NORSK INSTITUTT FOR VANNFORSKNING

BLINDERN.

0 - 325.

Undersøkelse av Øyeren som drikkevannskilde for Eidsberg vannverk.

Saksbehandler: Cand.real Hans Holtan.

Rapporten avsluttet desember 1962.
INNHOLD:

1. INNLEDNING 4
2. MORFOLOGI 4
3. HYDROLOGI 5
4. OBSERVASJONS- OG ANALYSEMETODER 8
5. HYDROGRAFI 9
 5.1. Termiske forhold 10
 5.2. Oksygenforhold 11
 5.3. Kjemiske forhold 12
 5.3.1. pH og elektrolytisk ledningsevne 12
 5.3.2. Jern og mangan 13
 5.3.3. Turbiditet og farge 13
6. BAKTERIOLOGISKE FORHOLD 14
7. SAMMENFATTENDE DISKUSJON 15
8. PRAKTISKE KONKLUSJONER 17
1. INNHLEDNING.

Ellers er det ved flere anledninger foretatt sporadiske biologiske undersøkelser i Øyeren, men disse har ikke nevneverdig betydning i denne sammenheng.

2. MORFOLOGI.

Øyeren er en ca. 33 km lang fjordsjø. I den nordligste og bredeste delen av Øyeren, fra utløpet av Glomma og 9 - 10 km sydover, varierer dybden mellom 1 og 6 m. De største dypene ble målt i romnene som danner fortsettelsen av elveløpene. Deltaflaten senker seg ca. 0,6 m pr. km.

Den sørøvre halvdelen av sjøen danner et langstrakt trau med forholdsvis jevn bunn som heller svakt mot øst. Professor Holte- Dahl (1907) har påvist forkastninger langs Øyeren og at alun-skiferfeltet ved nordvestsiden er en relativt innsunket part. Holte-dahl antar som sannsynlig at alunfeltet har betydelig utbredelse også under Øyerns flatte.

Forkastningene og det større eller mindre innsunkne parti av lite motstandsdyktig alunskifer må antas å være den primære
- 5 -

grunn for bassengets dannelse, uansett hvilke eroderende krefter som har vært virksomme.

Noen morfométriske data for Øyeren er angitt nedenfor:

Høyde over havet 101 m
Overflate (kote 101) 85,2 km²
Nedslagsfelt ved Mørkfoss 39964 km²
Sjøens overflate som % av nedslagsfelt 0,21 %
Største lengde 33,2 km
Største dyp 70,5 m

<table>
<thead>
<tr>
<th>Dybdekurve kote m</th>
<th>Areal km²</th>
<th>% av overfl.</th>
<th>Vannlag mellom dybdekurve m</th>
<th>Volum mill. m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85,2</td>
<td>100</td>
<td>0 - 5</td>
<td>258,14</td>
</tr>
<tr>
<td>5</td>
<td>24,4</td>
<td>28,5</td>
<td>5 - 10</td>
<td>109,72</td>
</tr>
<tr>
<td>10</td>
<td>19,72</td>
<td>23,2</td>
<td>10 - 20</td>
<td>186,73</td>
</tr>
<tr>
<td>20</td>
<td>17,64</td>
<td>20,7</td>
<td>20 - 30</td>
<td>167,83</td>
</tr>
<tr>
<td>30</td>
<td>15,94</td>
<td>17,6</td>
<td>30 - 40</td>
<td>150,04</td>
</tr>
<tr>
<td>40</td>
<td>14,09</td>
<td>16,5</td>
<td>40 - 50</td>
<td>129,03</td>
</tr>
<tr>
<td>50</td>
<td>11,76</td>
<td>13,8</td>
<td>50 - 60</td>
<td>94,97</td>
</tr>
<tr>
<td>60</td>
<td>7,41</td>
<td>8,5</td>
<td>60 - 70,5</td>
<td>24,69</td>
</tr>
</tbody>
</table>

Samlet volum: 1121,15 mill. m³.
Middel dyp: volum/overfl.: 13,16 m
Volumet av vannmassene ned til 10 meters dyp: ca. 369 mill. m³
Volumet av vannmassene ned til 15 meters dyp: ca. 463 mill. m³.

3. HYDROLOGI.

Avløpet fra Øyeren er regulert gjennom en dam ved Mørkfoss. Siste regulering ble gjennomført i 1934. 0-punktet ligger ifølge Norges vassdrags- og elektrisitetsvesen 96,340 m over havet. Nedre reguleringsgrense ligger 2,4 m lavere, mens øvre grense ligger 4,8 m over nevnte 0-punkt. Øyeren's overflate ved høyeste regulerte vannstand ligger altså på kote 101,14. Den oppmålesvannmengde blir derv-d 157 mill. m³. Reguleringen
skal utføres slik at vannstanden skal holdes ved reguleringsgrensen om sommeren og høsten til 30. november. Deretter skal vannstanden senkes med 0,45 m pr. mnd. til og med 31. mars, d.v.s. til 99,34 m.o.h. Under visse forhold kan vannstanden senkes ytterligere til 98,74 m.o.h.

Glommas nedslagsfelt er 39,964 km² ved Mørkfoss. Variasjonen i Glommas vassføring er som for typisk sydøst-norske elver: en stor og årviss vårflom, forholdsvis stor vassføring om sommeren, en mindre og mer tilfeldig høstflom og endelig en lavvannsperiode om vinteren. Lavlandsflommen har vanligvis ingen utpreget kulminasjon i hovedvassdraget, men går jevnt over i den egentlige vårflom som er forårsaket av snøsmelting i høyfjellet. Vårflommen opptrer ofte med to kulminasjoner, idet Østerdalsflommen kommer før Gudbrandsdalsflommen, som forsinkes gjennom Mjøsa. Inntrer de to flommene av en eller annen grunn samtidig eller de blir langvarige, kan flommen i hovedvassdraget og i Øyeren bli særlig stor.

<table>
<thead>
<tr>
<th></th>
<th>1961</th>
<th></th>
<th>1962</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>528</td>
<td>1048</td>
<td>1107</td>
<td>396</td>
</tr>
<tr>
<td>2</td>
<td>581</td>
<td>1192</td>
<td>1330</td>
<td>438</td>
</tr>
<tr>
<td>3</td>
<td>755</td>
<td>635</td>
<td>452</td>
<td>280</td>
</tr>
</tbody>
</table>

Tabell 1.

St. 1 = Rånaasfoss.
" 2 = Solbergfoss.
" 3 = Mørkfoss (normalvannføringen 1921 - 1950).

Tabellen viser at den årlige vannføring i observasjonsåret var betraktelig høyere enn normalt. Dette gjelder særlig vannføringen om høsten og vinteren. Særleg er det verd å legge merke til den forholdsvis store høstflommen (figur 2). Om våren var imidlertid vannføringen noe under normalen. Dette henger sammen med den forholdsvis kalde værtype som gjorde at snøsmeltingen foregikk langsomt.

Foruten Glomma renner bl.a. Nitelva og Leirerla ut i de nordligste områder av Øyeren. Vannføringen i de sistnevnte elver er imidlertid små i forhold til vannføringen i Glomma, men i flomperiodene er de svært slamførende og har derfor betydelig interesse.

Leirerla har et nedslagsfelt på 561 km². I følge Vassdragsvesenets kart over gjennomsnittlig avløp, kan man anslå at Leirerlas nedslagsfelt har gjennomsnittlig avløp på ca. 20 l/sek/m². Den gjennomsnittlige vannføring ved Leirerlas utløp i Øyeren skulle da anslagsvis bli ca. 11 m³/sek. Den gjennomsnittlige minste og største vannføring er henholdsvis 1,7 og 102 m³/sek.

Nitelvas nedslagsfelt er 484 km². Da det ikke har vært foretatt vannføringsmålinger i Nitelva, har man ikke noen sikre verdier for vannføringen og dens variasjoner i denne elv. Ifølge Vassdragsvesenets kart over gjennomsnittlige avrenning i Nitelvas nedslagsfelt ca. 19 l/sek/km². Dette skulle gi et gjennomsnitt-
lig avløp på ca. 8,8 m³/sek. Den alminnelige lavvannsføring anslås til ca. 1,4 m³/sek.

Samlet nedslagsfelt for Øyeren er som nevnt 39 964 km². Ifølge oppgave fra Statistisk sentralbyrå er skogbruks- og jordbruksarealet i dette området henholdsvis ca. 14 200 km² og ca. 2 000 km². Folkemengden i området er ca. 343 000. Det er derfor å vente at en stor del kloakk- og avfallsvann blir tilført vassdraget, men på grunn av den forholdsvis grisne bebyggelsen gjør selvrensningseffekten seg sterkt gjeldende. Kloakk og utslipp av avfallstoffor i nærheten av Øyeren kan imidlertid til en viss grad gjøre seg gjeldende, selv om fortynningen er forholdsvis stor.

Strømforholdene i den nordligste del av Øyeren, særlig mellom øyene og over bankene i nord, varierer med vannstanden. Under snøsmeltningen i lavlandet stiger sjørne Leir- og Nitelva forholdsvis raskere enn Glomma. Etter denne lavlandsflommen fortsetter imidlertid Glomma å stige. Strømforholdene kan p.g.a. materialtransporten bli anskueliggjort i slike perioder. Under store flommer kan man således merke at hovedstrommen sydover i Øyeren oftest går i to slyng mellom breddene før den når Mørkfoss.

På grunn av Glommens relativt store vannføring i forhold til Øyereons størrelse, må gjennomstrømningen bli stor. Strømhastigheten i den nordlige, grunne del lar seg vanskelig beregne, da hovedmengden av vannet følger markerte renner. Antar man at strømmen i den dype del av sjøen følger det øvre 5 m tykke sjikt og jevnt fordelt på en bredde av 2,4 km, vil gjennomsnittshastigheten i februar være ca. 1,5 cm/sek og i mai ca. 15 cm/sek.

Teoretisk fornyelse av Øyeren er effektuert 19 ganger i året. Den teoretiske tid for total utbytning av vannet vil bli 19 dager.

4. OBSERVASJONS- OG ANALYSEMETODER.

Temperaturen i dyplagene ble målt med Richter og Wiese vendedetermometer som er nøyaktig innenfor 0,01 °C. Overflatetemperaturen ble målt med vanlige, kalibrerte termometer.
Oksygenet ble bestemt titremetrisk ifølge Vinklers modifiserte metode.

pH og \(\chi_{20} \) er målt elektrometrisk. Den elektrolytiske ledningsenve er målt ved 20°C, og \(\chi_{20} \) er av størrelsesorden \(n \cdot 10^{-6} \cdot \text{ohm}^{-1} \cdot \text{cm}^{-1} \).

Fargen ble bestemt fotoelektrisk (BEl-fotometer) ved absorpsjon ved 435μ. Resultatene er angitt i mg Pt/l. Verdiene er avhengig av både turbiditet og farge.

Turbiditeten er bestemt optisk ved refleksjon som Tyndali-effekt, på et spesielt instrument. Fargekomponenter registreres ikke på dette instrumentet. Resultatene er angitt i mg SiO₂/l.

