0 - 202/70

NYEgaard & CO A/S

EN VURDERING AV RAMSLANDSVÆGEN SOM RESIPIENT FOR
NY FABRIKK FOR PRODUKSJON AV RØNTGENKONTRASTMIDLET ISOPAQUE

Saksbehandlere: Siv.ing. Paul Liseth Ph.D.
Assistent Brith Hambo

Rapporten avsluttet desember 1971
INNHOLDSFORTEGNELSE

1. INNLEDNING 3
2. GENERELL BESKRIVELSE AV RAMSDALSVÅGEN 3
3. FELTMÅLINGER 8
4. MÅLE- OG ANALYSERESULTATER, TOKT 14. JULI 1971 9
5. MÅLE- OG ANALYSERESULTATER, TOKT 27. NOVEMBER 1971 14
6. Avløpsvannets Fortynning og Transport etter Utslipp 15
7. Avløpsvannet 21
8. KONKLUSJON 22

TABELL- OG FIGURFORTEGNELSE

Tabell 1 Karakteristiske data for Ramsdalsvågen (innenfor Høylandsholmene) 5
Figur 1 Ramsdalsvågen indre del. Arealer og volumer 4
" 2 Midlere månedlig nedbør ved Lindesnes (Nedbøren i Norge, 1931-1960) 6
" 3 Sjøkart nr. 3. Målestokk 1:50.000. (Stasjonsoversikt) 7
" 4 Saltholdighet i o/oo 14/7-71 10
" 5 Temperatur i oC 14/7-71 11
" 6 Tøthet 14/7-71 12
" 7 Oksygen i mg O_2/l 14/7-71 13
" 8 Saltholdighet i o/oo 27/11-71 16
" 9 Temperatur i oC 27/11-71 17
" 10 Tøthet 27/11-71 18
" 11 Oksygen i mg O_2/l 27/11-71 19
1. INNLEDNING

I forbindelse med planlegging av ny fabrikk for produksjon av røntgen-
kontrastmidlet ISOPAQUE ble Norsk institutt for vannforskning (NIVA)
av Nyegaard & Co. A/S anmodet om å foreta en enkel resipientundersø-
kelse i Ramsdalsvågen ved Lindesnes.

I møte på NIVA 28. juni 1971 mellem Deres siv.ing. C.M. Haug og repre-
sentanter fra NIVA ble et undersøkelsesprogram diskutert. Med bakgrunn
i dette møtet ble NIVA i brev av 1. juli 1971 fra Nyegaard & Co. A/S
bedt om å foreta to serier av feltmålinger i Ramsdalsvågen. Første
serie av målinger skulle foretas sommeren 1971 og andre serie høsten
samme år. Feltmålingene skulle omfatte vannets temperatur, saltholdig-
het og oksygeninnhold på flere stasjoner og måledyp samt siktedyp i over-
flaten.

Denne rapport inneholder enkelte karakteristiske data om Ramsdalsvågen,
en sammenstilling av feltmålinger og en vurdering av Ramsdalsvågen som
resipient for det påtenkte saltutslipp.

2. GENERELL BESKRIVELSE AV RAMSDALSVÅGEN

Ramsdalsvågen er en terskelfjord orientert tilnærmet nordsyd. Et
lengdesnitt trukket langs de dyreste partier viser at bunnen fra indre
del i nord faller gradvis til et største dyp på ca. 39 meter for så å
avta til et terskeldyp ved Høylandsholmene. Ved dybdomålinger med ekko-
lodd ble et største terskeldyp på 14,5 m registrert. Videre faller bun-
nen jevnt ned mot dyp på over 100 m i et forholdsvis åpent kystområde ut
mot Skagerak. Karakteristiske data for indre del av Ramsdalsvågen, dvs.
fjorden innenfor Høylandsholmene, er gitt i tabell 1. Volum og arealfor-
hold for indre del er vist på figur 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengde (langs de dypeste partier)</td>
<td>1,75 km</td>
</tr>
<tr>
<td>Vannoverflate</td>
<td>0,85 km²</td>
</tr>
<tr>
<td>Midlere bredde</td>
<td>480 m</td>
</tr>
<tr>
<td>Største dyp</td>
<td>39 m</td>
</tr>
<tr>
<td>Midlere dyp</td>
<td>18 m</td>
</tr>
<tr>
<td>Totalt volum</td>
<td>15 mill. m³</td>
</tr>
<tr>
<td>Midlere tverrsnitt</td>
<td>8500 m²</td>
</tr>
<tr>
<td>Største terskeladj</td>
<td>14,5 m</td>
</tr>
<tr>
<td>Terskelbredde (- molo og øyer)</td>
<td>ca. 300 m</td>
</tr>
</tbody>
</table>

De angitte data er tilnærmet beregnet ut fra Sjøkart nr. 10, målestokk 1:50,000.

