Mellanlagring av asfalt

Utlakning från uppbruten asfalt - delrapport 2
Validering av kontrollprogram

LENNART LARSSON
LARS BÄCKMAN

Linköping i mars 1999
VÄGVERKET
FORTIFIKATIONSVÄRKE

Rapport

Mellanlagring av asfalt

Utlakning från uppbruten asfalt – delrapport 2
Validering av kontrollprogram

Datum: 1999-02-17
Kontaktpersoner: Lennart B. Larsson (SGI)
Lars Bäckman (VTI)
Innehållsförteckning

Text	Sida
FÖRORD | 3
SAMMANFATTNING | 4
1. INLEDNING | 5
2. UTLAKNING FRÅN BELÄGGNINGSMATERIAL – BAKGRUND OCH UTFÖRDA UNDERSÖKningar | 5
2.1. BAKGRUND | 5
2.2. MATERIAL | 6
2.3. METODER | 7
2.3.1. Oorganiskt | 7
2.3.2. Organiska | 8
2.4. ANALYSER | 8
3. RESULTAT FRÅN LAKFÖRSÖKEN | 9
3.1. KOLONNULTAKADE OORGANiska ÄMNERN | 9
3.1.1. Enbart kolonnvatten, "0-prov" | 9
3.1.2. Ballast (stenkross) | 10
3.1.3. Oljegrus | 11
3.1.4. TjärASFalt | 12
3.1.5. Asfalt (Kollix flyggfält) | 14
3.1.6. Asfalt från riksväg 40 (delrapport 1). | 15
3.1.7. Utlakade ackumulerade mängder av klorid | 16
3.2. KOLONNULTAKADE ORGANiska ÄMNERN | 17
3.2.1. Enbart kolonnvatten, "0-prov" | 17
3.2.2. Oljegrus | 17
3.2.3. TjärASFalt | 19
3.2.4. Asfalt (Kollix flyggfält) | 20
3.2.5. Asfalt från riksväg 40 (delrapport 1). | 22
3.2.6. Mikrotoxtest på 0-prov, oljegrus, tjärasfalt och flyggfältasfalt | 23
4. SAMMANFATTANDE DISKUSSION - LAKTESTRESULTAT | 26
4.1. OORGANiska ÄMNER | 26
4.2. ORGANiska ÄMNER | 28
4.3. SAMMANFATTANDE DISKUSSION | 29
5. VALIDERING AV KONTROLLPROGRAM | 30
5.1. BAKGRUND | 30
5.2. SYTTE | 31
5.3. LOKALBESKRIVNING – MELLANLAGER VID ÖVERSKOG | 31
5.4. PROVTAGNING | 34
5.5. ANALYSER | 36
5.6. RESULTAT OCH COMMENTARER | 36
5.6.1. Haller av oorganiska ämnen i markprov | 36
5.6.2. Haller av organiska samlingsparametrar i markprov | 39
5.6.3. Metallhalter i vattenprov | 41
5.6.4. Haller av organiska samlingsparametrar i vattenprov | 42
5.7. SLUTSATSER | 42
6. REFERENSER | 43
Mellanlagring av asfalt

Utlakning från upprutten asfalt – delrapport 2

Validering av kontrollprogram

FÖRORD

Önskemål om enhetliga direktiv för hur mellanupplag för asfaltmassor skall utformas har framförts av både kommuner/våghållare och entreprenörer. Vägverket har därför uppdragit åt VTI och SGI att utföra en förstudie rörande ”Mellanlagring av asfaltmassor”. En delredovisning av denna förstudie har tidigare presenterats i ”Utlakning från upprutten asfalt - delrapport 1” SGI Varia 468; Januari 1998. Delrapport 1 presenterade en kunskapsöversikt om utlakning från asfalt och resultat från utlakningsförsök av ett asfaltmaterial. Förstudien omfattade, förutom delrapport 1, även framtagandet av en informationsfolder med rekommendationer för mellanlagring av asfalt. Föreliggande delrapport 2 redovisar laktörsök av ytterligare tre beläggningsmaterial samt ett ballastmaterial. I rapporten redovisas även validering av det kontrollprogram som föreslagits i informationsfoldern.

Förstudien finansierades gemensamt av Vägverket, Svenska kommunförbundet, Luftfartsverket och Fortifikationsverket. Det fortsatta projektarbetet har finansierats av Vägverket och Fortifikationsverket.

Lennart B. Larsson (SGI) har ansvaret för lakstudierna. Lars Bäckman (VTI) har varit projektledare och ansvaret för validering av kontrollprogrammet. I en referensgrupp har ingått medarbetare från Vägverket, Svenska kommunförbundet, Luftfartsverket, Fortifikationsverket, Naturvårdsverket och FAS (Föreningen för asfaltbeläggningar i Sverige).

Linköping i februari 1999

Lars Bäckman Lennart Larsson
SAMMANFATTNING

Kolonnlakning har utförts på tre beläggningsmaterial: olje grus, tjärASFalt och asfalt från ett flygfält och därtill på ett ballastmaterial. Vidare har asfalt från Rv40 bli a kolonnalkats i en tidigare studie (delrapport 1). Erhållna lakvatten har analyseras m a p valda oorganiska och organiska ämnen och samlingsparametrar.

Undersökningen visar att tjärASFalts lakar ut betydligt större mängder av de flesta metallerna, i förhållande till övriga undersökta beläggningsmaterial. Maximalt utlakade akkumulerade mängder av valda tungmetaller och spärrmetaller från tidigare undersökta naturmateriel överstiger, eller ligger i nivå med, vad de nu undersökta beläggningsmaterialen uppvisar. Maximalt utlakade halter av klorid från alla de undersökta beläggningsmaterialen är under gränsvärden för dricksvatten.

Vidare visar undersökningen att olje gruset lakar ut höga EGOM-halter och att dessa lakvatten är mycket toxiska för Microtox-testorganismer. Troligtvis är det främst oljegrusets lakvattens organiska innehåll, indikerat via EGOM, som är toxiskt. En mycket liten del av detekterat EGOM bestod av de analyserade organiska ämnena. En mycket stor del av innehållet i EGOM från olje gruset är därför okänt.

I syfte att validera föreslaget miljökontrollprogram har mark- och lakvattenprover tagits vid en befintligt mellanlager för uppbruten asfalt i Härnösands kommun. Proverna har analyserats på valda oorganiska ämnen och organiska samlingsparametrar.

Markproven uppvisar genomgående låga halter av oorganiska ämnen. Halterna av organiska samlingsparametrar är däremot tydligt förhöjda. Förhöjningen är begränsad till ytskiktet av underliggande mark (ca 10 cm). Lakvattnet uppvisar förhöjda halter, både vad gäller vissa metall och organiska samlingsparametrar.

De provtagnings som har utförts i enlighet med det miljökontrollprogram som föreslagn i informationsfolder, bedöms ge en god uppfattning om spridningen av olika ämnen inom upplagsplatsen. Kontrollprogrammet bedöms också ha en rimlig omfattning vad gäller provtagningsförfarande och antal prov.
1. **INLEDNING**

Intresset för asfaltåtervinning har ökat markant på senare år och en rad olika produktionsmetoder för asfaltåtervinning har etablerats runt om i landet. Planerade deponerings- skatter kan komma att innefatta mellanlagrade beläggningsmaterial och då gele återvinningstekniken ett viktigt ekonomiskt incitament. Återvinning av gammalt asfaltmaterial innebär att resurser sparas och att deponeringsbehovet reduceras. Metoderna är i de flesta fall mycket flexibla och väl anpassade för småskalig verksamhet nära vägen, vilket innebär att transportbehovet kan begränsas.

De gamla asfaltmassorna kan dock behöva krossas, malas och sorteras. I de flesta fall måste de också lagras en tid (av praktiska skäl) innan de kan återvinnas. På senare år har därför mellanupplag (återvinningsterminaler) för gamla belägningar börjat dyka upp runt om i landet och önskemål om enhetliga regler/direktiv för hur sådana terminaler skall utformas har framförts av både kommuner/väghållare och entreprenörer. En annan huvudfråga har varit om asfaltlager kan ge upphov till **utlakningsproblem** och vilka krav som bör ställas på mark- och grundvattenförhållanden nära upplagen.

Syftet med projektet är att utvärdera utlakning och generell miljöpåverkan från fyra olika material samt att validera det kontrollprogram som föreslogs i informationsfölden.

2. **UTLAKNING FRÅN BELÄGGNINGSMATERIAL – BAKGRUND OCH UTFÖRDA UNDERSÖKNINGAR**

2.1. Bakgrund

Alla lakvatten från de oorganiska testerna, presenterade i delrapport 1, analyserades m a p förvalda grundämnen. För val av lämpliga organiska åmnen "screenades" lakvattnet från det inledande organiska TT-testet med hjälp av högupplösande gaskromatografi och masspektrometri (HRGC/MS). Från denna analys erhölls ett stort antal masspektra. Dessa spektra jämfördes med data från ett datoriserat bibliotek, innehållande spektra från ett stort antal organiska ämnen, bl a sådana som är välkända ur miljösympont. Denna jämförelse kallas "screening", varur erhölls ett stort antal ämnen som med varierande sannolikhet finns i det undersökt prover (i vissa fall kan spektra helt eller delvis överlappa varandra, varvid sannolikheten att ämnen med dessa spektra föreligger i prover minskar; därtill kan halten ligga i närheten av detektionsgränsen vilket minskar sannolikheten). Utifrån denna analys och utifrån svenska riktvärden för organiska ämnen i grundvatten valdes ämnen ut för kvantitativ bestämning i lakvattnet från de efterföljande organiska laktesterna.

Resultat från ovanstående organiska tester har delvis legat till grund för val av organisk lakmetod, och för val av de organiska parametrar som analyserats, i föreliggande lakförsök. Därtill har fogats analys av ytterligare parametrar, bl a Microtox test för att undersöka lakvattnets toxicitet. Slutligen har utvärdering av erhållna resultat gjorts på basis av tillgängliga bakgrundsvärden.

2.2. Material

Studien omfattar kolonnlakning av de tre beläggningsmaterialen oljegrus, asfalt med tjärinblandning och asfalt från ett flygfält. Därtill har ett ballast material lakats som referensprov med avseende på oorganiskt innehåll. Följande bakgrundsinformation gäller för de undersökta materialen.

Oljegrus

Asfalt med tjärinblandning, nedan benämnd "Tjärasfalt".
Denna asfalt kom från asfaltmassor uppbrutna från gamla E4:n mellan Överskog och Mörtsal (söder om Höga Kusten bron). Proverna togs i sept.-98 från upplag av "flak". Flaken bestod helt av det bundna lagret (20-40 cm), som i sin tur bestod av flera olika slitage av olika älders och typ. I den undre delen fanns ett lager med indränkta maka-
dam med lukt av tjära. Detta lager har undersöks i föreliggande studie. Erhållna prov från detta lager erhölls som ca 10-20 cm stora sjok med ca 5-6 cm tjocklek.

Asfalt (Kallax flygfält), nedan kallad "Flygfältsasfalt"
Asfaltproverna bestod av borrrånor tagna ur rullbanan på Kallax flygplats i Luleå. Borrrånor togs upp från ena banänderna under okt.-98. Det erhållna materialet bestod av cirkulära, utbrottrade, delar, ca 10-20 cm i diameter. Till lakförsöken användes de översta 5 cm av kärnorna som bestod av en relativt finkornig asfaltbetong.

Ballast (stenkross)
Stenmaterial, "0-12", taget från Bollnäs LBC:s täkt i Växbo.
2.3. **Metoder**

Metoden kolonnlakning, som här användes för bestämning av den tidsberoende utläckningen av oorganiska och organiska ämnen från de olika beläggningsmaterialen, har tidigare beskrivits i delrapport 1. Nedan följer en kortfattad beskrivning av metoden. Därtill presenteras de specifika faktorer som förelåg vid de olika lakningarna.

