generelle vassdrags-undersøkelsene er å få etablert kontakt- og samarbeidsformer mellom institutionene. Dette er like viktig enten det er tale om toveis
informasjon om arbeidet og dataene, eller det gjelder samarbeid av praktisk og teoretisk art. Av naturlige årsaker vil det være nødvendig å holde kontakt og å samarbeide på to plan, nemlig det administrative og det faglige.

Det administrative plan

Det faglige plan

Når det gjelder dette plan, vil flere former for samarbeid gjøre seg gjeldende:

1) Praktisk og teoretisk samarbeid

En bredt anlagt vassdragsundersøkelse krever kvalifiserte mennesker på mange fagområder. Det vil neppe være rasjonelt at én og samme institusjon bygger opp kompetanse på alle disse områder, men at man heller søker å utvikle samarbeid mellom institusjoner hvor den nødvendige kompetanse finnes.

2) Informasjonsarbeid

Det er i dag en rekke institusjoner som samler inn data om naturforhold som er nødvendige for vassdragsundersøkelser. Dette gjelder institusjoner som Norges vassdrags- og elektrisitetsvesen, Meteorologisk institutt, Norges geologiske undersøkelser, Statens institutt for folkehelse, universiteter og høyskoler, institutter tilknyttet forskningsrådene, m.fl. Det vil være nødvendig å etablere et fast gjensidig informasjonsarbeid mellom disse institusjoner. Spesielt er det viktig å få knyttet kontakt med det nye organet for vassdragstilsyn så snart som mulig. Ett av hovedformålene med de generelle vassdragsundersøkelser er å
skaffe kunnskap og et faglig bakgrunnsmateriale som kontroll-organet kan bruke som basis for sitt tilsyn med vassdragene.

6. AVSLUTNING

Vesentlig erfaring er innvunnet når det gjelder utførelsen av vassdragsundersøkelser og hvordan resultatene fra slike undersøkelser kommer til nytte i sammenheng med behandlingen av de praktiske problemstillinger som er knyttet til vassdragene.

Det er blitt tydelig at måten disse undersøkelsene har vært drevet på, ikke lenger er tilfredsstillende før å sikre bakgrunn for et forsvarlig arbeid med vassdragene og behandlingen av samfunnspromene knyttet til vannressursene. Det er med utgangspunkt i dette at kontinuerlige vann- og vassdragsundersøkelser i Norge nå bør arbeides frem.

Sku/krs
26/10-1971
Norges almenvitenskapelige forskningsråd
Norges landbruksvitenskapelige forskningsråd
Norges Teknisk-Naturvitenskapelige Forskningsråd

F. 09.17-1 - Konseptutkast om eventuell norsk deltagelse i det internasjonale forskningsprogram "Man and the Biosphere" (MAB).

Vedlagt oversendes utkast til uttalelse fra Norsk interimskomité for MAB angående norsk deltagelse i forskningsprogrammet.

Komitéen er kommet frem til at det både i nasjonal og internasjonal sammenheng er av betydning at Norge kan delta i MAB-programmet. Det foreslås at:

1) Den norske regjering prinsipielt gir sin tilslutning til aktiv norsk deltagelse i MAB-programmet.

3) Det bevilges kr. 510,000 til prosjekteringsstudier og Interimskomitéens videre arbeid i 1972.

Komitéen foreslår videre et norsk MAB-engasjement finansieres over det nye Miljøverndepartementets budsjett, og at planleggingen av norske prosjekter bør påtagelig allerede i innekommende år.

Som kjent regner man med at Miljøverndepartementet vil være etablert i nærmeste fremtid, og Interimskomitéens utkast vil bli rettet til dette departementet. Komitéen vil derfor be om at uttalelsen får en resk saksbehandling i forskningsrådene, slik at Interimskomitéen kan oversende departementet en uttalelse i løpet av kort tid.

For Norsk Interimskomité for MAB

[Underskrift]

[Underskrift]
KOMITEUTTALELSE OM EVENTUELL NORSK DELTAKELSE I DET INTERNASJONALE FORSKNINGSPROGRAM "MAN AND THE BIOSPHERE" (MAB)

1. Oppnevning av Norsk interimskomite for MAB.

"Unesco Advisory Committee on Natural Resources Research" fremsatte på møte i september 1965 ønske om intensivert internasjonal forskning om rasjonell bruk og bevaring av biosfærens ressurser.