Ramsdalsvågen innenfor Høylandsholmene er et forholdsvis grunn fjord med et dypere parti like innenfor terskelen. 62% av vannvolumet befinner seg over terskelnivået på 14,5 m. Vannvolumet over 20 m utgjør 76%. Dypvolumet under 30 m utgjør bare 3 - 4% av det totale vannvolumet.

Ferskvannsavrenning

Avrenningsområdet til indre del av Ramsdalsvågen er tilnærmet tegnet inn på vedlagte kart, figur 3, og er beregnet til 4,1 km². Ifølge spesifikk avrenningstall fra "Hydrologiske undersøkelser i Norge" (1958) finner vi en årlig avrenning på ca. 55 . 10⁵ m³. Figur 2 viser midlere månedlige nedbør for Lindesnes.

Vind

På Lista er den dominerende vindretning om våren, sommeren og høsten fra nordvest. Den hyppigste vindstyrke i denne tidsperiode er 5 - 6 på Beaufort skala (frisk bris - liten kuling). Om vinteren er den dominerende vindretning fra øst med hyppigste vindstyrke 6 på Beaufort skala (liten kuling). Det antas at vindforholdene er tilnærmet de samme i området ved Ramsdalsvågen.
Årlig gjennomsnitt: 1150 mm

Fig. 2

Midlere månedlig nedbør ved Lindesnes (Nedbøren i Norge, 1931-1950)
Tidevann

Den midlere tidevannsvariasjon er for Mandal beregnet til 18,3 cm som også antas å være representativ for Ramsdalsvågen. Dette gir et tidevolum for indre del på \(15,6 \times 10^4\ m^3\).

3. FELTMÅLINGER

For analysering av vannets innhold av oksygen ble vannprøver tatt fra ulike dyp, og vannets innhold av oksygen fiksert. Oksygeninnholdet ble senere analysert på NIVA's kjemilaboratorium.

Siktedyp er en grøv måte å måle vannets gjennomskinnelighet på (klarhet). En hvitmalte sirkulær skive med 25 cm's diameter senkes ned i vannet. Idet skiven forsvinner ut av syne, avleses siktedypet. Overflatefargen vil si den fargen man ser mot den hvite skiven i vannet. Måleobservasjonene er tegnet inn for begge tokt på figurene 4 - 11.

Det ble videre foretatt visse rutinemessige observasjoner av meteorologiske data og forhold på vannoeverflaten.

På siste tokt ble flere bunnpolifer målt med ekkolodd, for å kartlegge tørrskeldypet ved Høylandsholmene. Største tørrskeldyp ble funnet til 14,5 m.
4. MÅLE- OG ANALYSERESULTATER, TOKT 14. JULI 1971

Meteorologiske forhold

Lufttemperaturen ble målt til 15 °C. Det var et lett skydekket uten sol med svak vind fra nordvest. Sterke vinder fra nordvest med opp til kulings styrke hadde imidlertid gjort seg gjeldende de siste ukene før toktdagen. Midlere nedbør for juli måned er som vist på figur 2 langt under det normale.
Vannet i overflaten bar preg av å være rent og klart. Ingen form for olje, drivgods, støv eller rusk ble observert, heller ingen spesielle lukter fra vannet kunne merkes.

Siktedyp

Vannets siktedyp ble målt på en rekke stasjoner fra RAM 1 til innerst i Ramsdalsvågen. Største siktedyp ble målt på RAM 1 med 9 m mens det avtok i indre del av Ramsdalsvågen til 8 m. Overflatefargen var grønn.

Saltholdighet og temperatur

Vannets saltholdighet varierte fra ca. 34 °/oo til vel 35 °/oo på bunnen. Saltholdigheten øker jevnt mot bunnen uten markerte sjiktninger i vannet. I overflaten fra RAM 1 til innerst i Ramsdalsvågen ble temperaturer på 9,5 - 9,6 °C målt. Ved RAM 1 avtok temperaturen gradvis til 8 °C på 40 m dyp. Innenfor terskelen i Ramsdalsvågen avtok temperaturen noe hurtigere med dypt og ble målt til 6,4 °C på 35 m dyp. Saltholdighetens- og temperaturmålinger er vist på figurene 4 og 5. Figur 6 viser vannets tetthetsfordeling.