Utlakningens tidsmässiga beroende av vattenomsättningen i ett material kan studeras genom kolonnförsök. När så är möjligt utförs lakstudien med material i dess ur- sprungliga form (ej melt, krossat, siktat). I de fall denna form är för stor för att kunna placeras i lakkolonner, delas materialet så försiktigt som möjligt upp i bitar med lämplig storlek. För några av de här testade beläggningsmaterialen var det därför nödvändigt att bryta/spräcka upp materialproverna i mindre delar. Storleken på dessa delar beskrivs under respektive material nedan.

Kolonnlakning ger ofta en god, ibland något konservativ, beskrivning av utläckningens tidsberoende i fullskala. Lakstudien utförs med helt vattenmättat prov med ackumulerade L/S-kvoter under vilken redoxpotential och pH inte regleras. L/S-kvoten är den mängd lakvatten (Liquid) som varit i kontakt med en viss mängd material (Solid), dividerad med denna mängd material. Om kännedom föreligger avseende utplagda massors geometriska och klimatologiska parametrar (bl a vattenomsättningen i massorna och upplegats utformning) kan L/S-skalan omvandlas till en tidskala. Försöken kan härigenom ge en uppfattning om hur utläckningen förändras med tiden i fullskala från ett upplag av det undersökta materialet.

Lakföröreningen utförs i rumstemperatur. En kolonn fylls helt med material och utsätts för simulerat surt regn bestående av avjoniserat vatten. Detta vatten, som har pH4, pumpas in i kolonnen underifrån. Vatten som passerat kolonnen samlas upp i behållare vid förbestämda L/S, filteras (organisk kolonn) eller centrifugeras (organisk kolonn) för att erhålla vatten med partiklar < 0,45 μm, varefter klarfasen analyseras på valda ämnen.

Kolonnlakning avseende organiska ämnen skiljer sig delvis i förhållande till oorganiska ämnen. pH i ingående vatten hålls konstant med HNO₃ i fallet oorganisk lakning men med H₂SO₄ i fallet organisk lakning. Vid lakning av organiska ämnen är metoden designad för att minimera nedbrytning och forångning av de organiska ämnen. Kolonnlakningen är utformad för att ge god information av vad som kan ske i fullskala vid utläckning från t ex ett tillfälligt mellanlagrat beläggningsmaterial. Information, specifik för kolonnlakningarna i denna delrapport 2, ges nedan.

2.3.1. **Oorganiskt**

Initialt undersöktes innehållet i ett "0-prov" bestående av vatten taget från samma källa som användes till lakningarna av beläggningsmaterialen. Detta vatten tilläts passera genom en tom glaskolonn som senare användes för de ordinarie kolonnlakningarna. Utgående vatten analyserades på de valda oorganiska parametrar som undersöktes i de ordinari kolonnlaktesterna. Detta 0-prov betecknades "Blank".
Alla oorganiska kolonnlakningar utfördes i glaskolonn med diameter 0,05 m och med en höjd av 0,3 m. Storleken på de undersökta materialen har varit upp till 1 cm. Flödeshastigheten har varit L/S 0,1 per dygn. Lakvatten har samlats upp i plastflaskor, filtrerats genom 0,45 μm cellulosa-nitratre filter innan analys. För varje enskilt material togs lakvattenprover ut vid följande L/S: Oljegrus: 0,15; 0,29; 0,85; 2,26. Tjärasfält: 0,18; 0,40; 0,80; 2,03. Flygfältasfält: 0,12; 0,31; 0,73; 1,87. Ballast (stenkross). 0,14; 0,30; 0,84; 1,94.

2.3.2. Organiskt

Vatten, taget från samm källa som användes till lakningarna av beläggningsmaterialen, tillåts passera genom en tom glaskolonn. Denna kolonn användes senare för ordinarie kolonnlakning. Utgående vatten analyserades på de valda organiska ämnen som ingick i de ordinarie kolonntesterna. Därtill genomgick vattnet Microtox-test. De från detta 0-prov erhållna bakgrunds värdena betecknas i laboratordokumenten som ”Vatten 8560 Blank”.

De organiska kolonnförsöken är utförda i glaskolonner. Flödeshastigheten genom kolonnerna har varit L/S 0,1 per dygn. Avjoniserat syrefritt vatten, sänkt till pH 4, tillsattes genom kontinuerlig pumpning från en behållare som var fylld med kvävgas innan vatten påfyllning och under det kontinuerliga uttaget. Kolonnerna var täckta med folie och tillsluta med teflon props för att minimera kemisk nedbrytning och avgång av ev. flyktiga föreningar. Erhållna lakvatten samlades upp i här för avsedda glasflaskor (kvävgasfyllda), centrifugerades, varefter de kyldes till 4 ± 2 °C och sändes till externt laboratorium för analys.

Oljegrus
Kolonn som användes för oljegrusets hade diameter 0,1 m och höjden 0,75 m. Materialstorleken var upp till 1 cm. Lakvattenprover togs ut för analys vid L/S-värdena 0,21, 0,47, 0,80 och 1,89.

Tjärasfält
Kolonn som användes för tjärasfalten hade diameter 0,18 m och höjden 0,78 m. Materialstorleken var upp till 2 cm. Lakvattenprover togs ut för analys vid L/S-värdena 0,20, 0,30, 0,79 och 1,90.

Flygfältasfält
Kolonn som användes för denna asfält hade diameter 0,1 m och höjden 0,75 m. Materialstorleken var upp till 1 cm. Lakvattenprover togs ut för analys vid L/S-värdena 0,32, 0,58, 0,90 och 1,86.

2.4. Analyser

Undersökningen avser utlakning av valda oorganiska och organiska ämnen. Lakförsöken har utförts på SGIs ackrediterade laboratorium och analyserats enligt Svensk Standard med avseende på pH och elektrisk konduktivitet. Därtill har samtliga lakvatten analyseras och slutbestämts avseende valda oorganiska ämnen med ICP-AES, ICP-MS, AFS eller ICP-QMS (se separat bilaga) av Svensk Grundämnesanalys AB (SGAB). Alla orga-
niska analyser av erhållna lakvatten har utförts av Miljö laboratoriet i Nyköping AB med högupplösande gaschromatografi och mass-spektrometri (HRGC/MS) (se separat bilaga). Undantaget analys av fenol som utförts med HPLC ("high performance" vätskekromatografi).

Dubbelprover har tagits ut och analyserats med avseende på valda parametrar enligt nedanstående Tabell 1.

Tabell 1. Schema över de dubbelprover, betecknade med *, som tagits ut vid olika L/S och analyserats på angivna parametrar. L/S nr 1 avser lägsta L/S, L/S nr 4 avser högsta L/S för respektive kolonn (för reella L/S värden, se avsnitt 2.3 ovan).

<table>
<thead>
<tr>
<th>Material</th>
<th>Oljegrus</th>
<th>Tjärasfält</th>
<th>Ballast</th>
<th>Flygfältasfalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S, nr</td>
<td>Org. 2</td>
<td>Oorg. 1</td>
<td>Org. 3</td>
<td>Oorg. 1</td>
</tr>
<tr>
<td>16PAH</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetofenon</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Fenol</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BTEX</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>EGOM</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtox</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>V3A</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorid</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

3. RESULTAT FRÅN LAKFÖRSÖKEN

Nedan redovisas i text, tabell- och i diagramform resultat från laktesterna, både separat och i relation till varandra, för valda ämnen. I separat bilaga finns de fullständiga resultaten som analysprotokoll.

3.1. Kolonnutlakade oorganiska ämnen

3.1.1. Enbart kolonnvatten, "0-prov"

Analys av vattnet som passerat tom kolonn visar att de flesta oorganiska parametrarna låg under detektsionsgräns. Emeflertid var zink (Zn) och bly (Pb) några av de få ämnen som detekterades. För Zn, som var det ämne som hade högsta koncentration, detekterades 15 μg/l, och för Pb detekterades 1,1 μg/l. Härav framgår att den relativt nya avjoniseringsutrustning som användes (Millipore) inte gav helt avjoniserat vatten. I de fall halterna översteg detektsionsgräns har dessa subtraherats från de halter som detekterats i lakvätten.
från de olika beläggningsmaterialen. Nedan redovisade ackumulerade utlakade mängder
är således justerade med p "(.)-värdena".

3.1.2. Ballast (stenkross)

Beräknade ackumulerade kolonnutlakade mängder av grundämnen från ballast redovisas i
Tabell 2 och i Diagram 1. SGI har tidigare CEN-lakat naturgrus vid L/S 2. Härrav erhållna
resultat bör kunna användas för en acceptabel jämförelse med resultat från kolonnlak-
ningen vid L/S 1,94. Vid sådan jämförelse lade ballasten ut ackumulerade mängder av
de analyserade tungmetallerna i nivå med eller under naturgrusets utlakade mängder,
oavsett med eller utan hänsyn till 0-prov.

Tabell 2. Beräknade ackumulerade kolonnutlakade mängder av grundämnen från
ballast. Angivna värden och procentintervall för provnummer 8582 mots-
varar medelvärde av dubbelprov och mångdvariationen i % av medelvär-
det. Procentintervall anges om halterna oversteg detektionsgrän.

<table>
<thead>
<tr>
<th></th>
<th>Enhet</th>
<th>85:38</th>
<th>8540</th>
<th>8546</th>
<th>8582</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>lit./kg</td>
<td>0,14</td>
<td>0,30</td>
<td>0,84</td>
<td>1,94</td>
</tr>
<tr>
<td>pH</td>
<td>6,0</td>
<td>5,8</td>
<td>6,3</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>Ledn. förm.</td>
<td>(mS/m</td>
<td>37,8</td>
<td>10,7</td>
<td>7,68</td>
<td>4,95</td>
</tr>
<tr>
<td>Ca (kalcium)</td>
<td>mg/kg</td>
<td>4,58</td>
<td>5,33</td>
<td>7,00</td>
<td>9,59 +/-0,2%</td>
</tr>
<tr>
<td>Fe (järn)</td>
<td>mg/kg</td>
<td>0,0756</td>
<td>0,150</td>
<td><0,156</td>
<td><0,182</td>
</tr>
<tr>
<td>K (kalium)</td>
<td>mg/kg</td>
<td>0,84</td>
<td>1,36</td>
<td>2,85</td>
<td>5,44 +/-0,4%</td>
</tr>
<tr>
<td>Mg (magnesium)</td>
<td>mg/kg</td>
<td>0,892</td>
<td>1,06</td>
<td>1,41</td>
<td>1,93 +/-0,7%</td>
</tr>
<tr>
<td>Na (natrium)</td>
<td>mg/kg</td>
<td>2,97</td>
<td>4,35</td>
<td>6,64</td>
<td>8,02 +/-0,4%</td>
</tr>
<tr>
<td>S (svavel)</td>
<td>mg/kg</td>
<td>4,97</td>
<td>5,28</td>
<td>5,69</td>
<td>6,08 +/-1,7%</td>
</tr>
<tr>
<td>Al (aluminium)</td>
<td>mg/kg</td>
<td>0,0515</td>
<td>0,105</td>
<td>0,108</td>
<td>0,138 +/-8,3%</td>
</tr>
<tr>
<td>As (arsenik)</td>
<td>mg/kg</td>
<td><0,00014</td>
<td><0,0003</td>
<td><0,00084</td>
<td><0,0019</td>
</tr>
<tr>
<td>Ba (barium)</td>
<td>mg/kg</td>
<td>0,00415</td>
<td>0,00516</td>
<td>0,0056</td>
<td>0,0067 +/-6,3%</td>
</tr>
<tr>
<td>Cd (kadmium)</td>
<td>mg/kg</td>
<td>0,000043</td>
<td><0,000051</td>
<td><0,000082</td>
<td><0,00014</td>
</tr>
<tr>
<td>Co (kobolt)</td>
<td>mg/kg</td>
<td>0,000044</td>
<td>0,000082</td>
<td><0,000109</td>
<td><0,00016</td>
</tr>
<tr>
<td>Cr (krom)</td>
<td>mg/kg</td>
<td><0,00007</td>
<td><0,00015</td>
<td><0,00042</td>
<td><0,00097</td>
</tr>
<tr>
<td>Cl (klorid)</td>
<td>mg/kg</td>
<td>0,98</td>
<td><1,1</td>
<td><1,7</td>
<td><2,8</td>
</tr>
<tr>
<td>Cu (kopper)</td>
<td>mg/kg</td>
<td>0,00130</td>
<td>0,00205</td>
<td>0,00311</td>
<td>0,00424 +/-6,1%</td>
</tr>
<tr>
<td>Hg (kvicksilver)</td>
<td>mg/kg</td>
<td><0,0000028</td>
<td><0,000006</td>
<td><0,000017</td>
<td><0,000039</td>
</tr>
<tr>
<td>Mn (mangan)</td>
<td>mg/kg</td>
<td>0,0139</td>
<td>0,0204</td>
<td>0,0298</td>
<td>0,0490 +/-1,3%</td>
</tr>
<tr>
<td>Ni (nickel)</td>
<td>mg/kg</td>
<td>0,000493</td>
<td>0,000547</td>
<td><0,00082</td>
<td><0,0014</td>
</tr>
<tr>
<td>Pb (bly)</td>
<td>mg/kg</td>
<td><0,000028</td>
<td><0,00006</td>
<td><0,00017</td>
<td><0,00039</td>
</tr>
<tr>
<td>Zn (zink)</td>
<td>mg/kg</td>
<td><0,000056</td>
<td><0,00012</td>
<td><0,00034</td>
<td><0,00078</td>
</tr>
</tbody>
</table>
Diagram 1. Beräknade ackumulerade kolonnutlakade mängder av valda grundämnen från ballast, i de lakvatten motsvarande ämnen upprätta halter över detektionsgränser. Streckade linjer avser ackumulerade mängder av ämnen där motsvarande halter under detektionsgränser har satts till noll.

