Energy absorption capacity for fibre reinforced sprayed concrete. Influence of friction in round panel tests with different support- and bedding conditions (Series 7)
The test program is part of the on-going revision of The Norwegian Associations publication no. 7 (Sprayed concrete for rock support), which among others is to be harmonized with the new European regulations for determination of energy absorption capacity of fiber reinforced sprayed concrete. The present test program involves round panels and is a study on different support- and bedding conditions and their effect on friction in panel tests.

A new modified support ring of steel was made specifically for the present tests. The motive was to give the support a more optimal design as a separate measure to reduce friction between the panel and the support. The tests make use of two support rings, the new modified steel support ring and, for comparison, the traditional wooden support ring. Totally five different support/bedding conditions were tested on 600 mm round, nominally identical, panels. The displacement rate in the tests was 3 mm/min.

Among the four individual test sets consisting of three or four panels the results show that the average coefficient of variation for the energy uptake between zero and 25 mm displacement was 8.8%.

The variable support- and bedding conditions had a great influence on the apparent energy uptake from the panel test. The overall energy uptake from the tests with wooden support confirms earlier results in the way that the accumulated friction effect is very high (here: 42% friction). The friction from the steel support was a bit lower, but still substantial (35%). Bedding of one layer of Teflon on steel support reduced the friction effect (18%) and bedding with two layers reduced it further (6%), but the latter result is uncertain as this set contains only one panel due to some logging error. Bedding of two PVC-membranes+grease is used as reference - it is assumed that there is no friction for this support condition.

Increasing friction appears to represent a reinforcing effect which generates a local strain-hardening behaviour in the panel around the contact-zone with the support. This is seen as local multiple cracking in this zone.

The Teflon suffered significant wearing during testing and had to be renewed in each test. A drawback with Teflon is that it makes the testing procedure more cumbersome as it gives extra work during the preparation of each test; more work naturally for two layers than for one layer. The bedding with PVC-membranes+grease has shown very effective to reduce/eliminate friction and is a good reference, but it is very laborious and can hardly be used in a standard procedure.

The trend is that friction also influences the maximum load during the test as well as the residual load at the end of the test; the effect is most evident for the latter.

The new rounded steel support did not give lower friction than earlier tests that used a steel support with a sharp inner edge.
Preface

The present test program is carried out as a part of the on-going revision of the Norwegian Concrete Association’s publication no. 7 (NB 7): “Sprayed concrete for rock support”[1] (in Norwegian: ”Sprøytebetong til bergsikring”), which, among others, is to be harmonized with the new European standards dealing with energy absorption capacity for fibre reinforced sprayed concrete. The new European standards describe square panels (continuous support), while the Norwegian tradition has been to test round panels (also continuous support) as described in the previous version of NB7. The program that has been undertaken is a comparative study of these two methods, but the program has also included some tests on ASTM round determinate panels. The present report gives the results from the seventh test series in this program.

During quality control the test panels shall, according to the standards, be sampled with the relevant concrete, personnel and spraying equipment (robot) for the given project. Some 10 years ago in Norway, it was decided to use round panels (600 mm diameter, 100 mm thick, net weight around 65 kg). These panels can be produced where the actual spraying work is done and they are experienced to be quite easy to sample and subsequently to be removed by two persons to a safer place in the tunnel.

According to the new European regulations (EN 14488 part 1 and part 5, [2][3]) large 1000 mm x 1000 mm (100 mm thick) panels shall be sprayed (net weight around 230 kg) and the panels shall not be removed the first 18 hours. After that, all further handling must be machine-based. Later in the laboratory, the panels shall be saw-cut in to a final size of 600 mm x 600 mm (net weight about 83 kg). By this rigorous procedure we fear that the connection between testing and practical application may be lost. It is also a big challenge to trim a 1000 x 1000 mm panel within the given tolerances for thickness.

The scope of the project was to study the practical consequences of the new regulations and to carry out comparative tests on energy absorption capacity on round and square panel tests. The results so far have revealed that panel tests are very influenced by friction between the panel and the support, and lately the project has been focused on this issue.

Cooperation is established with the contractor Entrepenørservice with regard to building of moulds and production of test panels. Members of the Norwegian Concrete Association’s Sprayed Concrete Committee also contribute. The tests are performed in the Norwegian Public Roads’ (NPRA) Central laboratory.

Up till now (2007-2009) seven test series have been carried through, all with field-produced concrete panels. Reporting so far from the previous test series can be found in [7]-[13]. The present report gives the results from “Series 7”.

This time the panels were cast at the Økern-Sinsen road project, Oslo, as a cooperative work between the Norwegian Public Roads Administration (NPRA) and the contractor Veidekke Entrepreør AS.
Summary

A new modified support ring of steel was made specifically for the present tests. The motive was to give the support a more optimal design as a separate measure to reduce friction between the panel and the support. The tests make use of two supporting rings, the new modified steel support ring and, for comparison, the traditional wooden support ring. Totally five different support/bedding conditions were tested on 600 mm round, nominally identical, panels. The displacement rate in the tests was 3 mm/min.

Among the four individual test sets consisting of three or four panels the results show that the average coefficient of variation for the energy uptake between zero and 25 mm displacement was 8.8%.

The variable support- and bedding conditions had a great influence on the apparent energy uptake from the panel test. The overall energy uptake from the tests with wooden support confirms earlier results in the way that the accumulated friction effect is very high (here: 42% friction). The friction from the steel support was a bit lower, but still substantial (35%). Bedding of one layer of Teflon on steel support reduced the friction effect (18%) and bedding with two layers reduced it further (6%), but the latter result is uncertain as this set contains only one panel due to some logging error. Bedding of two PVC-membranes+grease is used as reference – it is assumed that there is no friction for this support condition.

Increasing friction appears to represent a reinforcing effect which generates a local strain-hardening behaviour in the panel around the contact-zone with the support. This is seen as local multiple cracking in this zone.

The Teflon suffered significant wearing during testing and had to be renewed in each test. A drawback with Teflon is that it makes the testing procedure more cumbersome as it gives extra work during the preparation of each test; more work naturally for two layers than for one layer. The bedding with PVC-membranes+grease has shown very effective to reduce/eliminate friction and is a good reference, but it is very laborious and can hardly be used in a standard procedure.

The trend is that friction also influences the maximum load during the test as well as the residual load at the end of the test; the effect is most evident for the latter.

The new rounded steel support did not give lower friction than earlier tests that used a steel support with a sharp inner edge.
Sammendrag

Forsøksprogrammet er gjennomført som et ledd i det pågående arbeidet med revisjon av Norsk Betongforenings publikasjon nr. 7 (NB 7) ”Sprøytebetong til bergsikring”, som bl.a. skal tilpasses de nye europeiske reglene for bestemmelse av energiabsorpsjonskapasitet for fiberarmert sprøytebetong. De utførte forsøkene startet som en sammenlignende studie av sirkulære og kvadratiske plateprøver. De nye europeiske standardene beskriver kvadratiske plateprøver (kontinuerlig opplegg), mens norsk tradisjon har vært sirkulære plateprøver (også kontinuerlig opplegg) som beskrevet i dagens NB7. Programmet som er igangsatt er en sammenlignende studie av disse to metodene, men programmet har også inkludert noen ASTM 3-punkts plateforsøk. Rapporten presenterer programmets syvende forsøksserie.

En ny modifisert oppleggring av stål ble laget spesielt til forsøkene. Motivet var å gi opplegget en mer optimal design for å gi mindre friksjon i forsøket enn det som er målt tidligere. Forsøkene omfatter ti typar oppleggsringer, den modifiserte oppleggsringen av stål og den tradisjonelle treringen. Total fem ulike oppleggs/underlagsmateriale-betingelser er undersøkt i forsøkene på 600 mm rund, nominelt identiske, prøveplater. Nedbøyningshastigheten i forsøkene var 3 mm/min.

Blant de fire individuelle forsøkssettene som besto av tre eller fire plater viser resultatene at gjennomsnittlig variasjonskoeffisient for energiopptaket mellom null og 25 mm nedbøyning var 8,8%.

De ulike oppleggs/underlagsmateriale-betingelsene hadde stor betydning på det målte energiopptaket fra forsøket. Akkumulert energiopptak for forskoenene med trering bekrefter tidligere resultater på den måten at friksjonseffekten er svært høy (42%). Stålingen gir litt lavere friksjonseffekt, men effekten er likevel vesentlig (35%). Ett lag Teflon (stålring) som underlagsmateriale reduserte friksjonseffekten (18%) og to lag Teflon ga ytterligere reduksjon (6%), men sistnevnte resultat er usikkerhetsom forsvokssettet består av bare en plate (påg. loggefeil på andre plate). Underlagsmaterialet bestående av to lag PVC-membraner+grease er brutt som referanse; det er antatt at det ikke er friksjon i forsøket når dette brukes.

Økende friksjon synes å gi en ”armerende” effekt som genererer ”strain-hardening”-oppførsel i prøveplaten rundt kontaktsonen med opplegget. Dette observeres som ”multiple cracking” i denne sonen.

Teflonen som ble brukt som underlagsmateriale ble slitt ned under forsøket og måtte byttes ut før hvert forsøk. En ulempe med Teflon er at selve forskokoleden er for høy og tredve det medfører ekstraarbeid under forberedelsene til hvert forsøk. To lag Teflon medfører naturligvis mer arbeid enn ett lag Teflon. Underlagsmaterialet med PVC-membraner+grease har vist seg svært effektivt til å redusere/fjerne friksjon og er en god referanse, men systemet er svært arbeidskrevende og kan neppe brukes i en standard prosedyre.

Trenden er at friksjon fra opplegget også påvirker maksimumslasten i forsøket i tillegg til restlasten ved sluttet av forsøket; effekten er mest markant for sistnevnte.