Oksygen

Innhold av oksygen i vannet ble målt på stasjon RAM 2 og viser nesten full oksygenmetning fra overflaten til bunnen. På 30 m dyp har vannet en oksygenmetning på 81%. Figur 7 viser vannets oksygeninnhold.
Fig. 4 Saltholdighet i %* 14/7-71

Vertikalt dybdesnitt - Ramlandsvegen Lindesnes, Langsgående hovedsnitt
Fig. 5 Temperatur i °C 14/7-71

Vertikalt dybdesnitt - Ramslandsvaagen Lindesnes, Langsgående hovedsnitt
Vertikalt dybdesnitt - Ramlandsvaagen Lindesnes, Langsående hovedsnitt
Fig. 7 Oksygen i mg O$_2$/l 14/7 +71
Vertikalt dybdesnitt - Ramslandsvaagen Lindesnes, Langsgående hovedsnitt
Ut for Kirkevaagen
Diskusjon

Vannets siktedyp og farge er i overensstemmelse med det som normalt måles for rent sjøvann i dette kystområde på denne tid av året. Saltholdighets- og temperaturmålinger viser en svak ferskvannspåvirkning. Ferskvannet er imidlertid blandet godt inn i de øvre vannlag, og saltholdigheten øker jevnt mot bunnen uten noen nevneverdig sjiktning. Det høye oksygeninnhold helt ned til bunnen kan skyldes god blanding av vannet inne i fjorden og også en god kommunikasjon med det utenforliggende, åpne sjøområde. Det kan videre bety et lite oksygenforbruk i de dypere vannlag som følge av at små mengder med organisk stoff tilføres dypvannet.

5. MÅLE- OG ANALYSERESULTATER, TØKT 27. NOVEMBER 1971

Meteorologiske forhold

Lufttemperaturen varierte mellom 8 og 9 °C. Det var også denne gang lett skydekke uten sol, men med sydvest bris. Midlere nedbør for november måned er som vist på figur 2 langt over det normale. Vannet i overflaten var også denne gangen rent og klart. Ingen form for olje, drivgods, støv eller rusk ble observert, heller ingen spesielle lukter.

Siktedyp

Største siktedyp ble målt på RAM 1 og RAM 2 med 14,5 m. På RAM 3 ble et siktedyp på 13 m målt. Overflatefargen var turkis grønn.

Saltholdighet og temperatur

Vannets saltholdighet varierer i overflaten fra 34,17 °/oo ved RAM 1 til 31,5 °/oo ved RAM 3. For indre del øker saltholdigheten jevnt ned til terskeltyp. Videre nedover i dypere vannlag er saltholdigheten tilnærmet konstant.

Oksygen

Innholdet av oksygen i vannet ble målt på stasjonene RAM 1, RAM 2 og RAM 3. Mens de øvre vannlag har et høyt oksygeninnhold, synker imidlertid oksygeninnholdet raskt i dypvannet under terskelnivå for å nå 0 på ca. 25 - 30 m dyp, se figur 11. Under dette dyp er vannet røttent.

Diskusjon

Vannets siktetdyp og farge er også denne gang i overensstemmelse med det som er normalt for rent sjøvann i dette kystområde på høsten. Saltholdighets- og temperaturmålinger viser en noe større ferskvannspåvirkning enn ved sommertoktet.

Et stort oksygenforbruk som følge av organisk belastning må ha funnet sted i de dypere vannlag for å kunne gi røttent bunnvann i løpet av den korte tiden siden toktet i juli. Dette store oksygenforbruket kan ha flere forklaringer. Algeoppblomstring i løpet av høsten vil kunne produsere store mengder organisk stoff som senere synker ned i de dypere vannlag. Likeledes vil den uvanlig store nedbør på høsten kunne forårsake utvasking av betydelige mengder partikulært organisk stoff fra nedbørfeilet. Videre utgjør det dypere vannlag under 25 - 30 m et lite vannvolum med tilsvarende liten oksygenreserve.

6. AVLØPSVANNETS FORTYNNING OG TRANSPORT ETTER UTSLIPP

Avløpsvannets fortyning og bevegelse etter utslipp i en resipient kan deles inn i to fortynningsfaser.

Den første fortyinningsfase, kalt primærfortyning (initialfortyning), omfatter avløpsvannets fortyning og bevegelse fra utslipningshullet til en innlagring i resipien ten. Primærfortynningen er hovedsakelig bestemt
Fig. 8 Salinitet i % 27/11-71.

Vertikalt dybdesnitt - Ramslandsvaagen Lindesnes, Langsgående hovedsnitt

Ut for Kirkevaagen
Fig. 9 Temperatur i °C 27/11-71

Vertikalt dybdesnitt - Ramslandsvaagen Lindesnes, Langsgående hovedsnitt

Ut for Kirkevaagen
Fig.11 Oksygen i mg O₂/l 27/11-71

Vertikalt dybdesnitt - Ramstandsvaagen. Lindesnes. Langsgående hovedsnitt
av avløpsstrålens kinetiske energi og gravitasjonskrefter, og er avgjørende for avløpsvannets forurensning av vannmassene i utslippets umiddelbare nærhet.