3.1.3. Oljeergus

Beräknade ackumulerade kolonnutlakade mängder av grundämnen från oljeerguset redovisas i Tabell 3 och i Diagram 2.

Oljeergussets utlakade mängder av Mn och Zn var båda förhöjda ca en tiopotens, i förhållande i ballasten. Cu var förhöjt ca 2 ggr vid L/S 1,0, jämfört med ballasten. Utlakade mängder av Al, Ni, As, Cd och Pb från oljeergusåt låg under, eller i nivå med, utlakade mängder från ballasten.

Diagram 2. Beräknade ackumulerade kolonnutlakade mängder av valda grundämnen från oljeergus, i de lakvatten motsvarande ämnen uppvisar halter över detektionsgränser. Streckade linjer avser ackumulerade mängder av ämnen där motsvarande halter under detektionsgränser har satts till noll.

<table>
<thead>
<tr>
<th></th>
<th>Enhet provnr</th>
<th>8539</th>
<th>8541</th>
<th>8547</th>
<th>8583</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>lit/kg</td>
<td>0,15</td>
<td>0,29</td>
<td>0,85</td>
<td>2,26</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,0</td>
<td>7,2</td>
<td>7,3</td>
<td>7,1</td>
</tr>
<tr>
<td>Ledn. förm. (mS/m 25°C)</td>
<td>28,19</td>
<td>12,31</td>
<td>10,35</td>
<td>8,18</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>mg/kg</td>
<td>1,83</td>
<td>3,51</td>
<td>9,64</td>
<td>+/-0,3%</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/kg</td>
<td><0,0015</td>
<td><0,0029</td>
<td><0,0085</td>
<td><0,023</td>
</tr>
<tr>
<td>K</td>
<td>mg/kg</td>
<td>0,426</td>
<td>0,675</td>
<td>2,04</td>
<td>+/-0,4%</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/kg</td>
<td>0,348</td>
<td>0,599</td>
<td>1,66</td>
<td>+/-0%</td>
</tr>
<tr>
<td>Na</td>
<td>mg/kg</td>
<td>1,65</td>
<td>2,78</td>
<td>5,88</td>
<td>+/-0,3%</td>
</tr>
<tr>
<td>S</td>
<td>mg/kg</td>
<td>2,21</td>
<td>3,97</td>
<td>9,30</td>
<td>+/-0,3%</td>
</tr>
<tr>
<td>Al</td>
<td>mg/kg</td>
<td>0,00220</td>
<td>0,00418</td>
<td>0,0096</td>
<td>+/-3,2%</td>
</tr>
<tr>
<td>As</td>
<td>mg/kg</td>
<td>0,00025</td>
<td><0,00060</td>
<td><0,0014</td>
<td><0,0028</td>
</tr>
<tr>
<td>Ba</td>
<td>mg/kg</td>
<td>0,00180</td>
<td>0,00279</td>
<td>0,0060</td>
<td>+/-0,5%</td>
</tr>
<tr>
<td>Cd</td>
<td>mg/kg</td>
<td>0,000008</td>
<td><0,00002</td>
<td><0,00004</td>
<td><0,0002</td>
</tr>
<tr>
<td>Co</td>
<td>mg/kg</td>
<td>0,000043</td>
<td>0,000079</td>
<td>0,00020</td>
<td>+/-2,8%</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg</td>
<td><0,00008</td>
<td>0,00002</td>
<td>0,00004</td>
<td><0,001</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/kg</td>
<td>0,9 +/-0%</td>
<td>1,6</td>
<td>3,28</td>
<td>4,69</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg</td>
<td>0,00180</td>
<td>0,00299</td>
<td>0,0053</td>
<td>+/-6,3%</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg</td>
<td><0,000003</td>
<td><0,000006</td>
<td><0,00002</td>
<td><0,00005</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/kg</td>
<td>0,0539</td>
<td>0,101</td>
<td>0,312</td>
<td>+/-0,09%</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg</td>
<td>0,00027</td>
<td>0,00040</td>
<td>0,00066</td>
<td>+/-11%</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg</td>
<td><0,00003</td>
<td><0,00006</td>
<td><0,0002</td>
<td><0,0005</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/kg</td>
<td>0,00174</td>
<td>0,0026</td>
<td><0,0028</td>
<td><0,0034</td>
</tr>
</tbody>
</table>

3.1.4. Tjärasfalt

Beräknade ackumulerade kolonnutlakade mängder av grundämnen från tjärasfalten redovisas i Tabell 4 och i Diagram 3.

Tjärasfaltens utlakade ackumulerade mängder av Ni var förhöjda över 40 ggr, i förhållande till ballasten vid L/S 1,0. Vid detta L/S var utlakad mängd av Cd och Mn förhöjda ca 10 ggr och Cu ca 5 ggr, i förhållande till ballasten. Utlakad mängd av Zn var förhöjda mer än 90 ggr, As och Cr mer än 16 ggr och Pb förhöjde mer än 5 ggr, i förhållande i ballasten. Med hur mycket mer dessa ämnen lakede ut går inte att fastställa eftersom utlakade mängder av motsvarande ämnen från ballasten låg under detektionsgräns. Utlakad mängd av Al från tjärasfalten låg i nivå med utlakad mängd från ballasten, vid nämnda L/S.
Tabell 4. Beräknade ackumulerade kolonnulakade mängder av grundämnen från tjärASFALT. Angivet värde och procentintervall för Cl motsvarar medelvärde av dubbelprov och mångdvariationen i % av medelvärde.

<table>
<thead>
<tr>
<th></th>
<th>8559</th>
<th>8561</th>
<th>8584</th>
<th>8585</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lit./kg</td>
<td>0,18</td>
<td>0,40</td>
<td>0,80</td>
<td>2,03</td>
</tr>
<tr>
<td>pH</td>
<td>6,9</td>
<td>7,0</td>
<td>7,2</td>
<td>8,1</td>
</tr>
<tr>
<td>Ledn. förm.</td>
<td>(mS/m 25°C)</td>
<td>36,6</td>
<td>37,4</td>
<td>32,0</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/kg</td>
<td>5,38</td>
<td>12,6</td>
<td>24,6</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/kg</td>
<td>0,0261</td>
<td>0,0341</td>
<td>0,0438</td>
</tr>
<tr>
<td>K</td>
<td>mg/kg</td>
<td>1,58</td>
<td>3,35</td>
<td>6,24</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/kg</td>
<td>0,844</td>
<td>1,96</td>
<td>3,75</td>
</tr>
<tr>
<td>Na</td>
<td>mg/kg</td>
<td>5,67</td>
<td>12,8</td>
<td>23,1</td>
</tr>
<tr>
<td>S</td>
<td>mg/kg</td>
<td>3,19</td>
<td>7,19</td>
<td>13,1</td>
</tr>
<tr>
<td>Al</td>
<td>mg/kg</td>
<td>0,0432</td>
<td>0,0656</td>
<td>0,0989</td>
</tr>
<tr>
<td>As</td>
<td>mg/kg</td>
<td>0,00340</td>
<td>0,00719</td>
<td>0,0138</td>
</tr>
<tr>
<td>Ba</td>
<td>mg/kg</td>
<td>0,00175</td>
<td>0,00415</td>
<td>0,00819</td>
</tr>
<tr>
<td>Cd</td>
<td>mg/kg</td>
<td>0,00039</td>
<td>0,00071</td>
<td>0,0011</td>
</tr>
<tr>
<td>Co</td>
<td>mg/kg</td>
<td>0,00049</td>
<td>0,00092</td>
<td>0,0015</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg</td>
<td>0,00292</td>
<td>0,00477</td>
<td>0,0074</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/kg</td>
<td>4,86 +/-4%</td>
<td>10,6</td>
<td>18,6</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg</td>
<td>0,0100</td>
<td>0,0142</td>
<td>0,0180</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg</td>
<td>0,000011</td>
<td>0,000018</td>
<td><0,0003</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/kg</td>
<td>0,0373</td>
<td>0,116</td>
<td>0,244</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg</td>
<td>0,00951</td>
<td>0,0189</td>
<td>0,0316</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg</td>
<td>0,00068</td>
<td>0,0010</td>
<td>0,0013</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/kg</td>
<td>0,0097</td>
<td>0,014</td>
<td>0,030</td>
</tr>
</tbody>
</table>

Diagram 3. Beräknade ackumulerade kolonnulakade mängder av valda grundämnen från tjärASFALT, i de lakvatten motsvarande ämnen uppvisat halter över detektionsgräns. Streckade linjer avser ackumulerade mängder av ämnen där motsvarande halter under detektionsgräns har satts till noll.
3.1.5. Asfalt (Kallax flygfält)

Beräknade ackumulerade kolonnutlakade mängder av grundämnen från flygfältasfalten redovisas i Tabell 5 och i Diagram 4.

Denna asfalt lakade ut ackumulerade mängder av ett flertal av de analyserade ämnena i nivå med, eller under, utlakade ack. mängder från ballasten vid L/S 1,0. Undantagen är bl.a Co som vid detta L/S lakade ut över 12 ggr mer än ballast. Därtill var utlakade ack. mängder av As och Ni något förhöjda i förh. till ballasten vid L/S 1. Ack. utlakade mängd Zn var den dubbla vid L/S 1 men ökade kraftigt till över 60 ggr utlakad mängd från ballast vid L/S 1,9. Vad gäller Hg låg alla vatten under detektionsgränser. Ack. utlakad mängd av Hg vid L/S 1 var minst 5-20 ggr lägre än från Rv40-asfalten (i dubbelproven på vatten 8606 erhölls varierande detektionsgränser för Hg, härav det spannet "5-20 ggr").

Tabell 5. Beräknade ackumulerade kolonnutlakade mängder av grundämnen från asfalt från Kallax flygfält. Angivna värden och procentintervall motsvarar medelvärde av dubbelprov och mängdvariationen i % av medelvärdet. Procentintervall anges om halterna översteg detektionsgränser.