Den nye avrundede stålingen ga ikke lavere friksjon i forsøket enn tidligere forsøk som er utført med en ståring som ikke var avrundet.
Content

SUMMARY ... 2
Sammendrag ... 3

1 INTRODUCTION .. 5

2 MODIFIED STEEL SUPPORT AND WOODEN SUPPORT .. 6
 2.1 NEW MODIFIED ROUNDED STEEL SUPPORT RING ... 6
 2.2 WOODEN SUPPORT RING ... 8

3 TEST PROGRAM .. 9

4 CONCRETE MIX, CASTING AND CURING ... 10
 4.1 CONCRETE MIX ... 10
 4.2 CASTING AND CURING OF PANELS ... 10

5 TEST METHODS AND -PROCEDURES ... 12
 5.1 AIR CONTENT ... 12
 5.2 FIBRE CONTENT ... 12
 5.3 COMPRESSIVE STRENGTH ... 13
 5.4 ENERGY ABSORPTION CAPACITY .. 13
 5.4.1 Test rig ... 13
 5.4.2 Test procedure .. 14
 5.4.3 Bedding materials and execution .. 15
 5.4.4 Evaluation of results / correcting for deviating thickness .. 15

6 RESULTS – SUPPORTING TESTS ... 17
 6.1 SLUMP AND AIR CONTENT .. 17
 6.2 FIBRE CONTENT ... 17
 6.3 COMPRESSIVE STRENGTH ... 17

7 RESULTS AND DISCUSSION - PANEL TESTS ... 18
 7.1 PANEL THICKNESS .. 18
 7.2 ENERGY UPTAKE .. 18
 7.2.1 Variability ... 18
 7.2.2 Effect of support condition on friction ... 19
 7.3 MAXIMUM LOAD AND RESIDUAL STRENGTH ... 21
 7.4 CRACK-PATTERN .. 21
 7.5 PANEL-SUPPORT INTERFACE .. 23
 7.6 WEARING OF THE TEFLOM .. 29

8 CONCLUSIONS AND FINAL REMARKS ... 30

9 REFERENCES .. 31

APPENDIX 1 Bedding materials, data sheets ... 32
APPENDIX 2 Fibre, product data sheet .. 41
APPENDIX 3 Measurements of panel thickness .. 42
APPENDIX 4 Plots of singles results, set by set ... 43
APPENDIX 5 Data: single results, standard deviation and COV ... 48
APPENDIX 6 Measured load-deflection data, test by test ... 49
APPENDIX 7 Pictures of crack-zones ... 58
1 Introduction

Previous tests have shown that when the concrete panel is put directly on a continuous support the energy absorption result is greatly influenced by friction. This holds both for wooden support (according to NB7 [1]) and for steel support (according to EN 14488-5 [3]). The friction effect for wooden support has been reported in [10][11] (“Series 4”), whereas the friction effect for steel support has been studied in another, presently unpublished, test series (“Series 6”) [13].

A central point in the discussions in the Norwegian Sprayed Concrete Committee has been that we need to have control of the friction effect in panel tests; either must the friction be eliminated or it should be known and under control. This means that the support conditions (including possible bedding material) should be unambiguous, reproducible and easy to describe and perform. In addition to having the direct effect of giving an extra (and erroneously) energy uptake in the test, friction may even change the crack pattern (it may increase the number of cracks and also initiate shear failure) which, in its turn, also influences the energy uptake during the test. This illustrates the importance of controlling friction in panel tests and that it should be as low as possible.

Support of steel is apparently better in the sense that the wearing resistance is higher, and this is the reason why steel support has been brought into our investigations, and also that fact that steel support is described in the European standard EN 14488-5 (square panel test). To our knowledge, the documentation of the friction effect (and its invariability) for steel support is presently absent in the literature. Any description of test procedure for panel tests should be very precise with regard to the support- and bedding materials and practical execution. Presently this is not the case.

The major scope of the present work was to study the effect of a modified steel support ring as well as Teflon as measures to reduce/control friction in panel tests. Teflon is used as bedding material between the concrete panel and the support. Teflon is a well-defined commercially available material which could, if proven useful, be described as bedding material in a standard test procedure. According to the data sheet the coefficient of friction for Teflon-steel is very low (Teflon-concrete friction is not given). Possible disadvantages for Teflon are, however, that the mechanical strength and wearing resistance is not superior.

A new modified support ring of steel was made specifically for the present tests. The motive was to give the support a more optimal design as a separate measure to reduce friction. The tests make use of two supporting rings, the new modified steel support ring and, for comparison, the traditional wooden support ring. Totally five different support (friction) conditions are tested on 600 mm round panels. The applied displacement rate was 3 mm/min in the present tests, which is somewhat higher than standards describe today (1.5 mm/min in [1] and 1.0 mm/min in [3]). The influence of the displacement rate on panel test results is insignificant for these displacement rates [6] and a higher displacement rate was therefore chosen to shorten the test duration for each panel. For the rate 3 mm/min each test takes only 10 min since the final displacement in the test is 30 mm.
2 Modified steel support and wooden support

2.1 New modified rounded steel support ring

In the previous test series (“Series 6”, [13]) it was seen that the round steel support penetrated (1-2 mm) into the concrete panel during testing. As shown in Fig. 2.1 the footprints of friction caused by the sliding of the panel on the steel support were clear. The sliding occurs in two directions, radial and tangential, and is about the same in both directions (discussed closely in [10]). The steel support that was used in these previous tests was made according to the European standard for square panels (EN 14488-5, [3]), i.e. the support had a rectangular cross section with inner diameter=500 mm and thickness=20 mm. The results showed that the effect of friction on the energy absorption results was significant (28% of the apparent energy uptake was due to friction). Those tests [13] were on round panels (and a round support ring) and not on square ones as described in the European standard, but we have today no reason to believe that round or square panel test give different results [7][8][9]. Hence, the friction effect should therefore also be the same for the two panel geometries.

Prior to the present investigation a modified steel support ring was made. The steel support ring is rounded at the inner top edge. Plan drawing and cross section of the ring is given in Fig. 2.2-a and Fig. 2.2-b, respectively, while Fig. 2.3 shows two pictures. The motive for rounding the inner top corner was to reduce the tendency of the steel ring to penetrate into the concrete panel during testing, and in this way to reduce friction; the radial friction perhaps in particular. The thickness (t) of the ring is 25 mm, with rounding (radius r = 20 mm) over the outer 5 mm of the top corner. Hence, when the panel is placed on the ring the initial open span (inner diameter) is 500 mm.

In contrast to a support with an inner top edge shaped as a 90° corner, it is notable that the given rounding of the corner means that the contact-point to the panel will slightly change during loading and rotation of the panel, see Fig. 2.4. At the end of these tests the final displacement is 25 mm, hence

![Image](image_url)

Fig. 2.1 Panel under-side after end of test at the contact zone between steel support and a crack. From a previous test series, Series 6 [13]
the maximum angle of rotation (Θ) is $(25/250)\tan^{-1}=5.7^\circ$, as the lever arm is 250 mm (ignoring the small effects quantified below). Presuming that there is no crushing of the concrete panel at the contact-point with the support, the total movement of the contact-point in horizontal (lever arm) and vertical direction can then be approximated:

Equation 1
Total horizontal movement = $r \sin \Theta = 20\text{mm} \sin(5.7^\circ) = 2.0\text{mm}$

Equation 2
Total vertical movement = $r(1-\cos \Theta) = 20\text{mm}(1-\cos(5.7^\circ)) = 0.1\text{mm}$

The horizontal movement of the contact-point means that the lever arm decreases from 250 mm at test start to (250-2=) 248 mm at the end of the test, hence the lever arm is reduced totally 0.8%. The average lever arm for the whole displacement range is 249 mm (0.4% reduction). The vertical movement, in total 0.1 mm, constitutes a small extra load train of the support (totally 0.4% at 25 mm final displacement, but only 0.1% as an average for the whole displacement range). Compared to a support with an inner top edge shaped as 90°, these horizontal- and vertical movements, when not corrected for, have minor influence with regard to the measured energy absorption in a test.

Fig. 2.2 New rounded steel support ring: Plan drawing (a) and cross section with the inner-side to the right (b)

Fig. 2.3 Pictures of the new rounded steel ring
2.2 Wooden support ring

The wooden ring that was used is the traditional ring used in Norway during the last decade [1]. The ring is made of birch and has inner diameter = 500 mm and outer diameter = 600 mm (and 40 mm high), see Fig. 2.5.

Fig. 2.4 Illustration of change of the support-panel contact-point during a displacement Δ at the centre of the panel and a corresponding rotation Θ.

Fig. 2.5 Picture of the wooden ring made of birch.
Test program

The following measurements were performed:

- Fresh concrete slump and air content were measured at the casting site.
- Fresh concrete fibre content: Two samples were taken, one at the beginning and one at the end of casting, and transported to the laboratory where the measurements were done.
- Compressive strength: Four cubes were cast for testing after 7 days (two cubes) and 28 days (two cubes).
- Round panel (Ø600 mm, thickness=100 mm) energy absorption capacity tests on 18 cast panels (some panel tests failed, see ble 1). The age of the concrete panels at testing were 28 days. In order to study the effect of friction the tests were performed with different support- and bedding materials, see ble 1. The plan was that each test set should contain three panels.

ble 1: Test program for the energy absorption capacity tests. Panel numbers in parenthesis mean that the result from the panel test was lost due to logging error.

<table>
<thead>
<tr>
<th>Support</th>
<th>Test set</th>
<th>Bedding material</th>
<th>Panel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded steel support</td>
<td>3</td>
<td>No bedding</td>
<td>4, 9, 15</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>One layer of Teflon</td>
<td>2, 11, 17</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Two layers of Teflon</td>
<td>13*, 18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two layers of PVC-membrane + grease</td>
<td>3, 7, 10, 16</td>
</tr>
<tr>
<td>Wooden support</td>
<td>4</td>
<td>No bedding</td>
<td>5, 8, 14</td>
</tr>
</tbody>
</table>

* The data beyond 10 mm displacement was lost due to logging error.

Prior to testing, the laboratory had installed a new computer with the program for test control and data logging. Some start problems with the computer is the reason why some of the panel tests results were lost (even though the panels apparently were loaded and tested successfully). Unfortunately, the set that was tested at the end, Set 5 with two layers of Teflon, only contains one fully successful panel test. Set 4 contains four panels.

