STABILITET AV HJUMUS I VANN
Avsluttende rapport

Saksbehandler: Cand.real. E. T. Gjessing
Ingeniør J. K. Nygård
Rapporten avsluttet: Februar 1972
INNHOLDSFORTEGNELSE:

1. STABILITET AV HUMUS I VANN 3
2. EKSPERIMENTELT 4
3. RESULTATVURDERING OG KONKLUSJON 6

TABELLFORTEGNELSE:

1. Vannprover fra Østervann (Bærum) tatt fra 8
 0,5 - 1,0 m dyp nær demning (1970 og 1971)
2. Forsøksbetingelsene ved forsøk I, II, III & IV
3. Slammengde dannet i de to systemene ved fire 10
 forskjellige forsøk
4. "Benke"-forsøk (Serie V). Humusvann ble tilsatt forskjel-
 lige mengder Ca(OH)$_2$ blandet og filtrert. 11
5. Rysteforsøk med "brukte" filtre (Whatman GF/C) 12

FIGURFORTEGNELSE:

1. Forsøksoppsett for seriene I, II, III og IV 13
2. Folkholdet mellom pH og kalsium hydroksyd 14
3. Forholdet mellom tilsatt kalsium hydroksyd og 15
 mengde filtrerbart tørrstoff
4. Alkalisk ekstraksjon av suspendert stoff 16
STABILITET AV HUMUS I VANN

Humus i vann er en stabil organisk stoffgruppe som bare langsomt forandres under naturlige betingelser. Man har imidlertid erfaring for at når denne vanntype utsettes for ytre påvirkning som f.eks. en alkalisering, vil likevekten kunne forskyves slik at man får en utfelling av dette gulbrune organiske stoff. De forsøk som er beskrevet nedenfor har hatt som hovedhensikt å undersøke graden av utfelling ved tilsetning av forskjellige mengder av kalsiumhydroksyd \((\text{Ca(OH)}_2)\) til et humusvann.

I de første fire serier ble vannet pumpet gjennom et rørsystem som vist på figur 1. I den første av disse fire seriene ble det forsøkt å dosere kalsiumhydroksyd kontinuerlig. Det viste seg imidlertid vanskelig å sikre en dosering som ga tilnærmet samme pH gjennom hele forsøksperioden og i de 3 senere seriene ble derfor prøvevannet alkalisert prosjonsvis. I tabell 1 er gitt en oversikt over forsøksbetingelsene for disse fire seriene og i tabell 2 er gitt en del data som beskriver prøvevannets sammensetning. I tillegg til disse forsøksseriene ble det utført to typer "benke"-forsøk. Det ene hadde den samme hensikt som de forsøk skissert ovenfor, nemlig å undersøke i hvilken grad oppløst humus lar seg falle ut ved tilsetning av forskjellige mengder av kalsiumhydroksyd - ved forskjellige pH-nivåer.

Hensikten med det andre "benke"-forsøket var å undersøke hvor mye av det frafiltrerte humusstoff som var "reløselig" ved forskjellige pH-nivåer.

Det førstnevnte forsøk ble utført ved å filtrere 1,5 l prøvevann (Østernvann, Bærum) gjennom glassfilter GF/C. To eller fire slike filtre ble plassert i en 100 ml målekolbe med glasspropp og tilsatt 100 ml dest. vann. Etter tilsetning av kalsiumhydroksyd ble innholdet rystet i 1 døgn. Den resulterende "filtersuspension" ble filtrert gjennom glassfilter GF/C og pH, organisk karbon og uorganisk karbon ble bestemt i filtratet. Resultatene er gitt i tabell 3 og på fig. 2.
I det andre "benke"-forsøket ble 3 liter filtrert prøvevann rystet i glassflaske i 1 time etter justering av pH med mettet kalsiumhydroksyd-løsning. Etter ca. 1 døgns henstand ved +4°C ble prøvene filtrert (GF/C) og vektskoning på filter bestemt. Resultatene er gjengitt på fig. 3. Det skal her bemerkes at filtreringen ble foretatt med 2 forskjellige filtreringshastigheter for å undersøke om dette hadde noen effekt på mengden av frafiltrert organisk stoff. Resultatene av de to filterings-hastigheter er avmerket på fig. 3.