<table>
<thead>
<tr>
<th>L/S</th>
<th>Enhet provnr</th>
<th>8606</th>
<th>8607</th>
<th>8608</th>
<th>8609</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lit./kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,4</td>
<td>7,2</td>
<td>7,2</td>
<td>7,5</td>
</tr>
<tr>
<td>Ledn. förm.</td>
<td>(mS/m 25°C)</td>
<td>19,3</td>
<td>18,8</td>
<td>9,48</td>
<td>6,73</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/kg</td>
<td>0,887</td>
<td>2,52</td>
<td>4,86</td>
<td>11,0</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/kg</td>
<td>0,00438</td>
<td>0,00894</td>
<td><0,013</td>
<td><0,026</td>
</tr>
<tr>
<td>K</td>
<td>mg/kg</td>
<td>0,686</td>
<td>1,82</td>
<td>3,26</td>
<td>6,00</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/kg</td>
<td>0,190</td>
<td>0,538</td>
<td>0,971</td>
<td>2,00</td>
</tr>
<tr>
<td>Na</td>
<td>mg/kg</td>
<td>0,799</td>
<td>2,17</td>
<td>3,49</td>
<td>5,29</td>
</tr>
<tr>
<td>S</td>
<td>mg/kg</td>
<td>0,642</td>
<td>1,71</td>
<td>2,69</td>
<td>4,01</td>
</tr>
<tr>
<td>Al</td>
<td>mg/kg</td>
<td>0,00996</td>
<td>0,0193</td>
<td>0,0317</td>
<td>0,0580</td>
</tr>
<tr>
<td>As</td>
<td>mg/kg</td>
<td>0,00022</td>
<td>0,00054</td>
<td>0,00099</td>
<td><0,0021</td>
</tr>
<tr>
<td>Ba</td>
<td>mg/kg</td>
<td>0,00066</td>
<td>0,00180</td>
<td>0,00272</td>
<td>0,0047</td>
</tr>
<tr>
<td>Cd</td>
<td>mg/kg</td>
<td>0,00002</td>
<td>0,000007</td>
<td>0,000007</td>
<td>0,000064</td>
</tr>
<tr>
<td>Co</td>
<td>mg/kg</td>
<td>0,00028</td>
<td>0,00080</td>
<td>0,00133</td>
<td>0,0023</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg</td>
<td>0,00028</td>
<td>0,00048</td>
<td><0,00069</td>
<td><0,0013</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/kg</td>
<td>0,84</td>
<td>2,17</td>
<td>3,85</td>
<td>7,27</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg</td>
<td>0,00077</td>
<td>0,00187</td>
<td>0,00245</td>
<td>0,0031</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg</td>
<td><0,00001</td>
<td><0,00005</td>
<td><0,0001</td>
<td><0,0004</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/kg</td>
<td>0,00340</td>
<td>0,00908</td>
<td>0,0168</td>
<td>0,0479</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg</td>
<td>0,00031</td>
<td>0,00075</td>
<td>0,00104</td>
<td>0,0023</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg</td>
<td>0,00023</td>
<td><0,000024</td>
<td><0,000024</td>
<td><0,000024</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/kg</td>
<td>0,001</td>
<td>0,0065</td>
<td>0,0065</td>
<td>0,952</td>
</tr>
</tbody>
</table>

3.1.6. Asfalt från riksväg 40 (delrapport 1).

I delrapport 1 redovisas resultat från kolonnaktivning av asfalt från Rv 40. För jämförelse av ackumulerade kolonnutlakade ämnen från denna asfalt, med de nu undersökta beläggningsmaterialen, antas här att det vatten som användes vid kolonnaktivning av Rv40-asfalten innehöll samma bakgrundshalter som detekterats i "0-provet". Härav fås att vid L/S 1 lakade denna asfalt ut oorganiska ämnen i mängder som för de flesta av dessa låg i storleksordning mellan tjärasfalten och oljegruset (där tjärasfalten gav de högsta värdena för de flesta ämnena). Undantaget är Hg vars ackumulerade utlakade mängder vid L/S 1

Diagram 5. Beräknade ackumulerade utlakade mängder från Rv40-asfalt (delrapport 1), justerade m a p "0-prov". Streckade linjer avser ackumulerade mängder där motsvarande halter under detektionsgränser har satts till noll. Notera att x-axeln här är linjär (logaritmisk i delrapport 1).
var mer än 20 ggr större än från ballast, tjärasfalt och oljebrusk (alla tre under detektions-gräns). Vid jämförelse med utlakade mängder från naturgrus, som SGI tidigare utfört (se avsnitt 3.1.2 ovan), ligger dock ackumulerad utlakad mängd Hg från Rv40-asfalten under utlakad ack. mängd Hg från naturgrusset. Ackumulerade utlakade mängder från asfalten vid L/S 1 var för Ni förhöjd ca 25-30 ggr, Cd ca 6 ggr, Pb mer än 5 ggr och Cu var förhöjd ca 2-3 ggr, i förhållande till utlakade mängder från ballasten vid samma L/S. Utlakad mängd av Al från asfalten låg i nivå med utlakad mängd från ballasten, vid nämnda L/S.

3.1.7. Utlakade ackumulerade mängder av klorid

Ackumulerade utlakade mängder av klorid redovisas i ovanstående tabeller för varje enskilt beläggningsmaterial och i Diagram 6, nedan. Av de undersökta materialen lakade tjärasfalten och Rv40-asfalten ut mest, båda ca 20 mg/kg TS vid L/S 1,0. Rv40-asfalten lakade ut högst koncentration initialt, ca 68 mg/l vid L/S 0,1. Jämfört med ballast vid L/S 1, lakades ca 2-3 ggr mer ackumulerad mängd Cl ut från oljebrusset och över 11-12 ggr mer från både tjärasfalt och asfalt från Rv40. Däremellan låg flygfältasfalten; ca 3-4 ggr mer Cl lakades ut från denna i förhållande till ballast. Inget av de undersökta beläggningsmaterialen lakade ut kloridhalter över gränsvärdet för dricksvattnet. Därtill ligger de maximalt uppmätta kloridhalterna från de undersökta beläggningsmaterialen inom det intervall som tidigare uppmätts från olika beläggningsmaterial (Torsenius, 1996).

![Diagram 6. Beräknade ackumulerade utlakade mängder av klorid från de undersökta beläggningsmaterialen (utlakade halter av klorid låg under detektionsgräns för ballast L/S >0,14 och för oljebrusk L/S >0,83). Streckade linjer avser ackumulerade mängder där motsvarande halter under detektionsgräns har satts till noll.](image-url)
3.2. Kolonnutlakade organiska ämnen

3.2.1. Enbart kolonnvatten, "0-prov"

Av de undersökta parametrarna låg alla, utom acetofenon och naftalen, under detektionsgränserna i 0-provet. Dessa (acetofenon och naftalen) detekterades i låga halter i 0-provet, 0,13 µg/l respektive 0,10 µg/l. I avsikt att ge rätt kvalitet på utfört arbete pågår vid SGI en internundersökning för att försöka klargöra varför dessa har detekterats. Eventuellt kan 0-provet ha tagit upp dessa ämnen under hanteringen vid det externa analyslaboratoriet (se sid. 20 i delrapport 1 åtgäende tolen).

3.2.2. Oljegrus

Beräknade ackumulerade kolonnutlakade mängder av valda organiska ämnen från oljegruset redovisas i Tabell 6 och i Diagram 7. Av de analyserade ämnena har acetofe-

<table>
<thead>
<tr>
<th>Tabell 6. Ackumulerade utlakade mängder organiska ämnen och parametrar från oljegrus. %-tal avser dubbelprovs avvikelse från angivet medelvärde.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhet</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>L/S (l/kg)</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Ledningsförmåga (mS/m25°C)</td>
</tr>
<tr>
<td>Acetofenon (µg/kg)</td>
</tr>
<tr>
<td>Phenol (µg/kg)</td>
</tr>
<tr>
<td>EGOM (µg/kg)</td>
</tr>
<tr>
<td>Bensin (µg/kg)</td>
</tr>
<tr>
<td>Toluen (µg/kg)</td>
</tr>
<tr>
<td>Etivbromen (µg/kg)</td>
</tr>
<tr>
<td>Xylen (µg/kg)</td>
</tr>
<tr>
<td>Naftalen (µg/kg)</td>
</tr>
<tr>
<td>Aceanfilen (µg/kg)</td>
</tr>
<tr>
<td>Aceanfinit (µg/kg)</td>
</tr>
<tr>
<td>Fluoren (µg/kg)</td>
</tr>
<tr>
<td>Fenantren (µg/kg)</td>
</tr>
<tr>
<td>Antracen (µg/kg)</td>
</tr>
<tr>
<td>Fluoranten (µg/kg)</td>
</tr>
<tr>
<td>Pyren (µg/kg)</td>
</tr>
<tr>
<td>Benso(a)antracen* (µg/kg)</td>
</tr>
<tr>
<td>Chrysen* (µg/kg)</td>
</tr>
<tr>
<td>Benso(b)fluoranten* (µg/kg)</td>
</tr>
<tr>
<td>Benso(k)fluoranten* (µg/kg)</td>
</tr>
<tr>
<td>Benso(a)pyren* (µg/kg)</td>
</tr>
<tr>
<td>Indenol(1,2,3-cd)pyren* (µg/kg)</td>
</tr>
<tr>
<td>Benso(g,h,i)perylen (µg/kg)</td>
</tr>
<tr>
<td>Dibenso(a,h)antracen* (µg/kg)</td>
</tr>
<tr>
<td>Σ cancer. PAH (* ovan) (µg/kg)</td>
</tr>
<tr>
<td>Σ övriga PAH (µg/kg)</td>
</tr>
<tr>
<td>Σ övriga PAH (µg/kg)</td>
</tr>
</tbody>
</table>
non, EGOM, naftalen och acenaftylen detekterats i lakvatten, uttagna vid de två första L/S. Fluoren låg under detektionsgräns vid första L/S med detekterades med en halt just över detektionsgräns vid det andra L/S (L/S 0,47). Anmärkningsvärt är de relativt höga EGOM-halterna (extraherbart gaskromatograferbart organiskt material) som oljebruset lakat ut, 38 mg/l vid L/S 0,21 och 25 mg/l vid L/S 0,47 (i Tabell 6 anges ackumuleraed mängder i µg/kg vid dessa L/S, baserade på dessa vården). EGOM är en samlingsparameter för de organiska ämnen som går att extrahera och detektera med GC. I denna parameter ingår bl.a aromater, polyaromater, alifar och heterogena kolväten. Jämförs utlakade EGOM-halter från oljebruset med Storkprojektets analyserade EGOM-värden i industriavatten från 9 undersökta kemiindustrier i Sverige 1989-91 till recipient (NV rapport 4103), ligger de utlakade EGOM-halterna från oljebruset vid L/S 0,21 över det högsta vården från dessa industriar (max 27 mg/l; min <0,09 mg/l). Även EGOM-halten vid L/S 0,47 från oljebruset ligger högt, i nivå med det högsta vården från dessa industriar.

Jämförs oljebrusets utlakade EGOM-värden med EGOM-innehåll i lakvatten från övriga undersökta beläggningsmaterial lakar oljebruset ut vid L/S 0,2 ca 80 ggr mer än tjärasfalten och ca 150 ggr mer än RV40-asfalten.

Den maximala utlakade summahalten av cancerogena PAH var ≤0,2 µg/l och för summan övriga PAH maximalt 0,9 µg/l. Jämförs resultaten med förslag till riktvärden för grundvatten vid förorenade bensinstationer (NV Rapport 4889) ligger maximalt utlakad summahal av övriga PAHerna mer än ca 10 ggr under angivet riktvärde. Summan av de cancerogena PAHerna låg under angivet riktvärde (alla dessa PAHerna låg under detektionsgräns).

Acetofenon lakades ut i mängder som låg ca 2 ggr lägre än RV40-asfalten vid L/S 1,8. Enligt delrapport 1 kan acetofenon hypotetiskt komma från färgrmarkeringarna i vägbeläggningen. Sökning i internationella databaser har inte givit något resultat vad gäll-
ler aktuella gränsvärden av acetofenon i grund-/ytvatten. Enligt ECDIN database angav Sovjetunionen (USSR) på sin tid maximal acceptabel koncentration av acetofenon i ytvatten för fiske till 0,04 mg/l. Maximalt utlakad halt acetofenon från oljebruset (0,8 mg/l) låg långt under detta gränsvärde.

