TESTING AV KARTONGER FRA
A/S NORSK TETRA PAK

Saksbehandler: Sivilingeniør Kari Ormerod
Medarbeider: Cand.real. Hans Kristiansen
Rapporten avsluttet: April 1971
INNHOLDSFORTEGNELSE:

Sammendrag 3
1. INNLÆRNING 4
2. METODIKK 5
3. RESULTATER 6
4. DISKUSJON
 4.1 Smak 11
 4.2 pH-verdi 11
 4.3 Kjemisk oksygenforbruk, KMnO₄ 12
 4.4 Kimtall 12
5. KONKLUSJON 15
 5.1 Krav til vannet 15
 5.2 Krav til emballasjen for vannet 15

TABELL- OG FIGURFORTEGNELSE:

Tabell:
1. Orienterende analyser 6
2. Analyseresultater fra lagringsforsøket 8

Figur:
1. Kimtallsresultater 9
2. pH-verdier 10
3. Kjemisk oksygenforbruk, KMnO₄ 10
SAMMENDRAG

Tre forskjellige typer kartonger fra A/S NORSK TETRAPAK ble testet som emballasje for drikkevann.

Kartongtype 2 (Duplex) ble funnet å være lite egnet til formålet, mens to kartongtyper (2 og 4) med aluminiumsbelegg, men med forskjellig plastovertrekk utenpå aluminiumsbelegget, viste seg å være bedre egnet. Av de to sistnevnte typer viste kartong 2 lavest bakterietilvekst, og ble derfor vurdert som best egnet til formålet.

Det anbefales å teste de to sistnevnte kartongtyper med den aktuelle vanntype, og under vanlige driftsforhold, før endelig avgjørelse tas.

Det presiseres at det må føres streng kontroll med vannkilden på linje med vannforsyning til større befolkningsgrupper, og at produksjonen må foregå under samme hygieniske standard som for næringsmidler.
1. INNLEDNING

I begynnelsen av mars måned 1971 kom det en henvendelse til Norsk institutt for vannforskning (NIVA) fra firmaet A/S NORSK TETRA PAK, som ønsket enkelte av sine kartongtyper testet med henblikk på emballasje for vann. Firmaet ønsket at vi skulle lagre vann på kartongene gjennom en lengre periode, og undersøke om vannets kvalitet ble merkbart forandret.

Kimtallsanalyser utføres for å undersøke det innestengte vannvolums evne til å forøke den bakteriepopulasjon som var til stede i vannet da det ble tappet. For at bakteriepopulasjonen skal øke, og denne økning komme til syne i våre kimtallsanalyser, må det i vannet finnes organisk stoff som bakteriene kan leve av. Dette stoff kan ha vært til stede i vannet da det ble tappet, og i så fall vil man kunne vente samme forløp under lagring i de forskjellige kartongtyper. Det er normalt å finne en viss økning i bakterieinnhold i vann som plasseres i en eller annen form for beholder. Dette blir forklart med at organisk stoff fra vannet antakelig adsorberes til beholderens vegger, og dermed blir konsentrert slik at bakteriene lettere får tak i næringen. Dersom kartongens innvendige flater inneholder stoffer som hemmer bakterievekst, vil vannets bakterieinnhold kunne avta ved lagring.

Da vi har erfaring for at selv destillert vann i glassbeholdere ved henstand kan gi stor økning i bakterieinnhold, er kimtallsanalysen ikke god nok som metode til å måle en økning av organisk stoff i
vannet som skyldes utvasking av stoff fra kartongveggene. En kjemisk metode for måling av organismisk stoff i vann er oksydasjon med kaliumpermanganat (KMnO₄). Ved denne oksydasjonsmåte blir ikke alt organismisk stoff oksydet, men det er en vanlig brukt metode i forbindelse med drikkevann. I Frankrike er dessuten permanganat-tallet en av de parametre som undersøkes for lagret drikkevann, og økningen i dette ved lagring må være under en viss grense for at vannet skal godkjennes. Forandringer i vannets surhetsgrad (pH-verdi) kan sammen med andre parametre kaste lys over eventuelle endringer i vannkvalitet i løpet av lagringstiden.

