NORSK INSTITUTT FOR VANNFORSKNING

BLINDERN.

0 - 57/65.

En undersøkelse av STORESØ som drikke-
vannskilde for Julianehåb, Grønland.

Juli 1965.

Saksbehandler: Cand.real. Hans Holtan.

Rapporten avsluttet oktober 1965.
1. INNLEDNING.

2. BESKRIVELSE AV NEDBØRFELLET.

3. BESKRIVELSE AV INNSJØBASSENGET.

4. METEOROLOGI.
 4.1. Vind.
 4.2. Nedbør.
 4.3. Lufttemperatur.

5. HYDROLOGI.

6. OBSERVASJONS- OG ANALYSEMETODER.

7. HYDROGRAFI.
 7.1. Termikk.
 7.2. Oksygen.
 7.3. Kjemi.

8. BIOLOGI.

9. SAMMENFATTENDE DISKUSJON.

10. KORROSJON.
 10.2. Korrosjon på kobberør.
 10.3. Konklusjon.

11. PRAKTISKE KONKLUSJONER.

TABELLFORTEGNELSE:

1. Nedbørsmålinger for Julianehåb.

FIGURFORTEGNELSE:

1. Storessø med nedbørfelt. 16
2. Dybdekart over Storessø. 19
3. Storessø. Areal- og magasinkurver. 20
4. Terrengformasjon i innsjøområdet og hovedretninger for normalvind. 21
5. Maks. og min. lufttemperaturer i Julianehåb. 22
8. Omriss av Storessø med lengdeprofil og viktigste strømretninger. 25
9. Effect of pH on corrosion of zinc, aerated solutions, 30°C. 26
1. **INNLEDDNING.**

Julianehåb baserer sin drikkevannsforsyning på en forholdsvis stor innsjø, Storeø, men på grunn av økende bebyggelse i innsjøens nedbørfelt har det vært en del engstelse for utviklingen av vannets hygieniske tilstand. Fra NIVA's side ble det fremholdt at det ville være nødvendig med en befaring av området og en limnologisk undersøkelse av Storeø, før en sikrere vurdering av forurensningssituasjonen kunne finne sted. Det ble oppnådd enighet om at NIVA så snart som mulig skulle utarbeide et undersøkelsesprogram med kostnadsoverslag. Undersøkelsesprogrammet ble sendt i brev av 7. juli 1965 til Sundhedsstyrelsen, København og inneholdt følgende punkter:

1. Opploidding av Storeø og tegning av dybdekart.
2. Kartlegging av de hydrologiske forhold, vannbehov o.l.
3. Innsamling av vannprøver for kjemiske analyser i slutten av sommerstagnasjonsperioden (august/september).
 a) Prøvene tas fra forskjellige dyp i innsjøens dypeste område. Temperatur, siktetyp og pH måles på stedet. Vannprøver tas med til NIVA's laboratorium for analysering av følgende komponenter:
 Spesifikk ledningsevne (k20), farge, turbiditet, kjemisk oksygenforbruk (K\textsubscript{MnO4}−-tall), jern, mangen, klorid, natrium, alkalitet og total hårdhet.
 b) Vannprøver samles inn fra eventuelle hovedtilløpsbekker og utløpsbekk. Prøvene blir analysert på de samme kjemiske komponenter som nevnt ovenfor.
 c) Innsamling av biologisk materiale for kvantitativ og kvalitativ planktonbestemmelse.
 d) Innhenting av opplysninger som kan forklare varigheten av de forskjellige termiske perioder i Storeø og andre forhold av betydning.

5. Vurdering av tiltak som kan forbedre de hygieniske forhold i forbindelse med drikkevannsforsyningen.

Under oppholdet på Grønland ble det ytet verdifull assistanse av rådgivende civilingeniør Rauschenberger, København.

2. BESKRIVELSE AV NEDBØRFELTET.

Storessø ligger (ca. 60° 43' 30" nordlig bredde og ca. 46° 04' vestlig lengde) i nærheten av Julianehåb på Syd-Gronland.

Berggrunnen i nedbørfeltet hører til "det grønlandske skjold", som i det vesentligste består av grunnfjellsbergarter - overveiende gneiser og granitter (Julianehåbgranitten). Fjellgrunnen er til dels dekket av et tynt lag forvirringsmateriale. Vegetasjonen består i det vesentligste av lyng, gress og mose.