Oksyderbarheten (permanganat-tallene), som er bestemt titremetrisk, er angitt i mg O/l. Ved å multiplisere de oppgitte tallene med 12,5, fremkommer forbruk i ml av N/100 KMnO₄, som ofte er brukt i Norge for drikkevannsanalyser.

5. HYDROGRAFI

Analyseresultatene går frem av tabellene 3 - 14.
5.1. Termiske forhold.

I Norge gjennomløper innsjøene vanligvis fire forskjellige termiske perioder for året, nemlig vårfullsirkulasjonsperioden, sommerstagnasjonsperioden, høstfullsirkulasjonsperioden og vinterstagnasjonsperioden.

Under vinterstagnasjonsperioden er vannets temperatur lavere enn temperaturen for vannets maksimums tetthet som er ca. 4°C. I de øverste vannmasser er temperaturen henimot 0°C, men den stiger noe mot dypet hvor temperaturen vanligvis ligger mellom 3 og 4°C. Perioden er således karakterisert ved at vannmassene befinner seg i stabilt likevekt. Vertikale forskyvninger og strømnin- ger forekommer derfor bare i beskjeden utstrekning.

Etter isløsningen om våren oppvarmes overflatelagene. Den stabile likevekt blir derved opphevet, og vannmassene kommer i bevegelse som følge av vertikale konveksjonsstrømninger. Denne såkalte sirkulasjonsperiode vil være til hele vannmassen har nådd temperaturen for maks. tetthet. Ved videre oppvarming av overflatelagene inntrer igjen stabil likevekt og den såkalte sommerstagnasjonsperioden er etablert.

I denne sistnevnte periode vil vind-, bølge- og strømaktivitet påvirke de øverste vannmassene slik at det dannes en stratifikasjon med varmt vann øverst som er mer eller mindre skarpt atskilt fra kaldere vannmasser i dypet. De ytre krefter samt innsjøens størrelse og form er bestemmende for hvor dypt sprangsjiktet vil befinne seg, og i løpet av sommeren vil vanligvis mektigheten av de øverste vannmasser øke.

Utover høsten avkjøles overflatelagene, konveksjonsstrømmer setter inn, og sprangsjiktet arbeides stadig dypere. Til slutt vil hele vannmassen ha en ensartet temperatur - høstfullsirkulasjonsen er etablert. Når avkjølingen er kommet så langt at temperaturen for maks. tetthet er oppnådd, går innsjøen på nytt inn i en stabil periode (vinterstagnasjonen). En videre avkjøling vil nemlig som følge av tetthetsforskjellen bare berøre overflatevannet, og det etableres en termisk stratifikasjon med kaldt overflatevann over varmere vann i dypet.

Temperaturens årstidsvariasjoner i Øyeren går frem av tabellene
3 - 10, og fig. 3. Fig. 4 viser overflatetemperaturer i Øyeren og ved Fetsund. Disse verdier kan bl.a. anvendes for å bestemme varigheten av de forskjellige termiske perioder.

Øyeren er en typisk gjennomstrømningssinnsjø, og temperaturforholdene var preg av dette. I stagnasjonsperiodene om sommeren og vinteren er tetthetsforholdene i de tilførte vannmasser på grunn av vannets temperatur av en slik størrelsesorden at gjenomstrømningen foregår i overflatelagene (ned til ca. 20 - 25 m) av innsjøen. Under sommerstagnasjonsperiodene 1961 og 1962 lå temperaturen i overflatelagene (ned til 20 - 25 m) vanligvis mellom 13 og 14°C. Sprangsjiktet var forholdsvis lite utpreget, og i dypet under 50 m var temperaturen ca. 6°C. Sommerstagnasjonsperioden varte til begynnelsen av november. Temperaturen var da ca. 7°C i alle dyp. Den etterfølgende fullsirkulasjonsperiode varte frem til begynnelsen av desember, altså i ca. 1 måned. I løpet av denne tiden ble vannet avkjølt til noe under 4°C. I denne perioden var det forholdsvis stor vannføring i Glomma. Temperaturen i elvevannet var lavere enn i innsjøen (fig. 4), og det forklarer at gjennomstrømningen foregikk i dyplagene. De kjemiske data tyder også på at dette var tilfelle.

Isen la seg omkring 10. desember 1961. I den følgende periode, vinterstagnasjonsperioden, var elvevannet kaldere og lettere enn vannet i innsjøen (temperaturen var overalt lavere enn 4°C). Gjennomstrømningen foregikk derfor i overflatelagene (ned til 12 - 15 m). Temperaturen i disse lagene lå mellom 0 og 1°C. I dypet (under ca. 30 m) derimot, var temperaturen ca. 3°C.

Løsningen fant sted i månedskiftet april - mai. Temperaturen overalt i vannmassen lå på denne tid i intervallet mellom 2 og 3°C. Vårslukasjonsperioden varte til omkring 15. - 20. mai. Temperaturen i dyplagene var ved inngangen til sommerstagnasjonsperioden ca. 5°C, men på grunn av innvirkning fra de gjennomstrømende vannmasser, steget temperaturen i dypet til henimot 6°C i løpet av de første sommermåneder. Også denne sommeren lå sprangsjiktet i 20 - 30 meters dyp.

5.2. Oksygenforhold.

Variasjoner i oksygeninnholdet i en innsjø er betinget av sam-
spillet mellom gassens løselighet ved forskjellige temperaturer, vannmassenes bevegelse og biologiske prosesser.

I Øyeren er oksygenforholdene i det vesentlige dominert av de termiske og dynamiske forhold. Fig. 5 viser variasjon i oksygeninnholdet i observasjonsperioden (p.g.a. lite observasjonsmateriale tar vi forbehold om nøyaktigheten). Oksygenmengden i mg/l var ca. 9 - 9,5 om sommeren, mens den om vinteren lå i intervallet 11,5 - 13. Metningen var stort sett hele tiden ca. 90%. Observasjonene 22. februar viser imidlertid at det gjorde seg gjeldende et visst oksygenforbruk i dyplagene under vinterstagnasjonsperioden. Årsaken til dette er dekomponering av organisk materiale.

5.3. Kjemiske forhold.

De kjemiske forhold i Øyeren er fremstilt i tabellene 3 - 13. Følgende tabell viser middelverdiene av noen kjemiske komponenter på de forskjellige observasjonsdager:

<table>
<thead>
<tr>
<th>Dato</th>
<th>1961</th>
<th>1962</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14/9</td>
<td>19/10</td>
</tr>
<tr>
<td>Ki,komp.</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>pH</td>
<td>36,5</td>
<td>37,5</td>
</tr>
<tr>
<td>kg 20° . 10^-6</td>
<td>33,1</td>
<td>35,4</td>
</tr>
<tr>
<td>Farge, mg Pt/l</td>
<td>31</td>
<td>64</td>
</tr>
<tr>
<td>Turb., mg SiO₂/l</td>
<td>1,3</td>
<td>3,5</td>
</tr>
<tr>
<td>KI₉₀₄-tall, mg O₂/l</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>Jern, mg Fe/l</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>Mangan, mg Mn/l</td>
<td>Under</td>
<td></td>
</tr>
</tbody>
</table>

5.3.1. pH og elektrolytisk ledningsevne. Observasjonsresultatene viser at både pH og den elektrolytiske ledningsevne var forholdsvis stabile gjennom hele observasjonsperioden. De små variasjonen med tiden henger sammen med årstidene og den veke-lende vannføring i Glomma. I Øyeren er som nevnt den biologiske aktivitet (fotosyntese og dekomponering av organisk materiale)
liten, og pH og \(\text{pH}_{20} \) varierte derfor lite med dypet også under stagnasjonsperiodene.

5.3.3. Turbiditet og farge. Av fig. 6 og 7 går det frem at turbiditeten og fargen i Øyeren er høyest variable. Videre er det tydelig tilkjennegitt at farge- og turbiditetsverdiene varierer parallelitt. Årsaken til dette er at ved fargemålingene blir også turbiditeten registrert. Tabell 11 viser hvilken betydning filtrering med forskjellige typer filter har for farge og turbiditet. Fargeverdiene ble reduisert med 20 - 30 - 40\%, alt etter størrelsen på filtrenes poreåpning. Reduksjonen i turbiditet var betraktelig større, men det er verd å legge merke til at til tross for filtrenes små poreåpninger var det likevel en betraktelig mengde partikler tilbake i vannet etter filtreringen.

Observasjonsresultatene viser at den periodiske høy turbiditet i Øyeren henger sammen med vannføringen i tilsigselvene. Øyeren ligger under den marine grense og løsavsetningene i den nederste del av nedslagsfeltet består i stor utstrekning av leire. Sær- lig under flomperioder vil vannet grave ut og føre med seg leire. En del av dette materialet vil etter hvert sedimenteres i inn-sjøen, men det fineste materiale sedimenteres ikke så hurtig og er derfor årsak til de høye turbiditeter i de sydligste områder.

Observasjonene (fig. 6) viser videre at turbiditetspåvirkningen i disse perioder er størst i dypet av innsjøen (under ca. 40 m). Selv om turbiditetspåvirkningen var størst i flomperiodene, var verdiene gjennom hele vannmassen temmelig høye også i de mellomliggende tidsrom. Den 22. februar 1962 lå f.eks. verdiene mellom 2 og 3 mg SiO₂/l, og den 15. august 1962 lå verdiene i intervallet 1,9 - 4 mg SiO₂/l.

Prøvene som ble tatt to ganger per uken (tabellene 12 og 13, og fig. 7a, 7b og 7c) hadde gjennomgående lavere og mer varierende turbiditetsinnhold. Årsaken til dette kan sannsynligvis sees i sammenheng med den delvis lange lagringstiden av disse prøvene før analysene ble utført. Ellers er det forholdsvis god overensstemmelse mellom turbiditetsinnholdet i prøvene fra Fetsund og fra Øyeren. I flomperiodene er verdiene ved Fetsund noe større enn i selve innsjøen. Årsaken er at en del materiale sedimenteres i den nordlige del av Øyeren. I henhold til til-sigselvenes størrelse er det rimelig at de største kvanta parti-kulært materiale blir tilført gjennom Glomma, men det er rimelig at partikkelskonsentrasjonen er større i Leira og Nitelva, idet disse elver i langt høyere grad drenerer leireområder.

Variasjonene i oksyderbarhetsverdiene (KMnO₄-tallene) viser variasjonene i transporten av organisk materiale gjennom innsjøen. Verdiene er derfor naturlig nok størst i flomperiodene.

6. BAKTERIOLOGISKE FORHOLD.

Undersøkelsen av Øyeren omfattet også de bakteriologiske forhold, og på hver prøvetakingsdag ble det tatt bakteriologiske prøver på forskjellige dyp. Disse prøver ble analysert på coliforme bakterier og kimtall. Resultatene er gjengitt i tabell 15 og fig. 8.

Coliforme bakterier blir vanligvis forbundet med forurensning fra mennesker og dyr. Resultatene angis vanligvis i antall kolonier pr. 100 ml vann. Kimtallet omfatter flere typer bakterier, og mengden angis i antall pr. ml vann.