I tillegg til mengden frafiltrerbar tørrstoff ble også pH umiddelbart etter tilsetning av kalsiumhydroksyd og etter filtrering bestemt. Resultatene av disse pH-målingene er gjengitt på fig. 4.

EKSPERIMENTELT

Den egentlige hensikt med rørsystemets utforming (se fig. 1. notat Sandal: K-9/69 av 29/5-1969) var å få et uttrykk for volumet av den slammengde som ble dannet. Og det ble antatt at slammet skulle oppsamltes i byretten til-høyre og til venstre på fig. 1. Det viste seg imidlertid at slammet også opptrådte i den andre delen av systemet og det ble derfor funnet nødvendig å filtrere, tørke og veie for å få et brukbart uttrykk for den slammengde som ble dannet i de to systemene. Selv om man ikke kan anta at det er en entydig sammenheng mellom vekt og slavolum ble det antatt at resultatene burde gi tilstrekkelig vurderingsgrunnlag for eventuelle effekter av en alaksialisering.

Ad. forsøk I

Prøvevannet fra Østernvann (Bærum) ble pumpet gjennom de to systemene (se fig. 1.). Strømningshastigheten var den samme i begge systemene; til det ene systemet ble imidlertid tilført kalsiumhydroksyd i mengder og konsentrationser som ga en pH mellom 6,8 og 10,0 (middel 8,35). Driftstiden var 136 døgn med en gjennomsnittlig strømningshastighet på 3,30 liter/døgn eller 2,29 ml/min. Hvert av rørsystemene hadde et volum på 2,55 liter som gir vannet oppholdstid på 18,5 time. Dette tilsværer en hastighet på 0,23 cm/min.
Etter avsluttet forsøk ble det som nevnt ikke observert slamansamlinger på noe spesielt sted i røroppsettet og det ble derfor foretatt frafiltrering av det partikulære stoff som var tilstede i rørsystemet. Tørrstoff og gløderest av dette suspenderte stoff er gitt i tabell 3. Som dataene i tabellen viser ble det funnet mer slam (suspendert stoff) i det ubehandlede kolonnensystemet enn i det alkaliserte. Dette ble antatt å kunne skyldes de relativt store variasjoner i pH med den begrunnelse at noe av den utfølte humus kunne gå i opplosning ved høyere pH-nivåer. (Se for-øvrig forsøk VI).

Ad. forsøk II
På grunn av slike mulige effekter ble alkaliseringen i de senere forsøk foretatt porsjonsvis. Til porsjoner av 10 liter ble det tilsatt 80 ml mettet Ca(OH)$_2$ (tilsvarende 13,1 ml Ca(OH)$_2$/l.

Bortsett fra pH var forsøksbetingelsene i forsøk II forøvrig stort sett de samme som i forsøk I: total driftstid var 62 døgn med en gjennomsnittlig gjennomstrømningshastighet på 3,14 l/pr. døgn eller 2,18 ml/min. Oppholdstiden i hvert av de to rørsystemene var 19,5 time som tilsvarer en hastighet på 0,22 cm/min.

I likhet med forsøk I ble det heller ikke her oppnådd ansamlinger i "oppsamlingsbyretten"; hoveddelen av slammet ble funnet avsatt i hele rørsystemet. Det ble imidlertid etter viss driftstid observert suspendert stoff i utløpet av røroppsettet og det ble derfor igangsatt en kontinuerlig filtrering (GF/C) av vannet som hadde passert rørsystemet. Frafiltrert tørrstoff i utløpene og i rørsystemene er gitt i tabell 3.