3.2.3. Tjärasfält

Beräknade ackumulerade kolonmutlakade mängder av valda organiska ämnen från tjärasfältet redovisas i Tabell 7 och i Diagram 8. Av de analyserade organiska parametrarna är det endast acetofenon, EGOM, acenaftilen, fluoren och pyren som detekterats.

Tabell 7. Ackumulerade utlakade mängder organiska ämnen och parametrar från tjärasfält. %-tal avser dubbelprovs avvikelse från angivet medelvärde.

<table>
<thead>
<tr>
<th></th>
<th>Enhet/p.nr</th>
<th>8578</th>
<th>8579</th>
<th>8580</th>
<th>8581</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>(l/kg)</td>
<td>0,20</td>
<td>0,30</td>
<td>0,79</td>
<td>1,90</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>-</td>
<td>-</td>
<td>6,9</td>
<td>7,3</td>
</tr>
<tr>
<td>Ledningsförmåga</td>
<td>(mS/m25°C)</td>
<td>-</td>
<td>-</td>
<td>19,7</td>
<td>17,2</td>
</tr>
<tr>
<td>Acetofenon</td>
<td>µg/kg</td>
<td>0,18</td>
<td>0,27</td>
<td>0,63</td>
<td>1,32</td>
</tr>
<tr>
<td>Fenol</td>
<td>µg/kg</td>
<td><1</td>
<td><2</td>
<td><4</td>
<td><10</td>
</tr>
<tr>
<td>EGOM</td>
<td>µg/kg</td>
<td>96</td>
<td>145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bensin</td>
<td>µg/kg</td>
<td><0,2</td>
<td><0,3</td>
<td><0,8</td>
<td><2</td>
</tr>
<tr>
<td>Toluen</td>
<td>µg/kg</td>
<td><1</td>
<td><2</td>
<td><5</td>
<td><11</td>
</tr>
<tr>
<td>Etilbensin</td>
<td>µg/kg</td>
<td><0,4</td>
<td><0,6</td>
<td><2</td>
<td><4</td>
</tr>
<tr>
<td>Xylen</td>
<td>µg/kg</td>
<td><4</td>
<td><6</td>
<td><16</td>
<td><38</td>
</tr>
<tr>
<td>Naftalen</td>
<td>µg/kg</td>
<td><0,006</td>
<td><0,009</td>
<td><0,02</td>
<td><0,06</td>
</tr>
<tr>
<td>Acenaftilen</td>
<td>µg/kg</td>
<td>0,008</td>
<td>0,012</td>
<td>0,022</td>
<td>0,037</td>
</tr>
<tr>
<td>Acenaften</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,008</td>
<td><0,02</td>
</tr>
<tr>
<td>Fluoren</td>
<td>µg/kg</td>
<td>0,018</td>
<td>0,025</td>
<td><0,004</td>
<td><0,07</td>
</tr>
<tr>
<td>Fenantren</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,004</td>
<td><0,009</td>
<td><0,02</td>
</tr>
<tr>
<td>Antracen</td>
<td>µg/kg</td>
<td><0,018</td>
<td><0,022</td>
<td><0,04</td>
<td><0,07</td>
</tr>
<tr>
<td>Fluoranten</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,005</td>
<td><0,01</td>
<td><0,02</td>
</tr>
<tr>
<td>Pyren</td>
<td>µg/kg</td>
<td>0,0061</td>
<td>0,0093</td>
<td><0,02</td>
<td><0,06</td>
</tr>
<tr>
<td>Benso(α)antracen*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,008</td>
<td><0,02</td>
</tr>
<tr>
<td>Chryson*</td>
<td>µg/kg</td>
<td><0,004</td>
<td><0,005</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Benso(b)fluoranten*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Benso(k)fluoranten*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,008</td>
<td><0,02</td>
</tr>
<tr>
<td>Benso(a)pyren*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyren*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Benso(g,h,i)pyrylen</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Dibenzo(a,h)antracen*</td>
<td>µg/kg</td>
<td><0,002</td>
<td><0,003</td>
<td><0,01</td>
<td><0,04</td>
</tr>
<tr>
<td>Σ cancer, PAH (* ovan)</td>
<td>µg/kg</td>
<td><0,016</td>
<td><0,023</td>
<td><0,07</td>
<td><0,18</td>
</tr>
<tr>
<td>Σ övriga PAH</td>
<td>µg/kg</td>
<td><0,045</td>
<td><0,062</td>
<td><0,11</td>
<td><0,20</td>
</tr>
<tr>
<td>Σ övriga PAH</td>
<td>µg/kg</td>
<td><0,032</td>
<td><0,046</td>
<td><0,056</td>
<td><0,071</td>
</tr>
</tbody>
</table>

Om lakvatten från beläggningsmaterialen kan jämföras med grundvatten ger 1994-1995 års försöksinventering av grundvatten (Förorenade områden, 1996) att lakvat-
tenhalterna av EGOM från tjärafaslen motsvarar graderingen mycket stor påverkan. Om de däremot jämförs med EGOM-halter i industrivatten till recipient från svensk kemii industri 1989-1991 (NV rapport 4103) är de utlakade halterna från tjärafaslen mindre än 1/10-del av medelvärdet för 9 industrier.

Ingen av de analyserade cancerogenena PAHerna låg över detektionsgräns. Utlakade summahalter av de övriga PAHerna låg som högst 0,24 µg/l, vilket är ca 40 ggr lägre än föreslaget riktvärde för grundvatten vid förörenade bensinstationer. Upp till L/S 0,8 lakkades acetofenon ut från tjärafaslen i mängder i nivå med, eller något över, oljebruset, se ovan. Vid L/S 1,9 lakkades acetofenon fortfarande ut från tjärafaslen i detekterbara halter (0,6 µg/l), i motsats till oljebruset. Vid detta L/S var den utlakade ackumu lerede mängden av acetofenon över den dubbla, i förhållande till oljebruset.

\[
\text{Diagram 8. Kolonnulakade ackumulerade mängder från tjärafasl}
\]
\[
\text{t av de organiska parametrar som registreras över detektionsgräns.}
\]
\[
\text{Streckade linjer avser}
\]
\[
\text{ackumulerade mängder där motsvarande halter under detektionsgräns har}
\]
\[
\text{satts till noll.}
\]

3.2.4. Asfalt (Kallax flygfält)

Beräknade ackumulerade kolonnulakade mängder av valda organiska ämnen från flygfältasfalten redovisas i Tabell 8 och i Diagram 9. Av de analyserade organiska parametrarna är det endast acetofenon (alla L/S), EGOM (de två första L/S som analyserats) och fluoren (de tre sista L/S) som uppvisar nettohalter över detektionsgräns.

Ingen av de analyserade cancerogenena PAHerna låg över detektionsgräns. Utlakade summahalter av de övriga PAHerna låg lägre än 0,1 µg/l, vilket är mer än 100 ggr lägre än föreslaget riktvärde för grundvatten vid förörenade bensinstationer. Vid L/S 1,8-
1,9 hade ca 4 ggr mer akkumulerad mängd acetofenon lakats ut från flygfältasfalten, i förhållande till R-v40-asfalten. Av de undersökta beläggningsmaterialen lakade flygfältasfalten alltså ut störst akkumulerad mängd av acetofenon. Halten av fluoren låg initiat (upp till L/S 0,3) under detektionsgränser. Vid de övriga undersökta L/S detekterades fluoren med maximalt i i mam 0,031 µg/l.

Tabell 8. Akkumulerade uttakade mängder organiska ämnena och parametrar från flygfältasfalt. %-värde avser dubbelprovs avvikelse från angivet medelvärde.

<table>
<thead>
<tr>
<th></th>
<th>Enhel</th>
<th>8610</th>
<th>8611</th>
<th>8612</th>
<th>8613</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>(l/kg)</td>
<td>0,32</td>
<td>0,58</td>
<td>0,90</td>
<td>1,66</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7,8</td>
<td>7,7</td>
<td>7,7</td>
<td>7,6</td>
</tr>
<tr>
<td>Ledningsförmåga</td>
<td>(mS/m25°C)</td>
<td>21,7</td>
<td>8,48</td>
<td>7,45</td>
<td>7,14</td>
</tr>
<tr>
<td>Acetofenon</td>
<td>µg/kg</td>
<td>1,22 +/- 5%</td>
<td>1,81</td>
<td>2,76</td>
<td>3,98</td>
</tr>
<tr>
<td>Fenol</td>
<td>µg/kg</td>
<td><1,6</td>
<td><2,9</td>
<td><4,5</td>
<td><9,3</td>
</tr>
<tr>
<td>EGOM</td>
<td>µg/kg</td>
<td>157</td>
<td>179</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzol</td>
<td>µg/kg</td>
<td><0,32</td>
<td><0,58</td>
<td><0,9</td>
<td><1,9</td>
</tr>
<tr>
<td>Toluol</td>
<td>µg/kg</td>
<td><1,9</td>
<td><3,5</td>
<td><5,4</td>
<td><11</td>
</tr>
<tr>
<td>Styloren</td>
<td>µg/kg</td>
<td><0,64</td>
<td><1,2</td>
<td><1,8</td>
<td><3,7</td>
</tr>
<tr>
<td>Xylen</td>
<td>µg/kg</td>
<td><6,4</td>
<td><12</td>
<td><18</td>
<td><37</td>
</tr>
<tr>
<td>Naftalen</td>
<td>µg/kg</td>
<td><0,003 +/- 17%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Acenaftylen</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Acenaften</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Fluoren</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Fenantrren</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Antracen</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Fluorantren</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Pyren</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Benso(a)antracen*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Chrysen*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Benso(b)fluorantren*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Benso(k)fluorantren*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Benso(a)pyren*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyren*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Benso(g,h,i)perylen</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Dibenso(a,h)antracen*</td>
<td>µg/kg</td>
<td><0,003 +/-0%</td>
<td><0,006</td>
<td><0,009</td>
<td><0,019</td>
</tr>
<tr>
<td>Σ cancer PAH* (cron)</td>
<td>µg/kg</td>
<td><0,022 +/-0%</td>
<td><0,041</td>
<td><0,063</td>
<td><0,13</td>
</tr>
<tr>
<td>Σ övriga PAH</td>
<td>µg/kg</td>
<td><0,033</td>
<td><0,058</td>
<td><0,093</td>
<td><0,20</td>
</tr>
<tr>
<td>Σ övriga PAH</td>
<td>µg/kg</td>
<td>>0,007</td>
<td>>0,011</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.5. Asfalt från riksväg 40 (delrapport 1).

I delrapport 1 redovisas resultat från kolonnlakning av asfalt från Rv 40. För jämförelse mellan ackumulerade kolonnutlakade ämnen från denna asfalt med de nu undersökta beläggningsmaterialen antas här att det vatten som användes vid kolonnlakning av Rv40-asfalten innehöll samma bakgrundshalter som detekterats i "0-provet". Av de undersökta materialen lakades initialt högst ackumulerad mängd av acetofenon ut från Rv40-asfalten, 1,0 μg/kg vid L/S 0,3. Vid L/S 1,8-1,9 var de ackumulerade utlakade mängderna av acetofenon från denna asfalt något lägre (1,1 μg/kg) än vad tjärasfalten upprivasade. Rv40-asfalten var det enda materialet som lakade ut detekterade, dock låga, mängder av toluen, etylbensen och xylen. Jämförs dessa halter med föreslagna riktvärden för grundvatten vid

Diagram 10. Detekterbara utlakade ackumulerade mängder av organiska parametrar från Rv40-asfalten. Stockade linjer (xylen och etylbensen för L/S >0,15) avser ackumulerade mängder där motsvarande halter låg under detektionsgräns.
bensinstationer (NV Rapport 4889) innehöll lakvattenhålierna mindre än 1% av de föreslagna riktvärdena. Diagram 10 redovisar de organiska parametrarn som detekterats i lakvatten från Rv40-asfalten, justerade m a p 0-prov (avsnitt 3.2.1).