Smaksprøver er ønskelig fordi god smak er en betingelse for drikkevann som skal selges på denne måten. Eventuell usmak kan komme fra belegg inn i de innvendige kartongflater, enten dette er av plast eller papir, og en slik usmak kan være tydelig selv om ingen av de andre parametrene viser forandring. Vannet kan også trekke til seg lukt- og smaksstoffer fra luften der kartongene lagres, dersom kartongene er gjennomtrengelige for luft.

2. METODIKK

Oppdragsgiver opplyste at vannet ble tappet på kartongene fra ledningsnettet i Ålesund Meieri den 3. mars, og at prøvene ble lagret ved ca. 10-12°C inntil de ble fraktet til Oslo natten 4.-5. mars. Prøvene var ikke frosts i ankomst til NIVA kl. 15.30 den 5. mars. Ett sett prøver ble imidlertid innlevert av oppdragsgiver allerede 4. mars. Dette sett besto av kartongtypene 2 og 3, samt en glassflaske som var fylt samme dag (4. mars). Disse tre prøver ble gjort til gjenstand for et orienterende analyseprogram. Da vannet som skulle undersøkes kom fra et ledningsnett for drikkevann, anså vi det ikke nødvendig å analysere for coliforme bakterier. Det ble imidlertid opplyst at det før var funnet høy bakterieinnhold i vannet, derfor besluttet vi å utføre parallelt 18-22°C og 37°C kìmall.
Det var en mulighet for at en eventuell klorering av drikkevannet hadde gitt vannet en klorrest som kunne interferere på permanganat-tallsanalysen. Man måtte derfor være oppmerksom på dette ved vurderingen av resultatene.

Vannet var ved start helt uten usmak. Det ble derfor besluttet at kun en og samme person skulle smake på vannet hver gang, og hvis denne person kjente usmak, skulle vannet etter forutgående avtale med oppdragsgiver utsettes for standard smaksprøvning.

Oppdragsgiver ønsket også at ett sett kartonger skulle lagres i kjøleskap og analyseres etter ca. 3 ukers lagringstid. Disse kartonger ble plassert i NIVA’s kjølerom, ved ca. 4°C, den 5. mars kl. 16.30.

3. RESULTATER

De orienterende analyser utført den 5. mars ga opplysninger for den videre utførelse av analyseprogrammet. Resultatene var som følger:

Tabell 1. Orienterende analyser.

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Døgn lagret</th>
<th>Kigtall 20°C kim/ml</th>
<th>Kigtall 37°C kim/ml</th>
<th>pH</th>
<th>Perm.-tall mg O/1</th>
<th>Usmak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass-flaske</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>6,2</td>
<td>2,2</td>
<td>(Citrus)X</td>
</tr>
<tr>
<td>Kartong 2</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>5,9</td>
<td>1,7</td>
<td>Svak, men uvesentlig</td>
</tr>
<tr>
<td>Kartong 3</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>6,0</td>
<td>3,1</td>
<td>Ingen</td>
</tr>
</tbody>
</table>

XDet luktet tydelig appelsin av korken på flasken.
Resultatene viste at prøvene til kimtallsanalyser foreløpig ikke måtte fortynnes, og at 37°C-kimtall kunne sloyfes.

Tabell 2 viser resultatene fra hovedforsøket. Resultatene fra smaksprøvningen er ikke tatt med, men det var intet å bemerke til de kartonger som var lagret ved værelsetemperatur. Vann på kartongtype 3 (Duplex), lagret i kjølerom, viste begynnende usmak ved slutten av forsøket.

Analyseresultatene er også presentert i figurene 1, 2 og 3.
Tabell 2. Analyseresultater fra lagringsforsøket.