Unesco's 14. generalforsamling besyndiget i november 1966 generaldirektøren til å innkalle til en "Intergovernmental conference of experts on the scientific basis of rational use and conservation of the resources of the biosphere". Som følge av dette ble det holdt en konferanse i september 1968 der det ble anbefalt at et "international programme for research on man and the biosphere" skulle forberedes. Anbefalingen ble tiltrådt av Unesco's 15. generalforsamling i oktober/november 1968, og generaldirektøren for Unesco ble anmodet om å utarbeide "Plan for a long-term intergovernmental and interdisciplinary programme on the rational use and conservation of the natural environment and its resources". En slik plan:"PLAN FOR A LONG-TERM INTERGOVERNMENTAL AND INTERDISCIPLINARY PROGRAMME ON MAN AND THE BIOSPHERE" (MAB) er fremlagt i Unesco-dokumentet 16 C/78.

På denne bakgrunn ba Den norske nasjonalkommisjon for Unesco i brev av 26. januar 1971 hovedkomitéen for norsk forskning om uttalelse vedrørende følgende 3 spørsmål:

1. Betydningen av aktiv norsk deltakelse i MAB-programmet.
2. Sømmensetting og oppnevning av en eventuell norsk MAB-komite.
3. Finansiering av et norsk program.

Hovedkomitéen har drøftet saken med representanter fra Norges almenskapelige forskningsråd (NAVF), Norges landbruksvitenskapelige forskningsråd (NLVF) og Norges Teknisk-Naturvitenskapelige Forskningsråd (NTNF). På bakgrunn av disse drøftinger avga hovedkomitéen følgende svar:

"1. Norge bør delta i MAB-programmet fordi de spørsmål som tas opp, er av stor betydning å få klarlagt. Det er betydelig interesse for deltakelse i de forskjellige norske forskningsmiljøer som prosjektet vedrører faglig."
2. En norsk MAB-komite bør oppnevnes av de tre forskningsråd i felleskap og ha følgende sammensetting:

Fra NAVF 3 representanter (av disse 1 fra International Biological Programme (IBP))

" NLVF 2 "
" NTNF 2 "

NAVF tar på seg sekretariatfunksjonen. Representanter fra Hovedkomitéen for norsk forsknings arbeidsgruppe for økologi kan delta etter ønske på observatørbasis.

3. Finansiering av virksomheten søkes løst gjennom de kanaler som de tre forskningsråd finner naturlig, hver for seg eller i fellesskap. Spørsmålet om eventuell(e) sørsbevilgning(er) til MAB fra statsbudsjettet vurderes av forskningsrådene på grunnlag av arbeidsprogram fra den norske MAB-komiteen.

NLVF og NTNF sluttet seg til Hovedkomitéens foreslag, mens NAVF mente at saken burde utsettes inntil et rådgivende utvalg hadde foretatt en faglig vurdering av MAB-planen innenfor de biologiske fag.

Da det i et nytt skriv av 30. august 1971 fra Hovedkomitéen for norsk forskning ble klart at den foreslåtte komité skulle være et "konsultativt organ uten mulighet for å bestemme over de enkelte råds avgjørelser", tiltrådte NAVF forslaget fra Hovedkomitéen. Den 11. november 1971 ble det gitt melding til Unesco fra Hovedkomitéen om at det var opprettet en Norsk interims-komite for MAB. Denne komité fikk følgende sammensetting:

Professor Jon Jonsen, formann
dr. M. C. Christensen
professor Jul Låg
professor Olav Sandvik
avdelingssjef O. M. Skulberg
professor Rolf Vik
professor Kristian Fr. Wiborg til 19/2 1972
professor Jan Raa fra 19/2 1972

Nils P. Wedega, sekretær
2. MAB-programmets formål, kriterier og forskningsområder.

Programmets formål.
1. Målsetting.

I.C.C. har, på grunnlag av en vurdering av programmet som er utført i dokument 16 C/73, vedtatt følgende målsetting for programmet:

"Programmets generelle målsetting er å utvikle grunnlaget innen natur- og samfunnsvitenskap for rasjonell bruk og bevaring av biosførens ressurser og forbedring av det globale forhold mellom mennesket og omgivelsene; å forutsi følgene av dagens handlinger på morgendagens verden og derved øke menneskets evne til hensiktsmessig å forvalte biosførens naturlige ressurser."