Resultatene viser at forurensningen, som skyldes avfallsstoffer fra mennesker og dyr, økte utover sommeren og høsten. Den
15. november 1961 varierte verdiene for coliforme bakterier fra 250 til 640 kolonier pr. 100 ml (middelverdi ca. 480 kolonier pr. 100 ml). At den fekale forurensning øker utover høsten er et vanlig fenomen og henger sannsynligvis sammen med avrenning fra skog- og jordbruksdistrikten. Om vinteren og våren var antallet coliforme bakterier betrattelig lavere, antakelig på grunn av de klimatiske forhold. Ellers kan bemerkas at den 22. februar var tallene tydelig høyere i de øverste vannmasser enn i dypet. Også i august 1962 var det forholdsvis lave tall for coliforme bakterier. Årsaken til dette kan muligens være at avrenningen fra jordbruksområdene var forholdsvis liten på denne tid. Rent generelt er de bakteriologiske forurensninger i stagnasjonsperiodene betrattelig høyere i de øverste vannmasser enn i dypet.

7. SAMMENFATTENDE DISKUSJON.

Øyeren er 33 km lang. I de nordligste områder er innsjøen svært grunn. De sydligste områder har form av et langstrakt trau. Største dyp i disse områder er 70,5 m.

Vannstanden i Øyeren varierer relativt meget. Dette skyldes Glommaavssdraget, og det strenge utløpet ved Morkfoss. Det midlere avløp er 686 m³/sek. Glomma har gjerne stor vannføring under snøsmeltningen om våren. Vannføringen kan i slike perioder gå opp i over 3000 m³/sek. Vannføringen er relativt stor hele sommeren på grunn av snøsmeltning i høyfjellet. Om høsten, under nedbørrike perioder, kan det oppstå mindre fllommer. Hvis den midlere vannføring legges til grunn, blir vannmassenes teoretiske oppholdstid i Øyeren ca. 19 dage. I stagnasjonsperiodene strømmer vannet gjennom innsjøen i de øverste lagene. Derfor blir stort sett bare vannmassene ovenfor sprangsjiktet skiftet ut i disse perioder. Innsjøens volum med til 15 meters dyp er ca. 463 mill. m³, og hvis man regner med at gjennom-
stromningen i det vesentlige foregår ned til dette dyp, blir den teoretiske oppholdstid for disse vannmasser ca. 7 døgn.

Øyeren gjennomgjør 4 termisk betingede perioder for året, nemlig stagnasjonsperioder vinter og sommer med mellomliggende sirkulasjonsperioder høst og vår. På grunn av gjennomstrømningen er sirkulasjonsperiodene av forholdsvis lang varighet. Høsten 1961 varte sirkulasjonsperioden i ca. 1,5 måned, og våren 1962 sirkulerte vannet i vel 1 måned. I stagnasjonsperiodene foregår gjennomstrømningen i de øverste vannmasser, mens de forårsaker strømninger også i dypvannslagene. Sprangsjiktet er forholdsvis lite utpreget, og man kan regne med at gjennomstrømning gjør seg tydelig gjeldende ned til 20 - 30 m. I observasjonsperioden var temperaturen i de gjennomstrømmende vannmasser om vinteren (ned til ca. 15 m) lavere enn 1°C, mens temperaturen i dypet var vel 3°C på samme tid. Om sommeren var temperaturen i overflatelagene vel 15°C og i dypet 6 - 7°C.

I Øyeren er oksygeninnholdet lite påvirket av biologiske prosesser, og variasjonene skyldes derfor stort sett de dynamiske forhold og oksygenets løselighet ved forskjellige temperaturer. Under praktisk talt hele observasjonsperioden var metningen i alle dyp ca. 90%.

Vannet er kalkfattig og har omtrentlig nøytral reaksjon.

Farge- og turbiditetsverdiene er svært variable. Under flomperiodene, særlig om våren, er tilsigselvene svært slamlørende. Dette resulterer i høye turbiditets- og fargeverdier (30 - 40 mg SiO₂/1) i innsjøen. Slammet består i det vesentligste av leire (små mineralkor). Disse perioder varte i observasjonsperioden ca. 2 måneder om høsten og ca. 1,5 måned om våren. Turbiditetsverdiene er også forholdsvis høye (ca. 2 - 3 mg SiO₂/1) i stagnasjonsperiodene.

I sirkulasjonsperiodene er turbiditeten forholdsvis jevnt fordelt gjennom hele vannmassen. I stagnasjonsperioden er partikkelskonsentrasjonen størst i de øverste gjennomstrømmende vannmasser.

Bakteriennasørene viser at vannet alltid er tydelig påvirket av forurensninger fra mennesker og dyr. Innholdet av coliforme
bakterier er størst i høstmånedene, men også under vårfemmen inneholder vannet en god del mikroorganismer. I stagnasjonssperiodene er konsentrasjonen av bakterier størst i overflate-lagene.

Den største ulempen ved benyttelse av Øyeren som drikkevannskilde er vannets innhold av suspenderte partikler. Partiklene består i det vesentlige av små mineralkorn som det ad mekanisk vei vil være svært vanskelig å fjerne. Det har nemlig vist seg at mikrosil og hurtig sandfilterarrangement ikke gir tilfredsstillende rensning av vann av denne type. For å oppnå brukbar drikkevannskvalitet anser vi det som nødvendig at vannet renses ved kjemisk felning, i et såkalt fullrensningsanlegg. På grunn av den langsomme variasjonen av vannkvaliteten i Øyeren, vil en slik renseprosess ikke være vanskelig å utføre, og den vil også gi betryggende rensning når det gjelder vannets innhold av bakterier. Vi antar at etter den kjemiske felning vil en behandling med svakkløring være tilstrekkelig for vannets brukbarhet i hygienisk henseende.

For drikkevannsformål vil det være mest fordelaktig å plassere vanninntaket i de sydligste områder i minst 30 meters dyp. Fordelene som derved oppnås, er for det første at vannets temperatur blir hensiktsmessig for drikkevannsformål, og for det andre er vannmassene i dypet relativt lite påvirket av kloakk under stagnasjonssperiodene.

8. PRAKTISKE KONKLUSJONER.

1. Vannet i Øyeren har, i følge vår undersøkelse, en slik kvalitet at det i urensatt tilstand ikke er tilfredsstillende som drikkevann. Kvaliteten varierer og er særlig dårlig i ca. 4 måneder pr. år.

2. Den største ulempen ved vannet som drikkevann betraktet, er dets innhold av suspenderte partikler. Etter vår mening vil ikke noe filtreeringsarrangement kunne gi tilfredsstillende rensning.

Vi anbefaler i dette tilfelle kjemisk felning (fullrensning). Vi antar at en slik renseprosess vil gi et kvalitetsmessig godt drikkevann både kjemisk og hygienisk.
3. Den beste måte å utnytte Øyeren for drikkevannsformål vil være å anordne vanninntaket på minst 30 meters dyp i Øyerenes sydlige ende.

4. I forbindelse med bygging av et fullrensingsanlegg kan det være ønskelig å utføre noen felningsforsøk i laboratorie-skala.
Tabell 3.

Vannprøver fra Øveren, st. 1.

Kjemisk-fysiske analyser.

Dato: 14/9-61

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O/1</th>
<th>Oksygen % metn.</th>
<th>pH</th>
<th>Lecn.evne 10^-6 20°C</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
<th>Per.ₐ.-tall</th>
<th>Jern mg Fe/l</th>
<th>Mangan mg Mn/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,2</td>
<td>9,5</td>
<td>96,1</td>
<td>7,3</td>
<td>32,9</td>
<td>34</td>
<td>1,4</td>
<td>3,7</td>
<td>0,17</td>
<td>< 0,05</td>
</tr>
<tr>
<td>4</td>
<td>14,0</td>
<td>9,5</td>
<td>95,2</td>
<td>7,2</td>
<td>36,9</td>
<td>25</td>
<td>1,4</td>
<td>4,0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>13,8</td>
<td>9,6</td>
<td>95,8</td>
<td>7,3</td>
<td>38,4</td>
<td>28</td>
<td>1,6</td>
<td>3,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>13,4</td>
<td>9,1</td>
<td>90,3</td>
<td>7,3</td>
<td>39,1</td>
<td>36</td>
<td>1,4</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>13,2</td>
<td>9,2</td>
<td>90,5</td>
<td>7,3</td>
<td>33,9</td>
<td>30</td>
<td>1,6</td>
<td>3,8</td>
<td>0,16</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>13,0</td>
<td>9,2</td>
<td>90,3</td>
<td>7,2</td>
<td>36,8</td>
<td>26</td>
<td>1,5</td>
<td>3,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>11,1</td>
<td>7,2</td>
<td>36,8</td>
<td>6,9</td>
<td>35,6</td>
<td>26</td>
<td>1,0</td>
<td>3,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>8,9</td>
<td>8,8</td>
<td>78,5</td>
<td>6,7</td>
<td>37,1</td>
<td>30</td>
<td>1,0</td>
<td>3,7</td>
<td>0,13</td>
<td>< 0,05</td>
</tr>
<tr>
<td>35</td>
<td>7,3</td>
<td>6,7</td>
<td>37,1</td>
<td>6,7</td>
<td>35,6</td>
<td>30</td>
<td>0,9</td>
<td>4,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>6,5</td>
<td>9,0</td>
<td>75,7</td>
<td>6,9</td>
<td>38,2</td>
<td>35</td>
<td>0,9</td>
<td>4,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>6,1</td>
<td>6,9</td>
<td>36,2</td>
<td>6,9</td>
<td>36,2</td>
<td>35</td>
<td>1,1</td>
<td>4,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>6,0</td>
<td>9,4</td>
<td>78,0</td>
<td>6,9</td>
<td>37,7</td>
<td>37</td>
<td>1,2</td>
<td>4,4</td>
<td>0,20</td>
<td>< 0,05</td>
</tr>
</tbody>
</table>
Tabell 4.
Vannprover fra Øyeren. St. 1.
Kjemisk-fysiske vannanalyser.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>pH</th>
<th>Ledn. evne 10^6</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO$_2$/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9,30</td>
<td>7,4</td>
<td>37,3</td>
<td>66</td>
<td>3,4</td>
</tr>
<tr>
<td>4</td>
<td>9,30</td>
<td>7,0</td>
<td>37,4</td>
<td>65</td>
<td>5,8</td>
</tr>
<tr>
<td>8</td>
<td>9,50</td>
<td>7,0</td>
<td>38,6</td>
<td>68</td>
<td>3,3</td>
</tr>
<tr>
<td>12</td>
<td>9,30</td>
<td>7,4</td>
<td>37,3</td>
<td>68</td>
<td>6,2</td>
</tr>
<tr>
<td>16</td>
<td>9,48</td>
<td>7,0</td>
<td>37,0</td>
<td>68</td>
<td>3,6</td>
</tr>
<tr>
<td>20</td>
<td>9,29</td>
<td>6,9</td>
<td>36,4</td>
<td>68</td>
<td>3,6</td>
</tr>
<tr>
<td>25</td>
<td>9,30</td>
<td>7,0</td>
<td>37,6</td>
<td>65</td>
<td>3,2</td>
</tr>
<tr>
<td>30</td>
<td>9,23</td>
<td>7,2</td>
<td>36,9</td>
<td>66</td>
<td>3,5</td>
</tr>
<tr>
<td>35</td>
<td>9,22</td>
<td>7,0</td>
<td>36,8</td>
<td>68</td>
<td>3,4</td>
</tr>
<tr>
<td>40</td>
<td>9,13</td>
<td>7,1</td>
<td>38,6</td>
<td>70</td>
<td>3,6</td>
</tr>
<tr>
<td>45</td>
<td>8,74</td>
<td>7,0</td>
<td>37,0</td>
<td>66</td>
<td>3,7</td>
</tr>
<tr>
<td>50</td>
<td>7,52</td>
<td>7,0</td>
<td>37,8</td>
<td>74</td>
<td>3,7</td>
</tr>
<tr>
<td>60</td>
<td>5,64</td>
<td>6,8</td>
<td>38,5</td>
<td>44</td>
<td>0,9</td>
</tr>
<tr>
<td>65</td>
<td>5,62</td>
<td>6,8</td>
<td>38,0</td>
<td>41</td>
<td>0,9</td>
</tr>
</tbody>
</table>
Tabell 5.