<table>
<thead>
<tr>
<th>Dato mars 1971</th>
<th>Døgns lagring fra 5.3. 18-22°C</th>
<th>Antall kim pr. ml</th>
<th>Kjemisk oksygenforbruk Permanganattall mg O/L</th>
<th>pH-verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kartong 2 Al-belagt</td>
<td>Kartong 3 Duplex</td>
<td>Kartong 4 Surlyn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I II</td>
<td>I II</td>
<td>I II</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Ingen prøver analysert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>13 -</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>29</td>
<td>±1,300</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>150</td>
<td>>1,400</td>
<td>>10,000 >10,000</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>1,500</td>
<td>1,400</td>
<td>>80,000 >99,000</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>620</td>
<td>30</td>
<td>260,000 170,000</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>1,300</td>
<td>630</td>
<td>160,000 170,000</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>1,200</td>
<td>140</td>
<td>15,000 60,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagret ved ca. 4°C fra 5.3.</th>
<th>Antall kim pr. ml</th>
<th>Kjemisk oksygenforbruk Permanganattall mg O/L</th>
<th>pH-verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kartong 2 Al-belagt</td>
<td>Kartong 3 Duplex</td>
<td>Kartong 4 Surlyn</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>13 -</td>
</tr>
<tr>
<td>8 (ca. 20°C) 26</td>
<td>5</td>
<td>360</td>
<td>41,000</td>
</tr>
<tr>
<td>29</td>
<td>360</td>
<td>41,000</td>
<td>5,500</td>
</tr>
</tbody>
</table>

De små nuller angir fortynningsgraden, dvs. nøyaktigheten av prøven. De store tall betegner altså kolonier pr. plate.
Fig. 1
Kimtallsresultater

- Kartong 2
- Kartong 3
- Kartong 4

Lagret ved værelsestemperatur
Lagret ved ca. 4°C

Antall km/ml
(logaritmisk skala)

100.000
10.000
1.000
100
10

2 5 9 12 16 19 23 26 døgn lagringstid
Fig. 2 pH-verdier

Lagret ved værelsestemperatur Lagret ved ca. 4°C

- Kartong 2 -------- Enkeltobservasjon
\times Kartong 3 \underline{\quad}2\ parallel\ell\underline{\quad}
\Delta Kartong 4

Fig. 3 Kjemisk oksygenforbruk, KMnO₄

Lagret ved værelsestemperatur Lagret ved ca. 4°C

\text{mg O/ l}

-\vspace{-1cm}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 \\
\hline
\end{tabular}
4. DISKUSJON

4.1 Smak

Som nevnt foran, var det smaksmessig intet å bemerke til vann lagret ved værelsestemperatur, mens det etter 3 ukers lagring var begynnende usmak på vannet i kartongtype 3 (Duplex) lagret i kjølerom. Da tilsvarende vann lagret ved værelsestemperatur ikke hadde usmak, er det mest sannsynlig at denne kartongtype kan ha vært gjennomtrengelig for luft og dermed ha tatt opp smaksstoffer fra luften i kjølerommet.

4.2 pH-verdi

Første gangs måling for kartongtypene 2, 3 og 4, etter henholdsvis 2, 2 og 5 døgns lagring, viste pH-verdier på 5,9 - 6,0 og 5,9/5,8. Etter tre ukers lagring var pH-verdiene henholdsvis 6,1/5,9 - 6,3/6,2 og 5,9/5,8.

Tabell 1 og 2 viser for sammenlikning, pH-verdien i tilsvarende vann tappet på glassflaske. Den var, etter 1 dogn lagring på flasken, 6,2.

Vannet i kartongtype 4 (Surlyn) viste minst variasjon i pH-verdi i løpet av lagringstiden, mens vannet i de andre to kartongtypene viste maksimumsverdier (kartong 2: 7,1/6,8, kartong 3: 6,7/6,5) etter ca. 9 døgns lagring. Denne variasjon strikk ikke ut til å ha tydelig sammenheng med variasjoner i de andre undersøkte parametre. Vannet i kartongtype 3 (Duplex) hadde etter 2 ukers lagring ved værelsestemperatur tydelig høyere pH-verdi enn vannet i de andre kartongtypene. Dette var ikke tilfelle for det ene prøvesett som ble lagret i kjølerom. I disse prøvene viste vannet i kartongtypene 2 og 4 nær samme pH-verdi som tilsvarende vann lagret ved værelsestemperatur, mens pH-verdien for kartongtype 3 lå 0,4 pH-enheter under tilsvarende vann lagret ved værelsestemperatur, og nær samme verdi som ved begynnelsen av forsøket.
4.3 Kjemisk oksygenforbruk

Permanganattallet viste nesten like stor forskjell mellom parallellene som variasjon i løpet av lagringstiden. Mot slutten av lagringstiden stabiliserte det kjemiske oksygenforbruk seg på verdier i området 1,6-1,8 mg O2/1, mot 1,7-2,2 mg O2/1 i begynnelsen. Det var altså ingen registrerbart økning i permanganattallet i løpet av lagringstiden. En eventuell utvasking av organisk stoff fra kartongenes innside var derfor ikke stor nok til å registreres etter denne metoden.