Ad. forsøk III og IV
Disse forsøkene ble gjennomført i prinsippet på samme måte som forsøk II: Prøvevannet for forsøk III hadde en midlere pH på 6,22 og for forsøk IV pH 6,80. Hver porsjon av 10 liter ble tilsatt 200 ml mettet kalsiumhyd- roksyd (49,2 mg Ca(OH)$_2$ pr. liter). Dette ga for forsøk III en pH mellom 8,86 og 10,35 (middel 9,80).

Total driftstid var for forsøk III 25 døgn og forsøk IV 22 døgn, og i begge forsøk var den gjennomsnittlige strømningshastighet 2,60 l/døgn
tilsvarende 1,80 ml/min. Med de tidligere anførte volum av rørsystemene gir dette en oppholdstid på 23,5 time tilsvarende en hastighet på 0,18 cm/min.

I likhet med tidligere forsøk ble det dannede suspenderte materiale fordelt i hele rørsystemet. I både forsøk III og IV ble vannet som hadde passert de to kolonneoppsettene filtrert kontinuerlig gjennom GF/C-filter. Ved avslutning av forsøkene ble mengden av suspendert stoff i kolonnene og den totale mengde frafiltrerbart stoff i utløpene bestemt. Resultatene er gjengitt i tabell 3.

Ad. forsøk V
Dette forsøk hadde samme siktepunkt som de øvrige, men ble gjennomført som et "benke"-forsøk. Prosedyren for forsøkene er skissert tidligere, detaljene er gitt i tabell 4.

Ad forsøk VI
Som nevnt er det teoretisk grunnlag for å anta at naturlig utfelt humus kan løses igjen ved høye pH-nivåer. For å undersøke denne muligheten i tilknytning til alkalisering av humusvann er de filtrene som ble benyttet til "for"-filtrering av prøvevannet brukt i ekstraksjonsforsøk: 2 eller 4 filtre ble tilsatt alkalisert dest. vann med forskjellig pH og rystet i 1 døgn. "Filtersuspensjonen" ble deretter filtrert og innholdet av karbon i filtratet ble bestemt. Resultatene er gjengitt i tabell 5 og på fig. 4.

RESULTATVURDERING OG KONKLUSJON

Resultatene som er oppsummert i tabellene 3 og 4 på fig. 3 gir ingen enstydige tendenser med hensyn til utfelling av humus ved tilsetning av kalsiumhydroksyd, men de antyder, som ventet, en økning av mengden suspendert stoff ved alkalisering.

Et av siktepunktene med forsøkene var å finne et uttrykk for den økning av slamvolum som en baseitsetning til humusvann forårsaker. Selv om dette ikke har lykkes har forskningsprosjektet gitt en del holdepunkter med hensyn til de mekanismer som er involvert. De to kurvene på fig. 3 tyder på at mengden av suspendert stoff avhenger av forsøksbetingelser.
Dette gir grunnlag for å anta at turbulensforholdene i distribusjonssystemene i vannverk har betydning for dannelse av partiklene av størrelsesorden mindre enn 1 µ (oppgitt porestørrelse på glassfiber Whatman GF/C). Det synes derfor å være antagelig at en estimering av slammengder (eller mengder av suspendert stoff) i stor grad må gjøres på grunnlag av distribusjonssystemenes utforming, dvs. transporthastighet og turbulensforhold. Basert på teoretiske betraktninger er det også grunn til å tro at dette ikke bare gjelder alkalisert humusvann med også ubehandlet vann.

Ekstraksjonsforsøkene med alkalisert dest.vann og "brukte" glassfilter gir sterke indisier på at noe av den utfelte humus løses igjen når pH økes. Resultatene på fig. 4 antyder en viss lineasitet.