Med denne generelle målsetting for åyet tar programmet sikte på å fremme et begrenset antall forskningsområder etter følgende retningslinjer:

1. Å påvise og vurdere endringer i biosføren som følge av menneskets virksomhet og virkningen av disse på mennesket.

2. Å undersøke og sammenlikne struktur, funksjon og dynamikk hos de naturlige, påvirkede og forvaltende ekosystemer.

3. Å undersøke og sammenlikne de dynamiske forhold mellom aktuelle ekosystemer og sosio-økonomiske prosesser og særlig virkningen av endringer i befolkningsgrupper, bosettingsmønster og teknologi på disse systemers fremtidige eksistensmuligheter.

4. Å utvikle metoder for å måle kvantitative og kvalitative endringer i omgivelsene for å finne frem til vitenskapelige kriterier som kan danne grunnlaget for rasjonell bruk av naturressurser og for fastsetting av kvalitetsnormer for miljøer.

*) I den engelske tekst blir ordet "projects" benyttet om de 13 punkter gjengitt her på s. 5 og 6. Komiteen mener at oversettelse til prosjekt ikke er dekkende idet "prosjekt" i vår betydning er klareare definert og avgrenset om det som fremgår av titelene på de 13 "projects" som er angitt senere i dette skriv.
5. Å fremme større global sammenheng i miljøforskningen ved:
(a) å utvikle sammenliknbare, forenligige og, hvor det er hensiktsmessig, standardiserte metoder for innsamling og behandling av data.
(b) å fremme utveksling og overføring av kunnskaper og miljøproblemer.

6. Å fremme utvikling og bruk av simulering og andre teknikker for forutsigelse som redskap for vår miljøforvaltning.

7. Å fremme undervisning om miljøet i videste betydning ved:
(a) å fremskaffe bakgrunnsmateriale for utdanning på alle trinn,
(b) å fremme utdanning av specialister i aktuelle fag,
(c) å fremheve miljøproblemenes tverrfaglige natur,
(d) å stimulere global forståelse for miljøproblemer ved offentlige og andre opplysningsmedia,
(e) å fremme idéen om menneskets personlige utfoldelse i harmoni med naturen og dets ansvar for dette.

Selvom programmets tittel er "Man and the Biosphere" vil det ikke inkludere oceanografiske, hydrologiske eller meteorologiske forskningsprosjekter, da disse områder ivaretas av andre organisasjoner og forskningsprogrammer.

2. Kriterier.

I.C.C. anbefalte følgende som kriterier for valg av MAB-prosjekter:

1. At prosjektet ved naturvitenskapelig og samfunnsvitenskapelig forskning (inkludert kartlegging og gjenåpning kartlegging) kan fremskaffe informasjon som er av betydning for å treffe rasjonelle beslutninger om bruken av naturressurser.

2. At den nødvendige forskning er gjennomført, og at den kan antas innen rimelig tid å gi resultater med tilstrekkelig nøyaktighet for å kunne nyttes.

3. At betydelig fremgang kan oppnås ved internasjonalt samarbeid, gjennom samordnet planlegging og utførelse, bruk av sammenliknbare og standardiserte metoder samt utveksling og syntese av informasjoner.

4. At prosjektet ligger innen Unescos kompetanse- og ansvarsområde selv om det inneholder noen elementer som er innenfor andre statlige og ikke-statlige organisasjoner kompetanseområde.

5. At prosjektet i seg selv er et forskningsprosjekt som på vesentlige punkter vil ôke vår kunnskap om samspillet mellom mennesket og biosfæren.

I.C.C. anbefalte videre følgende redigering til avslutning...
A. At prosjektet bør være tverrfaglig enten med hensyn til vitenskapelige disipliner eller i den betydning at det inkluderer studier av vekselvirkningen mellom befolkningssgrupper og biosfæren.

B. At det bør være til direkte hjelp og av økonomisk betydning for utviklingslandene.

C. At det, hvor det er mulig, bør baseres på visse utvalgte forskningscentra hvor nødvendige ressurser allerede er tilgjengelige og beslektet forskning er i god gang og kan utvikles på en økonomisk måte.

D. At det med fordel kan knyttes til et utdanningsprogram, særlig for økologer med noen kunnskap om samfunnsvitenskap eller vice versa.