The panels were numbered successively during casting, hence panel 1 was cast first, panel 2 second, etc, and panel 18 was cast at the end. During testing the idea was that each test set was to contain panels that were spread over the casting sequence (to compensate for possible changes in fibre content). The “test set” number indicates the order in which the sets were tested.

The panels in Set 2 with bedding of two layers of PVC-membrane + grease was in a previous tests series (“Series 4” [10][11]) denoted “no friction conditions”. This test condition is shown to give very little friction and is used as reference against which the other test sets are compared. Furthermore, the condition in Set 4 with wooden support and no bedding material was in the previous tests denoted “Standard conditions” since it is the method described in today’s NB7 [1] and used traditionally in Norway.

The used Teflon layer has a thickness of 0.5 mm and the given value for coefficient of friction against dry steel is 0.08, see data sheet in APPENDIX 1. The coefficient of friction against concrete is not given. The data sheet for the PVC-membrane is also given in the same appendix.
4 Concrete mix, casting and curing

4.1 Concrete mix

The mixing of the concrete was done 30th of September at the ready-mix plant of NorBetong at Alnabru, Oslo. The concrete was then transported by concrete truck to a nearby construction area (the Økern-Sinsen project) where the casting took place in a tent.

The nominal recipe of the basic sprayed concrete mix is given in Table 2. The concrete was cast, hence no accelerator was added. The nominal (effective) water-to-cement ratio \((w/(c+2s))\) is 0.42. The nominal dosage of the macro PP-fibre is 7 kg/m³. The PP-fibre is “continuously embossed” and 48 mm long. Data sheet for the fibre is given in APPENDIX 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>Type/producer</th>
<th>Kilo pr. m³ concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>Norcem Standard FA Cem II/A-V 42.5R</td>
<td>483.5</td>
</tr>
<tr>
<td>Silica fume(k=2)</td>
<td>Microsilica</td>
<td>20.1</td>
</tr>
<tr>
<td>Sand, 0-8 mm (I)</td>
<td>Heisand</td>
<td>741.5</td>
</tr>
<tr>
<td>Sand, 0-8 mm (II)</td>
<td>Heisand</td>
<td>741.5</td>
</tr>
<tr>
<td>Macro PP-fibre</td>
<td>BarChip Kyodo</td>
<td>7.0</td>
</tr>
<tr>
<td>Superplasticizer</td>
<td>Sika Viscocrete FB-2</td>
<td>6.0</td>
</tr>
<tr>
<td>Interncure</td>
<td>Mapequick CCI-2000</td>
<td>5.0</td>
</tr>
<tr>
<td>Free water</td>
<td></td>
<td>220,0</td>
</tr>
<tr>
<td>Mass ratio</td>
<td>(w/(c+2s))</td>
<td>0.42</td>
</tr>
<tr>
<td>Nominal density</td>
<td></td>
<td>2208</td>
</tr>
</tbody>
</table>

4.2 Casting and curing of panels

Totally 18 round panels were cast; all panels with nominal dimensions of 600 mm diameter and 100 mm thickness. The 18 moulds were collected among the members of the Norwegian Sprayed Concrete Committee, involving four different types of moulds, see Fig. 4.1. Pictures from the casting and de-moulding are shown in Fig. 4.2 and Fig. 4.3. The contractor Veidekke Entreprenør AS accommodated the concrete by delivering the concrete from a truck, while people from NPRA carried out the casting work and the subsequent de-moulding, transport and laboratory testing.

The concrete panels were cast and afterwards covered with a plastic sheet to avoid moisture loss. After 1.5 days of curing on-site the panels were numbered according to their place in the casting sequence (from 1 to 18), de-moulded, and transported to the laboratory were they were cured in water baths until the day of testing. The compressive strength cubes experienced exactly the same handling regime.
Fig. 4.1 The various 600 mm panel moulds

Fig. 4.2 Arrival of the concrete truck and loading of concrete (left). The 18 panels after end of casting and covering with plastic foil (right)
5 Test methods and -procedures

5.1 Air content

Air content was measured in fresh concrete, standard method [4].

5.2 Fibre content

Two samples, one taken at start of casting and one at the end, were taken and transported to the laboratory. Each sample contained 5 litres of concrete. The weight of the samples was measured. The concrete from the each sample was then taken out, in portions, and washed over a 2 mm sieve. Most fibres collect at the top of the sieve, but some go through. Most PP-fibres going through the sieve float, but some sink with the rest of the materials; these are found by extra stirring and manual searching. After picking all the fibres they were washed one extra time in clean water. The fibres from each sample were then spread out on paper in order to dry over-night.

The next day the fibres were investigated manually in order to spot possible particles fastened to the fibres and, for ensuring total dryness, the fibres were treated with a hair-dryer. The weight of the dry and clean fibres was determined and the ratio fibre content (gram) to concrete volume (litre) was calculated. The procedure is in accordance with EN 14488-7:2006 [5].
5.3 Compressive strength

100 x 100 mm cubes were tested according to standard procedure (load rate = 0.8 ± 0.2 MPa/sec) [4].

5.4 Energy absorption capacity

5.4.1 Test rig

The test set-up is shown in Fig. 5.1. A load plate (Ø100 mm cylindrical steel plate) was put between the central oriented load cell and the specimens (+ a thin sheet of cardboard). The central displacement of the panel was measured by a displacement transducer as shown in Fig. 5.2. The transducer is spring-loaded and of the type "ACT1000A LVDT Displacement Transducer" from RDP Group. The measuring range is 50 mm. The test machine (FORM+TEST Delta 5-200 with control system Prüfssysteme Digimass C-20) has a maximum load of 200 kN and stiffness > 200 kN/mm.

The deformation rate during the test is controlled by the signal from the displacement transducers under the panel. Prior to the test, the load-cell is stabilized at a load of 1 kN. With this initial load the test is started. The displacement rate during the test was 3 mm/min.

Fig. 5.1 Set-up for the energy absorption tests. Left: modified steel support (with Teflon bedding). Right: wooden support.
5.4.2 Test procedure

Prior to testing, each panel was taken out of the water bath and transported to the test rig. The test started within 45 minutes.

The procedure was then as follows:

1) The panel was placed in the test rig with the smooth moulded face against the support fixture.
2) Bedding material (when used): The bedding material was prepared in two pieces. The panel, resting on the support, was lifted half-way from one side at the time and the pieces of bedding were put between the panel and the support.
3) The panel was centred.
4) The displacement transducer was placed under the centre of the panel.
5) On the upper side of the panel (the cast side) the load plate was placed at the centre (+ a thin sheet of cardboard).
6) The load cell was prepared for testing by lowering it to the load plate until a load of 1 kN is applied to the panel.
7) The test was started and load- and deflection signals were logged continuously by a computer. The displacement rate was controlled by the computer to be 3 mm/min.
8) The test is stopped automatically when the central deflection is 30 mm.
9) The panel was then lifted out of the test rig, and the whole bottom side of the panel was photographed in order to document the crack pattern. For most panels also each crack was photographed in the area that had contact with the support. If the panel suffered shear blocking also the top side of the panel was photographed.
10) Later each panel was completely broken into pieces along the cracks, and over each cracked surface 3 thickness measurements were made, totally 12 measurements per panel. The thickness was measured with a digital sliding calliper.
11) The energy absorption capacity was then calculated as the area under the load-deflection curve from zero to 25 mm deflection. The results were corrected for thickness when deviating from 100 mm, see Section 5.4.4. The results were not corrected for early non-linearity in the load-deflection record since earlier analyses [10] revealed that the effect of the correction on our results was insignificant.
5.4.3 Bedding materials and execution

No bedding

The panel was placed directly on the modified steel support or the wooden support, see Chapter 2.

One or two layers of Teflon as bedding material

Adequate lengths of Teflon was cut from a roll of Teflon, see Fig. 5.3. The mid part of each Teflon sheet oriented towards the centre of the panel was removed to ensure an open space for the displacement transducer during testing. Product data for the Teflon is given in APPENDIX 1. The cost for one layer Teflon sufficient to cover the support in one panel test was around 25 Euro (NOK 200).

![Fig. 5.3 Teflon as bedding material. Preparation (left) and example of using two layers of Teflon as bedding (right).](image)

Two layers of PVC-membranes and grease as bedding

This bedding consists of two PVC-membrane layers with grease in between, see Fig. 5.4, similar to that reported from the previous Series 4 [10][11]. The bottom ring-shaped membrane was well covered with grease, while the top membrane (in contact with the concrete panel) was cut from inside and outwards into “fingers” (about ¾ of the width). The cut membrane was then placed on the bottom membrane into a “sandwich”. The “fingers” were made to enhance the ability of the crack edges to slide freely in the tangential direction, while the grease is favourable in reducing friction in both tangential- and radial direction. In the previous Series 4 it was shown that this bedding reduced friction to a minimum.

5.4.4 Evaluation of results / correcting for deviating thickness

The energy absorption capacity of the panel shall according to the standards be calculated as the energy uptake between 0 and 25 mm central deflection during a fixed deflection rate. The panel thickness influences the ability to take up energy, where increased panel thickness will increase the energy uptake, and vice versa. Consequently, the calculation of energy absorption capacity should be corrected for when the thickness is deviating from the reference thickness. A theoretical evaluation of the effect of panel thickness was done in [14]. Target panel thickness is in our case $h_0 = 100$ mm. The following analysing procedure was proposed for panels with thickness h deviating from h_0:
Fig. 5.4 Two layers of PVC-membranes and grease as bedding material. Preparation of grease on the bottom membrane layer (left), the cut membrane is placed on top (top right) and slide freely during testing (bottom right).

1. Accumulated energy should be calculated under the load-displacement curve between 0 and a modified displacement $\Delta_m = 25 \text{ mm} \cdot k$, and $k = 100/h$
2. Calculated EAC should then be multiplied with the factor k.
3. The final corrected EAC is then the result from the test.