Vannprover fra Øveren. St. 1 og 2.

Kjemisk-fysiske vannanalyser.

Dato: 15/11 1961.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/1% metn.</th>
<th>pH</th>
<th>Leda evne. 10⁶</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stasjon 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5,38</td>
<td>11,7</td>
<td>92,7</td>
<td>6,8</td>
<td>34,5</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>5,40</td>
<td>11,6</td>
<td>91,9</td>
<td>6,9</td>
<td>34,7</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>5,37</td>
<td>11,6</td>
<td>92,0</td>
<td>6,9</td>
<td>35,9</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>5,33</td>
<td>11,7</td>
<td>92,1</td>
<td>6,8</td>
<td>34,5</td>
<td>130</td>
</tr>
<tr>
<td>16</td>
<td>5,30</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>34,8</td>
<td>156</td>
</tr>
<tr>
<td>20</td>
<td>5,30</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>33,9</td>
<td>147</td>
</tr>
<tr>
<td>25</td>
<td>5,26</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>33,6</td>
<td>147</td>
</tr>
<tr>
<td>30</td>
<td>5,28</td>
<td>11,9</td>
<td>94,0</td>
<td>7,0</td>
<td>34,2</td>
<td>118</td>
</tr>
<tr>
<td>35</td>
<td>5,22</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>33,6</td>
<td>138</td>
</tr>
<tr>
<td>40</td>
<td>5,20</td>
<td>11,9</td>
<td>93,4</td>
<td>6,8</td>
<td>33,4</td>
<td>138</td>
</tr>
<tr>
<td>45</td>
<td>5,19</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>33,6</td>
<td>147</td>
</tr>
<tr>
<td>50</td>
<td>5,12</td>
<td>12,0</td>
<td>94,3</td>
<td>6,8</td>
<td>32,9</td>
<td>108</td>
</tr>
<tr>
<td>60</td>
<td>4,99</td>
<td>12,2</td>
<td>95,3</td>
<td>6,8</td>
<td>31,0</td>
<td>183</td>
</tr>
<tr>
<td>68</td>
<td>4,96</td>
<td>12,1</td>
<td>94,9</td>
<td>6,8</td>
<td>30,4</td>
<td>202</td>
</tr>
</tbody>
</table>

Stasjon 2 (omtrent midt i Øveren).

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/1% metn.</th>
<th>pH</th>
<th>Leda evne. 10⁶</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>34,2</td>
<td>146</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,9</td>
<td>31,8</td>
<td>152</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,8</td>
<td>29,7</td>
<td>183</td>
</tr>
</tbody>
</table>

Tabell 6.

Vannprover fra Øveren. St. 1.

Kjemisk-fysiske vannanalyser.

Dato: 14/12 1961.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/1% metn.</th>
<th>pH</th>
<th>Leda evne. 10⁶</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,10</td>
<td>12,9</td>
<td>91,4</td>
<td>7,0</td>
<td>40,6</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>0,09</td>
<td>13,8</td>
<td>97,7</td>
<td>6,9</td>
<td>40,9</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>0,31</td>
<td>12,4</td>
<td>88,4</td>
<td>7,0</td>
<td>39,0</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>0,23</td>
<td>13,1</td>
<td>94,8</td>
<td>7,0</td>
<td>39,6</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>1,57</td>
<td>12,4</td>
<td>91,5</td>
<td>7,0</td>
<td>35,8</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>2,14</td>
<td>12,1</td>
<td>90,3</td>
<td>7,0</td>
<td>33,8</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,0</td>
<td>34,6</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>2,87</td>
<td>12,1</td>
<td>92,3</td>
<td>7,0</td>
<td>34,4</td>
<td>68</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,0</td>
<td>33,5</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>3,34</td>
<td>12,0</td>
<td>92,6</td>
<td>7,0</td>
<td>33,4</td>
<td>66</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,9</td>
<td>33,2</td>
<td>66</td>
</tr>
<tr>
<td>50</td>
<td>3,46</td>
<td>12,1</td>
<td>93,7</td>
<td>6,9</td>
<td>33,4</td>
<td>70</td>
</tr>
<tr>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,9</td>
<td>33,4</td>
<td>74</td>
</tr>
<tr>
<td>60</td>
<td>3,64</td>
<td>11,9</td>
<td>92,6</td>
<td>7,0</td>
<td>33,8</td>
<td>83</td>
</tr>
<tr>
<td>65</td>
<td>3,74</td>
<td>11,0</td>
<td>85,8</td>
<td>6,9</td>
<td>34,2</td>
<td>83</td>
</tr>
</tbody>
</table>
Tabell 7.
Vannprover fra Øyeren. St. 1.
Kjemisk-fysiske vannanalyser.

Datoc: 22/2 1962.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/1 % metn.</th>
<th>pH</th>
<th>Ledn. evne 10⁵ % 20°</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,05</td>
<td>13,2 90,4</td>
<td>7,2</td>
<td>38,8</td>
<td>42</td>
<td>2,8</td>
</tr>
<tr>
<td>4</td>
<td>0,05</td>
<td>13,1 89,6</td>
<td>7,2</td>
<td>40,8</td>
<td>41</td>
<td>2,8</td>
</tr>
<tr>
<td>8</td>
<td>0,08</td>
<td>13,0 88,8</td>
<td>7,2</td>
<td>40,6</td>
<td>41</td>
<td>2,8</td>
</tr>
<tr>
<td>12</td>
<td>0,20</td>
<td>12,6 86,3</td>
<td>7,2</td>
<td>40,6</td>
<td>41</td>
<td>3,0</td>
</tr>
<tr>
<td>16</td>
<td>1,55</td>
<td>12,2 87,2</td>
<td>7,2</td>
<td>42,6</td>
<td>49</td>
<td>4,8</td>
</tr>
<tr>
<td>20</td>
<td>2,20</td>
<td>11,8 85,6</td>
<td>7,1</td>
<td>34,6</td>
<td>44</td>
<td>2,0</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>11,7 85,9</td>
<td>7,0</td>
<td>34,6</td>
<td>44</td>
<td>2,2</td>
</tr>
<tr>
<td>30</td>
<td>3,00</td>
<td>11,7 86,6</td>
<td>7,0</td>
<td>34,0</td>
<td>44</td>
<td>2,4</td>
</tr>
<tr>
<td>35</td>
<td>3,19</td>
<td>11,6 86,5</td>
<td>6,9</td>
<td>33,8</td>
<td>46</td>
<td>2,3</td>
</tr>
<tr>
<td>40</td>
<td>3,30</td>
<td>11,6 86,8</td>
<td>7,0</td>
<td>34,6</td>
<td>47</td>
<td>2,6</td>
</tr>
<tr>
<td>45</td>
<td>3,44</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>3,54</td>
<td>11,5 86,3</td>
<td>7,0</td>
<td>33,6</td>
<td>49</td>
<td>2,4</td>
</tr>
<tr>
<td>55</td>
<td>3,68</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>3,70</td>
<td>10,3 77,9</td>
<td>6,8</td>
<td>33,9</td>
<td>52</td>
<td>2,9</td>
</tr>
<tr>
<td>62</td>
<td>3,75</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fra Glomma (nedenfor Øyeren) 7,1</td>
<td></td>
<td></td>
<td></td>
<td>42,8</td>
<td>41</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Tabell 8.
Vannprover fra Øyeren. St. 1.

Datoc: 8/5 1962.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/1 % metn.</th>
<th>pH</th>
<th>Ledn. evne 10⁵ % 20°</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
<th>Perm. tall mg O₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,85</td>
<td>12,5 92,7</td>
<td>6,7</td>
<td>30,4</td>
<td>218</td>
<td>15,0</td>
<td>6,5</td>
</tr>
<tr>
<td>4</td>
<td>2,09</td>
<td>12,5 93,7</td>
<td>6,7</td>
<td>34,6</td>
<td>264</td>
<td>19,5</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>2,24</td>
<td>12,5 94,0</td>
<td>6,7</td>
<td>36,6</td>
<td>327</td>
<td>25,5</td>
<td>6,6</td>
</tr>
<tr>
<td>12</td>
<td>2,22</td>
<td>12,4 93,1</td>
<td>6,7</td>
<td>37,8</td>
<td>340</td>
<td>36,5</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>2,22</td>
<td>12,5 93,8</td>
<td>6,7</td>
<td>37,2</td>
<td>327</td>
<td>41,5</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>2,30</td>
<td>12,5 94,5</td>
<td>6,8</td>
<td>36,2</td>
<td>314</td>
<td>34,0</td>
<td>6,7</td>
</tr>
<tr>
<td>25</td>
<td>2,32</td>
<td>12,5 94,5</td>
<td>6,8</td>
<td>37,3</td>
<td>340</td>
<td>37,0</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>2,36</td>
<td>12,3 93,3</td>
<td>6,8</td>
<td>37,3</td>
<td>320</td>
<td>27,0</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>2,37</td>
<td>12,4 93,5</td>
<td>6,8</td>
<td>38,2</td>
<td>364</td>
<td>30,0</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>2,36</td>
<td>12,0 90,4</td>
<td>6,7</td>
<td>41,7</td>
<td>294</td>
<td>42,0</td>
<td>5,5</td>
</tr>
<tr>
<td>45</td>
<td>2,38</td>
<td>11,9 90,0</td>
<td>6,7</td>
<td>40,8</td>
<td>438</td>
<td>51,0</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>2,47</td>
<td>11,5 87,6</td>
<td>6,8</td>
<td>43,0</td>
<td>379</td>
<td>48,5</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>2,50</td>
<td>11,8 89,5</td>
<td>6,7</td>
<td>42,0</td>
<td>394</td>
<td>33,0</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>2,59</td>
<td>11,6 88,5</td>
<td>6,8</td>
<td>43,0</td>
<td>364</td>
<td>32,0</td>
<td>5,3</td>
</tr>
</tbody>
</table>
Tabell 9.
Vannprover fra Øveren, St. 1.