E. At det er velegnet for utdannings-, demonstrasjons- og veiledningstjeneste.

F. At prosjektet kan føre til betydelig fremgang for løsning av det aktuelle problem.

På grunnlag av dokument 16 C/78 ble følgende 13 forskningsområder vedtatt:

Forskningsområde 1: Økologiske virkninger av økende menneskelige aktiviteter på tropiske og subtropiske skog-ekosystemer.

2: De økologiske virkninger av skjøtselsformer og annen anvendelse av arealer på skoglandskaper i tempererte områder og Middelhavskog.

4: Undersøkelse av den menneskelige innflytelse på dynamikken i ørken og halvørken ekosystemer med oppmerksomhet rettet mot virkningene av irrigasjon.

5: De økologiske virkninger av menneskelige aktiviteter i urbane, industrielle og rurale områder på verdien av innsjøer, myrer, elvedeltaer, estuarer og kystområder som ressurser for natproduksjon og for naturopplevelse, rekreasjon og bevarelse av dyre- og planterarter.

6: Virknings av menneskelige aktiviteter på fjell-økosystemer.

7: Økologi og rasjonal utnyttelse av øy-økosystemer.
Forskningsområde 8: Deutelse av naturområder og det genetiske materiale som de inneholder.

9: Ækologisk vurdering av virkningene av skadedyr- og ugressbøkjempe og gjödsling på terestre og økologiske økosystemer.

10: Virkninger av ingeniørarbeider på mennesket og miljøet.

11: Ækologiske aspekter ved energiutnyttelser i urbane og industrielle systemer.

12: Demografiske endringer og konsekvenser for miljøet.

13: Oppfatningen av miljøkvalitet.

3. Interimskomiteens vurdering.

3.1. Generelle vurderinger.

Komiteen ser det som meget verdifuldt at Unesco har tatt det initiativ som kommer frem i MAB-programmet. Den slutter seg til programmets målsetting, og at de foreslåtte kriterier legges til grunn også for et norsk MAB-program. Norge har gjennom programmet en enestående mulighet for å bidra til løsning av de alvorlige problemer vår verden står overfor. Utvallet er avhengig av at MAB får en bred internasjonal oppslutning. Hvert prosjektområde i programmet vil kreve deltakelse på nasjonalt nivå med en internasjonal koordinering.

Da Norge i sterk grad importerer nødvendige næringsmidler, har vi spesielle vanskeligheter med å tilbakeføre avfallsstoffer som kjøkkenavfall, kloakk, slan etc. i den biologiske syklus. Når næringsmidler i stigende grad konserveres i helt andre strøk av verden enn hvor de produseres, har konsumlandene et økende og meget problematisk samfunnsmessig ansvar. På liknende måte gjør det seg gjeldende problemer for en rekke andre stoffer som utvinnes eller foredles andre steder enn hvor de anvendes. Det resulterer i avfallsstoffer av organisk og uorganisk natur som kan være vanskelig å tilbakeføre i det naturlige kretsløp. Det er behov for å arbeide frem løsninger for dette som bl.a. kan innebære nyttigjøring av avfallsstoffenes verdifulle egenskaper. Samfunnspromemene må derfor i større grad enn tidligere ses i global sammenheng hvis man skal kunne unngå uttapping av ressurser i produksjonlandene og skadevirkninger som følge av akkumulering av avfallsstoffer i konsumlandene. For å kunne tilbakeføre biologiske avfallsstoffer er det viktig å ha landarealer i kultur som recipienter.

Under alle de tre forskningsråd foregår det i dag en rekke vitenskapelige undersøkelser som har relasjon til Unescos MAB-program.

NAVF har bl.a. foretatt en utredning om forholdene innen de biologiske fag ved universitetene. Denne utredning viser at det er flere prosjekter som kan være aktuelle i et norsk MAB-program, og at flere institutter er interesserte i å starte nye prosjekter. For øvrig finansierer NAVF prosjekter både under Miljøvernutvalget og under fagrådene som bør ses i sammenheng med MAB.

NLVF har bl.a. utarbeidet en publikasjon med tittel:"Forskningsprosjekter finansiert av Norges landbruksvitenskapelige forskningsråd i 1971". Denne gir også en oversikt over en rekke prosjekter innenfor området naturgrunnlag og miljø.