The procedure assumes that the moment capacity in the crack is linearly related to the thickness of the panel and the rotation of the crack. It is likely that the correcting procedure will be valid within reasonable variations in panel thickness and that it will certainly contribute to achieving more comparable results.

What the procedure does is really to normalize the cross section of the yield lines, in horizontal direction by point (1) and in vertical direction by point (2). The following formula is then used to calculate the corrected energy absorption capacity (EAC) in each test:

$$EAC = k \sum_{j=0}^{i=\Delta_m} \left[(\Delta_{i+1} - \Delta_i) \frac{P_j + P_{i+1}}{2} \right]$$

where k and Δ_m are explained above. Δ is the central displacement, P is the central load and the parameter i is the increment number.

All presented results are corrected according to the above procedure. In the present investigation the panels had average thicknesses ranging from 98 mm to 109 mm, see APPENDIX 3.
6 Results – supporting tests

6.1 Slump and air content

Fresh concrete slump and air content were measured to be 220 mm and 8.5%, respectively.

6.2 Fibre content

The two measurements of fibre content in fresh concrete gave 8.7 and 7.6 kg/m3. Hence, average fibre content was measured to be 8.2 kg/m3. The nominal fibre dosage was 7 kg/m3.

6.3 Compressive strength

The four 100x100 mm cubes were tested at 7 and 28 days concrete age. The results are given below.

<table>
<thead>
<tr>
<th>Cube</th>
<th>7 days</th>
<th>28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>MPa</td>
</tr>
<tr>
<td>Cube 1</td>
<td>39.5</td>
<td>57.0</td>
</tr>
<tr>
<td>Cube 2</td>
<td>39.5</td>
<td>56.5</td>
</tr>
<tr>
<td>Average</td>
<td>39.5</td>
<td>56.8</td>
</tr>
</tbody>
</table>

The average density measured on the cubes was 2170 kg/m3.
7 Results and discussion - Panel tests

7.1 Panel thickness

All thickness measurements are given in APPENDIX 4. The average panel thickness for all panels was 102 mm. Panel thicknesses varied from 98 mm to 109 mm. For the thickness measurements on each individual panel the standard deviation varies from 0.5 mm to 4 mm, while the average std.dev. for all individual panels is 2 mm. The panel thickness is corrected for when calculating the energy absorption capacity for each panel, according to the procedure described in Section 5.4.4.

7.2 Energy uptake

7.2.1 Variability

For each set of panels the coefficients of variation (COV) for the accumulated energy uptake up to 25 mm and 5 mm central panel displacement are shown in Table 4 and Table 5, respectively.

Table 4: Accumulated results up to 25 mm displacement.

<table>
<thead>
<tr>
<th>Support</th>
<th>Test set</th>
<th>Bedding material</th>
<th>Average accumulated energy uptake [Joule]</th>
<th>Coefficient of variation COV</th>
<th>Average friction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded steel support</td>
<td>3</td>
<td>No bedding</td>
<td>939</td>
<td>6.7%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>One layer of Teflon</td>
<td>746</td>
<td>6.7%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Two layers of Teflon</td>
<td>652</td>
<td>*7</td>
<td>6% *3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two layers of PVC-membrane + grease</td>
<td>613</td>
<td>17.4%</td>
<td>0% Reference</td>
</tr>
<tr>
<td>Wooden support</td>
<td>4</td>
<td>No bedding</td>
<td>1052</td>
<td>4.5%</td>
<td>42%</td>
</tr>
</tbody>
</table>

* Note: This set contains only one panel.

Table 5: Accumulated results up to 5 mm displacement.

<table>
<thead>
<tr>
<th>Support</th>
<th>Test set</th>
<th>Bedding material</th>
<th>Average accumulated energy uptake [Joule]</th>
<th>Coefficient of variation COV</th>
<th>Average friction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded steel support</td>
<td>3</td>
<td>No bedding</td>
<td>230</td>
<td>1.9%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>One layer of Teflon</td>
<td>206</td>
<td>6.0%</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Two layers of Teflon</td>
<td>162</td>
<td>*7</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two layers of PVC-membrane + grease</td>
<td>140</td>
<td>23.3%</td>
<td>0% Reference</td>
</tr>
<tr>
<td>Wooden support</td>
<td>4</td>
<td>No bedding</td>
<td>202</td>
<td>13.2%</td>
<td>31%</td>
</tr>
</tbody>
</table>

* Note: This set contains only one panel.
The set with two layers of Teflon unfortunately contains only one panel due to logging error during the two other panel tests in this set. Average COV for the energy uptake up to 25 mm displacement is 8.8% for the remaining four individual sets containing three or four panels. Similarly, the average COV for energy uptake up to 5 mm displacement is 11.1%. It is notable that the COV for the set with bedding of PVC is much higher (COV=17.4% for 25 mm displacement) than the other sets, but it is not unnormal as such high COVs have been seen also in some previous test sets.

7.2.2 Effect of support condition on friction

The energy uptake in the set with bedding of two layers of PVC-membranes+grease is used as reference \((E_{PVC})\) as we assume that there is no or very little friction influence for this case. Thus, the friction effect for the other support conditions \((E_s)\) is calculated according to:

\[
\text{Equation 4} \quad \text{Friction effect (\%) } = \left(1 - \frac{E(\Delta)_{PVC}}{E(\Delta)_s}\right) \times 100\%
\]

where \(\Delta\) is the displacement and the index \(s\) is the given support condition.

Average accumulated energy uptake for each test set versus central displacement is shown in Fig. 7.1-a, and the average accumulated friction effect according to \textit{Equation 4} for each set is plotted in Fig. 7.1-b. Note that the curve for the condition “2xTeflon” contain only one single panel test due to logging errors for the other two panels in the set, hence the result is therefore somewhat uncertain.

It can be seen that the average friction effect for “wood” (wooden support) is substantial and that it increases with the displacement, as found also in similar tests performed earlier [10][11][12]. At final displacement of 25 mm the accumulated friction effect from wood on the energy uptake is 42%, which also is in line with the previous tests where a 35% and a 37% friction effect were found. Including the result from the present test series (42%) this means that we have found that the average friction effect at final displacement for wooden support among our three independent test sets is 38%.

The friction effect as shown in Fig. 7.1-b for wooden support is different from the other support conditions in the way that it increases with displacement. For the other supporting conditions the friction effect decreases with the displacement.

The change in the friction curves in Fig. 7.1-b becomes less with increasing displacement. Beyond 10 mm displacement the friction curves are perhaps “as expected” in the way that placing the panel directly on wooden support gives the highest friction, then comes the new rounded steel support with less friction, then one layer of Teflon (on steel support) and finally two layers of Teflon (on steel support) with least friction. Hence the following ranking with regarding the friction effect can be put up:

\[
\begin{align*}
\text{Wood} & > \text{steel} & > \text{steel + Teflon} & > \text{steel + 2xTeflon} & > \text{steel + 2xPVC+grease (reference)}
\end{align*}
\]

It is notable that for nominally identical panels the apparent average accumulated energy uptake from zero to 25 mm displacement varies from 1052 Joule (wood) to 613 Joule (2xPVC+grease) among the different sets; this is simply due to variable friction from the support. The other supporting conditions give a smooth distribution of results between the two extremes.
It is also notable that placing the panel directly on the new rounded steel support (35% friction) gives apparently no reduction in friction compared to earlier tests with a steel support with sharp inner edge (28% friction) [13], on the contrary.

Note that the curves in Fig. 7.1-b start at 3 mm displacement. Below 3 mm the calculation of the friction effect is very uncertain due to the very small energies involved. Friction below 3 mm displacement is therefore not included.

Table 4 gives numbers for the average energy uptake, COV and friction effect at 25 mm displacement. Table 5 gives the same data for 5 mm displacement.

Various results from the panel tests are given in APPENDIX 4, APPENDIX 5 and APPENDIX 6.
For four perpendicular cracks in the panel, which is quite the normal case in the present tests, the final central displacement of 25 mm corresponds to a crack opening at the panel under-side of 20 mm. The relation between displacement and crack opening is linear; hence for instance a displacement of 12.5 mm corresponds to a crack opening of 10 mm, etc.

7.3 Maximum load and residual strength

The general trend from our previous tests have been that higher friction in the test leads to both higher maximum load during the test and higher residual load at 25 mm displacement. Table 6 shows that the trend in the present tests is not systematic, but the results from the two support conditions with highest friction (panel placed directly on wood or steel) confirms the trend, especially for residual load (for which the trend also have been most pronounced in previous tests).

A negative friction effect for some cases is perhaps confusing, but is simply a result of the calculation procedure (analogue to that of Equation 4), and maybe the variability of the results also play a role.

Table 6: Average maximum load during the test and residual load at 25 mm displacement. And, effect of friction as compared to the support condition with 2xPVC-membrane+grease.

<table>
<thead>
<tr>
<th>Support Condition</th>
<th>Average Maximum Load (MPa)</th>
<th>Std.dev.</th>
<th>COV</th>
<th>Friction Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>61.2</td>
<td>3.1</td>
<td>5.0 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Steel</td>
<td>64.8</td>
<td>3.7</td>
<td>5.7 %</td>
<td>11 %</td>
</tr>
<tr>
<td>Teflon</td>
<td>55.5</td>
<td>1.5</td>
<td>2.7 %</td>
<td>-4 %</td>
</tr>
<tr>
<td>2xTeflon</td>
<td>54.2</td>
<td>(only one panel)</td>
<td></td>
<td>-7 %</td>
</tr>
<tr>
<td>2xPVC+grease</td>
<td>57.8</td>
<td>3.3</td>
<td>5.6 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Support Condition</th>
<th>Average Residual Load (MPa)</th>
<th>Std.dev.</th>
<th>COV</th>
<th>Friction Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>30.4</td>
<td>0.5</td>
<td>1.6 %</td>
<td>47 %</td>
</tr>
<tr>
<td>Steel</td>
<td>24.8</td>
<td>2.7</td>
<td>11.0 %</td>
<td>35 %</td>
</tr>
<tr>
<td>Teflon</td>
<td>17.9</td>
<td>0.6</td>
<td>3.3 %</td>
<td>11 %</td>
</tr>
<tr>
<td>2xTeflon</td>
<td>13.7</td>
<td>(only one panel)</td>
<td></td>
<td>-17 %</td>
</tr>
<tr>
<td>2xPVC+grease</td>
<td>16.0</td>
<td>2.4</td>
<td>14.9 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

7.4 Crack pattern

After end of testing, the panels were taken out of the test frame and the under-side of the panels were photographed. The photos are shown below. 16 panels developed four cracks and two panels got five cracks (one in the set “steel-no bedding” and one in the set “steel-Teflon”). One panel developed shear failure (in the set: “wood-no bedding”). One panel was not photographed.
Fig. 7.2 Crack pattern, Set 3: Steel support, no bedding

Fig. 7.3 Crack pattern, Set 1: Steel support, Teflon as bedding material. * The data was lost due to a logging error.