I nordøst, nær innsjøens utløp, bor det idag ca. 500 mennesker, men ifølge prognosen vil det bo ca. 2000 mennesker i dette området i 1975 (fig. 1). Spillevann fra bebygelsen blir først ut i innsjøen. Dessuten blir innsjøen i dette området forurenet p.g.a. avrenningsvann fra bebygelsen, klesvask o.l.

I alle leiligheter er det installert tørrklosetter som tilsettes kjemikalier og som tømmes regelmessig utenfor nedbørfeltet. Om sommeren blir også innsjøen en del benyttet til bading. Vannverket ligger ved innsjøens utløp, mens selve vanninntaket ble lagt i ca. 4 meters dyp i innsjøens dypeste område, ca. 1400 m fra nærmeste bebygelse og ca. 1900 m fra vannverket. Inntaksledningen, sugoledningen, i innsjøen er laget av PVC. I vannverket blir vannet luftet og filtrert gjennom magnofilter (brent dolomitt) og sterilisert med hypoklorid (1,5 - 1,7 mg/l). Renvannsbeholderen er på 70 m³, og her får vannet en gjennomsnittlig oppholdstid på ca. 3 timer.

3. BESKRIVELSE AV INNSJØBASSENGET.

Storessø ble loddet opp med (Simrad) ekkoled ca. den 31/7 1965. Vertikale luftfotografier i målestokken 1 : 8500 dannet kartgrunnlag for opplodningen. Det ble stukket ut kurser mellom
karacteristiske punkter ved strendene. Disse ble plottet ned på kartet og avmerket på ekkogrammet. Profilene ble tegnet ved å kjøre mellom de avmerkede punkter med jevn fart. Disse profiler har tjent som grunnlag for opptegning av dybdekart. Dybdekartet er gjengitt i fig. 2. Areal- og volumkurver er tegnet inn på fig. 3.

De viktigste morfometriske data er følgende:

<table>
<thead>
<tr>
<th>Overskrift</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Høyde over havet (iflg. G.T.O.)</td>
<td>7,3 m</td>
</tr>
<tr>
<td>Største lengde</td>
<td>3,95 km</td>
</tr>
<tr>
<td>Største bredde</td>
<td>1,85 km</td>
</tr>
<tr>
<td>Overflateareal</td>
<td>3,5 km²</td>
</tr>
<tr>
<td>Største dyp</td>
<td>49 m</td>
</tr>
<tr>
<td>Største dyp i forhold til havoverflaten (Cryptodepression)</td>
<td>41,7 m</td>
</tr>
<tr>
<td>Volum</td>
<td>47,58 mill.m³</td>
</tr>
<tr>
<td>Middel dyp (volum: overflaten)</td>
<td>13,6 m</td>
</tr>
</tbody>
</table>

Innsjøbassenget er opprinnelig utformet av isen, men morfologien er blitt videre utformet ved senere tiders erosjon (vann, frost, vind m.m.).

4. **METEOROLOGI.**

Dette avsnittet bygger i det vesentligste på materiale fra Meteorologisk Institut, Vejrmeldetjenesten for Grønland. Materialet er blitt videre bearbeidet av de rådgivende civilingeniører J. Hostrup-Schultz, K. Hunderup og O. Sørensen.

4.1. **Vind.**

Normalvinden (vindhastigheten mellom 0 og 20 knop) grupperer seg stort sett innenfor følgende hovedsektorer: NW ± 30°, SW ± 30° og NO ± 30°, med en hyppighet på henholdsvis 20,0%, 19,3% og 15,7%. Vindhastigheten mellom 0 og 20 knop i vinkelrommet S00 ± 45° opptrer med en hyppighet av 6,2% (fig. 4). Normalvindens fordeling over årstidene er følgende: Vindektorene NW og NO er dominerende i vinterhalvåret, idet ca. 70% av observasjonene i denne tidsperiode faller i disse retninger. Om sommeren dominerer derimot SW-vinden, idet over 80% av SW-observasjonene faller i april og juli kvartaler. 29% av samtlige observasjoner er vindstille. Dette er noenlunde jevnt fordelt over hele året.
Stormvindene (vindhastighet > 20 knop) grupperer seg hovedsakelig i 3 middelretninger, nemlig NO ± 30°C, SSO ± 30°C og WNW ± 45°. Den gjennomsnittlige hyppigheten av slike vindhastigheter innenfor hver av de tre vindsektorer er henholdsvis ca. 85%, ca. 8% og ca. 14%. Vind fra nordøst er således sterkest dominerende som stormvind. Med hensyn til stormvindenes fordeling over årstidene, gjelder ca. halvdelen av observasjonene januar kvartal alene. Ca. 30% av observasjonene gjelder oktober kvartal og ca. 20% april kvartal. Om sommeren er det sjelden vind av denne hastedighet i Julianehåbdistriktet.