3.2.6. Microtoxtest på 0-prov, oljegrus, tjärasfalt och flygfältasfalt

Microtox är en screening metod för att erhålla indikationer på om ytterligare toxikologiska tester och/eller kemiska analyser bör genomföras. Metoden ger respons på både organiska och oorganiska ämnen och baseras på användandet av bakterier, som i friskt tillstånd avger ljus (de luminiserar), vilka tillsätts till det vatten som skall undersökas. Bakterierna kallas Photobacter phosphoreum (även kallade Vibrio fischeri) och ju mer toxiskt ett vatten är för dessa bakterier desto fler av bakterierna slutar att avge ljus. Ljustyrkan blir då ett mått på vattnets toxicitet för bakterierna. Även om ett vatten är toxiskt för dessa bakterier innebär det inte att man därav kan fastställa att vattnet är toxiskt för alla andra organismer i naturen.

Beteckningen EC är en förkortning av "Effektkoncentration" och EC50 betyder den koncentration av det undersökta provet i en späderie som ger 50% reduktion av ljuskoncentrationen. Ju större reduction av ljuset desto högre toxicitet har provet för de använda bakterierna. Bakteriernas avgivna ljusintensitet mäts efter 5 och 15 minuter.

I Förorenade områden, 1996, görs nedanstående bedömning, Tabell 9, av respons från Microtoxtest på grundvatten. Vad gäller lakvatten/ytvatten har inga bedömningsgrunder hittats genom litteratarsökning.

Tabell 9. Bedömning av toxicitet utifrån respons från Microtox-test på grundvatten (Förorenade områden, 1996).

<table>
<thead>
<tr>
<th>EC50; 15 min</th>
<th>Bedömning</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-90 %</td>
<td>Mättligt hög toxicitet</td>
</tr>
<tr>
<td>50-70 %</td>
<td>Hög toxicitet</td>
</tr>
<tr>
<td><50 %</td>
<td>Mycket hög toxicitet</td>
</tr>
</tbody>
</table>

Initialt undersöktes det vatten som användes till lakningarna. Resultatet redovisas i Tabell 10 och i Diagram 11a/11b. Vid en jämförelse med Tabell 9 fås att detta vatten inte var toxiskt (>100 innebär att vattnet inte gav någon toxisk respons alls).

Tabell 10. Microtox på 0-prov (enbart avjoniserat vatten).

<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provnr</td>
<td>8560</td>
</tr>
<tr>
<td>pH</td>
<td>4,0; pH justerat till 6,9</td>
</tr>
<tr>
<td>EC</td>
<td>EC50; 5 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>>100</td>
</tr>
<tr>
<td>pH</td>
<td>4,0; pH justerat till 6,9</td>
</tr>
<tr>
<td>EC</td>
<td>EC50; 15 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>>100</td>
</tr>
<tr>
<td>pH</td>
<td>4,0; pH justerat till 6,9</td>
</tr>
<tr>
<td>EC</td>
<td>EC20; 5 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>63,5</td>
</tr>
<tr>
<td>pH</td>
<td>4,0; pH justerat till 6,9</td>
</tr>
<tr>
<td>EC</td>
<td>EC20; 15 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>48,5</td>
</tr>
</tbody>
</table>
Två lakvatten från oljegruset, L/S 0,21 och L/S 0,47, utsattes för microtoxtest. Resultaten redovisas i Tabell 11 och i Diagram 11a/11b. Vid en jämförelse med Tabell 9 erhålls att båda lakvatten från oljegruset innehadde mycket hög toxicitet (vilket även understryks av det mycket låga EC20-15 minuter-värdet).

Tabell 11. Microtox på lakvatten från oljegrus.

<table>
<thead>
<tr>
<th>Oljegrus</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provnr</td>
<td>8574</td>
<td>8574</td>
<td>8574</td>
<td>8574</td>
<td>8575</td>
<td>8575</td>
<td>8575</td>
<td>8575</td>
</tr>
<tr>
<td>L/S; l/kg</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,21</td>
<td>0,47</td>
<td>0,47</td>
<td>0,47</td>
<td>0,47</td>
</tr>
<tr>
<td>pH</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
<td>6,8</td>
</tr>
<tr>
<td>EC</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>34,9</td>
<td>30,3</td>
<td>9,3</td>
<td>8,1</td>
<td>37,3</td>
<td>33,6</td>
<td>10,3</td>
<td>9,0</td>
</tr>
</tbody>
</table>

Tabell 12. Microtox på lakvatten från tjärasfalt.

<table>
<thead>
<tr>
<th>Tjärasfalt</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provnr</td>
<td>8578</td>
<td>8578</td>
<td>8578</td>
<td>8578</td>
<td>8579</td>
<td>8579</td>
<td>8579</td>
<td>8579</td>
</tr>
<tr>
<td>L/S; l/kg</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>pH</td>
<td>7,2</td>
<td>7,2</td>
<td>7,2</td>
<td>7,2</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
</tr>
<tr>
<td>EC</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>>100</td>
<td>98,5</td>
<td>38,5</td>
<td>30,0</td>
<td>>100</td>
<td>92,0</td>
<td>31,6</td>
<td>26,9</td>
</tr>
</tbody>
</table>

Resultat från Microtox tester på två lakvatten från flygfältasfalten presenteras i Tabell 13 och i Diagram 11a/11b. Vid en jämförelse med Tabell 9 fas att flygfältasfaltens lakvat-

Tabell 13. Microtox på lakvatten från flygfältasfalt. Angivna responsresultat för prov 8610 är medelvärde av dubbelprov, där +/- värden anger variationen.

<table>
<thead>
<tr>
<th>Flygfältasfalt</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provnr</td>
<td>8610</td>
<td>8610</td>
<td>8610</td>
<td>8610</td>
<td>8611</td>
<td>8611</td>
<td>8611</td>
<td>8611</td>
</tr>
<tr>
<td>L/S; l/kg</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,32</td>
<td>0,58</td>
<td>0,58</td>
<td>0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>pH</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
<td>7,2</td>
<td>7,2</td>
<td>7,2</td>
<td>7,2</td>
</tr>
<tr>
<td>EC</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
<td>EC50;</td>
<td>EC50;</td>
<td>EC20;</td>
<td>EC20;</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
<td>5 min</td>
<td>15 min</td>
</tr>
<tr>
<td>Respons, vol%</td>
<td>>100</td>
<td>>100</td>
<td>62,0 +/- 6,6</td>
<td>41,9 +/- 6,1</td>
<td>>100</td>
<td>>100</td>
<td>36,7</td>
<td>35,1</td>
</tr>
</tbody>
</table>
ten vid L/S 0,32 och L/S 0,58 inte upptäckte någon markant toxicitet på Microtox-
organismerna vid EC50, 15 minuter. EC20, 15 minuter, ger emellertid att toxiciteten är
högre i lakvatten från flygfältasfalten, jämfört med 0-provet, men lägre än lakvatten från
både tjärasfalt och oljegrus (Diagram 11b).

Vid jämförelse av de utlakade vattens Microtoxrespons EC20, 15 minuter, med 0-provet
fås att vattens toxicitet ökar enligt följande: 0-prov < flygfältasfalten < tjärasfalten <
oljegruset (Diagram 11b).

Diagram 11a. Respons från Microtox (EC50; 15 minuter) på lakvatten från de undersökta beläggningsmaterialen och 0-prov (blank).

Diagram 11b. Respons från Microtox (EC20; 15 minuter) på lakvatten från de undersökt beläggningsmaterialen och 0-prov (blank).
4. SAMMANFATTANDE DISKUSSION - LAKTESTRESULTAT

4.1. Oorganiska ämnen

Den miljömässiga karakteriseringen av utlakning av oorganiska ämnen från de undersökta beläggningsmaterialen visar att tjärasfalten gav, generellt sett, betydligt högre utlakade mängder av de alla flesta av de undersökta metallerna, jämfört med oljebrusset och flygfältasfalten. Den sista nämnda lakade, generellt sett, ut mindre ack. mängder än oljebrusset, undantaget framför allt Zn och Co som låg i nivå med tjärasfalten. Från Rv40-asfalten utlakades ackumulerade mängder av metallerna som generellt sett låg mellan utlakade mängder från oljebrusset och tjärasfalten. Undantaget var Hg vars ackumulerade utlakade mängder vid L/S 1 var mer än 20 ggr större från Rv40-asfalten än från ballast, tjärasfall och oljebrus och mer än ca 5-20 ggr större än från flygfältasfalten (alla fyra under detektionsgräns).

Vid en jämförelse av de högsta erhållna lakvattenhalterna av tungmetaller och spårmetaller från varje enskild kolonnlakning, med riktvärden och gränsvärden för råvatten från ytvattentäkter enligt Livsmedelsverkets kungörelse om dricksvatten (SLV FS 1993:35), erhålls

- för oljebrusset: inget av de undersökta ämnen är förhöjda. Mn ligger i nivå med riktvärdet.
- för Rv40-asfalten: Hg ligger i nivå med gränsvärdet, Cd upp till gränsvärdessnivå, Ni något under gränsvärdet, Al i nivå med riktvärde.
- för flygfältasfalten: inget av de undersökta ämnen är förhöjda.
- för ballast: Al ligger ca 4 ggr över riktvärdet.

Vid ovanstående jämförelse har i första hand gränsvärdet för varje enskilt ämne använts. I de fall enbart riktvärde föreligger har motsvarande värde använts.

Erhållna lakvattenhalter bör i första hand jämföras med resultat från lakningar av naturliga referensmaterial. Tyvärr har endast ett fåtal lakningar av sådana material utförts. SGI har utfört lakningar av bl a naturligt avsatta moräner från södra Sverige. De är genomförda med en äldre metod, men bör ändå kunna utnyttjas för en jämförande bedömning av beläggningsmaterialens utlakningsegenskaper. Av de utlakade ackumulerade mängder som detekterats i lakvatten från beläggningsmaterialen av As, Cd, Cr, Cu och Pb ligger samtliga inom eller under det intervall som de undersökta moränerna uppförsade vid L/S 1,0 (extrapolerade värden).

Med beaktande av att referensvärden för Mn och Ni inte föreligger för alla de undersökta naturliga moränerna, fås att de undersökta beläggningsmaterialens ackumulerade utlakade mängder av analyserade tungmetaller och spårmetaller, obeaktat Mn och Ni, ligger inom det intervall som de undersökta naturmaterialen lakar ut.

SGI har därtill tidigare utfört referenslakning av naturgrus (CEN-lakning) och i föreliggande projekt kolonnlakning av ballast (stenkross). Resultat från denna CEN-lakning bör
kunna jämföras med kolonnkläckningarna varvid fås att ballasten uppvisade ackumulerade utlakade mängder som låg i nivå med, eller under, utlakade ackumulerade mängder för naturgruset. Emellertid utlakades från naturgruset, generellt sett, betydligt lägre halter av ett flertal grundämnen, i förhållande till de naturligt avsatta moränerna.

Oljeerguset var det enda av beläggningsmaterialen som innehöll den undersökta ballasten. Vid en jämförelse mellan ballastens och nattgruset utlakade mängder vid L/S 2 fäst att främst Mn och Zn var markant förhöjda från oljeergusset. Om man hypotetiskt antar att det Ballastmaterial som ingick i oljeerguset hade liknande egenskaper som de ballastmaterial som ingick i de övriga beläggningsmaterialen, och om en relevant jämförelse därav skulle kunna göras mellan de övriga beläggningsmaterialen och den undersökta ballasten, så att Zn, Ni, As, Cr, Cd, Mn och Pb var markant förhöjda från tjärafalten, Hg, Cd och Ni markant förhöjda från Rv40-asfalten och Zn markant förhöjde från flygfältsfalten.

I alla de undersökta fallen har beläggningsmaterialen och ballasten höjt pH i utgående lakvatten, från att ha varit pH 4 i ingående vatten. Detta tyder på att materialen har en buffrande förmåga på vatten med lågt pH, t ex surt regn. Eftersom metaller ofta lakas ut i större mängder vid lågt pH i förhållande till neutralt pH, kan denna buffrande förmåga reducera surt regns påverkan på metallutlakningen.