Fig. 7.4 Crack pattern, Set 5: Two layers of Teflon as bedding material. * The data was lost due to a logging error. x Data was lost after 10 mm displacement due to a logging error.
Panel-support interface

The following figures show some selected photographs that were taken, after testing, of the panel cracks in the areas that had contact with the support. In most figures we can see the footprints of friction due to the distinct point-loads that occur in the contact zones.

The “ranking” of support conditions with regard to friction was, as shown earlier, like this:

Wood > steel > steel + Teflon > steel + 2xTeflon > steel + 2xPVC+grease (reference)

There is a clear tendency that more friction caused by the support leads to a crack-zone rather than a distinct crack. Friction apparently increases the capacity of the panel to transmit forces over the crack and more cracks tend to form around the original main crack; a sort of local strain-hardening behaviour occurs due to the reinforcing effect of friction.

Previous tests have also indicated that friction may produce extra main cracks in the panel, but such trend is not present here. It is notable, however, that one single panel of the 18 panels in total suffered shear failure; this panel was placed directly on wooden support which generated the highest friction! All pictures that were taken of the crack-zones are given in APPENDIX 7.
Fig. 7.7 Set 3: Steel support, no bedding
Fig. 7.8 Set 1: Steel support, Teflon as bedding material
Fig. 7.9 Set 5: Steel support, two layers of Teflon as bedding material
Fig. 7.10 Set 2: Steel support, two layers of PVC-membrane + grease as bedding material.
Fig. 7.11 Set 4: Wooden support, no bedding
7.6 Wearing of the Teflon

When using one Teflon layer as bedding material, the Teflon was to a large degree broken by the sliding of the panel during testing, see examples in Fig. 7.12. This is maybe not surprising and it means that the concrete panel got semi-contact with the steel support underneath; hence we obtain a semi concrete-steel friction. This can probably explain also why the reduction of friction was no more than “semi-successful” (18% accumulated friction effect at 25 mm displacement).

Fig. 7.12 Pictures of the Teflon at crack-zones after testing (bedding: one layer of Teflon)

When using two layers of Teflon as bedding material, the upper layer also broke to a certain extent, but the lower layer was more or less unbroken; hence we probably obtain a combination of concrete-Teflon friction, Teflon-Teflon friction, and Teflon-steel friction which may explain the further reduction of friction (6% friction effect. Note: the test set contains only one panel, as mentioned earlier).
8 Conclusions and final remarks

The panel tests made use of a new rounded continuous steel support, a continuous wooden support, and different bedding materials and -combinations; in total five different support conditions was tested. The displacement rate in the tests was 3 mm/min.

Among the four individual test sets consisting of three or four panels the results show that the average coefficient of variation for the energy uptake between zero and 25 mm displacement was 8.8%.

In panel tests with continuous support the friction occurs in two directions; tangential and radial, and the results shows that the apparent energy uptake during the test is very dependent on the support condition. Variable friction from different support materials is the cause of this dependence. The results show that friction constitutes the following portion of the accumulated apparent energy uptake in the various test sets:

<table>
<thead>
<tr>
<th>Support</th>
<th>Bedding</th>
<th>Support condition</th>
<th>Average friction effect (0 – 25 mm displacement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooden support</td>
<td>No bedding</td>
<td>A</td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td>No bedding</td>
<td>B</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>One layer of Teflon</td>
<td>C</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>Two layers of Teflon</td>
<td>D</td>
<td>6%</td>
</tr>
<tr>
<td>Rounded steel support</td>
<td>Two layers of PVC-membrane + grease</td>
<td>E</td>
<td>0% (reference)</td>
</tr>
</tbody>
</table>

The results confirm earlier results for support condition A in the way that it gives very high friction and also that the accumulated friction effect increases with the displacement. For the other support conditions the accumulated friction effect decreases with displacement. Increasing friction appears to represent a reinforcing effect which generates a local strain-hardening behaviour in the panel around the contact-zone with the support. This is seen as local multiple cracking in this zone. Support condition E is used as reference and the assumption is that this bedding provides no friction, but a small friction component is still likely to exist; hence the friction effects shown above are probably slightly underestimated.

Introducing Teflon as bedding material (condition C and D) has a positive effect in reducing friction, but the effect of one layer of Teflon still gives significant friction in the test. The Teflon suffered significant wearing during testing and had to be renewed in each test. A drawback with Teflon is that it makes the testing procedure more cumbersome as it gives extra work during the preparation of each test; more work naturally for two layers than for one layer. Bedding with PVC-membranes+grease (condition E) has shown very effective to reduce/eliminate friction and is a good reference, but it is very laborious and can hardly be used in a standard procedure.

The trend is that friction also influences the maximum load during the test as well as the residual load at the end of the test; the effect is most evident for the latter.

The new rounded steel support (condition B) does not give lower friction than earlier tests that used a steel support with a sharp inner edge.
9 References

[1] Norwegian Concrete Association’s publication no. 7: “Sprayed concrete for rock support”. 2003 (in Norwegian, title: Norsk Betongforenings publikasjon nr. 7: ”Sprøytebetong til bergsikring”)

[12] Series 5, performed March 2009, Effect of panel test method and friction in round panels on continuous wooden support and in round determinate supported ASTM-panels. To be reported.

[13] Series 6, performed May 2009, Effect of panel test method and friction in round NB7-panels on continuous steel support and round determinate supported ASTM-Panels. To be reported.

APPENDIX 1

Bedding materials, data sheets

TEFLOW

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Moisture Content (%)</th>
<th>Thermal Conductivity (W/mK)</th>
<th>Surface Tension (N/m)</th>
<th>Dielectric Constant</th>
<th>Tensile Strength (MPa)</th>
<th>Young’s Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon</td>
<td>1.37</td>
<td>1.0</td>
<td>0.28</td>
<td>0.07</td>
<td>1.23</td>
<td>80</td>
<td>170</td>
<td>0.37</td>
<td>High</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.19</td>
<td>0.05</td>
<td>0.45</td>
<td>0.09</td>
<td>2.45</td>
<td>53</td>
<td>320</td>
<td>0.35</td>
<td>Moderate</td>
</tr>
<tr>
<td>PVC</td>
<td>1.44</td>
<td>0.08</td>
<td>0.33</td>
<td>0.12</td>
<td>2.75</td>
<td>40</td>
<td>200</td>
<td>0.45</td>
<td>Low</td>
</tr>
<tr>
<td>EPE</td>
<td>1.39</td>
<td>0.06</td>
<td>0.25</td>
<td>0.08</td>
<td>2.6</td>
<td>50</td>
<td>250</td>
<td>0.4</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Note:
- **Density** indicates the weight per unit volume.
- **Moisture Content** is the percentage of moisture by weight.
- **Thermal Conductivity** is a measure of how well a material conducts heat.
- **Surface Tension** is the energy required to increase the surface area of a liquid.
- **Dielectric Constant** measures the ability of a material to store electrical energy.
- **Tensile Strength** is the maximum stress a material can withstand while being stretched or pulled.
- **Young’s Modulus** measures the stiffness of a material.
- **Poisson’s Ratio** indicates how much a material will deform under shear stress.
- **Durability** refers to the material's ability to withstand wear and tear.

Technology report no. 2575

32 Directorate of Public Roads

Egenskapsdata

Termoplaster

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Moisture Content (%)</th>
<th>Thermal Conductivity (W/mK)</th>
<th>Surface Tension (N/m)</th>
<th>Dielectric Constant</th>
<th>Tensile Strength (MPa)</th>
<th>Young’s Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon</td>
<td>1.37</td>
<td>1.0</td>
<td>0.28</td>
<td>0.07</td>
<td>1.23</td>
<td>80</td>
<td>170</td>
<td>0.37</td>
<td>High</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.19</td>
<td>0.05</td>
<td>0.45</td>
<td>0.09</td>
<td>2.45</td>
<td>53</td>
<td>320</td>
<td>0.35</td>
<td>Moderate</td>
</tr>
<tr>
<td>PVC</td>
<td>1.44</td>
<td>0.08</td>
<td>0.33</td>
<td>0.12</td>
<td>2.75</td>
<td>40</td>
<td>200</td>
<td>0.45</td>
<td>Low</td>
</tr>
<tr>
<td>EPE</td>
<td>1.39</td>
<td>0.06</td>
<td>0.25</td>
<td>0.08</td>
<td>2.6</td>
<td>50</td>
<td>250</td>
<td>0.4</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Note:
- **Density** indicates the weight per unit volume.
- **Moisture Content** is the percentage of moisture by weight.
- **Thermal Conductivity** is a measure of how well a material conducts heat.
- **Surface Tension** is the energy required to increase the surface area of a liquid.
- **Dielectric Constant** measures the ability of a material to store electrical energy.
- **Tensile Strength** is the maximum stress a material can withstand while being stretched or pulled.
- **Young’s Modulus** measures the stiffness of a material.
- **Poisson’s Ratio** indicates how much a material will deform under shear stress.
- **Durability** refers to the material's ability to withstand wear and tear.