På grunn av Storø's beliggenhet i terrenget og de aktuelle hovedvindretninger (fig. 4), er det nærleggende å anta at den dominerende vindretning på denne innsjø er rettet henimot sjøens utløp. Stormvindene inntreffer i det vesentligste i vinterhalvåret og har således liten betydning for strømretningene i innsjøen, idet innsjøen i denne tidsperiode er tilfrosset.

4.2. Nedbør.

Tabell 1 viser månedlig nedbør i 1963 og 1964 for Julianehåb.

Tabell 1. Nedbørsmålinger for Julianehåb (målt i mm).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>120,2</td>
<td>53,0</td>
<td>31,5</td>
<td>31,6</td>
<td>105,3</td>
<td>101,3</td>
<td>100,2</td>
<td>79,0</td>
<td>113,6</td>
<td>49,3</td>
<td>42,1</td>
<td>79,5</td>
</tr>
<tr>
<td>1964</td>
<td>62,1</td>
<td>20,5</td>
<td>76,5</td>
<td>37,5</td>
<td>12,6</td>
<td>59,8</td>
<td>67,5</td>
<td>23,3</td>
<td>66,8</td>
<td>132,7</td>
<td>166,7</td>
<td>80,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>673,1</td>
<td>843,8</td>
<td>767,8</td>
<td>906,6</td>
<td>806,8</td>
</tr>
</tbody>
</table>

Som tabellen viser kan det være en betydelig forskjell i nedbørsmengdene for samme måned i forskjellige år. Den midlere årlige nedbør i denne periode blir ca. 800 mm, og denne verdi vil her bli betraktet som den normale.

4.3. Lufttemperatur.

Fig. 5 gjengir degnets maks. og min. temperatur for Julianehåb fra november 1963 til april 1965. Figuren viser at det til dels er store variasjoner i lufttemperaturen fra dag til dag, særlig
om vinteren. Tabell 2 gjengir månedsmidler for maksimums- og minimumstemperaturer i tidsrommet november 1963 til august 1964:

<table>
<thead>
<tr>
<th></th>
<th>1963</th>
<th></th>
<th>1964</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks.</td>
<td>-0,6</td>
<td>+2,6</td>
<td>-1,0</td>
</tr>
<tr>
<td>Min.</td>
<td>-7,0</td>
<td>-2,1</td>
<td>-5,3</td>
</tr>
<tr>
<td>Middel</td>
<td>-3,8</td>
<td>+0,2</td>
<td>-3,1</td>
</tr>
</tbody>
</table>

5. HYDROLOGI.

Som nevnt under kapittelet meteorologi antar vi at den midlere årsnedbør ved Julianehåb er ca. 800 mm. Regner vi at for-dampningen er ca. 250 mm (høyfjellsstrøk og arktiske strøk), blir det følgelig en "nyttenebør" på 550 mm pr. år. Det midlere tilsig til Storeø skulle dermed bli ca. 37600 m³ pr. døgn (dvs. ca. 17 l/sec/km²). Vannmassenes teoretiske oppholds tid i Storeø er følgelig: ca. 3,5 år.

6. OBSERVASJONS- OG ANALYSEMETODER.

Prøvetskingen fant sted over innsjøens dypeste område. Dessuten ble det hentet inn vannprøver fra de to viktigste tilløpsbekkene. Vannprøvene ble tatt med en vannhenter av Ruttnertypen. For måling av vannets oksygeninnhold ble det benyttet Winkler-flasker. Disse ble fylt opp på forskriftsmessig måte og tilsatt reagenser (MnCl₂ og NaOH) på stedet. Vann til kjemiske analyser forsvirr ble tappet på polyethylen flasker.

Temperaturen ble målt med Richter og Wiese vendetermometer.