4.4 Kimtall

Da 37°C-kimtallsanalysene i den orienterende undersøkelse viste resultatet 0 kim/ml for alle tre prøvene, ble vannet antatt å være fritt for "forurensningsbakterier" (se etterfølgende forklaring), og denne analyse ble sløydet i hovedprogrammet.

20°C-kimtall ble imidlertid utført, og resultatene viser en klar forskjell mellom bakterieinnholdet i vann lagret i de tre forskjellige kartongtyper. Bemerk at ordinaten (antall kim/ml) på figur 1 er i logaritmisk skala, slik at forskjellen mellom de tre kartongtyper i virkeligheten er langt større enn det man får inntrykk av på figuren.

Fra et kimtall på ca. 10 kim/ml ved start økte generelt sett bakterieinnholdet sterkt i løpet av den første uken, og fortsetter å øke til maksimal verdi i løpet av de første 2 uker. Den tredje uken så det ut som om bakteriøltallet enten holdt seg stabilt eller var for nedagående.

Vannet i kartongtype 2 (Al-belagt) nådde maksimalverdier på ca. 1.500 kim/ml, mens de aller fleste resultatene lå i området mellom 100 og 1.500 kim/ml.

Vannet i kartongtype 3 (Duplex) nådde maksimalverdier på litt over 200.000 kim/ml, og de aller fleste resultatene lå i området mellom 10.000 og 200.000 kim/ml, med tydelig nedgang ved slutten av forsøket.
Vannet i kartongtype 4 (Surlyn) nådde maksimalverdier på noe over 23.000 kim/ml, og de aller fleste resultatene lå i området 3.000-13.000 kim/ml.

Provesettet som var lagret i kjølerom, viste resultater innenfor de angitte områdene for hver kartongtype, og nesten samme verdi som sluttverdien for tilsvarende prøver lagret ved værelsetemperatur.

Dette betyr at kartongtype 3 (Duplex) gir best grobrunn for de heterotrofe bakterier som var innesluttet i kartongen da denne ble lukket. De kan ha kommet inn med vannet, eller med kartongen derom denne ikke ble sterilisert like før den ble påfylt. Bakterietallet nådde opp i verdier på 260.000, og dette er ca. 1/4 av den bakteriekonsentrasjon som kan merkes med det blotte eye som en svak blakking av vannet. Det er meget sannsynlig at bakteriene her kan komme til å danne fnokker som blir synlige i vannet, og kartongtypen må sies å være lite egnet som emballasje for vann. Den mulige gjennomtrengelighet for lukt- og smaksstoffer taler også i samme retning.

Kartongtype 4 (Surlyn) viste generelt en tierpotens lavere bakterietall enn kartongtype 2. Det er mindre sannsynlig at bakteriene her vil kunne danne aggregater (fnokker) som blir synlige med det blotte eye, men dette kan ikke utelukkes.

Kartongtype 2 (Al-belagt) viste generelt 2 tierpotenser lavere kimtall enn type 3, og 1 tierpotens lavere kimtall enn type 4. Det må enses som lite sannsynlig at bakterievæksten her vil bli synlig som fnokker i vannet, eller på annen måte vil forringe drikkevannskvaliteten.

Selv om resultatene med den undersøkte vanntype viser best resultat for kartongtype 2, kan ikke kartongtype 4 erklæres uegnet som emballasje for vann.