Ackumulerade utlakade mängder av klorid var störst för tjärafalten och Rv40-asfalten, båda ca 20 mg/kg TS vid L/S 1,0. Rv40-asfalten lakade ut högst koncentration, ca 68 mg/l (L/S 0,11), vilket innebär att gränsvärdet för dricksvatten, 100 mg/l (SLV FS 1993:35), inte överkrets i något av lakvatten. Jämfört med ballast vid L/S 1, lakades ca 2-3 ggr mer ackumulerad mängd Cl ut från oljeerguset och över 11-12 ggr mer från både tjärasfalt och asfalt från Rv40. Därefter låg flygfältsfalten, över 3-4 ggr mer Cl lakades ut i förhållande till ballast. De maximalt uppmätta kloridhalterna från de undersökta beläggningsmaterialen ligger inom det intervall som tidigare uppmätts från olika beläggningsmaterial (Torsenius, 1996).

Ovanstående sammanfattas i Tabell 14, nedan.

<table>
<thead>
<tr>
<th>Parameter 1/</th>
<th>Oljeergus</th>
<th>Tjärasfalt</th>
<th>Flygfältsfalt</th>
<th>Rv40-asfalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungmetaller, Spårmetaller</td>
<td>Inom intervall för naturmet (obeaktat Mn, Ni)</td>
</tr>
<tr>
<td>Råvatten: Riv: Mn: 0,3 mg/l</td>
<td>Mn: max 0,38 mg/l</td>
<td>Mn: max 0,36 mg/l</td>
<td>Mn: max 0,03 mg/l</td>
<td>Mn: max 0,03 mg/l</td>
</tr>
<tr>
<td>Gv: Ni: 0,050 mg/l</td>
<td>Ni: max 0,002 mg/l</td>
<td>Ni: max 0,05 mg/l</td>
<td>Ni: max 0,003 mg/l</td>
<td>Ni: max 0,04 mg/l</td>
</tr>
<tr>
<td>Klorid. Grv.d.v. 100 mg/l</td>
<td>Max 6 mg/l</td>
<td>Max 28 mg/l</td>
<td>Max 7 mg/l</td>
<td>Max 68 mg/l</td>
</tr>
</tbody>
</table>

1/ Riv: Riktvärde, Gv: Gränsvärde, dr.v.: dricksvatten
2/ Utlakade maxhalter av en eller flera metaller (utöver Ni och eller Mn) ligger i nivå med, eller är förhöjd/-a i förh. till, gränsvärde/riktvärde för råvatten från ytvattenläktar
4.2. Organiska ämnen

Den miljömässiga karakteriseringen av beläggningssammanlagets utlakade organiska ämnen och parameters visar att oljegruset lakan ut organiska ämnen, i form av samlingsparametrern EGOM, i anmärkningsvärt höga halter och mängder. Jämförs utlakade EGOM-halter från oljegruset med Storkprojektets analyserade EGOM-värden i industriavvallen från 9 undersökta kemianstaltor i Sverige 1989-91 till recipient (NV rapport 4103), ligger EGOM i lagravnet från oljegruset vid L/S 0,2 över det högsta värdet från dessa industri- er. Därtill visar utförade screeningstest med Microtox att lakovirnet från oljegruset är mycket toxiskt för testorganismerna. Övriga beläggningssammanlagets uppsatt visar mycket lägre toxicitet: flygfältasfalten < tjärasfalten < oljegruset.

De här nämnade PAHerna är några av de PAHer av de 16 analyserade som ingår i vad som betecknas som "övriga PAHer", dvs de ingår ej under beteckningen cancerogen PAHer. Dessa övriga PAHer uppsattes en maximal summahalt (max från oljegruset) som motsvarade mindre än 1/10 Schweiz av det föreslagna riktvärdet för summan av dessa PAHer i grundvatten vid förorenade bensinstationer (NV Rapport 4889). Ingen av de undersökta beläggningssammanlagets lakanes ut detekterbara mängder av de cancerogen PAH-er som ingår i de analyserade 16 PAH-erna.

De beräknade ackumulerade mängder av acetofenon som lakan ut från flygfältasfalten vid L/S 2 är ca 3-4 ggr större än från både tjärasfalten och RV40-asfalten och ca 8 ggr större än oljegruset. Maximalt utlakan halv acetofenon detecterades i lakvatten från RV40-asfalen (lägsta L/S); ca det dubbla i förhållande till flygfältasfalten och ca 7-8 ggr högre jämfört med maxhalter från oljegrus och tjärasfalt (lakvattenhalterna från RV40-asfalten avklingade emellertid snabbare i jämfört med i lakvattnet från de övriga beläggningssammanlagets).

Enligt delrapport 1 kan acetofenon hypotetiskt komma från färgmarkeringarna i vägbe- läggningen. Sökning av internationella databasear har inte givit något resultat vad gäller aktuella gränsvärdet av acetofenon i grund-/ytvatten. Enligt ECDIN databas angav Sovjetunionen (USSR) på sin tid maximalt acceptabel koncentration av acetofenon i ytvatten
för fiske till 0,04 mg/l. Maximalt utlakad halt av acetofenon från Rv40-asfalten var ca 1/6-del av detta värde.

Endast Rv40-asfalten lakade ut toluen, etylbenzen och xylen i detekterbara halter. Detektionsgränsen för dessa ämnen i lakvatten från denna asfalt var emellertid betydligt lägre än för dessa ämnen i de övriga lakvatten. Jämförs maximalt erhållna halter, inklusive detektionsgränser, i alla analyserade lakvatten från alla de undersökta beläggningsmaterialen med föreslagna riktvärden för grundvatten vid bensinstationer (NV Rapport 4889) innehöll alla lakvatten mindre än 10% av de föreslagna riktvärdena.

Fenol har inte detekterats i något av lakvatten.

Ovanstående sammanfattas i Tabell 15, nedan.

Tabell 15. Sammanfattande tabell för beläggningsmaterialens organiska utlakningar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oljegrus</th>
<th>Tjärasfalt</th>
<th>Flygfältasfalt</th>
<th>Rv40-asfalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ cancerogen PAH. Riv 0,2 μg/l</td>
<td><0,19 μg/l</td>
<td><0,08 μg/l</td>
<td><0,07 μg/l</td>
<td><0,2 μg/l</td>
</tr>
<tr>
<td>Σ öv. PAH. Riv 10 μg/l</td>
<td><0,88 μg/l</td>
<td><0,24 μg/l</td>
<td><0,1 μg/l</td>
<td><0,12 μg/l</td>
</tr>
<tr>
<td>Bensen. Riv 10 μg/l</td>
<td><1 μg/l</td>
<td><1 μg/l</td>
<td><1 μg</td>
<td><0,05 μg/l</td>
</tr>
<tr>
<td>Toluen. Riv 60 μg/l</td>
<td><6 μg/l</td>
<td><6 μg/l</td>
<td><6 μg/l</td>
<td>Max 0,16 μg/l</td>
</tr>
<tr>
<td>Etylbensen. Riv 20 μg/l</td>
<td><2 μg/l</td>
<td><2 μg/l</td>
<td>Max 0,055 μg/l</td>
<td></td>
</tr>
<tr>
<td>Xylen. Riv 200 μg/l</td>
<td><20 μg/l</td>
<td><20 μg/l</td>
<td>Max 0,077 μg/l</td>
<td></td>
</tr>
<tr>
<td>Acetofenon</td>
<td>Max 0,76 μg/l</td>
<td>Max 0,97 μg/l</td>
<td>Max 3,7 μg/l</td>
<td>Max 6,4 μg/l</td>
</tr>
<tr>
<td>Fenol. Gv dr.v.: 5 μg/l</td>
<td><5 μg/l</td>
<td><5 μg/l</td>
<td><5 μg/l</td>
<td>-</td>
</tr>
<tr>
<td>EOGOM</td>
<td>Max 38 mg/l</td>
<td>Max 0,49 mg/l</td>
<td>Max 0,49 mg/l</td>
<td>Max 0,25 mg/l</td>
</tr>
<tr>
<td>Microtox, ECS50: 15 min 70-90%: Måttligt hög tox. 50-70%: Hög tox. <50%: Mycket hög tox.</td>
<td>Mn: 30,3 % Mycket hög toxicitet</td>
<td>Mn: 92,0 % Låg/ringa toxicitet</td>
<td>>100% Låg/ringa toxicitet</td>
<td>-</td>
</tr>
</tbody>
</table>

1/ Riv: Riktvärde, Gv: Gränsvärde, tox: toxicitet, dr.v.: dricksvatten

4.3. Sammanfattande diskussion

Sammantaget visar undersökningen för alla de undersökta beläggningsmaterialen att de utlakade ackumulerade mängderna av tungmetallerna och spårmetallerna, obeaktat Mn och Ni, ligger inom det utlakningsintervall som undersökta natursubstanser uppvisar. Maximale Mn-halter från oljegrus och tjärasfalt ligger i nivå med riktvärden i råvatten från ytvattenlämningar. Maximalt Ni från tjärasfalt och Rv40-asfalt ligger i nivå med gränsvärdet för Ni i råvatten från ytvattenlämningar.

Maximalt utlakade halter av klorid från alla de undersökta beläggningsmaterialen ligger under gränsvärdena för dricksvatten.

Vad gäller 16PAH och BTEX ligger maximalt utlakade halter av dessa parametrar från alla beläggningsmaterialen under motsvarande riktvärden i grundvatten vid förorenade bensinstationer. Fenol ligger i alla lakvatten under detektionsgränser. Maximalt utlakade
halter av acetofenon ligger under ett tidigare angivet utländskt gränsvärde i yt-fiskevatten.

Tjärasfaltens, flygfältasfaltens och Rv40-asfaltens maximalt utlakade EGOM-halter är mindre än 1/10-del, mindre än en 1/100-del, respektive mindre än 1/20-del av medelvärden i lakvatten från 9 kemikindustrier till recipient. Flygfältasfaltens lakvatten gav ringa toxisk respons och tjärasfaltens lakvatten gav låg toxisk respons från Microtox-testerna.

Som nämns tidigare kan L/S-skalan omvandlas till en tidskala om känd som förelever om avseende bl a upplagets utformning, nederbördsmängd över upplaget/tidenhet och andel av nederbörd som perkolerar genom upplaget. Om man antar att L/S 0,3 motsvarar av 1 år och att det organiska materialet som larar ut inte bryts ned (vid konservativt betraktelsesätt) varken i beläggningsmaterialet eller i lakvatten under denna tid, har lakvatten från oljegruset fortfarande en mycket hög toxicitet efter ca 2 år. Även om denna bedömning baseras på att lakvatten likställs med grundvatten (vid gäller Microtoxresultaten), vilket även det kan göra bedömningen konservativ, är de erhållna Microtoxvärdena ändå så höga att de, tillsammans med de höga utlakade EGOM-halterna, ger anledning att i första hand gå vidare med undersökningar av lakvatten från oljegrus. Sådana undersökningar bör inkludera analys av lakvatten med GC/MS-screening test (dvs kvalitativ bestämning av det organiska innehållet, kopplat till semi-kvantitativ bestämning av så många av de kvalitativt bestämda ämnen som möjligt), nedbrytbarhetsstudie och toxicitetstester på vattnet, både före och efter nedbrytbarhetsstudien. Toxicitetstudierna bör omfatta minst tre olika organismer (exempel Microtox, Mutatox, Daphnia, Zebrafisk (ägg/ynge), alger, Pimephales promelas).

5. VALIDERING AV KONTROLLPROGRAM

5.1. Bakgrund

I den informationsskrift om mellanlagring av asfaltmassor för återvinning (Svenska Kommunförbundet, 1998) som utarbetades inom delprojekt 1, anges hur miljökontroll av en uppslagsplats med avseende på markföroring bör göras. För att pröva och testa relevansen hos detta kontrollprogram har provtagningar utförts vid ett befinligt mellanlager.

Enligt det föreslagna kontrollprogrammet bör miljökontroll göras före, under och efter mellanlagringstiden. Vid mellanlagring på temporär plats tas jordprover före och efter mellanlagring. Vid mellanlagring på permanent plats bör dessutom avvänande vatten
främst den största högen (eller annan hög som anses innehålla det mest förorenade materialet) provtas två gånger per år.