NTPF finansierer gjennom Norsk institutt for vannforskning (NIVA), Norsk institutt for luftforskning (NILU) og Norsk institutt for by- og regionforskning (NIBR) prosjekter med relasjon til MAB-problemer. Dessuten har NTPFs forurensningskomité tatt opp slike prosjekter ved andre institutter. Liknende finansierer NTPF gjennom sine andre faglige komitéer prosjekter med miljørelevans.

Av stor betydning for eventuell norsk deltagelse i MAB-programmet er det
Internasjonale Biologiske Program (IBP) hvor Norge deltar. IBP skal etter planen avsluttes i 1974. En videreføring av IBP-prosjekter i MAB bør, etter komittens mening, vurderes på like linje med andre forslag til prosjekter.

I forbindelse med drøftingene omkring MAB-programmet har forskningsrådene vært i kontakt med forskjellige aktuelle forskningsmiljøer, og responsen hos forskerne er stort sett positiv til programmet.

Spesielt vil komittén nevne den utredning om MAB som NAVF har foretatt på grunnlag av document C 16/78. Man har ved hjelp av spørreskjemaer spurt 72 institutter (samtlige biologiske institutter listeført i NAVF’s biologi-utredning unntatt NTNF’s institutter og institutter som bevilgningsmessig vanligvis sorterer under NLVF). 61 institutter har besvart spørreskjemaet, og det fremgår klart at norske forskere ser velvillig på MAB-planen under forutsetning av tilstrekkelige midler og på visse premisser.

Etter en sammenfattende vurdering mener komittén at det både i nasjonal og internasjonal sammenheng er av betydning at Norge kan delta i MAB-programmet.

3.2. **MAB i Norge.**

Det er komittens mening at man i Norge bør koncentrere innsatsen i forbindelse med MAB omkring et mindre antall prosjekter hvor flere fagdisipliner og institusjoner deltar. Prosjektene bør være av global eller bred regionale betydning, slik at ulike forskningsmiljøer kan samarbeide nasjonalt, regionalt og internasjonalt. De prosjekter som inn går i MAB bør, så vidt mulig, integreres i de enkelte miljøer ved universiteter, høgskoler og andre forskningsinstitusjoner.

Komittén vil imidlertid poengtere at selv om man generelt tar sikte på noen få hovedprosjekter, bør mindre prosjekter ikke utelukkes fra deltagelse i MAB. Det er viktig at all relevant forskning blir utnyttet i MAB-programmet. Komittén mener at de 13 forskningsområder som er foreslått av I.C.C., må betraktes som et forslag som både ut fra et nasjonalt og internasjonalt synspunkt kan suppleres. I programmet er det indikert en tidsramme på 10 år for deler av programmet, og i løpet av en slik periode vil det kunne gjøres endringer hvis man finner det ønskelig eller nødvendig.

Komittén vil understrekke betydningen av at de norske MAB-prosjekter har klare målsettinger med relasjon til de alvorlige problemer i forholdet mel-
lom mennesket og biosfären som ligger til grunn for MAB-programmet.

Komitten savner i Unesco's opplegg en nærmere analyse av de trusler og problemer det her gjelder og som burde utgjøre en del av grunnlaget ved prioriteringen av de oppgaver man vil ta opp i MAB-programmet. For sitt vedkommende har komitéen ikke funnet å kunne gjennomføre en slik analyse.

Hensikten med og tyngdepunktet i et norsk MAB-program må, etter komitéens mening, være å bidra til å nestre disse trusler. En aktiv forskningsinnsats innenfor MAB-programmets ramme vil kunne gi resultater som kan føre oss et skritt videre. En antar også at Fil's miljøkonferanse i 1972 vil gi verdifulle bidrag til en analyse av de trusler vi står overfor, og at dette vil kunne påvirke den videre utvikling av MAB-programmet i Norge.

I dokumentene fra I.C.C.'s møte heter det bl.a.: "Each international project will, as far as possible, develop procedures for the prediction necessary for rational management, both on a temporal and spatial basis". I overensstemmelse med dette bør, etter komitéens mening, de norske MAB-prosjekter ta sikte på å gi kunnskap som grunnlag for alternative forslag til disponering av våre naturressurser basert på økologiske, medisinske og sociologiske forskningsresultater og vurderinger. Prosjektene bør således gå ut over en ren registrering av endringene i biosfären.