Technology report no. 2575

32 Directorate of Public Roads

Egenskapsdata

Termoplaster

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Moisture Content (%)</th>
<th>Thermal Conductivity (W/mK)</th>
<th>Surface Tension (N/m)</th>
<th>Dielectric Constant</th>
<th>Tensile Strength (MPa)</th>
<th>Young’s Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon</td>
<td>1.37</td>
<td>1.0</td>
<td>0.28</td>
<td>0.07</td>
<td>1.23</td>
<td>80</td>
<td>170</td>
<td>0.37</td>
<td>High</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.19</td>
<td>0.05</td>
<td>0.45</td>
<td>0.09</td>
<td>2.45</td>
<td>53</td>
<td>320</td>
<td>0.35</td>
<td>Moderate</td>
</tr>
<tr>
<td>PVC</td>
<td>1.44</td>
<td>0.08</td>
<td>0.33</td>
<td>0.12</td>
<td>2.75</td>
<td>40</td>
<td>200</td>
<td>0.45</td>
<td>Low</td>
</tr>
<tr>
<td>EPE</td>
<td>1.39</td>
<td>0.06</td>
<td>0.25</td>
<td>0.08</td>
<td>2.6</td>
<td>50</td>
<td>250</td>
<td>0.4</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Note:
- **Density** indicates the weight per unit volume.
- **Moisture Content** is the percentage of moisture by weight.
- **Thermal Conductivity** is a measure of how well a material conducts heat.
- **Surface Tension** is the energy required to increase the surface area of a liquid.
- **Dielectric Constant** measures the ability of a material to store electrical energy.
- **Tensile Strength** is the maximum stress a material can withstand while being stretched or pulled.
- **Young’s Modulus** measures the stiffness of a material.
- **Poisson’s Ratio** indicates how much a material will deform under shear stress.
- **Durability** refers to the material's ability to withstand wear and tear.

Technology report no. 2575

32 Directorate of Public Roads

Egenskapsdata

Termoplaster

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Moisture Content (%)</th>
<th>Thermal Conductivity (W/mK)</th>
<th>Surface Tension (N/m)</th>
<th>Dielectric Constant</th>
<th>Tensile Strength (MPa)</th>
<th>Young’s Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon</td>
<td>1.37</td>
<td>1.0</td>
<td>0.28</td>
<td>0.07</td>
<td>1.23</td>
<td>80</td>
<td>170</td>
<td>0.37</td>
<td>High</td>
</tr>
<tr>
<td>HDPE</td>
<td>1.19</td>
<td>0.05</td>
<td>0.45</td>
<td>0.09</td>
<td>2.45</td>
<td>53</td>
<td>320</td>
<td>0.35</td>
<td>Moderate</td>
</tr>
<tr>
<td>PVC</td>
<td>1.44</td>
<td>0.08</td>
<td>0.33</td>
<td>0.12</td>
<td>2.75</td>
<td>40</td>
<td>200</td>
<td>0.45</td>
<td>Low</td>
</tr>
<tr>
<td>EPE</td>
<td>1.39</td>
<td>0.06</td>
<td>0.25</td>
<td>0.08</td>
<td>2.6</td>
<td>50</td>
<td>250</td>
<td>0.4</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Hvad er PTFE?

PTFE - Polytetrafluorethylen - højt kendt under navnet Teflon - ikke produceret af Du Pont - USA under ærden varmevask og betragtes som et stofliggende materiale, fordi det bugges i herlighedsprogram den. Ingen er blevet rigt

PTFÉ findes på grund af cholinesterase og diacyl, der i en komponentes kerntaler en fælles absorptionssegment, og efter polymeer satte de en diacylene moderne behøver, at materiale i plader plastisk ved opvarmning. DuPont findes, at PTFE kan bearbejdes temmelig ef

Anvendelsesområdet

PTFE anvendes for det mest og mest, hvor der er behov for at bevare temperaturen, da materiale af materiale, der er acceptabel i leveværdi, i livslængde. Efte

Karaktéristik

Udover de gennemførte tilfælde kendes PTFE i

Egenskaber

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de

Blande med de kondensater med f.eks. mineralolie og ved karen varme

Temperatur

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de

Elektriske egenskaber

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de

Optikale egenskaber

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de

Fysikaliske egenskaber

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de

Bemærkninger

PTFE's rige alige og relativt stort tendere til koldtørring, gør at det i de
Data for PTFE

<table>
<thead>
<tr>
<th>PTFE - Fysiske egenskaber</th>
<th>DIN</th>
<th>ISO</th>
<th>ASTM</th>
<th>EN</th>
<th>NED</th>
<th>PTFE</th>
<th>PTFE</th>
<th>PTFE</th>
<th>PTFE</th>
<th>PTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Domstof</td>
<td>1820</td>
<td>1820</td>
<td>1442</td>
<td></td>
<td></td>
<td>2.25</td>
<td>2.16</td>
<td>3.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Vand absorptio</td>
<td></td>
</tr>
</tbody>
</table>

Mekaniske egenskaber

- **Tæt formåg:**
 - Trædskraft ved øjeblikkelig trædskraft (mm)
 - Trædskraft ved øjeblikkelig trædskraft (mm)
 - Trædskraft ved øjeblikkelig trædskraft (mm)

Tykronsag (tæbretning):

<table>
<thead>
<tr>
<th>% offset</th>
<th>0.04</th>
<th>0.08</th>
<th>0.16</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.0</td>
<td>18.5</td>
<td>36.0</td>
<td>51.0</td>
</tr>
</tbody>
</table>

Termiske egenskaber

- **Smag temperatur**
- **Varmeledningsevne**
- **Lineær termisk udvidelses-
 koefficient**
- **Middelværdi 23-50°C**
- **Middelværdi 23-100°C**
- **MAXIMAL anvendelses-temperatur**
- **Luf**:
 - kondenseret
 - kontinuerligt
 - minimum anvendelses-
 temperatur

Elektriske egenskaber

- **Specifik gennemstrømsmodstand**
- **Overflademodstand**
- **Delektret stykke**
- **Delektret korr.**
- **ved 100 Hz**
- **Delektret tabtali lasti**
 - ved 100 Hz
Data for PTFE

Dielektriske egenskaber

![Dielectric properties graph]

Termisk dimensionsstabilitet

![Thermal dimensional stability graph]

Krybforhold

![Tensile strength graph]

Dynamik

![Dynamic properties graph]

Stikfasthethed

![Tensile strength graph at different temperatures]

Tykkelastning

![Tensile strength graph at different temperatures]

DUKA

Technology report no. 2575

Directorate of Public Roads
Data for PTFE

PTFE cured at 200°C

PTFE cured at 100°C

Summenligging

Material: PTFE, PFA, PEEK, PVDF, PP, PEI

PTFE vs. Time and Temperature

Kakochna kurva angiver materialens kemiske og elektriske egenskaber under forskellige temperaturer og forlængelser.

Maximal tilstandsgennemsnit og maximal tilstand efektiv temperatur for forskellige metaller.
Egenskabsprofil

Alle informationer i denne brædside er giveet ud fra vores bestemte visar og uden støtte for Plant Gruppen. Tekniske oplysninger bygger i vidt udstrækning på informations fra landeviske direktoreskontorer.

Randers 1992
PVC-membrane

Mipoplast®-0815/5, 1.50 mm
Sheet waterproofing membrane

Product Description
Mipoplast®-0815/5 is a homogenous sheet waterproofing membrane, based on polyvinylchloride (PVC-P).

Uses
- Waterproofing of prefabricated components for small and medium-sized swimming pools.
- Pre-formed and transportable pools (e.g., children's paddling pools).

Characteristics / Advantages
- High resistance to ageing.
- High tensile strength and elongation.
- UV stabilised.
- Hydrolysis and resistant to algal growth.
- Resistant to chlorinated water and common swimming pool cleaning chemicals.
- High water vapour transmission ability.
- Resistant to permanent water temperatures of +20°C.
- High dimensional stability.
- High flexibility in cold temperatures.
- Hot air and solvents weatherable.

Tests:
Approval / Standards: Complies with DIN 18 195.

Product Data
Form

Appearance / Colours:
Rolled sheet membrane, unalloyed.
- Surface smooth.
- Membrane thickness: 1.50 mm.
- Colour (standard): blue (0255), other colours available on request.

Packaging:
- Roll size: 1.50 m (roll width) x 25.00 m (roll length).
- Unit weight: 1.84 kg/m².

Storage

Storage Conditions / Shelf Life:
Rolls must be stored in their original package, in horizontal position and under cool and dry conditions. They must be protected from direct sunlight, light, snowing, etc.

Sika®
Technology report no. 2575

Technical Data

Chemical Base: Plasticized polyvinyl chloride (PVC-P)

Thickness: 0.80 mm

Water Vapour Diffusion Resistance: < 20000 μ

Mechanical / Physical Properties

Tensile Strength: Longitudinal and transversal > 17.00 N/mm² (DIN 53 455)

Elongation: Longitudinal and transversal > 300% (DIN 53 455)

Seam Strength: Cracks occur next to the seam. (DIN 16726)

Behaviour under Hydrostatic Pressure: Watertight at 4 bar over 72 hours. (DIN 16726)

Puncture Resistance: Watertight at a drop height of 300 mm. (DIN 16726)

Dimensional Change after Storage at +80°C: < 1.50% (DIN 53377)

Behaviour when Folding in Cold: No cracks at -56°C. (DIN 63081)

Resistance

Appearance after Storage in Heat: No blistering, cracks or capillaries. (DIN 53377)

System Information

System Structure: Ancillary Products:
- Silka®-Tectol® PVC - laminated metal sheets Type WB for fixing pieces.
- Silka®-Tectol® PVC - solvent for cold welding.
- Silka®-Tectol® PVC - soluction (Type WB) for seam welding.

Application Details

Substrate Quality: Clean and dry, homogeneous, free from oils and grease, dust and loose or friable particles.

Application Conditions / Limitations

Substrate Temperature: 0°C min. / +38°C max.

Ambient Temperature: +5°C min. / +55°C max.

Compatibility: Suitable Substrates:
Concrete, mortar, galvanised steel, aluminium.