Oksygeninnholdet ble bestemt titrimetrisk ifølge Alsterbergs modifikasjon av Winklers metode. Analysearbeidet ble utført samme dag prøvene ble tatt.

pH ble målt samme dag prøvene ble tatt ved hjelp av en Hellige comparator. Bromthymol blått ble brukt som indikator.
Spesifikk ledningsevne \(K_{10} \) ble målt på en Philips målebro ved \(20^\circ C \). Verdiene er oppgitt i \(n.10^{-6}.\text{cm}^{-1}.\text{cm}^{-1} \). Analysene ble utført i Oslo den 11/8 d.å.

Farge. Fargemålingene ble utført med et fotoelektrisk kolorimeter (EEM-photometer) (10 cm celler) som er kalibrert mot fargeløsninger i Hazens skala (platin-kobolt klorid-løsning).

Turbiditet. Lysspredningsmåling (Tyndall-effekt) med et fotoelektrisk kolorimeter som er kalibrert mot silicasuspensjoner.

Permanganatallene \(K\text{MnO}_4 \) er bestemt ifølge forskrifter fra Statens institutt for folkehelse, Oslo. Prøven oppvarmes i sult kaliumpermanganatmiljø på vannbad i 20 minutter med etterfølgende tilsetning av standard oksalsyre. Overskudd av oksalsyre titreres varmt tilbake med standard kaliumpermanganat. Ved å multiplisere de oppgitte tallene med 4,0 fremkommer forbruk i mg \(K\text{MnO}_4 \) pr. l.

Klorid. Titrering med sølvnitrat og kaliumkromat som indikator.

7. HYDROGRAFI.

Observasjons- og analyseresultatene er fremstilt i tabell 3 og fig. 6. Fig. 7 gjengir vannverkets råvannstemperatur i perioden november 1962 til og med juni 1965. Denne temperatur som praktisk talt er identisk med overflatevannets temperatur, karakteriserer til en viss grad de forskjellige termiske perioders varighet.

7.1. Termikk.

Temperaturobservasjonene viser at Storøs hører med til de såkalte tempererte innsjøer, og den gjennomløper fire forskjellige termiske perioder for året, nemlig vårfullsirkulasjonsperioden, sommerstagnasjonsperioden, høsfyllsirkulasjonsperioden og vinterstagnasjonsperioden. Termisk sett er Storøs svært lik høyereliggende innsjøer i Norge.
Tabell 3.

Storres.

Fysisk-kjemiske analyserresultater.

Prøver tatt: 30/7 1965.

Prøvene analysert 1 - 2 uker etter prøvetaking. (O₂ og pH analysert 30/7-65)