I programmets målsetting er det i pkt. 1 presisert at programmet tar sikte på "å påvise og vurdere forandringer i biosfären som følge av menneskets virksomhet og virkningen av disse på menneskene". Dette er også sagt eksplicitt i avsnittet "Impact of man and on man" i I.C.C.'s "Final Report". Komitéen legger stor vekt på at en må slike å klarlegge gjennom både naturvitenskapelig, samfunnsvitenskapelig og medisinsk forskning hvilke komsekvenser endringer i miljø og biosfære har for mennesket.
Det foreligger en god del kunnskaper om våre miljøproblemer og deres behandling. Hovedvanskeligheten som kommer i veien for å løse dem, er i for- lig sammenheng manglende innstik i hvordan praktiske tiltak kan gjennom- föres i harmoni med naturforholdene. Det er åpnet muligheter for slike løs- ninger ved moderne økosystemforskning. I.C.C. har også i retningslinjene for programmet i pkt. 6 sagt at det tar sikte på "to promote the development and application of simulation and other techniques for prediction as tools for environmental management". Komitéen vil legge vekt på å utvikle systemanalyse i denne forstand bl.a. ved å opprette en rådgivende gruppe innenfor dette området (se nedenfor) og ved å forsøke å etablere et eller flere modellprosjekter.

Komitéen har vurdert de 13 prosjektmålene som ble vedtatt av I.C.C.

Bortsett fra følgende områder:

1. (Tropiske og subtropiske skog-økosystemer)
4. (Ørken og halvørken-økosystemer)
7. (Øy-økosystemer)

vil det, etter komitéens mening, være knyttet betydelig interesse for norsk forskningsinnsats innen alle områder.

For å sikre forenkling i de enkelte fagområder som bidrar til MAB-prosjekter som komitéen velger, vil komitéen som en forsøksordning i forståelse med forskningsmålene og nyhighetene, nedsette ad hoc rådgivende grupper innen forskjellige fagområder. Gruppene skal for sine fagområder:

- Foreta en kartlegging av de ressurser som i MAB-sammenheng er til- gjengelige både hva angår personale, utstyr og bygg.
- Gi foreslag til program for rekkruttering innen fagområdet i MAB-samen- heng.
- Vurder hvordan fagområdet kan bidra til MAB-prosjekter og eventuelt gi foreslag til utforsking av de delprosjekter hvor fagområdet trengs.
- Gi råd i spørsmål som forelegges den av MAB-komitéen.
Førelopig har man tenkt nødsatt grupper innen:

1. Terrestrisk økologi.
2. Estuar-, fjord- og kystfarvannsøkologi.
3. Forskningsøkologi.
4. Naturvern.
5. Toxikologi.
6. Pesticider/plantevern.
7. Geomedisin.
8. Samfunnsvitenskap.
10. Mikrobiologi.
11. Miljøfysiologi.
12. Systemanalyse.

Komiten vil forestå koordineringen av de rådgivende grupper. Førelopite sonderinger har vist stor interesse for deltakelse i slike rådgivende grupper. Etableringen av gruppene vil være av betydelig interesse for utnyttelsen av våre forskningsressurser når det gjelder økologi i vid forstand, og tilskudd fra myndighetene bør derfor gi maksimal utnyttelse. Komiten regner med at arbeidet innenfor MAB på denne måten kan settes i gang uten store forsinkelser.

På det nåværende tidspunkt finner komiten det ikke ønskelig å legge frem forslag til konkrete prosjekter. Komiten har arbeidet under den forutsetning at en ved bekjentgjøring av MAB-programmet for norske forskningsmiljøer vil innhente begrunnede forslag til prosjekter. På dette grunnlag vil komiten utarbeide et forslag til igangsetting av MAB-programmet i Norge. Komiten regner imidlertid med, etter omfattende sonderinger, at det er aktuelt med større tverrvitenskapelige prosjekter i tilknytning til våre höyre læresteder og andre forskningsinstitusjoner både på Østlandet, i Bergen, Trondheim og Tromsø.

Interimskomiten viser til I.C.C.'s retningslinjer og kriterier for valg av prosjekter. Komiten mener at man ved valg av norske prosjekter spesielt bør ta hensyn til følgende punkter:

1. Prosjektene bør være tverrvitenskapelige. Det bør være et nort samarbeid mellom de tre forskningsråd nettopp fordi programmet spenner fra samfunnsvitenskap og medisin over biologisk grunnforskning til landbruksvitenskap og teknologi.
2. Prosjektene bør være av internasjonal eller regional betydning, slik at nordisk og internasjonal samarbeid lett kan etableres.