På grunnlag av pH dataene i tabell 4 er det tegnet kurver som beskriver pH som funksjon av tilsatt Ca(OH)₂. Av fig. 2 fremgår det at pH reduseres etter henstand dvs. etter rysting i 1 døgn. Etter som blandingsprosessen ble foretatt i lukket beholder kan ikke denne pH forandring forklares ved karbonat dannelse (CO₂ fra luften) alene. Mulige forklaringer på dette forhold kan være av Ca assosieres til humusmolekylene på en eller annen måte og at ɐH⁺ ioner frigjøres. Hvilke praktiske konsekvenser slike reaksjoner kan ha er det ikke på det nåværende tidspunkt mulig å uttale seg om.

Forsøkene er basert på vann hentet fra samme vannkilde, men på forskjellige tider av året. Selv om man ikke på grunnlag av analyseresultatene i tabell 1 kan poengtere vesentlige forskjeller i den kjemiske sammensetning, kan man ikke utelukke at årstidsvariasjoner kan ha betydning for stabiliteten av humus ved alkalisering. Dette vil da bety at de ulike forsøksseriene ikke uten videre kan sammenlignes.

Fra et vannverksynspunkt er det av interesse å få et uttrykk for forventet slamvolum ved en alkalisering. I dette henseende har ikke forskene vært vellykket; de har imidlertid gjort det klart at dimensjonene av forsøkene må være vesentlig større både med hensyn til vannvolum og med hensyn til oppholdstid (i alle fall i deler av systemet). Slik at også slammengdene ved forskjellige årstider kan sammenlignes.

Forsøksanleggene bør være såpass fleksible at de gir muligheter for å simulere forskjellige aktuelle distribusjonssystemer. En annen mulighet er forsøk i vannverks fordelingsnett med og uten alkalisering.
Tabell 1. Vannprover fra Østernvann (Barum) tatt fra 0,5 - 1,0 m dyp nær demning (1970 og 1971).

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Dato</th>
<th>pH</th>
<th>Spes. el. ledn. evne µS/cm</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet J.T.U.</th>
<th>Permanganat-tall mg O/L</th>
<th>Organisk karbon mg C/l</th>
<th>Uorganisk karbon mg C/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/7-70</td>
<td>6,6</td>
<td>38</td>
<td>29</td>
<td>0,04</td>
<td>-</td>
<td>5,3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>31/7-70</td>
<td>6,6</td>
<td>38</td>
<td>43</td>
<td>0,13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>21/8-70</td>
<td>6,4</td>
<td>36</td>
<td>33</td>
<td>0,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15/10-70</td>
<td>6,5</td>
<td>37</td>
<td>81</td>
<td>0,04</td>
<td>-</td>
<td>6,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>15/11-70</td>
<td>6,4</td>
<td>27</td>
<td>29</td>
<td>0,28</td>
<td>-</td>
<td>5,0</td>
<td>1,0</td>
</tr>
<tr>
<td>II</td>
<td>28/1-71</td>
<td>6,26</td>
<td>42</td>
<td>32</td>
<td>0,38</td>
<td>8,2</td>
<td>7,0</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>1/3-71</td>
<td>6,06</td>
<td>45</td>
<td>28*</td>
<td>2,2</td>
<td>7,3</td>
<td>5,6</td>
<td>1,5</td>
</tr>
<tr>
<td>III</td>
<td>28/4-71</td>
<td>6,40</td>
<td>34</td>
<td>26</td>
<td>0,08</td>
<td>-</td>
<td>5,0</td>
<td>1,0</td>
</tr>
<tr>
<td>IV</td>
<td>1/11-71</td>
<td>6,43</td>
<td>33</td>
<td>34</td>
<td>0,75</td>
<td>5,0</td>
<td>3,4</td>
<td>1,6</td>
</tr>
<tr>
<td>V & VI</td>
<td>29/12-71</td>
<td>6,5</td>
<td>40</td>
<td>25</td>
<td>0,44</td>
<td>5,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>Middel</td>
<td>6,5</td>
<td>35</td>
<td>43</td>
<td>0,10</td>
<td>-</td>
<td>5,7</td>
<td>0,5</td>
</tr>
<tr>
<td>II</td>
<td>Middel</td>
<td>6,16</td>
<td>43</td>
<td>-</td>
<td>1,29</td>
<td>7,8</td>
<td>6,3</td>
<td>1,1</td>
</tr>
<tr>
<td>I, II, III, IV</td>
<td>Middel</td>
<td>6,41</td>
<td>37</td>
<td>38</td>
<td>0,44</td>
<td>6,8</td>
<td>5,5</td>
<td>0,9</td>
</tr>
</tbody>
</table>