Etter innlagraing er den videre fortyning og transport av avløpsvannet bestemt av turbulensdiffusjon og strømbevegelse. Denne fortyningens fase kalles sekundærfortynning. Avløpsvannets fortyning på de ulike steder i en resipient er hovedsakelig bestemt av sekundærfortynningen og tilgjengeligh fortyningssvannmenge i resipienten.

Gjennom primær- og sekundærfortynning søkes den tilgjengelige fortyningssvannmenge i en resipient utnyttet i størst mulig grad. Den maksimalt tilgjengelige fortyning S kan uttrykkes som følger:

\[S = \frac{\text{fortyningssvannmenge}}{\text{avløpsmenge}} = \frac{Q_{\text{adveksjon}}}{Q_{\text{forurensset}}} + \frac{Q_{\text{utskiftning}}}{Q_{\text{forurensset}}} \]

Den advektive vannføringen \(Q_a \) er det vann som kontinuerlig tilføres, men også kontinuerlig må ut av systemet. I et estuarområde eller fjordsystem, f.eks., representerer dette ferskvannstilførsel fra elver, annen overflateavrenning, grunnvann osv. Utskiftningssvannføringen \(Q_u \) gjelder vannmasser som diskontinuerlig tilføres systemet fra havet eller andre kilder som følge av eksterne krefter.

\[Q_{\text{adveksjon}} \]

Den advektive vannmenge i Ramsdalsvågen består hovedsakelig av ferskvannstilførsel og den estuarine sirkulasjon.

Ferskvannstilførselen er årlig beregnet til 55 \(\cdot 10^5 \) m\(^3\) tilsvarende 15,3 \(\cdot 10^3 \) m\(^3\) pr. døgn.

Den estuarine sirkulasjon skyldes at ferskvannet blandes opp med sjøvann i overflaten og transporterer således sjøvann kontinuerlig ut av fjorden. Dette sjøvann kompenseres ved en tilsvarende inngående sjøvannsstrøm i dypere vannlag. Denne strøvannsstrom vil kunne utgjøre en vannmenge som tilsvarer det mangedobbelte av det tilstrømmende ferskvann.
Utskiftning

Utskiftningssvannmengden er i Ramsdalsvågen hovedsakelig bestemt av tidevann og vindinduserte strømmer.

Tidevannsvolumet er beregnet til $15,6 \cdot 10^4 \text{ m}^3$. Hvert døgn bringes det dobbelte av denne svannmengde ut av Ramsdalsvågen. På grunn av det åpne kystområde utenfor antas at det utgående tidevann i ubetydelig grad forres tilbake inn i Ramsdalsvågen.

Bortsett fra vintermånedene er de dominerende vindretninger fra nordvest. Dette innebærer at i den vesentlige del av året vil det forekomme en vindindusert transport av overflatevann ut av fjorden. Med en hyppigste vindstyrke tilsvarende frisk bris til liten kuling vil denne transport kunne være betydelig. Tilsvarende den utgående overflatetransport vil vi få en inngående kompensasjonsstrøm i det underliggende sjøvann.

Ser vi bort ifra estuarinsirkulasjonen og vindindusert utskiftning, kan den maksimalt tilgjengelige fortynningsvannmengde Q_f beregnes som følger:

$$Q_f = Q_a + Q_u = 15,3 \cdot 10^3 + 312 \cdot 10^3 = 327,3 \cdot 10^3 \text{ m}^3 \text{ pr. døgn}.$$

7. AVLØPSVANNET

Vi viser til våre brev av 12. desember 1970 og av 14. april 1971. De betraktninger som gjøres omkring det planlagte utslipp i denne rapport, bygger på opplysninger og forutsetninger angitt i de nevnte brev. Det fremgår her at den årlige saltløsning utgjør en avløpsmengde på ca. $3,500 \text{ m}^3$ tilsvarende $9,6 \text{ m}^3$ pr. døgn. Den maksimalt tilgjengelige fortyning S, basert på årsmiddel, kan uttrykkes som følger:

$$S = \frac{Q_{\text{fortynning}}}{Q_{\text{utslipp}}} = \frac{327,3 \cdot 10^3}{9,6} = 3,4 \cdot 10^4$$
8. KONKLUSJON

På bakgrunn av de talloverslag som er nevnt i tabellene 2, 3, 4 og 5 i våre brev av 12. desember 1970 og av 14. april 1971, synes det som om tilstrekkelig fortynningsvann er tilgjengelig i Ramsdalsvågen før det planlagte utslipp. Maksimalt tilgjengelig fortynningsvann bør søkes utnyttet på en effektiv måte gjennom primær og sekundær fortyning. Det antas at gjennom et hensiktsmessig utslipningsarrangement bør avlopsvannet søkes innblandet i de øvre vannlagene over ca. 15 m dyp.

---o0o---

PLi/ofa
20/12-71