Non-Suitable Substrates:
Impregnated wood, high density Polyethylene and rigid PVC, requires a separation layer of geotextile.
Application Instructions

<table>
<thead>
<tr>
<th>Application Method / Tests</th>
<th>Notes on Application / Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>This product is suitable for factory sealed waterproofing of prefabricated swimming pool components. Membrane installation and sealing procedures are developed according to the individual production specifications of pool components.</td>
<td>This product is not suitable for roof membrane installation works in-situ.</td>
</tr>
</tbody>
</table>

Value Base

All technical data stated in this Product Data Sheet is based on laboratory tests. Actual measured data may vary due to circumstances beyond our control.

Local Restrictions

Please note that as a result of specific local regulations the performance of this product may vary from country to country. Please consult the local Product Data Sheet for the exact description of the application field.

Health and Safety Information

For information and advice on the safe handling, storage and disposal of chemical products, always refer to the most recent Material Safety Data Sheet containing physical, ecological, toxicological and other safety-related data.

Legal Notes

This information, and, in particular, the recommendations relating to the application and end use of Sika products, are given in good faith based on Sika’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika’s recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any written recommendations, or from any other advice offered. The user of the product must test the product’s suitability for the intended application and purpose. Sika reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned. Copies of which will be supplied on request.

It may be necessary to adapt the above statement to specific local laws and regulations. Any adaptations to this disclaimer may only be implemented with the permission of Sika’s Corporate Legal Department.
APPENDIX 2 Fibre, product data sheet

Product Name

SHOGUN

Description

BarChip “Shogun” is a structural synthetic fibre reinforcement, added to concrete and shotcrete to replace welded wire reinforcing mesh and steel fibres.

Product Features

- **Material Property**
 - **Base Resin**: Polylefin
 - **Length**: 48mm
 - **Tensile Strength**: 550 MPa
 - **Surface Texture**: Continuously embossed
 - **No. fibres per kg**: < 35,000
 - **Specific Gravity**: 0.80-0.92
 - **Young Modulus**: 10 GPa
 - **Melting Point**: 150-165°C
 - **Ignition Point**: Over 450°C

Benefits

- Flexural toughness equal to steel
- Long term durability – corrosion free
- Safer and lighter to handle than steel
- Reduced fire damage – anti-spalling
- Reduced wear on concrete pumps and mixers

Dosage

BarChip “Shogun” fibre can be dosed between 2 to 20 kg/m³ depending on project requirements. Typical dose rates fall in the range of 3 kg/m³ for concrete floors and 5 kg/m³ for shotcrete applications in normal ground conditions. Please ask your representative for assistance in determining fibre addition rates.

Mixing

BarChip “Shogun” fibre is best added to the batching process following the instructions detailed on EPC’s “Technical Procedure: Batching and Mixing” information sheet. BarChip is packaged in a water-soluble paper bag. It is recommended that the bag and contents are added to an empty agitator prior to loading other materials. BarChip disperses uniformly following 5 minutes of mixing. Dose rates in the range of 7 kg/m³ may reduce slump by approximately 20mm.

Pumping

BarChip “Shogun” fibre can be pumped through 50cm rubber hoses without difficulty. Precaution should be taken to ensure the fibres can pass freely through the pump hopper grate.

Handling and Storage

- 5 kg degradable paper bag.
- Bulk bags available on request.
- Store protected from the weather.

For safety, please refer to EPC’s Material Safety Data Sheet.
APPENDIX 3 Measurements of panel thickness

All values in mm.

<table>
<thead>
<tr>
<th>Panel 1</th>
<th>101.9</th>
<th>102.8</th>
<th>102.9</th>
<th>103.8</th>
<th>102.4</th>
<th>103.2</th>
<th>101.2</th>
<th>102.4</th>
<th>102.7</th>
<th>99.9</th>
<th>100.6</th>
<th>103.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 2</td>
<td>103.5</td>
<td>104.2</td>
<td>104.2</td>
<td>105.2</td>
<td>103.9</td>
<td>103.6</td>
<td>104.4</td>
<td>104.7</td>
<td>103.4</td>
<td>104.1</td>
<td>104.0</td>
<td>104.7</td>
</tr>
<tr>
<td>Panel 3</td>
<td>98.5</td>
<td>99.5</td>
<td>100.1</td>
<td>97.7</td>
<td>97.1</td>
<td>98.6</td>
<td>101.3</td>
<td>102.3</td>
<td>101.2</td>
<td>100.8</td>
<td>100.3</td>
<td>101.3</td>
</tr>
<tr>
<td>Panel 4</td>
<td>99.1</td>
<td>102.8</td>
<td>104.9</td>
<td>101.9</td>
<td>103.1</td>
<td>104.0</td>
<td>98.0</td>
<td>101.1</td>
<td>104.2</td>
<td>103.3</td>
<td>102.7</td>
<td>99.4</td>
</tr>
<tr>
<td>Panel 5</td>
<td>103.2</td>
<td>103.6</td>
<td>103.1</td>
<td>104.3</td>
<td>104.3</td>
<td>102.4</td>
<td>103.2</td>
<td>103.0</td>
<td>102.5</td>
<td>102.4</td>
<td>103.2</td>
<td>102.9</td>
</tr>
<tr>
<td>Panel 6</td>
<td>100.7</td>
<td>100.5</td>
<td>100.4</td>
<td>99.6</td>
<td>101.5</td>
<td>103.1</td>
<td>104.0</td>
<td>103.5</td>
<td>103.6</td>
<td>105.9</td>
<td>105.5</td>
<td>105.1</td>
</tr>
<tr>
<td>Panel 7</td>
<td>100.9</td>
<td>100.2</td>
<td>99.7</td>
<td>100.5</td>
<td>99.7</td>
<td>101.6</td>
<td>103.8</td>
<td>100.7</td>
<td>100.4</td>
<td>99.9</td>
<td>104.5</td>
<td>102.4</td>
</tr>
<tr>
<td>Panel 8</td>
<td>104.3</td>
<td>105.9</td>
<td>102.0</td>
<td>106.7</td>
<td>103.5</td>
<td>104.3</td>
<td>101.5</td>
<td>100.7</td>
<td>102.5</td>
<td>100.6</td>
<td>102.1</td>
<td>104.6</td>
</tr>
<tr>
<td>Panel 9</td>
<td>106.9</td>
<td>105.8</td>
<td>103.8</td>
<td>106.0</td>
<td>104.4</td>
<td>107.9</td>
<td>101.4</td>
<td>102.1</td>
<td>103.2</td>
<td>106.5</td>
<td>103.9</td>
<td>103.2</td>
</tr>
<tr>
<td>Panel 10</td>
<td>103.0</td>
<td>102.6</td>
<td>103.0</td>
<td>103.4</td>
<td>102.2</td>
<td>101.7</td>
<td>100.3</td>
<td>99.5</td>
<td>98.8</td>
<td>100.3</td>
<td>101.5</td>
<td>101.2</td>
</tr>
<tr>
<td>Panel 11</td>
<td>106.7</td>
<td>105.4</td>
<td>104.4</td>
<td>101.3</td>
<td>102.4</td>
<td>106.9</td>
<td>98.9</td>
<td>102.8</td>
<td>104.8</td>
<td>105.3</td>
<td>101.8</td>
<td>99.1</td>
</tr>
<tr>
<td>Panel 12</td>
<td>106.7</td>
<td>106.9</td>
<td>109.2</td>
<td>105.5</td>
<td>105.7</td>
<td>106.4</td>
<td>112.5</td>
<td>113.8</td>
<td>113.0</td>
<td>108.4</td>
<td>111.2</td>
<td>107.6</td>
</tr>
<tr>
<td>Panel 13</td>
<td>100.6</td>
<td>105.3</td>
<td>106.8</td>
<td>95.3</td>
<td>95.7</td>
<td>100.7</td>
<td>95.4</td>
<td>96.2</td>
<td>96.3</td>
<td>98.2</td>
<td>96.4</td>
<td>94.3</td>
</tr>
<tr>
<td>Panel 14</td>
<td>102.6</td>
<td>100.4</td>
<td>99.7</td>
<td>102.6</td>
<td>102.3</td>
<td>100.6</td>
<td>101.1</td>
<td>101.1</td>
<td>100.9</td>
<td>101.6</td>
<td>103.4</td>
<td>102.3</td>
</tr>
<tr>
<td>Panel 15</td>
<td>106.4</td>
<td>104.0</td>
<td>100.7</td>
<td>100.1</td>
<td>103.5</td>
<td>107.5</td>
<td>100.2</td>
<td>98.0</td>
<td>98.6</td>
<td>98.6</td>
<td>100.1</td>
<td>99.8</td>
</tr>
<tr>
<td>Panel 16</td>
<td>104.2</td>
<td>102.4</td>
<td>101.8</td>
<td>100.9</td>
<td>99.6</td>
<td>101.1</td>
<td>103.0</td>
<td>102.6</td>
<td>101.4</td>
<td>102.4</td>
<td>101.5</td>
<td>104.2</td>
</tr>
<tr>
<td>Panel 17</td>
<td>100.1</td>
<td>101.6</td>
<td>102.0</td>
<td>100.8</td>
<td>99.2</td>
<td>99.2</td>
<td>101.5</td>
<td>98.4</td>
<td>97.6</td>
<td>100.0</td>
<td>96.8</td>
<td>96.8</td>
</tr>
<tr>
<td>Panel 18</td>
<td>96.9</td>
<td>97.6</td>
<td>99.0</td>
<td>97.0</td>
<td>96.5</td>
<td>96.3</td>
<td>103.0</td>
<td>102.3</td>
<td>100.4</td>
<td>102.8</td>
<td>101.7</td>
<td>105.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>Std.dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.3</td>
<td>1.2</td>
<td>1.1%</td>
</tr>
<tr>
<td>104.2</td>
<td>0.5</td>
<td>0.5%</td>
</tr>
<tr>
<td>99.9</td>
<td>1.6</td>
<td>1.6%</td>
</tr>
<tr>
<td>102.0</td>
<td>2.2</td>
<td>2.2%</td>
</tr>
<tr>
<td>103.2</td>
<td>0.6</td>
<td>0.6%</td>
</tr>
<tr>
<td>102.8</td>
<td>2.2</td>
<td>2.1%</td>
</tr>
<tr>
<td>101.2</td>
<td>1.6</td>
<td>1.6%</td>
</tr>
<tr>
<td>102.6</td>
<td>2.1</td>
<td>2.1%</td>
</tr>
<tr>
<td>104.6</td>
<td>2.0</td>
<td>1.9%</td>
</tr>
<tr>
<td>101.5</td>
<td>1.3</td>
<td>1.3%</td>
</tr>
<tr>
<td>103.3</td>
<td>2.7</td>
<td>2.6%</td>
</tr>
<tr>
<td>108.9</td>
<td>3.0</td>
<td>2.7%</td>
</tr>
<tr>
<td>98.4</td>
<td>4.1</td>
<td>4.2%</td>
</tr>
<tr>
<td>101.6</td>
<td>1.1</td>
<td>1.1%</td>
</tr>
<tr>
<td>101.5</td>
<td>3.1</td>
<td>3.1%</td>
</tr>
<tr>
<td>102.1</td>
<td>1.3</td>
<td>1.3%</td>
</tr>
<tr>
<td>99.5</td>
<td>1.8</td>
<td>1.8%</td>
</tr>
<tr>
<td>99.9</td>
<td>3.1</td>
<td>3.1%</td>
</tr>
</tbody>
</table>
APPENDIX 4 Plots of singles results, set by set