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Cksygen ng O₂/1</th>
<th>Metn. %</th>
<th>pH</th>
<th>Sp. ledn. e₅₅₀₁₀⁻⁶¹</th>
<th>Farge mg Pt/1</th>
<th>Turbiditet mg SiO₂/1</th>
<th>KMnO₄-tall 0/1</th>
<th>Jern μg Fe/1</th>
<th>Mangan mg Mn/1</th>
<th>Totalhårdhet mg CaO/1</th>
<th>Klorid mg Cl/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>St.1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12,92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>1,1</td>
<td>29</td>
<td><0,05</td>
<td>4,9</td>
</tr>
<tr>
<td>1</td>
<td>12,96</td>
<td>10,4</td>
<td>101,9</td>
<td>6,8</td>
<td>61,3</td>
<td>7</td>
<td>0,5</td>
<td>1,1</td>
<td>25</td>
<td><0,05</td>
<td>4,6</td>
<td>15,6</td>
</tr>
<tr>
<td>4</td>
<td>12,88</td>
<td>10,3</td>
<td>100,8</td>
<td>6,8</td>
<td>61,5</td>
<td>9</td>
<td>0,2</td>
<td>1,0</td>
<td>37</td>
<td><0,05</td>
<td>4,7</td>
<td>15,6</td>
</tr>
<tr>
<td>8</td>
<td>12,61</td>
<td>10,3</td>
<td>100,0</td>
<td>6,8</td>
<td>61,7</td>
<td>7</td>
<td>0,3</td>
<td>1,1</td>
<td>25</td>
<td><0,05</td>
<td>4,6</td>
<td>15,6</td>
</tr>
<tr>
<td>10</td>
<td>12,14</td>
<td>10,6</td>
<td>102,0</td>
<td>6,8</td>
<td>61,5</td>
<td>9</td>
<td>0,2</td>
<td>1,1</td>
<td>24</td>
<td><0,05</td>
<td>4,7</td>
<td>15,6</td>
</tr>
<tr>
<td>12</td>
<td>10,60</td>
<td>10,3</td>
<td>100,2</td>
<td>6,7</td>
<td>61,5</td>
<td>9</td>
<td>0,2</td>
<td>1,1</td>
<td>77</td>
<td><0,05</td>
<td>4,6</td>
<td>15,6</td>
</tr>
<tr>
<td>16</td>
<td>9,34</td>
<td>11,0</td>
<td>99,0</td>
<td>6,7</td>
<td>61,7</td>
<td>8</td>
<td>0,2</td>
<td>1,0</td>
<td>29</td>
<td><0,05</td>
<td>4,7</td>
<td>15,6</td>
</tr>
<tr>
<td>20</td>
<td>8,30</td>
<td>11,0</td>
<td>97,8</td>
<td>6,6</td>
<td>62,4</td>
<td>7</td>
<td>0,1</td>
<td>1,1</td>
<td>22</td>
<td><0,05</td>
<td>4,6</td>
<td>15,9</td>
</tr>
<tr>
<td>25</td>
<td>8,31</td>
<td>11,0</td>
<td>96,7</td>
<td>6,5</td>
<td>66,8</td>
<td>9</td>
<td>0,2</td>
<td>1,0</td>
<td>21</td>
<td>0,06</td>
<td>4,6</td>
<td>15,9</td>
</tr>
<tr>
<td>30</td>
<td>8,09</td>
<td>10,9</td>
<td>95,3</td>
<td>6,5</td>
<td>62,3</td>
<td>7</td>
<td>0,1</td>
<td>1,0</td>
<td>90</td>
<td><0,05</td>
<td>4,9</td>
<td>15,8</td>
</tr>
<tr>
<td>35</td>
<td>8,01</td>
<td>10,8</td>
<td>94,1</td>
<td>6,5</td>
<td>61,9</td>
<td>7</td>
<td>0,1</td>
<td>1,1</td>
<td>42</td>
<td><0,05</td>
<td>4,8</td>
<td>15,9</td>
</tr>
<tr>
<td>40</td>
<td>7,94</td>
<td>10,7</td>
<td>93,1</td>
<td>6,4</td>
<td>62,0</td>
<td>7</td>
<td>0,1</td>
<td>1,1</td>
<td>96</td>
<td><0,05</td>
<td>4,9</td>
<td>15,9</td>
</tr>
<tr>
<td>St.2. vest</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38,9</td>
<td>-</td>
<td>0,2</td>
<td>1,1</td>
<td>26</td>
<td><0,05</td>
<td>3,1</td>
<td>10,4</td>
</tr>
<tr>
<td>St.3. nord</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54,3</td>
<td>-</td>
<td>0,2</td>
<td>1,5</td>
<td>25</td>
<td><0,05</td>
<td>6,5</td>
<td>11,7</td>
</tr>
<tr>
<td>Ravn-</td>
<td>13,1</td>
<td>11,5</td>
<td>113,1</td>
<td>9,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Målt med Hellige comparator.
Under vinterstagnasjonsperioden er temperaturen overalt i innsjøen lavere enn temperaturen for vannets maksimums tetthet, dvs. lavere enn 4°C. I de øverste vannmasser er temperaturen henimot 0°C, men den stiger noe mot dypet. Perioden er således karakterisert ved at vannmassene befinner seg i stabil likevekt. Vertikale forskyvninger og strømninger forekommer derfor bare i bekkjeden utstrekning. Ut fra råvannstemperaturene (fig. 7), er det grunn til å anta at vinterstagnasjonsperioden i Storessø varer fra slutten av november til slutten av mai, dvs. ca. 6 måneder.