* Filtrert farge
<table>
<thead>
<tr>
<th>Serie</th>
<th>Driftstid i døgn</th>
<th>pH</th>
<th>Doseringsmåte</th>
<th>"Vannføring"</th>
<th>Oppholds- tid</th>
<th>Hastighet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alkaliserings-</td>
<td>-</td>
<td>Prove- Blind-</td>
<td>1/døgn</td>
<td>timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for min. - max.</td>
<td>-</td>
<td>system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>136</td>
<td>6,5</td>
<td>6,8 - 10,0</td>
<td>8,4</td>
<td>Kont.</td>
<td>3,3</td>
</tr>
<tr>
<td>II</td>
<td>62</td>
<td>6,2</td>
<td>7,3 - 7,7</td>
<td>7,5</td>
<td>Porsj.</td>
<td>3,1</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>6,4</td>
<td>8,9 - 9,9</td>
<td>9,4</td>
<td>"</td>
<td>2,6</td>
</tr>
<tr>
<td>IV</td>
<td>22</td>
<td>6,4</td>
<td>9,2 - 10,4</td>
<td>9,8</td>
<td>"</td>
<td>2,6</td>
</tr>
</tbody>
</table>
Tabell 3. Slammengde dannet i de to systemene ved fire forskjellige forsøk.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Ubehandlet humusholdig vann</th>
<th>Alkalisert humusholdig vann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filtrert fra utløpet</td>
<td>"rørsystemet"</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136 døgn drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH prøvevann 6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH alk.vann 8,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 døgn drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 døgn filtrering ved utløpet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH prøvevann 6,16</td>
<td>0,21\text*)</td>
<td>0,18</td>
</tr>
<tr>
<td>pH alk.vann 7,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 døgn drift og filtrering ved utløpet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH prøvevann 6,22</td>
<td>0,54</td>
<td>0,06</td>
</tr>
<tr>
<td>pH alk.vann 9,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 døgn drift og filtrering ved utløpet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH prøvevann 6,80</td>
<td>0,33</td>
<td>0,03</td>
</tr>
<tr>
<td>pH alk.vann 9,80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\text*) Beregnet \quad \text**) Beregnet \text{ v/62 døgn filtrering ved utløpet.}