3. Prosjektene skal støtte seg på eksisterende institusjoner og forskningsmiljøer.

4. Prosjektene bør gi muligheter for utdanning av forskere innenlands eller utenland.

5. Prosjektene bør normalt utføres ved universiteter, høyskoler og andre institusjoner i nær tilknytning til forskning og undervisning i grunnleggende disipliner.

3.3. Finansieringen av MAB i Norge.

Forskningsprogrammer med et omfang som er skissert i MAB-planen, vil kunne få stor betydning for utviklingen av forskningen i et land. En deltekke i et slikt program krever store investeringer både personnelsmessig og økonomisk. Ikke minst vil det over en 10-årsperiode kunne ha en stor rekruteringseffekt. Hår midlere er knappe, er det vesentlig at programmet bygges ut i forståelse og harmoni med annen beslektet forskning.

Komitten erkjenner fullt ut at samfunnet og forskningen i dag står overfor meget store og kompliserte problemer i forbindelse med miljø- og ressurs-utnyttelse. For å kunne løse disse problemene i overensstemmelse med MAB-pro grammets målsetting kreves en større og bedre koordinert innsats på de aktuelle forskningssområder. Interimskomitten mener at det ikke er aktuelt med en bred norsk deltakelse i MAB dersom det ikke bevilges midler spesielt til dette formålet. Komitten vil foreslå at det i tillegg til de vanlige bevilgninger til forskningsformål gis øremerkede bevilgninger over det nye miljøverndepartement.

Kort skissert ser Interimskomiten det som ønskelig med følgende rutselinejer for organiseringen av et MAB-program:

1. Det bevilges midler til MAB over Miljøverndepartementet.

2. MAB-komitéen utarbeider forslag til MAB-program på grunnlag av innhentet materiale fra forskningssmiljøene.

3. Forslag til program vurderes av forskningsrådene.

Interinskomitéen ser det som ønskelig at de praktiske ordninger med ansættelser, lønnstilbetalinger, innkjøp m.v. skjer i samband med forskningsrådene og etter de retningelinjer som ellers blir fulgt.

For å kunne følge en slik fremdriftsplan vil Interinskomitéen foreslå følgende budsjett:

1.9.72.

1. Rådgivende grupper.
Møter og honorerer for 12 rådgivende grupper, kr. 10,000 pr. gruppe

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120,000</td>
</tr>
</tbody>
</table>

2. Reiser for Interinskomitéen i forbindelse med
nordisk samarbeid og Unesco-møter

<table>
<thead>
<tr>
<th>Møte</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,000</td>
</tr>
</tbody>
</table>

3. Prosjekteringsservice.

<table>
<thead>
<tr>
<th>Service</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For planlegging av prosjekter</td>
<td>250,000</td>
</tr>
</tbody>
</table>

4. Sekretariat, symposier m.v.

<table>
<thead>
<tr>
<th>Symposier, Sekretariat</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interinskomitéens sekretariat, felles symposier, utenlandsk ekspertise m.v.</td>
<td>100,000</td>
</tr>
</tbody>
</table>

TOTALT FOR 1972: kr. 510,000

1.9.73.

1. Rådgivende grupper

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240,000</td>
</tr>
</tbody>
</table>

2. Reiser for Interinskomitéen

<table>
<thead>
<tr>
<th>Møte</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50,000</td>
</tr>
</tbody>
</table>

3. Prosjekteringsservice

<table>
<thead>
<tr>
<th>Service</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250,000</td>
</tr>
</tbody>
</table>

4. Sekretariat m.v.

<table>
<thead>
<tr>
<th>Symposier</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150,000</td>
</tr>
</tbody>
</table>

5. Forskningsprosjekter

<table>
<thead>
<tr>
<th>Prosjekter</th>
<th>Beløp (kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000,000</td>
</tr>
</tbody>
</table>

TOTALT FOR 1973: kr. 4,690,000

Interimskomiten tillater seg å be om at:

1. Den norske regjering prinsipielt gir sin tilslutning til aktiv norsk deltekelse i MAB-programmet.