Dato: 14/6 1962.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/l</th>
<th>% metn.</th>
<th>pH</th>
<th>Fedn. evne % 20°, 10⁻⁶</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
<th>Perm. tall mg O₁/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11,79</td>
<td>11,0</td>
<td>100,8</td>
<td>7,1</td>
<td>31,0</td>
<td>33,0</td>
<td>2,3</td>
<td>3,5</td>
</tr>
<tr>
<td>4</td>
<td>11,72</td>
<td>10,9</td>
<td>100,0</td>
<td>7,1</td>
<td>31,8</td>
<td>34,0</td>
<td>2,2</td>
<td>3,4</td>
</tr>
<tr>
<td>8</td>
<td>11,39</td>
<td>11,0</td>
<td>99,5</td>
<td>7,1</td>
<td>32,4</td>
<td>35,0</td>
<td>1,7</td>
<td>3,8</td>
</tr>
<tr>
<td>12</td>
<td>10,75</td>
<td>11,2</td>
<td>100,6</td>
<td>7,0</td>
<td>31,8</td>
<td>34,0</td>
<td>2,2</td>
<td>3,6</td>
</tr>
<tr>
<td>16</td>
<td>8,91</td>
<td>11,4</td>
<td>97,4</td>
<td>6,9</td>
<td>31,8</td>
<td>41,0</td>
<td>2,3</td>
<td>4,2</td>
</tr>
<tr>
<td>20</td>
<td>7,96</td>
<td>11,5</td>
<td>96,7</td>
<td>7,0</td>
<td>31,5</td>
<td>41,0</td>
<td>2,0</td>
<td>3,9</td>
</tr>
<tr>
<td>25</td>
<td>7,64</td>
<td>11,5</td>
<td>95,9</td>
<td>6,9</td>
<td>29,2</td>
<td>44,0</td>
<td>2,4</td>
<td>4,4</td>
</tr>
<tr>
<td>30</td>
<td>7,22</td>
<td>11,6</td>
<td>95,6</td>
<td>6,9</td>
<td>29,3</td>
<td>48,0</td>
<td>2,8</td>
<td>4,7</td>
</tr>
<tr>
<td>35</td>
<td>7,00</td>
<td>11,5</td>
<td>94,5</td>
<td>6,8</td>
<td>29,2</td>
<td>53,0</td>
<td>2,9</td>
<td>5,0</td>
</tr>
<tr>
<td>40</td>
<td>6,80</td>
<td>11,5</td>
<td>94,0</td>
<td>6,8</td>
<td>29,1</td>
<td>58,0</td>
<td>3,2</td>
<td>5,2</td>
</tr>
<tr>
<td>45</td>
<td>6,35</td>
<td>11,6</td>
<td>94,1</td>
<td>6,8</td>
<td>30,6</td>
<td>55,0</td>
<td>3,4</td>
<td>5,4</td>
</tr>
<tr>
<td>50</td>
<td>5,76</td>
<td>11,6</td>
<td>92,0</td>
<td>6,8</td>
<td>30,1</td>
<td>60,0</td>
<td>4,3</td>
<td>5,5</td>
</tr>
<tr>
<td>60</td>
<td>4,84</td>
<td>11,6</td>
<td>90,2</td>
<td>6,7</td>
<td>32,8</td>
<td>74,0</td>
<td>6,6</td>
<td>6,2</td>
</tr>
</tbody>
</table>

Tabell 10.
Kjemisk-fysiske vannanalyser.

Dato: 15/8 1962.

<table>
<thead>
<tr>
<th>m dyp</th>
<th>Temp. °C</th>
<th>Oksygen mg O₂/l</th>
<th>% metn.</th>
<th>pH</th>
<th>Fedn. evne % 20°, 10⁻⁶</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO₂/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,4</td>
<td>9,9</td>
<td>97,9</td>
<td>7,3</td>
<td>37,6</td>
<td>50,0</td>
<td>3,4</td>
</tr>
<tr>
<td>4</td>
<td>13,4</td>
<td>9,8</td>
<td>96,7</td>
<td>7,3</td>
<td>38,8</td>
<td>52,0</td>
<td>3,9</td>
</tr>
<tr>
<td>8</td>
<td>13,4</td>
<td>9,6</td>
<td>94,8</td>
<td>7,1</td>
<td>38,2</td>
<td>50,0</td>
<td>3,4</td>
</tr>
<tr>
<td>12</td>
<td>13,3</td>
<td>9,6</td>
<td>94,6</td>
<td>7,3</td>
<td>37,9</td>
<td>49,0</td>
<td>3,4</td>
</tr>
<tr>
<td>16</td>
<td>13,2</td>
<td>9,6</td>
<td>94,4</td>
<td>7,2</td>
<td>38,8</td>
<td>49,0</td>
<td>3,9</td>
</tr>
<tr>
<td>20</td>
<td>13,1</td>
<td>9,6</td>
<td>94,1</td>
<td>7,2</td>
<td>-</td>
<td>48,0</td>
<td>3,9</td>
</tr>
<tr>
<td>25</td>
<td>12,1</td>
<td>9,6</td>
<td>92,2</td>
<td>7,2</td>
<td>38,2</td>
<td>49,0</td>
<td>4,0</td>
</tr>
<tr>
<td>30</td>
<td>10,6</td>
<td>9,6</td>
<td>89,0</td>
<td>6,9</td>
<td>34,2</td>
<td>37,0</td>
<td>2,2</td>
</tr>
<tr>
<td>35</td>
<td>8,2</td>
<td>9,5</td>
<td>83,4</td>
<td>7,2</td>
<td>33,2</td>
<td>41,0</td>
<td>1,7</td>
</tr>
<tr>
<td>40</td>
<td>7,2</td>
<td>9,5</td>
<td>81,5</td>
<td>7,2</td>
<td>33,8</td>
<td>44,0</td>
<td>1,8</td>
</tr>
<tr>
<td>45</td>
<td>6,3</td>
<td>9,4</td>
<td>78,6</td>
<td>7,2</td>
<td>33,8</td>
<td>48,0</td>
<td>1,9</td>
</tr>
<tr>
<td>50</td>
<td>6,0</td>
<td>9,6</td>
<td>79,7</td>
<td>7,0</td>
<td>36,2</td>
<td>46,0</td>
<td>3,2</td>
</tr>
<tr>
<td>55</td>
<td>5,6</td>
<td>9,5</td>
<td>78,0</td>
<td>6,7</td>
<td>33,8</td>
<td>48,0</td>
<td>1,9</td>
</tr>
<tr>
<td>60</td>
<td>5,4</td>
<td>9,7</td>
<td>79,5</td>
<td>7,1</td>
<td>37,4</td>
<td>46,0</td>
<td>3,4</td>
</tr>
<tr>
<td>65</td>
<td>5,4</td>
<td>9,1</td>
<td>74,6</td>
<td>6,6</td>
<td>33,8</td>
<td>46,0</td>
<td>2,7</td>
</tr>
<tr>
<td>70</td>
<td>5,4</td>
<td>8,6</td>
<td>70,4</td>
<td>6,6</td>
<td>34,2</td>
<td>64,0</td>
<td>3,4</td>
</tr>
<tr>
<td>Nr.</td>
<td>Svartbånd-filtrert: (7,4 μ porevidde)</td>
<td>Hvittbånd-filtrert: (6,8 μ porevidde)</td>
<td>Blåttbånd-filtrert: (2,2 μ porevidde)</td>
<td>Membran-filtrert:</td>
<td>Ufiltrett:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farge mg Pt/l</td>
<td>% reduksjon</td>
<td>Farge mg Pt/l</td>
<td>% reduksjon</td>
<td>Farge mg Pt/l</td>
<td>% reduksjon</td>
<td>Farge mg Pt/l</td>
</tr>
<tr>
<td>1</td>
<td>43,5</td>
<td>21</td>
<td>41,1</td>
<td>25</td>
<td>41,1</td>
<td>25</td>
<td>36,1</td>
</tr>
<tr>
<td>2</td>
<td>50,4</td>
<td>23</td>
<td>45,8</td>
<td>30</td>
<td>43,5</td>
<td>33</td>
<td>34,6</td>
</tr>
<tr>
<td>Nr.</td>
<td>Turbiditate mg SiO₂/l</td>
<td>% reduksjon</td>
<td>Turbidite mg SiO₂/l</td>
<td>% reduksjon</td>
<td>Turbidite mg SiO₂/l</td>
<td>% reduksjon</td>
<td>Turbidite mg SiO₂/l</td>
</tr>
<tr>
<td>1</td>
<td>1,53</td>
<td>69</td>
<td>1,24</td>
<td>75</td>
<td>1,45</td>
<td>71</td>
<td>1,02</td>
</tr>
<tr>
<td>2</td>
<td>2,30</td>
<td>53</td>
<td>1,88</td>
<td>62</td>
<td>1,45</td>
<td>71</td>
<td>0,98</td>
</tr>
</tbody>
</table>

100 ml dest. vann i en 15 cm Jena filtrertrakt.

- Svartbåndfilter: 20 - 30 sek.
- Hvittbåndfilter: 50 - 80 "
- Blåttbåndfilter: 200 -300 "
Tabell 12.

Vannprover fra Øveren. St. 1.