Om våren, etter isløsningen, oppvarmes overflatelagene. Den stabile likevekt blir derved opphevet, og resultatet blir vertikale konveksjonsstrømninger. Denne såkalte vårfullsirkulasjonsperioden varer til hele vannmassen har nådd temperaturen for maksimums tetthet. I Storessø, som ligger utsatt til for vind, er det rimelig å anta at sirkulasjonsperioden varer til vannmassene overalt i innsjøen har nådd en temperatur på 5 - 6°C. Ved videre oppvarming av overflatelagene inntrenger igjen stabil likevekt, og sommerstagnasjonsperioden er etablert. Ifølge fig. 7 varer vårfullsirkulasjonsperioden i Storessø i ca. 8 - 10 dager. I begynnelsen av juni er det nemlig ifølge nevnte fig. en markant stigning i overflatestemperaturen. Observasjonsresultatene fra 30. juli viser imidlertid at vannmassene i dypet ikke har fått den samme varmestøvsel.

Under sommerstagnasjonsperioden vil vind-, bølge- og strømaktivitet påvirke de øverste vannmassene slik at det dannes en lagdeling med varmt vann øverst, som er atskilt fra kaldere vannmasser i dypet. I løpet av sommeren vil mektigheten av de øverste varmere vannmasser øke. På observasjonsdagen lå sprangsjiktet mellom det varme overflatevann og kaldere vann i dypet, på 10 - 12 meters dyp. Utover sensommeren og høsten avkjøles overflatelagene, konveksjonsstrømmer setter inn og sprangsjiktet arbeides stadig mot dypere lag. Til slutt vil hele vannmassen ha en ensartet temperatur, høstfullsirkulasjonsperioden er etablert. Ifølge fig. 7 inntrer denne situasjonen i Storessø i siste halvpart av september. Da har sommerstagnasjonsperioden vart i ca. 3,5 mndr.

Høstfullsirkulasjonsperioden varer til vannmassene er avkjølt så langt at vannets temperatur har nådd temperaturen for maksimums tetthet. Da går innsjøen på nytt inn i en stabil
periode (vinterstagnasjonen). En videre avkjøling vil nemlig, som følge av tetthetsforskjellen, bare berøre overflatevannet, og det etableres igjen en termisk stratifikasjon med kaldt overflatevann over varmere vann i dypet. Fig. 7 viser at høst-fullsirkulasjonen varer i ca. 1,5 - 2 mndr. til siste halvpart av november.

7.2. Oksygen.

Oksygeninnholdet i en innsjø bestemmes bl.a. av vannets temperatur, biologiske prosesser, meteorologiske forhold og strømningsforhold. I den isfrie del av året er overflatelagene alltid i kontakt med luft og er således rike på oksygen. Størrelsen av oksygenmetningen i de dypeste lag er i det vesentligste betinget av den biologiske aktivitet i vedkommende lokalitet. I sirkulasjonsperiodene vår og høst, får hele innsjøen tilført oksygen, slik at vannmassene ved inngangen til stagnasjonsperiodene har en oksygenmetning på ca. 100%. I innsjøer, som er påvirket av organisk materiale, kan det ofte være betydelig oksygenforbruk i dyplagene under stagnasjonsperiodene.

På observasjonsdagen var oksygenmetningen i de øverste lagene (epilimnion) av Storessø vel 100%. Under sprangsjiktet (hypolimnion) var oksygenmetningen noe lavere, men også her var metningen henimot 100%. Dette viser at innsjøen er lite påvirket av planta plankton og organisk materiale. Innsjøen kan karakteriseres som en typisk oligotrof (næringsfattig) innsjø.

7.3. Kjemi.

Vannet i Storessø er svakt surt, og surhetsgraden øker litt mot dypet av innsjøen - noe som henger sammen med vannets temperatur og økning av vannets innhold av CO₂.

Den elektrolytiske ledningsevne og verdiene for total hårdhet viser at vannet er relativt bløtt og saltfattig. Analyse-resulatene av vannprøvene fra de to hovedtillsøpsbekker, st. 2 og st. 3, viser at tilsigsvannet har noe lavere elektrolytt-innhold enn selve innsjøen. Dette henger sannsynligvis sammen med nedbørens innhold av sjesalter. Innsjøen ligger nærmere
havet enn store deler av nedbørfeltet og vil således bli mer anriket på slike salter. Resultatene av kloridanalysene viser da også at innsjøens kloridinnhold er noe høyere enn i vannet fra bekkene.

Verdiene for farge, turbiditet og kjemisk oksygenforbruk viser at vannet er lite påvirket av organisk materialeg. Siktedypet var på observasjonsdagen ca. 10 meter.

Vannets innhold av jern og mangan er lite og har ingen betydning i denne sammenheng.