Directly on wooden support
Directly on rounded steel support

Direct on new steel support
Rounded steel support + one layer of Teflon

![Graph showing load and energy with displacement for Teflon and new steel support]
Rounded steel support + two layers of Teflon

- Panel 6: Data lost completely
- Panel 13: Data lost after 10 mm displacement
- Panel 18: Ok
Rounded steel support + two layers of PVC and grease
APPENDIX 5 Data: single results, standard deviation and COV

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
<th>Panel 5 Wood</th>
<th>Panel 8 Wood</th>
<th>Panel 14 Wood</th>
<th>Average wood</th>
<th>Std.dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>14.8</td>
<td>13.4</td>
<td>4.8</td>
<td>11</td>
<td>5.4</td>
<td>49.2%</td>
</tr>
<tr>
<td>3.0</td>
<td>100.9</td>
<td>96.1</td>
<td>71.6</td>
<td>90</td>
<td>15.7</td>
<td>17.6%</td>
</tr>
<tr>
<td>5.0</td>
<td>222.9</td>
<td>210.4</td>
<td>171.9</td>
<td>202</td>
<td>26.6</td>
<td>13.2%</td>
</tr>
<tr>
<td>10.0</td>
<td>503.7</td>
<td>470.3</td>
<td>420.5</td>
<td>465</td>
<td>41.9</td>
<td>9.0%</td>
</tr>
<tr>
<td>14.0</td>
<td>692.6</td>
<td>648.7</td>
<td>595.9</td>
<td>646</td>
<td>48.4</td>
<td>7.5%</td>
</tr>
<tr>
<td>17.3</td>
<td>832.2</td>
<td>783.4</td>
<td>732.3</td>
<td>783</td>
<td>50.0</td>
<td>6.4%</td>
</tr>
<tr>
<td>25.0</td>
<td>1102.5</td>
<td>1046.1</td>
<td>1006.4</td>
<td>1052</td>
<td>47.4</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
<th>Panel 4 Rounded steel support</th>
<th>Panel 9 Rounded steel support</th>
<th>Panel 15 Rounded steel support</th>
<th>Average steel</th>
<th>Std.dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>24.9</td>
<td>29.5</td>
<td>27.2</td>
<td>27</td>
<td>2.3</td>
<td>8.5%</td>
</tr>
<tr>
<td>3.0</td>
<td>119.7</td>
<td>128.6</td>
<td>122.9</td>
<td>124</td>
<td>4.5</td>
<td>3.7%</td>
</tr>
<tr>
<td>5.0</td>
<td>229.9</td>
<td>234.0</td>
<td>225.1</td>
<td>230</td>
<td>4.4</td>
<td>1.9%</td>
</tr>
<tr>
<td>10.0</td>
<td>463.1</td>
<td>477.0</td>
<td>436.5</td>
<td>459</td>
<td>20.6</td>
<td>4.5%</td>
</tr>
<tr>
<td>14.0</td>
<td>618.5</td>
<td>638.2</td>
<td>574.9</td>
<td>611</td>
<td>32.4</td>
<td>5.3%</td>
</tr>
<tr>
<td>17.3</td>
<td>728.8</td>
<td>758.6</td>
<td>677.7</td>
<td>722</td>
<td>40.9</td>
<td>5.7%</td>
</tr>
<tr>
<td>25.0</td>
<td>939.5</td>
<td>1002.4</td>
<td>876.0</td>
<td>939</td>
<td>63.2</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
<th>Panel 2 Teflon</th>
<th>Panel 11 Teflon</th>
<th>Panel 17 Teflon</th>
<th>Average Teflon</th>
<th>Std.dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>22.9</td>
<td>31.3</td>
<td>25.9</td>
<td>27</td>
<td>4.2</td>
<td>15.8%</td>
</tr>
<tr>
<td>3.0</td>
<td>105.5</td>
<td>106.5</td>
<td>119.0</td>
<td>110</td>
<td>7.5</td>
<td>6.8%</td>
</tr>
<tr>
<td>5.0</td>
<td>214.3</td>
<td>191.5</td>
<td>211.2</td>
<td>206</td>
<td>12.3</td>
<td>6.0%</td>
</tr>
<tr>
<td>10.0</td>
<td>421.0</td>
<td>358.7</td>
<td>388.1</td>
<td>389</td>
<td>31.2</td>
<td>8.0%</td>
</tr>
<tr>
<td>14.0</td>
<td>545.7</td>
<td>465.3</td>
<td>504.4</td>
<td>505</td>
<td>40.2</td>
<td>8.0%</td>
</tr>
<tr>
<td>17.3</td>
<td>631.6</td>
<td>542.4</td>
<td>589.4</td>
<td>588</td>
<td>44.6</td>
<td>7.6%</td>
</tr>
<tr>
<td>25.0</td>
<td>783.0</td>
<td>693.1</td>
<td>752.5</td>
<td>746</td>
<td>50.2</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
<th>Panel 13 Two layers of Teflon</th>
<th>Panel 18 Two layers of Teflon</th>
<th>Panel 6 Data lost</th>
<th>One panel, 2xTeflon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>33.2</td>
<td>20.6</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3.0</td>
<td>77.0</td>
<td>98.3</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>141.1</td>
<td>162.5</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>301.7</td>
<td>343.9</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>447.1</td>
<td>447</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>520.0</td>
<td>520</td>
<td>657.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacement [mm]</th>
<th>Panel 3 2xPVC+grease</th>
<th>Panel 10 2xPVC+grease</th>
<th>Panel 16 2xPVC+grease</th>
<th>Panel 7 2xPVC+grease</th>
<th>Average 2xPVC+grease</th>
<th>Std.dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>17.8</td>
<td>8.2</td>
<td>13.2</td>
<td>10.0</td>
<td>12</td>
<td>4.2</td>
<td>34.3%</td>
</tr>
<tr>
<td>3.0</td>
<td>77.6</td>
<td>41.0</td>
<td>85.7</td>
<td>67.0</td>
<td>68</td>
<td>19.4</td>
<td>28.7%</td>
</tr>
<tr>
<td>5.0</td>
<td>187.1</td>
<td>94.1</td>
<td>159.1</td>
<td>139.9</td>
<td>140</td>
<td>32.7</td>
<td>23.3%</td>
</tr>
<tr>
<td>10.0</td>
<td>360.1</td>
<td>210.2</td>
<td>303.0</td>
<td>297.6</td>
<td>294</td>
<td>99.2</td>
<td>20.1%</td>
</tr>
<tr>
<td>14.0</td>
<td>483.3</td>
<td>297.8</td>
<td>396.4</td>
<td>403.8</td>
<td>395</td>
<td>76.0</td>
<td>19.2%</td>
</tr>
<tr>
<td>17.3</td>
<td>732.8</td>
<td>359.1</td>
<td>463.7</td>
<td>452.5</td>
<td>469</td>
<td>87.6</td>
<td>18.7%</td>
</tr>
<tr>
<td>25.0</td>
<td>740.8</td>
<td>455.9</td>
<td>586.8</td>
<td>637.9</td>
<td>613</td>
<td>106.5</td>
<td>17.4%</td>
</tr>
</tbody>
</table>
APPENDIX 6 Measured load-deflection data, test by test

Channels
“Displ.” = Vertical displacement of the load cell
“Deform. 2” = Same as “Deform. 2 M”
“Deform. 2A” = Displacement transducer under the panel. Used for load-cell control.
“Deform. 2B” = Displacement transducer 2. Not used!
“Deform. 2 M” = Average of “Deform. 2A” and “-2B”.
“Force” = Load-cell force

Rounded steel support + one layer of Teflon
Rounded steel support + two layers of Teflon

- Panel 6: Data lost completely
- Panel 13: Data lost after 10 mm displacement
- Panel 18: Ok
Directly on rounded steel support

![Graph showing displacement and load over time for Panel 4 and Panel 9 directly on rounded steel support.]
Rounded steel support + two layers of PVC and grease
Directly on wooden support

![Graph 1](Panel 5 Directly on wooden support)

![Graph 2](Panel 8 Directly on wooden support)
APPENDIX 7 Pictures of crack-zones

Close-up of crack-zones, Set 3: Steel support, no bedding
Close-up of crack-zones, Set 1: Steel support, Teflon as bedding material
Close-up of crack-zones, Set 5: Steel support, two layers of Teflon as bedding material
Close-up of crack-zones, Set 2: Steel support, two layers of PVC-membrane + grease as bedding material.
Close-up of crack-zones, Set 4: Wooden support, no bedding