Kjemisk-fysiske vannanalyser.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Temp. °C</th>
<th>pH</th>
<th>LEDN. evne.10^{-6}</th>
<th>Farge mg Pt/l</th>
<th>Turbiditet mg SiO_2/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>23/10</td>
<td>8,3</td>
<td>6,9</td>
<td>35,6</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>34,8</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>35,8</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>36,1</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>26/10</td>
<td>8,4</td>
<td>6,9</td>
<td>36,6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>37,0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,7</td>
<td>38,6</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>36,8</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>30/10</td>
<td>7,5</td>
<td>6,8</td>
<td>36,2</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>36,2</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>36,6</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>36,0</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>2/11</td>
<td>7,1</td>
<td>6,7</td>
<td>36,4</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>36,0</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>36,0</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>32,8</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6/11</td>
<td>6,4</td>
<td>6,8</td>
<td>35,2</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>34,8</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>33,8</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,6</td>
<td>74,6</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>9/11</td>
<td>5,9</td>
<td>6,8</td>
<td>33,6</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>33,6</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>33,8</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,5</td>
<td>37,0</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>13/11</td>
<td>5,5</td>
<td>6,9</td>
<td>33,8</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>34,5</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>34,6</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,7</td>
<td>34,2</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>16/11</td>
<td>5,4</td>
<td>5,7</td>
<td>36,6</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,6</td>
<td>38,0</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,6</td>
<td>39,2</td>
<td>152</td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>20/11</td>
<td>4,6</td>
<td>6,9</td>
<td>36,6</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,0</td>
<td>40,2</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,0</td>
<td>41,0</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>35,4</td>
<td>16,5</td>
<td>16,5</td>
</tr>
<tr>
<td></td>
<td>23/11</td>
<td>4,0</td>
<td>6,9</td>
<td>33,1</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,7</td>
<td>32,7</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,6</td>
<td>36,1</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>33,2</td>
<td>149</td>
<td>12,0</td>
</tr>
<tr>
<td>Dato</td>
<td>m</td>
<td>Temp. $^\circ$C</td>
<td>pH</td>
<td>Løs.nsvne, 10^{-6}</td>
<td>Farge mg Pt/l</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/11</td>
<td>0</td>
<td>3,6</td>
<td>6,8</td>
<td>34,0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>34,2</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>35,4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,7</td>
<td>34,8</td>
<td>50</td>
</tr>
<tr>
<td>30/11</td>
<td>0</td>
<td>3,1</td>
<td>6,8</td>
<td>37,1</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>36,6</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>35,9</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>35,4</td>
<td>52</td>
</tr>
<tr>
<td>18/12</td>
<td>0</td>
<td>0,0</td>
<td>6,7</td>
<td>45,4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>-</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,7</td>
<td>37,0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,7</td>
<td>39,0</td>
<td>42</td>
</tr>
<tr>
<td>21/12</td>
<td>0</td>
<td>0,0</td>
<td>7,0</td>
<td>44,3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>35,4</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>33,1</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>34,4</td>
<td>46</td>
</tr>
<tr>
<td>28/12</td>
<td>0</td>
<td>0,0</td>
<td>6,9</td>
<td>44,1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>35,9</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>34,2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>34,2</td>
<td>64</td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/1</td>
<td>0</td>
<td>0,0</td>
<td>6,7</td>
<td>47,6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>38,8</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>33,3</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>35,1</td>
<td>50</td>
</tr>
<tr>
<td>8/1</td>
<td>0</td>
<td>0,0</td>
<td>6,8</td>
<td>50,7</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,2</td>
<td>35,6</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>35,2</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,0</td>
<td>34,5</td>
<td>48</td>
</tr>
<tr>
<td>11/1</td>
<td>0</td>
<td>0,0</td>
<td>7,1</td>
<td>40,0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,0</td>
<td>32,6</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>32,4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,1</td>
<td>32,1</td>
<td>50</td>
</tr>
<tr>
<td>15/1</td>
<td>0</td>
<td>0,0</td>
<td>6,5</td>
<td>52,4</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,2</td>
<td>35,1</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>33,9</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,1</td>
<td>31,9</td>
<td>50</td>
</tr>
<tr>
<td>18/1</td>
<td>0</td>
<td>0,0</td>
<td>6,9</td>
<td>39,6</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>35,1</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,0</td>
<td>35,1</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>32,1</td>
<td>46</td>
</tr>
<tr>
<td>22/1</td>
<td>0</td>
<td>0,0</td>
<td>7,2</td>
<td>41,3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,2</td>
<td>38,0</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,0</td>
<td>31,9</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,0</td>
<td>31,7</td>
<td>52</td>
</tr>
<tr>
<td>Data</td>
<td>m dyp</td>
<td>Temp. °C</td>
<td>pH</td>
<td>Ledned.vne.10^-6</td>
<td>Farge mg Pt/l</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>-----</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1962.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/1</td>
<td>0</td>
<td>0,0</td>
<td>6,8</td>
<td>44,4</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,1</td>
<td>38,4</td>
<td>46</td>
<td>6,2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,3</td>
<td>36,0</td>
<td>46</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7,0</td>
<td>29,8</td>
<td>45</td>
<td>1,8</td>
</tr>
<tr>
<td>29/1</td>
<td>0</td>
<td>0,0</td>
<td>6,8</td>
<td>45,9</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>37,8</td>
<td>42</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,0</td>
<td>33,4</td>
<td>41</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7,0</td>
<td>32,8</td>
<td>50</td>
<td>3,0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0,0</td>
<td>7,2</td>
<td>49,1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>38,0</td>
<td>41</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,0</td>
<td>33,6</td>
<td>44</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>32,6</td>
<td>46</td>
<td>2,4</td>
</tr>
<tr>
<td>26/2</td>
<td>0</td>
<td>0,0</td>
<td>7,1</td>
<td>40,2</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>37,1</td>
<td>46</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>33,8</td>
<td>48</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>35,1</td>
<td>50</td>
<td>2,4</td>
</tr>
<tr>
<td>1/3</td>
<td>0</td>
<td>0,0</td>
<td>7,0</td>
<td>41,5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>36,8</td>
<td>46</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>34,4</td>
<td>48</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>33,0</td>
<td>46</td>
<td>1,7</td>
</tr>
<tr>
<td>5/3</td>
<td>0</td>
<td>0,0</td>
<td>6,9</td>
<td>47,3</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,7</td>
<td>35,0</td>
<td>50</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>34,6</td>
<td>48</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>34,4</td>
<td>48</td>
<td>1,8</td>
</tr>
<tr>
<td>8/3</td>
<td>0</td>
<td>0,0</td>
<td>7,0</td>
<td>41,3</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>36,1</td>
<td>48</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>33,7</td>
<td>43</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>33,7</td>
<td>52</td>
<td>2,2</td>
</tr>
<tr>
<td>15/3</td>
<td>0</td>
<td>0,0</td>
<td>7,0</td>
<td>55,4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>35,2</td>
<td>20</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>34,8</td>
<td>24</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7,0</td>
<td>33,4</td>
<td>37</td>
<td>2,6</td>
</tr>
<tr>
<td>19/3</td>
<td>0</td>
<td>0,0</td>
<td>6,9</td>
<td>49,1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>35,2</td>
<td>16</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>34,8</td>
<td>18</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>33,3</td>
<td>20</td>
<td>1,0</td>
</tr>
<tr>
<td>22/3</td>
<td>0</td>
<td>0,0</td>
<td>6,9</td>
<td>43,8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>35,2</td>
<td>20</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>33,8</td>
<td>24</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>35,0</td>
<td>24</td>
<td>1,2</td>
</tr>
<tr>
<td>26/3</td>
<td>0</td>
<td>0,0</td>
<td>6,8</td>
<td>47,3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,8</td>
<td>35,2</td>
<td>20</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>32,6</td>
<td>26</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>33,4</td>
<td>22</td>
<td>1,4</td>
</tr>
<tr>
<td>Dato</td>
<td>m dyp</td>
<td>Temp. °C</td>
<td>pH</td>
<td>Lend. evne.10^{-6}</td>
<td>Farge mg Pt/l</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>----</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1962.</td>
<td>2/4</td>
<td>0 0,1</td>
<td>6,1</td>
<td>22,5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>6,3</td>
<td>31,8</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>6,7</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>6,8</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>5/4</td>
<td>0 0,1</td>
<td>6,1</td>
<td>-</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,7</td>
<td>-</td>
<td>46</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>-</td>
<td>46</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>-</td>
<td>46</td>
<td>1,6</td>
</tr>
<tr>
<td>9/4</td>
<td>0 0,1</td>
<td>6,4</td>
<td>-</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,8</td>
<td>-</td>
<td>44</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>-</td>
<td>44</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>-</td>
<td>46</td>
<td>1,5</td>
</tr>
<tr>
<td>12/4</td>
<td>0 0,1</td>
<td>6,9</td>
<td>-</td>
<td>28</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>-</td>
<td>53</td>
<td>2,9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>-</td>
<td>48</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7,0</td>
<td>-</td>
<td>46</td>
<td>1,6</td>
</tr>
<tr>
<td>16/4</td>
<td>0 0,1</td>
<td>6,9</td>
<td>-</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>-</td>
<td>56</td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>-</td>
<td>46</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>-</td>
<td>46</td>
<td>1,6</td>
</tr>
<tr>
<td>19/4</td>
<td>0 0,2</td>
<td>6,8</td>
<td>31,0</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>35,0</td>
<td>41</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>33,7</td>
<td>41</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>34,0</td>
<td>39</td>
<td>0,7</td>
</tr>
<tr>
<td>23/4</td>
<td>0 0,4</td>
<td>6,0</td>
<td>48,2</td>
<td>9</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,7</td>
<td>34,8</td>
<td>46</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,7</td>
<td>34,2</td>
<td>39</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>36,2</td>
<td>76</td>
<td>2,3</td>
</tr>
<tr>
<td>26/4</td>
<td>0 0,4</td>
<td>6,0</td>
<td>67,5</td>
<td>11</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,7</td>
<td>33,3</td>
<td>48</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,6</td>
<td>33,3</td>
<td>46</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>35,6</td>
<td>55</td>
<td>2,9</td>
</tr>
<tr>
<td>21/5</td>
<td>7,1</td>
<td>6,7</td>
<td>32,7</td>
<td>82</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>30,0</td>
<td>91</td>
<td>10,4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>30,4</td>
<td>91</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>31,2</td>
<td>91</td>
<td>10,0</td>
</tr>
<tr>
<td>24/5</td>
<td>7,3</td>
<td>6,9</td>
<td>32,2</td>
<td>73</td>
<td>6,8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>30,6</td>
<td>85</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,0</td>
<td>31,2</td>
<td>91</td>
<td>6,2</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,7</td>
<td>31,5</td>
<td>91</td>
<td>8,9</td>
</tr>
<tr>
<td>28/5</td>
<td>7,6</td>
<td>7,0</td>
<td>30,6</td>
<td>53</td>
<td>8,2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>29,8</td>
<td>76</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,0</td>
<td>29,2</td>
<td>82</td>
<td>9,4</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>30,4</td>
<td>76</td>
<td>9,1</td>
</tr>
<tr>
<td>Dato</td>
<td>m dyp</td>
<td>Temp. °C</td>
<td>pH</td>
<td>Ledn. evne. 10^{-6}</td>
<td>Farge mg Pt/l</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>----</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1962.31/5</td>
<td>0</td>
<td>8,5</td>
<td>7,0</td>
<td>31,4</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>29,2</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>30,9</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>29,0</td>
<td>67</td>
</tr>
<tr>
<td>4/6</td>
<td>0</td>
<td>10,6</td>
<td>6,9</td>
<td>30,4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>30,3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>31,0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,6</td>
<td>37,2</td>
<td>53</td>
</tr>
<tr>
<td>7/6</td>
<td>0</td>
<td>10,3</td>
<td>6,9</td>
<td>35,0</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,9</td>
<td>31,5</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>30,9</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,0</td>
<td>31,2</td>
<td>68</td>
</tr>
<tr>
<td>11/6</td>
<td>0</td>
<td>12,2</td>
<td>6,9</td>
<td>37,5</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,0</td>
<td>31,8</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>31,0</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>30,9</td>
<td>64</td>
</tr>
<tr>
<td>10/6</td>
<td>0</td>
<td>11,3</td>
<td>7,0</td>
<td>37,6</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,2</td>
<td>34,1</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>31,5</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,0</td>
<td>30,4</td>
<td>50</td>
</tr>
<tr>
<td>21/6</td>
<td>0</td>
<td>11,6</td>
<td>7,2</td>
<td>36,6</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,0</td>
<td>34,2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>33,0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>31,8</td>
<td>53</td>
</tr>
<tr>
<td>12/7</td>
<td>0</td>
<td>15,0</td>
<td>6,7</td>
<td>37,6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>34,1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>34,0</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,0</td>
<td>32,7</td>
<td>40</td>
</tr>
<tr>
<td>16/7</td>
<td>0</td>
<td>15,9</td>
<td>6,8</td>
<td>37,6</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>6,8</td>
<td>35,6</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>33,8</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>33,7</td>
<td>38</td>
</tr>
<tr>
<td>19/7</td>
<td>0</td>
<td>15,3</td>
<td>7,0</td>
<td>37,0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,3</td>
<td>34,5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>7,1</td>
<td>34,2</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>7,1</td>
<td>32,4</td>
<td>36</td>
</tr>
<tr>
<td>23/7</td>
<td>0</td>
<td>15,3</td>
<td>6,7</td>
<td>41,0</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,2</td>
<td>34,2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,9</td>
<td>33,2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,9</td>
<td>32,4</td>
<td>38</td>
</tr>
<tr>
<td>26/7</td>
<td>0</td>
<td>14,6</td>
<td>6,9</td>
<td>38,1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>7,1</td>
<td>35,5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>6,8</td>
<td>33,5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>6,8</td>
<td>33,1</td>
<td>50</td>
</tr>
<tr>
<td>Dato</td>
<td>mdy</td>
<td>Temp. °C</td>
<td>pH</td>
<td>Ledn.evne.10^-6</td>
<td>Farge mg Pt/1</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>----</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>30/7</td>
<td>0</td>
<td>13,6</td>
<td>6,9</td>
<td>33,4</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>35,8</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,8</td>
<td>34,2</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,8</td>
<td>33,2</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>2/8</td>
<td>0</td>
<td>15,6</td>
<td>6,9</td>
<td>37,9</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6,9</td>
<td>37,6</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>36,2</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>7,2</td>
<td>39,0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>6/8</td>
<td>0</td>
<td>13,3</td>
<td>6,9</td>
<td>37,4</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,0</td>
<td>37,0</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6,9</td>
<td>35,2</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>32,6</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>9/8</td>
<td>0</td>
<td>14,3</td>
<td>6,8</td>
<td>38,8</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,2</td>
<td>37,0</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,0</td>
<td>35,4</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>34,0</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>13/8</td>
<td>0</td>
<td>12,4</td>
<td>6,9</td>
<td>37,8</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7,2</td>
<td>37,6</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7,1</td>
<td>37,0</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6,9</td>
<td>35,2</td>
<td></td>
<td>39</td>
</tr>
</tbody>
</table>
Tabell 13.