5. **BIOLOGI.**

Håvtrekket var ganske rikt på plankton, men artsantallet var lavt. Dyreplanktonet dominerte kvantitativt, bortsett fra en ubestemt flagellat (se senere).

Av disse viste *Conochilus volvox* og en ubestemt copepode de største forekomstene. De tre oppførte Rotaterie-artene hører til de vanligst forekommende i denne gruppen, uten å vise spesielle miljøpreferanser. Av planteplanktonet var *Dinobryon cylindricum* den eneste arten som forekom i nevneverdige mengder. Dette er en kaldtvannsform (tidligere registrert fra Grønland) og vanlig i mer næringsfattige innsjøer.

Desmidiace-innslaget peker også mot temmelig næringsfattige forhold (dvs. lite forurensset) på den undersøkte lokaliteten.

Tabell 4.

Mikroskopering av håvrekk (overflate) fra Storø 30/7 1965.

<table>
<thead>
<tr>
<th>CYANOPHYCEAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nostoc cf. planctonicum</td>
<td>rr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHLOROPHYCEAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmarium sp.</td>
<td>r</td>
</tr>
<tr>
<td>Arthrodesmus sp.</td>
<td>r</td>
</tr>
<tr>
<td>Staurastrum arctiscon</td>
<td>rr</td>
</tr>
<tr>
<td>Staurastrum sp.</td>
<td>r</td>
</tr>
<tr>
<td>Pleurotaenium sp.</td>
<td>r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BACILLARIOPHYCEAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabellaria flocculosa</td>
<td>rr</td>
</tr>
<tr>
<td>Melosira sp.</td>
<td>rr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHYSOPHYCEAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinobryon cylindricum</td>
<td>c-r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROTATORIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keratella cochlearis</td>
<td>c-r</td>
</tr>
<tr>
<td>Trigla platyptera</td>
<td>c-r</td>
</tr>
<tr>
<td>Conochilus volvox</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRUSTACEAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosmina coregoni</td>
<td>r</td>
</tr>
<tr>
<td>Calanoide copepoder</td>
<td>c</td>
</tr>
<tr>
<td>Ubekomt flagellat (?)</td>
<td>cc</td>
</tr>
</tbody>
</table>

(rr = meget sjelden, r = sjelden, c = vanlig, cc = meget vanlig)

9. SAMMENFATTENDE DISKUSJON.

Vannforsyningen til Julianehåb er basert på Storø som råvannskilde. Denne innsjø har et overflateareal på ca. 3,5 km², største dyp på 49 m og et volum på 47,58 mill.m³. Nedbørfeltet er ca. 25 km². Med en årlig nyttenedbør på 550 mm blir vannmassenes teoretiske oppholtid ca. 3,5 år.
Storesø er en typisk temperert innsjø, og gjennomløper 4 forskjellige termiske perioder for året. Sprangsjiktet ligger om sommeren i 10–12 meters dyp. Vannet er svakt surt, bløtt og inneholder lite organisk materiale. Oksygenmetningen er > 90% i alle dyp i innsjøen. Som drikkevann betraktes et vannet kjemisk sett av meget god kvalitet.

Hygienisk sett er det noe betenkelig at deler av innsjøens nedbørområde blir benyttet som byggfelt uten at det sørger for ordnede kloakkforhold med avløp ut fra innsjøens nedbørfelt. Hvis vannintaket plasseres i ca. 30 meters dyp i innsjøens dypeste område er forurensningsfaren allikevel liten. På grunn av temperaturforholdene er nemlig dypvannmassene både sommer og vinter beskyttet mot forurensninger. Dessuten er vindforholdene i regelen slik at vindstrømmene i overflate lagene er rettet henimot innsjøens utløp. Terskelen utenfor Judithe Eiland, vil hindre at vannmassene i innsjøens dypeste område (inntaksområdet) blir forurenset fra bebyggelsen som følge av kompensasjonsstrømmer i dypet (fig. 3). I stille perioder og under isdekket om vinteren vil strømretningen være rettet henimot innsjøens utløp. De verste perioder med hensyn til forurensningsfaren er sirkulasjonsperiodene om våren og høsten, og det er grunn til å være spesielt påpasselig med sterilisering av vannet i disse perioder.