Ifølge oppdragsgiver er begge disse kartongenes indre vegger belagt med aluminium, som igjen har fått et plastoverlegg. Dette
plastoverlegget i kartongtype 4 kalles "Surlyn", og regnes av diverse grunner som bedre egnet til generelt bruk enn plastoverlegget i kartongtype 2. Det som i denne undersøkelse er funnet for lagring av vann i kartongene, kan ikke uten videre overføres til lagring av f.eks. saft eller melk, og heller ikke uten videre til andre vann-
typer.

Bakteriene som ble funnet i vannet, har vann som naturlig tilholdssted, og de emner seg av organisk stoff i vannet. De frembringer ikke sykdom hos mennesker eller dyr.

Når man utfører bakteriologiske drikkevannsanalyser, er det for å kontrollere om sykdomsfrembringende bakterier kan være til stede i vannet.

Ved Statens institutt for folkehelse består standard bakteriologisk analyse for drikkevann av en analyse for coliforme bakterier og en analyse for heterotrofe bakterier som vokser raskt ved 37°C, dvs. 37°C-kimtall. Man regner at bakterier som vokser raskt ved 37°C ikke er naturlig hjemmehørende i vann i Norge, fordi vi har et relativt kjølig klima. Disse bakteriene regnes derfor som tegn på forurensning fra f.eks. tarmkanalen hos varmblodige dyr (mennesker) eller fra andre kilder der bakteriene lever ved relativt høy temperatur. Er kimtallet, utført etter denne metode, større eller lik 50 kim/ml, ansees vannet suspekt, og vil ikke uten etter nærmere undersøkelse bli godkjent som drikkevann. Kimtallsanalyser utført ved ca. 20°C tar imidlertid sikte på de bakterier som er naturlig hjemmehørende i vannet, og antallet av disse antas derfor å stå i forhold til vannets innhold av organiske næringsstoffer.

At 20°C-kimtallsanalyser viser høy bakterietall, betyr derfor ikke at vannet er uøget som drikkevann, men hvis man ikke har ytterligere opplysninger om vannet, vil en engangsprove som viser høy 20°C-kimtall, bli vurdert som for 37°C-kimtall – dvs. man anser vannet som suspekt. Et høy 20°C-kimtall kan for eksempel bety at regnvann fra jordoverflaten har tilgang til drikkevannskilden som dermed lett vil kunne forurenses.
5. **KONKLUSJON**

5.1 **Krav til vannet**

Det er meget viktig at det fores nøyte kontroll med det vannet som skal fylles på kartongene. Vannkilden bør være under tilsyn analogt annen vannforsyning til større befolkningesgrupper.

Vannet må således ikke inneholde coliforme bakterier, ha lavt 37°C-kimtall (mindre enn 50 km/ml) og 20°C-kimtallet bør også være lavt, uten at man her kan sette noen eksakt grenseverdi. Det bør også tilfredsstille de kjemiske kvalitetskrav for drikkevann.

5.2 **Krav til emballasjen for vannet**

Et generelt krav til emballasje for vann er at selve emballasjen og påfyllingsapparaturen må tilfredsstille de vanlige krav for produksjon av næringsmidler.

Av de undersøkte kartongtyper må type 3 (Duplex) karakteriseres som lite egnet til lagring av vann. Dette baserer seg vesentlig på den store bakterietilvekst, men også på det mulige opp投产 av luft- og smaksstoffer fra omgivelsene.

Bakterieinnholdet i vannet i de tre kartongtyper etter en lagringstid på 1-3 uker kan karakteriseres som følger:

- Kartong 2 (Al-belagt) 100 - 1.500 km/ml
- Kartong 4 (Surlyn) 3.000 - 13.000 " "
- Kartong 3 (Duplex) 10.000 - 200.000 " "

Det ser altså ut som om "Surlyn"-overtrekket er i stand til å underholde en større bakteriepopulasjon enn plastovertrekket i kartong 2. Selv om disse resultatene viser at sistnevnte kartong er å foretrekke, kan ikke kartong 4 ansees som egnet til emballasje for vann. For å være på den sikre siden, bør man undersøke bakterietilveksten i det vann man ønsker å lagre på kartongene, og helst under påfyllingsvilkår slik de vil være under den fremtidige produksjon, før man tar det endelige standpunkt til hvilken kartongtype som er best egnet til dette formål.

KO/lyn
5.51971