Vannprover fra Glimma v/Fetsund.

Kjemisk-fysiske vannanalyser.

<table>
<thead>
<tr>
<th>Dato:</th>
<th>pH</th>
<th>Ledn.evne.10⁻⁶</th>
<th>Farge (mg Pt/l)</th>
<th>Turbiditet (mg SiO₂/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/10</td>
<td>6.8</td>
<td>33.7</td>
<td>49</td>
<td>1.7</td>
</tr>
<tr>
<td>26/10</td>
<td>6.8</td>
<td>34.8</td>
<td>66</td>
<td>5.4</td>
</tr>
<tr>
<td>30/10</td>
<td>6.6</td>
<td>33.9</td>
<td>146</td>
<td>13.4</td>
</tr>
<tr>
<td>2/11</td>
<td>6.8</td>
<td>30.4</td>
<td>77</td>
<td>2.8</td>
</tr>
<tr>
<td>6/11</td>
<td>6.9</td>
<td>31.8</td>
<td>68</td>
<td>3.7</td>
</tr>
<tr>
<td>9/11</td>
<td>6.9</td>
<td>36.4</td>
<td>88</td>
<td>10.4</td>
</tr>
<tr>
<td>13/11</td>
<td>6.8</td>
<td>36.8</td>
<td>82</td>
<td>8.8</td>
</tr>
<tr>
<td>16/11</td>
<td>6.7</td>
<td>-</td>
<td>60</td>
<td>2.3</td>
</tr>
<tr>
<td>20/11</td>
<td>6.9</td>
<td>33.6</td>
<td>55</td>
<td>3.0</td>
</tr>
<tr>
<td>23/11</td>
<td>6.9</td>
<td>35.2</td>
<td>44</td>
<td>2.2</td>
</tr>
<tr>
<td>27/11</td>
<td>6.8</td>
<td>33.7</td>
<td>47</td>
<td>2.2</td>
</tr>
<tr>
<td>30/11</td>
<td>6.9</td>
<td>35.1</td>
<td>53</td>
<td>2.8</td>
</tr>
<tr>
<td>4/12</td>
<td>6.9</td>
<td>36.8</td>
<td>47</td>
<td>3.0</td>
</tr>
<tr>
<td>7/12</td>
<td>7.0</td>
<td>36.6</td>
<td>53</td>
<td>3.4</td>
</tr>
<tr>
<td>11/12</td>
<td>6.9</td>
<td>16.3</td>
<td>26</td>
<td>2.2</td>
</tr>
<tr>
<td>14/12</td>
<td>6.8</td>
<td>38.2</td>
<td>28</td>
<td>1.9</td>
</tr>
<tr>
<td>18/12</td>
<td>6.9</td>
<td>39.6</td>
<td>42</td>
<td>1.5</td>
</tr>
<tr>
<td>21/12</td>
<td>6.7</td>
<td>40.2</td>
<td>26</td>
<td>1.3</td>
</tr>
<tr>
<td>25/12</td>
<td>6.8</td>
<td>40.0</td>
<td>26</td>
<td>2.2</td>
</tr>
<tr>
<td>26/12</td>
<td>6.9</td>
<td>43.8</td>
<td>24</td>
<td>1.5</td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>6.9</td>
<td>39.4</td>
<td>37</td>
<td>3.0</td>
</tr>
<tr>
<td>4/1</td>
<td>6.9</td>
<td>41.0</td>
<td>28</td>
<td>1.9</td>
</tr>
<tr>
<td>8/1</td>
<td>6.9</td>
<td>40.0</td>
<td>24</td>
<td>1.3</td>
</tr>
<tr>
<td>11/1</td>
<td>7.1</td>
<td>40.6</td>
<td>34</td>
<td>0.9</td>
</tr>
<tr>
<td>15/1</td>
<td>6.8</td>
<td>40.8</td>
<td>34</td>
<td>0.6</td>
</tr>
<tr>
<td>18/1</td>
<td>6.9</td>
<td>42.4</td>
<td>29</td>
<td>0.8</td>
</tr>
<tr>
<td>22/1</td>
<td>6.7</td>
<td>41.7</td>
<td>32</td>
<td>0.7</td>
</tr>
<tr>
<td>25/1</td>
<td>6.9</td>
<td>44.4</td>
<td>29</td>
<td>0.6</td>
</tr>
<tr>
<td>29/1</td>
<td>5.1</td>
<td>48.2</td>
<td>56</td>
<td>0.8</td>
</tr>
<tr>
<td>1/2</td>
<td>7.3</td>
<td>45.9</td>
<td>-</td>
<td>4.3</td>
</tr>
<tr>
<td>5/2</td>
<td>7.3</td>
<td>45.6</td>
<td>53</td>
<td>1.8</td>
</tr>
<tr>
<td>8/2</td>
<td>7.2</td>
<td>42.4</td>
<td>38</td>
<td>1.7</td>
</tr>
<tr>
<td>16/2</td>
<td>7.0</td>
<td>39.2</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>19/2</td>
<td>7.1</td>
<td>39.6</td>
<td>18</td>
<td>5.1</td>
</tr>
<tr>
<td>22/2</td>
<td>7.2</td>
<td>38.8</td>
<td>31</td>
<td>2.0</td>
</tr>
<tr>
<td>26/2</td>
<td>7.2</td>
<td>38.2</td>
<td>35</td>
<td>1.4</td>
</tr>
<tr>
<td>1/3</td>
<td>7.1</td>
<td>39.0</td>
<td>37</td>
<td>1.1</td>
</tr>
<tr>
<td>5/3</td>
<td>7.0</td>
<td>40.0</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>8/3</td>
<td>7.0</td>
<td>41.0</td>
<td>39</td>
<td>0.7</td>
</tr>
<tr>
<td>12/3</td>
<td>7.0</td>
<td>40.4</td>
<td>35</td>
<td>0.8</td>
</tr>
<tr>
<td>15/3</td>
<td>6.9</td>
<td>40.0</td>
<td>33</td>
<td>1.2</td>
</tr>
<tr>
<td>19/3</td>
<td>7.1</td>
<td>41.0</td>
<td>30</td>
<td>0.9</td>
</tr>
<tr>
<td>22/3</td>
<td>7.1</td>
<td>40.8</td>
<td>33</td>
<td>0.9</td>
</tr>
<tr>
<td>26/3</td>
<td>6.9</td>
<td>39.6</td>
<td>28</td>
<td>0.6</td>
</tr>
<tr>
<td>29/3</td>
<td>7.1</td>
<td>41.1</td>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>Dato</td>
<td>pH</td>
<td>(%_{20^\circ})</td>
<td>Farge mg Pt/l</td>
<td>Turbiditet mg SiO(_2)/l</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>6,9</td>
<td>45,6</td>
<td>30</td>
<td>1,0</td>
</tr>
<tr>
<td>5/4</td>
<td>7,0</td>
<td>49,1</td>
<td>61</td>
<td>8,8</td>
</tr>
<tr>
<td>9/4</td>
<td>7,0</td>
<td>40,3</td>
<td>44</td>
<td>2,7</td>
</tr>
<tr>
<td>12/4</td>
<td>6,5</td>
<td>50,4</td>
<td>35</td>
<td>1,5</td>
</tr>
<tr>
<td>16/4</td>
<td>6,9</td>
<td>48,5</td>
<td>56</td>
<td>6,2</td>
</tr>
<tr>
<td>19/4</td>
<td>6,8</td>
<td>51,3</td>
<td>62</td>
<td>8,6</td>
</tr>
<tr>
<td>23/4</td>
<td>6,9</td>
<td>48,1</td>
<td>182</td>
<td>46,0</td>
</tr>
<tr>
<td>26/4</td>
<td>7,0</td>
<td>42,4</td>
<td>628</td>
<td>79,0</td>
</tr>
<tr>
<td>30/4</td>
<td>6,6</td>
<td>31,5</td>
<td>303</td>
<td>36,0</td>
</tr>
<tr>
<td>3/5</td>
<td>6,8</td>
<td>31,2</td>
<td>182</td>
<td>13,5</td>
</tr>
<tr>
<td>7/5</td>
<td>6,8</td>
<td>35,2</td>
<td>698</td>
<td>71,0</td>
</tr>
<tr>
<td>10/5</td>
<td>6,9</td>
<td>31,0</td>
<td>91</td>
<td>8,3</td>
</tr>
<tr>
<td>14/5</td>
<td>6,6</td>
<td>29,5</td>
<td>82</td>
<td>5,4</td>
</tr>
<tr>
<td>17/5</td>
<td>7,0</td>
<td>27,7</td>
<td>73</td>
<td>9,6</td>
</tr>
<tr>
<td>21/5</td>
<td>6,7</td>
<td>29,7</td>
<td>66</td>
<td>7,5</td>
</tr>
<tr>
<td>24/5</td>
<td>6,7</td>
<td>28,2</td>
<td>88</td>
<td>8,9</td>
</tr>
<tr>
<td>28/5</td>
<td>6,9</td>
<td>28,2</td>
<td>97</td>
<td>16,9</td>
</tr>
<tr>
<td>31/5</td>
<td>6,9</td>
<td>29,2</td>
<td>68</td>
<td>7,9</td>
</tr>
<tr>
<td>7/6</td>
<td>6,8</td>
<td>31,5</td>
<td>44</td>
<td>1,0</td>
</tr>
<tr>
<td>11/6</td>
<td>6,9</td>
<td>32,6</td>
<td>30</td>
<td>1,4</td>
</tr>
<tr>
<td>14/6</td>
<td>6,8</td>
<td>36,3</td>
<td>30</td>
<td>1,1</td>
</tr>
<tr>
<td>18/6</td>
<td>7,1</td>
<td>42,1</td>
<td>30</td>
<td>1,7</td>
</tr>
<tr>
<td>21/6</td>
<td>7,2</td>
<td>39,8</td>
<td>30</td>
<td>1,3</td>
</tr>
<tr>
<td>25/6</td>
<td>7,1</td>
<td>31,5</td>
<td>39</td>
<td>4,2</td>
</tr>
<tr>
<td>28/6</td>
<td>6,8</td>
<td>55,1</td>
<td>39</td>
<td>1,8</td>
</tr>
<tr>
<td>2/7</td>
<td>6,9</td>
<td>34,3</td>
<td>44</td>
<td>1,2</td>
</tr>
<tr>
<td>5/7</td>
<td>6,9</td>
<td>33,0</td>
<td>28</td>
<td>1,3</td>
</tr>
<tr>
<td>9/7</td>
<td>7,0</td>
<td>33,3</td>
<td>27</td>
<td>0,9</td>
</tr>
<tr>
<td>12/7</td>
<td>7,0</td>
<td>39,8</td>
<td>29</td>
<td>0,6</td>
</tr>
<tr>
<td>16/7</td>
<td>7,1</td>
<td>34,2</td>
<td>22</td>
<td>0,4</td>
</tr>
<tr>
<td>19/7</td>
<td>7,2</td>
<td>23,7</td>
<td>30</td>
<td>1,0</td>
</tr>
<tr>
<td>23/7</td>
<td>7,0</td>
<td>37,9</td>
<td>50</td>
<td>2,9</td>
</tr>
<tr>
<td>26/7</td>
<td>7,1</td>
<td>36,0</td>
<td>36</td>
<td>0,8</td>
</tr>
<tr>
<td>30/7</td>
<td>7,1</td>
<td>33,7</td>
<td>39</td>
<td>0,7</td>
</tr>
<tr>
<td>2/8</td>
<td>7,1</td>
<td>45,5</td>
<td>30</td>
<td>0,6</td>
</tr>
<tr>
<td>6/8</td>
<td>7,1</td>
<td>36,8</td>
<td>41</td>
<td>2,2</td>
</tr>
<tr>
<td>9/8</td>
<td>7,2</td>
<td>39,8</td>
<td>47</td>
<td>2,5</td>
</tr>
<tr>
<td>13/8</td>
<td>7,0</td>
<td>37,9</td>
<td>95</td>
<td>9,5</td>
</tr>
<tr>
<td>16/8</td>
<td>7,0</td>
<td>37,2</td>
<td>34</td>
<td>0,9</td>
</tr>
<tr>
<td>20/8</td>
<td>7,1</td>
<td>38,8</td>
<td>55</td>
<td>2,8</td>
</tr>
<tr>
<td>Dato:</td>
<td>Oktober</td>
<td>November</td>
<td>Desember</td>
<td>Januar</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1.</td>
<td>5,8</td>
<td>1,0</td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>2.</td>
<td>6,1</td>
<td>0,8</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>3.</td>
<td>6,0</td>
<td>0,7</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>4.</td>
<td>5,4</td>
<td>0,7</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>5.</td>
<td>5,1</td>
<td>0,7</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>6.</td>
<td>5,0</td>
<td>1,2</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>7.</td>
<td>5,0</td>
<td>1,2</td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td>8.</td>
<td>5,2</td>
<td>0,7</td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td>9.</td>
<td>5,3</td>
<td>0,3</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>10.</td>
<td>5,5</td>
<td>0,5</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>11.</td>
<td>5,5</td>
<td>0,5</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>12.</td>
<td>5,2</td>
<td>0,6</td>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td>13.</td>
<td>5,0</td>
<td>0,5</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>14.</td>
<td>4,9</td>
<td>0,4</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>15.</td>
<td>4,8</td>
<td>0,8</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>16.</td>
<td>4,5</td>
<td>1,1</td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>17.</td>
<td>4,3</td>
<td>1,3</td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>18.</td>
<td>4,0</td>
<td>1,1</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>19.</td>
<td>3,4</td>
<td>1,1</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>20.</td>
<td>3,6</td>
<td>1,1</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>21.</td>
<td>3,7</td>
<td>0,9</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>22.</td>
<td>3,1</td>
<td>0,4</td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>23.</td>
<td>8,2</td>
<td>3,1</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>24.</td>
<td>8,2</td>
<td>3,1</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>25.</td>
<td>6,9</td>
<td>3,3</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>26.</td>
<td>6,4</td>
<td>2,8</td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>27.</td>
<td>6,3</td>
<td>2,8</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>28.</td>
<td>6,8</td>
<td>1,3</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>29.</td>
<td>6,8</td>
<td>1,3</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>30.</td>
<td>6,7</td>
<td>1,3</td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>31.</td>
<td>6,3</td>
<td>1,3</td>
<td></td>
<td>0,2</td>
</tr>
</tbody>
</table>