Utløpsbekken fra Storesø var under prøvetakingen ikke synlig påvirket av forurensninger, men med økende bebyggelse kan forholdene her endre seg i uheldig retning.

10. KORROSJON.

Under oppholdet i Julianeåab (månedskiftet juli/august 1965) ble også korrosjonsproblemer i sammenheng med vannforsyningen viet en del oppmerksomhet.

Distribusjonsnett (sommerledningene) og husinstallasjoner for kaldt og varmt vann var for det meste laget av galvaniserte jernrør. For de enkelte forbrukerne var korrosjon på ledninger og husinstallasjoner, særlig for varmt vann, svært problematisk. Vannet var forurenset av korrosjonsprodukter, og rørmateriale, varmtvansbeholdere o.s.v., ble ødelagt i løpet av forholdsvis kort tid.
10.1. **Korrosjon på galvaniserte jernrør.**

Sinkbelegget på galvaniserte jernrør virker bare katodisk beskyttende for temperaturer under ca. 60°C. Over denne temperatur dannes et sinkkysydebelegg, som er edlere enn både sink og jern. Ved defekter i dette belegg, som man neppe unngår, blir det defekte området katodisk i forhold til resten av overflaten. Vi får en lokal tæring med perforering av røret som resultat.

Temperaturen på varmtvannet når rør eller tanker er av galvanisert jern, må ikke overstige ca. 60°C. De mottatte rørtypeper tyder på at korrosjonen skyldes for høy temperatur.

10.2. **Korrosjon på kobberrør.**

Surt og bløtt vann angriper også kobberrør. Vi skiller mellom jevn overflatekorrosjon og groptæringar (pittings). Den jevne overflatekorrosjonen er lav. Litteraturen oppgir korrosjons-hastigheter på 0,02 mm pr. år ved pH 5 og 0,01 pr. år ved pH 6. Over pH 7 er korrosjonen så lav at den er uten praktisk betydning. Den største ulempen ved den korrosjons-formen er at vi får koberioner i vannet og utfelling av kobbersåper fra vaskevann med derav følgende grønmønring av tøy og sanitrutstyr.

En alvorligere form for korrosjon i surt vann er groptæringar. Denne korrosjonsform opptrer særlig i varmtvannsopplegget og spesielt på koberspiraler i varmtvannsberedere. Vi har eksempler på at slike spiraler blir gjennomhullet i løpet av et år.
10.3. **Konklusjon.**

For å få minst mulig korrosjon på galvaniserte jernrør bør vannets pH-verdi være over 8 og under 12. Når det benyttes galvanisert jern i varmtnansinstallasjoner, må temperaturen ikke overstige 60 °C. Da det i praksis vil være vanskelig å holde temperaturen under 60 °C, vil vi fraråde bruk av galvanisert jern til dette formålet og i stedet anmode kobber. Korrosjonen på kobber er liten når vannets pH-verdi er over ca. 7.

For helt å unngå korrosjonsprodukter i drikkevannet, vil vi anbefale bruk av polyetylenrør eller støpejernsrør med et innvendig asfaltbelegg som distribusjonsledninger.

11. **PRAKTISKE KONKLUSJONER.**

1. Inntaket plasseres i ca. 30 meters dyp i innsjøens dypeste område.

2. pH-regulering til pH 8 - 9 ved hjelp av magnofilter eller dosering av kalk.

3. Vannet steriliseres med klor (hypoklorid).

Tidligere vanninntak (på ca. 4 m dyp)

Utslipp av spillet vann fra husholdninger (ca. 2 m dyp)

Vannverk

Julianehåb

M:1:42000

Vannforsyning for Julianehåb
Storesø med nedbørfelt og stasjonsplassering

Fig. 1

0-57/65 4741
Vannforsyning for Julianehåb
Terrengformasjon i innsjøområdet og hovedretninger for normalvind (0-20 knop)
Fig. 6

Vannforsyning for Julianehåb
Storesø
Temperatur, oksygen (mg/l og %, metam.) og pH

NORSK INSTITUTT FOR VANNFORSKNING BLINDERN

0-57/65 4742
Pilene antyder vindstrømmene som er viktigst og har størst hyppighet.

Omriss av Storesø med lengdeprofil og viktigste strømretninger.
Effect of pH on corrosion of zinc, aerated solutions, 30°C

From Uhlig: Corrosion and corrosion control, fig. 2, side 203

Fig. 9