<table>
<thead>
<tr>
<th>Mengde mettet Ca(OH)$_2$ tilsatt ml/1,5 l</th>
<th>pH etter tilsetning</th>
<th>pH før filtrering</th>
<th>Filtrert tørrstoff</th>
<th>Filtrerings tid (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,55</td>
<td>6,62</td>
<td>0,37</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>6,53</td>
<td>6,65</td>
<td>0,17</td>
<td>3-5</td>
</tr>
<tr>
<td>3</td>
<td>7,05</td>
<td>6,93</td>
<td>0,23</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>7,05</td>
<td>6,96</td>
<td>0,17</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>7,50</td>
<td>7,23</td>
<td>0,13</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>7,54</td>
<td>7,35</td>
<td>0,17</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>8,64</td>
<td>7,92</td>
<td>0,20</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>8,74</td>
<td>8,20</td>
<td>0,07</td>
<td>"</td>
</tr>
<tr>
<td>15</td>
<td>9,40</td>
<td>9,20</td>
<td>0,20</td>
<td>"</td>
</tr>
<tr>
<td>15</td>
<td>9,40</td>
<td>9,20</td>
<td>0,10</td>
<td>"</td>
</tr>
<tr>
<td>20</td>
<td>9,60</td>
<td>9,50</td>
<td>0,10</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>9,60</td>
<td>9,50</td>
<td>0,17</td>
<td>3½</td>
</tr>
<tr>
<td>40</td>
<td>10,14</td>
<td>10,03</td>
<td>0,17</td>
<td>4 1/6</td>
</tr>
<tr>
<td>40</td>
<td>10,18</td>
<td>10,08</td>
<td>0,13</td>
<td>4 1/3</td>
</tr>
<tr>
<td>60</td>
<td>10,60</td>
<td>10,44</td>
<td>0,47</td>
<td>33</td>
</tr>
<tr>
<td>60</td>
<td>10,60</td>
<td>10,50</td>
<td>0,57</td>
<td>5 ½</td>
</tr>
<tr>
<td>120</td>
<td>11,00</td>
<td>10,96</td>
<td>0,73</td>
<td>90</td>
</tr>
<tr>
<td>120</td>
<td>11,03</td>
<td>10,95</td>
<td>1,20</td>
<td>60</td>
</tr>
<tr>
<td>ml/3 l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ml</td>
<td>1,6</td>
<td>7,37</td>
<td>7,08</td>
<td>0,30</td>
</tr>
<tr>
<td>6</td>
<td>3,3</td>
<td>8,77</td>
<td>8,28</td>
<td>0,33</td>
</tr>
<tr>
<td>10</td>
<td>5,5</td>
<td>9,40</td>
<td>9,20</td>
<td>0,08</td>
</tr>
<tr>
<td>12</td>
<td>6,5</td>
<td>9,58</td>
<td>9,49</td>
<td>0,17</td>
</tr>
</tbody>
</table>
Tabell 5. Rysteforsøk med "brukte" filtre (Whatman GF/C) Forsøk VI

2 eller 4 filtre ble benyttet i hvert forsøk og 1,5 l "Østernvann" var filtrert gjennom hvert filter. Filtrene ble lufttørket og tilsatt 100 ml destilert vann med varierende mengder Ca(OH)\(_2\) \(\text{cal. NaOH}\).

<table>
<thead>
<tr>
<th>Base tilsatt pr. 100 ml H(_2)O</th>
<th>Antall filter</th>
<th>pH</th>
<th>Total C mg C/l</th>
<th>Organisk C mg C/l</th>
<th>Organisk C mg C/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5,6</td>
<td>5,8</td>
<td>5,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Metter Ca(OH)(_2) 0,8 ml</td>
<td>4</td>
<td>9,7</td>
<td>6,8</td>
<td>6,2</td>
<td>5,8</td>
</tr>
<tr>
<td>- " " - 1,0 "</td>
<td>4</td>
<td>9,5</td>
<td>8,6</td>
<td>7,4</td>
<td>6,7</td>
</tr>
<tr>
<td>0,08% NaOH 0,5 "</td>
<td>4</td>
<td>9,6</td>
<td>7,8</td>
<td>6,8</td>
<td>6,7</td>
</tr>
<tr>
<td>- " " - 0,5 "</td>
<td>4</td>
<td>9,5</td>
<td>7,8</td>
<td>6,2</td>
<td>6,7</td>
</tr>
<tr>
<td>Mettet Ca(OH)(_2) 10,0 "</td>
<td>4</td>
<td>11,2</td>
<td>5,4</td>
<td>5,2</td>
<td>8,0</td>
</tr>
<tr>
<td>- " " - 10,0 "</td>
<td>4</td>
<td>11,2</td>
<td>22,0</td>
<td>10,8</td>
<td>1,4</td>
</tr>
<tr>
<td>100 ml H(_2)O rystet med 4 "ubrukte" filtre</td>
<td>5,6</td>
<td>2,2</td>
<td>1,6</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>4 "ubrukte" filtre</td>
<td>5,6</td>
<td>1,8</td>
<td>1,2</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4 Rysteforsök m/4 GF/C-filtre (1,5 l Østervann gjennom hvert) tilsatt mettet Ca(OH)₂.