Tabell 14.

Overflatetemp. (°C) i Glomma v/Fetsund 1961/62.
(Målt kl. 9.00).
m dyp	14/9-61		19/10-61		15/11-61			
	Coliforme bakterier/100 ml	Kimtall/ml	Coliforme bakterier/100 ml	Kimtall/ml	Coliforme bakterier/100 ml	Kimtall/ml		
1	4	38	1	310	249	1	540	ca. 1300
4	87	168	4	380	ca. 430	4	410	" 850
8	72	373	8	340	"	8	550	" 900
12	56	223	12	240	"	12	550	" 1450
16	57	215	16	360	ca. 230	16	590	" 700
20	53	544	20	280	"	20	290	" 450
25	12	43	25	270	ca. 320	25	250	" 700
30	13	54	30	190	"	30	470	" 550
35	10	86	35	370	ca. 240	35	520	" 450
40	11	83	40	280	"	40	510	" 500
45	17	9	45	170	ca. 290	45	640	" 402
50	15	5	50	340	212	50	450	" 406
			60	390	"	60	400	" 550
			65	240	ca. 320	68	500	" 600
Tabell 15 (forts.).

Vannprover fra Øyeren. St. 1.
Bakteriologiske analysedata.

<table>
<thead>
<tr>
<th></th>
<th>14/12-61</th>
<th></th>
<th>22/2-62</th>
<th></th>
<th>8/5-62</th>
</tr>
</thead>
<tbody>
<tr>
<td>m dyp</td>
<td>Coliforme bakterier/100 ml</td>
<td>Kmittall/ml</td>
<td>Coliforme bakterier/100 ml</td>
<td>Kmittall/ml</td>
<td>Coliforme bakterier/100 ml</td>
</tr>
<tr>
<td>1</td>
<td>243</td>
<td>ca. 600</td>
<td>1</td>
<td>124</td>
<td>5650</td>
</tr>
<tr>
<td>4</td>
<td>215</td>
<td>" 550</td>
<td>4</td>
<td>111</td>
<td>5010</td>
</tr>
<tr>
<td>8</td>
<td>195</td>
<td>" 650</td>
<td>8</td>
<td>107</td>
<td>820</td>
</tr>
<tr>
<td>12</td>
<td>53</td>
<td>" 400</td>
<td>12</td>
<td>16</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
<td>254</td>
<td>16</td>
<td>64</td>
<td>2580</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>500</td>
<td>20</td>
<td>13</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>500</td>
<td>25</td>
<td>21</td>
<td>153</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>" 500</td>
<td>30</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>35</td>
<td>72</td>
<td>1000</td>
<td>35</td>
<td>7</td>
<td>419</td>
</tr>
<tr>
<td>40</td>
<td>84</td>
<td>305</td>
<td>40</td>
<td>15</td>
<td>1520</td>
</tr>
<tr>
<td>45</td>
<td>72</td>
<td>141</td>
<td>45</td>
<td>13</td>
<td>1440</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>321</td>
<td>50</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>55</td>
<td>7</td>
<td>143</td>
<td>55</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>66</td>
<td>60</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>65</td>
<td>25</td>
<td>153</td>
<td>62</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>1/8-62</td>
<td>Kultur/100 ml</td>
<td>20°C</td>
<td>50°C</td>
<td>1/4-62</td>
<td>Kultur/100 ml</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>Coliforme</td>
<td>bakterier/100 ml</td>
<td>bakterier/100 ml</td>
<td>bakterier/100 ml</td>
<td>bakterier/100 ml</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>75</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>105</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>191</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>250</td>
<td>12</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>298</td>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>127</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>155</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>60</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>80</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>65</td>
<td>80</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
NORSK INSTITUTT FOR VANNFORSKNING BLINDERN

0-325 Øyeren.
Dybdenes er målt av lektor Magne Lund og er angitt i forhold til regulert vannstand. Strandlinjen ved regulert vannstand = kote 101.

Fig. 1.
Vannføring (m³/sek) i Glomma ved Solbergfoss og Ränåsfoss i tiden fra 1/9-61 til 31/8-62

FIG. 2
Temperaturer i Glomma ved Fetsund, og overflatetemperatur i Øyeren st. 1. 1961-1962

--- temp.(°C). Fetsund.
--- --- --- temp.(°C). Øyeren.
FIG. 5

0-325 Öyeren.

Oksygenisopleter 1961/62
O-325 Øyeren.
Turbiditet. 1961/62 FIG. 6
Turbiditet og farge ved Fetsund og i Øyeren st. 1, 0m. 1961/62.

- Turb. mg SiO₂/l
- Farge, mg Pt/l

FIG. 7a
Öyeren st. 1, 20m

Öyeren st. 1, 30m

Turbiditet og farge i Öyeren st. 1, 20 og 30m's dyp. 1961/62.

- Turb. mg SiO₂/l
- Farge, mg Pt/l

FIG. 7b

O - 325
Turbiditet og farge i Øyeren st.1, 40 m's dyp. 1961/62.

FIG. 7c

- Turb. mg SiO₂/l
- Farge, mg Pt/l