Minst ett samlingsprov av jord bör tas i läger för varje större upplagshög. Varje samlingsprov bör bestå av fem enskilda delprover som slås ihop till ett samlingsprov. Delproven ska utgöras av jord från ytan och ner till 10 cm:s djup. Såväl jordprov som vattenprov analyseras med avseende på natrium och klorid, tungmetaller samt opolära alifatiska och aromatiska kolväten.

5.2. Syfte

Att validera föreslaget miljökontrollprogram genom provtagningar vid befintligt mellanlager.

5.3. Lokalbeskrivning – mellanlager vid Överskog

Upplagsplatsen vid Överskog, som är belägen vid Oringen ca 6 km söder om Höga Kusten bron, ligger på en ostslutning och begränsas i öster av nya E4:an och i söder och väster av en bäck i en mindre dalgång (figur 1). De ursprungliga jordarterna utgörs av sand med varierande maktighet på morän eller berg. Markytan vid upplagsplatsen har avjämnats genom utfyllning med ballastmaterial (sandigt grus). Den avjämnade upplagsytan har en svag lutning ned mot nya E4:an.

Vid provtagningarna, som utfördes i början på maj 1998, fanns två större upplagshögar med dels uppbrotta massor (flak), dels asfaltgranulat (figur 1 samt foto 1 och 2). De uppbrottna massorna bestod av 20-40 cm tjocka flak innehållande ett stort antal lager av olika typ och ålder. På undersidan av flaken fanns en indränkta makadam (foto 3) som på vissa platser i upplaget luktade starkt av tjära, t ex vid provgrop 1 i upplagshögen med uppbrottna massor (figur 1). I den västra delen av upplagsplatsen fanns också en yta som tidigare använts för lagring av asfalt (figur 1). På denna yta, som betecknas ”Avvecklad upplagsplats” togs prov i två punkter på samma sätt som under upplagshögarna. Det har dock inte varit möjligt att fastställa under hur lång tid och vilken typ av massor som lagrats här.
Figur 1. Skiss över upplagsplatsen vid Överskog.

Foto 2. Upplagshög med uppbrutna massor (flak)

Foto 3. Undersidan av de uppbrutna asfaltfläken bestod av inomränt maktadam som på vissa ställen avgav en stark lukt av tjära.
5.4. Provtagning

Under varje upplagshög togs prov i tre punkter genom att upplagsmaterialet med hjälp av en traktorgrävare schaktades bort så att den underliggande ytan (ballastmaterial) kunde friläggas (foto 4). I ytan togs sedan fem delprov på nivån 0-10 cm som sedan slogs ihop till ett samlingsprov med nivåbeteckningen ”0 cm”. Därefter togs ytterligare fem delprov på nivån 10-20 cm som slogs ihop till ett samlingsprov med nivåbeteckningen ”10 cm”.

Foto 4. Provtagning under upplagshög med asfaltgranulat.

I skogsmarken strax norr om upplagshögarna togs referensprov i två punkter (figur 1). Efter det att vegetationstäcket banats av togs dessa prov på samma sätt som de andra markproven, dvs. fem delprov på nivån 0-10 cm som sedan slogs ihop till ett samlingsprov.

Vid upplagsplatsen fanns inga fasta installationer för att samla upp avrinnande dagvatten. Vid provtagningstillfället i början på maj var det dock en hel del småtvatten som rann från upplagshögarna. Genom att göra en grop i ytan var det möjligt att ta ett prov på det avrinnande vattnet från högen med uppruten massa (foto 5). Detta prov (betecknat ”Lakovatten”) utgör naturligtvis inte något egentligt prov på lakvattnet från upplaget eftersom det är påverkat av det underliggande ballastmaterialet och också kan vara påverkat av olika föröreningar från fordon och lastmaskiner. För att få någon form av referensvärd togs också ett prov i bäcken strax väster om upplagsplatsen (betecknat ”Bäck”).
Foto 5. Grop för provtagning på "lakvatten" från upplagshög med uppbruten asfalt massa.
5.5. Analyser

Samtliga prov, både jord och vatten, har analyserats med avseende på innehåll av tungmetaller (ICP-analys, typ M-2) samt opolära alifater och totalt extraherbara aromater. Analyserna har utförts av svensk Grundämnesanalys AB (SGAB) i Luleå.

5.6. Resultat och kommentarer

Samtliga analysresultat redovisas i separat bilaga. I följande avsnitt redovisas ett urval av analysresultat som bedöms vara representativa för förhållandena på upplagsplatsen. I varje tabell redovisas också riktvärden eller bakgrundshalter.

5.6.1. Halter av oorganiska ämnen i markprov

Halter av oorganiska ämnen i markprov redovisas i fyra tabeller (tabell 16.1-16.4).

Tabell 16.1. Analysresultat – Markprov under upplag av asfaltgranulat

<table>
<thead>
<tr>
<th>Ämne</th>
<th>Nivå</th>
<th>Provgrop 1</th>
<th>Provgrop 2</th>
<th>Provgrop 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm</td>
<td>10 cm</td>
<td>0 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>As</td>
<td><10,1</td>
<td><9,98</td>
<td><10,0</td>
<td><9,9</td>
</tr>
<tr>
<td>Cd</td>
<td><1,01</td>
<td><0,998</td>
<td><1,00</td>
<td><0,99</td>
</tr>
<tr>
<td>Co</td>
<td>2,29</td>
<td>6,32</td>
<td><1,00</td>
<td>4,09</td>
</tr>
<tr>
<td>Cr</td>
<td>17,2</td>
<td>35,4</td>
<td>7,05</td>
<td>12,1</td>
</tr>
<tr>
<td>Cu</td>
<td>12,3</td>
<td>25,5</td>
<td><0,501</td>
<td>3,58</td>
</tr>
<tr>
<td>Ni</td>
<td>9,63</td>
<td>21,1</td>
<td><2,00</td>
<td>6,99</td>
</tr>
<tr>
<td>Pb</td>
<td><6,04</td>
<td>9,71</td>
<td><6,01</td>
<td><5,94</td>
</tr>
<tr>
<td>Zn</td>
<td>59,4</td>
<td>70,9</td>
<td>16,6</td>
<td>28,4</td>
</tr>
</tbody>
</table>

*KM=känslig markanvändning; MKM=mindre känslig markanvändning
Tabell 16.2. Analysresultat – Markprov under upplag av upphuten asfalt.

<table>
<thead>
<tr>
<th>Ämne\Nivå</th>
<th>Provgrop 1</th>
<th>Provgrop 2</th>
<th>Provgrop 3</th>
<th>Riktvärden enligt SNV 4638</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm</td>
<td>10 cm</td>
<td>0 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>As</td>
<td><9,96</td>
<td>13,8</td>
<td><9,9</td>
<td>9,95</td>
</tr>
<tr>
<td>Cd</td>
<td><0,995</td>
<td><0,998</td>
<td><0,99</td>
<td><0,995</td>
</tr>
<tr>
<td>Co</td>
<td>9,08</td>
<td>9,21</td>
<td>2,89</td>
<td>3</td>
</tr>
<tr>
<td>Cr</td>
<td>44</td>
<td>53,5</td>
<td>15,8</td>
<td>15,2</td>
</tr>
<tr>
<td>Cu</td>
<td>25,3</td>
<td>24,9</td>
<td>13,1</td>
<td>13,8</td>
</tr>
<tr>
<td>Ni</td>
<td>25,8</td>
<td>30,2</td>
<td>8,64</td>
<td>8,31</td>
</tr>
<tr>
<td>Pb</td>
<td>9,07</td>
<td>6,75</td>
<td>11,1</td>
<td><5,97</td>
</tr>
<tr>
<td>Zn</td>
<td>65,2</td>
<td>64,4</td>
<td>52,8</td>
<td>52,4</td>
</tr>
</tbody>
</table>

* KM=känslig markanvändning; MKM=mindre känslig markanvändning

Tabell 16.3. Analysresultat – Markprov på avvecklad upplagsplats.

<table>
<thead>
<tr>
<th>Ämne\Nivå</th>
<th>Provpunkt 1</th>
<th>Provpunkt 2</th>
<th>Riktvärden enligt SNV 4638</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm</td>
<td>10 cm</td>
<td>0 cm</td>
</tr>
<tr>
<td>As</td>
<td><10,1</td>
<td><10,0</td>
<td><10,0</td>
</tr>
<tr>
<td>Cd</td>
<td><1,01</td>
<td><1,00</td>
<td><1,00</td>
</tr>
<tr>
<td>Co</td>
<td>1,69</td>
<td>3,54</td>
<td>4,8</td>
</tr>
<tr>
<td>Cr</td>
<td>13,9</td>
<td>12,9</td>
<td>19,4</td>
</tr>
<tr>
<td>Cu</td>
<td>11,5</td>
<td>9,04</td>
<td>11,4</td>
</tr>
<tr>
<td>Ni</td>
<td>8,58</td>
<td>10,2</td>
<td>11,4</td>
</tr>
<tr>
<td>Pb</td>
<td><6,05</td>
<td>13</td>
<td>12,2</td>
</tr>
<tr>
<td>Zn</td>
<td>43,1</td>
<td>29,4</td>
<td>39,2</td>
</tr>
</tbody>
</table>

* KM=känslig markanvändning; MKM=mindre känslig markanvändning

<table>
<thead>
<tr>
<th>Ämne</th>
<th>Provpunkt 1</th>
<th>Provpunkt 2</th>
<th>KM*</th>
<th>MKM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td><10,0</td>
<td>9,84</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Cd</td>
<td><1,00</td>
<td><0,984</td>
<td>0,4</td>
<td>12</td>
</tr>
<tr>
<td>Co</td>
<td><1,00</td>
<td><0,984</td>
<td>30</td>
<td>250</td>
</tr>
<tr>
<td>Cr</td>
<td>14,8</td>
<td><1,97</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>Cu</td>
<td>1,13</td>
<td><0,492</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Ni</td>
<td>4,65</td>
<td><1,97</td>
<td>35</td>
<td>200</td>
</tr>
<tr>
<td>Pb</td>
<td>7,85</td>
<td><5,91</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>Zn</td>
<td>24</td>
<td>4,88</td>
<td>350</td>
<td>700</td>
</tr>
</tbody>
</table>

KM=känslig markanvändning; *MKM*=mindre känslig markanvändning

Kommentarer:

Av tabellerna 16.1-16.4 framgår att halterna av oorganiska ämnen i markproven genomgående är mycket låga. Inte i något fall överstiger halterna de generella riktvärdena för områden med känslig markanvändning (Naturvårdsverket, 1997). Halterna under upplagshögorna är dock något förhöjda jämfört med halterna vid referenspunkterna (tabell 16.4). Likaså framgår det att halterna under upplagshögen med uppruten asfalt är något högre än under upplagshögen med asfaltgranulat. Noterbart är också att det inte finns någon tydlig skillnad mellan halterna i ytan och på 10 cm:s nivå. Detta tyder på att de uppmätta halterna snarare avspeglar de naturliga halterna i ballast materialet än är någon effekt av lakning från asfaltmassorna.
5.6.2. Halter av organiska samlingsparametrar i markprov

Halter av organiska ämnen i markprov redovisas i följande fyra tabeller (tabell 17.1-17.4).

Tabell 17.1. Analysresultat – Markprov under upplag av asfaltgranulat.

<table>
<thead>
<tr>
<th>Ämnesgrupp/Nivå</th>
<th>Provgrop 1</th>
<th>Provgrop 2</th>
<th>Provgrop 3</th>
<th>Riktvärden (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm</td>
<td>10 cm</td>
<td>0 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>Tot. extraherbara allfater</td>
<td>120</td>
<td>130</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>Opolära allfater</td>
<td>64</td>
<td>66</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Tot. extraherbara aromater</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Avser riktvärden vid uppläggning av dikesmassor inom markklasserna KM resp. MKM (KM=känslig markanvändning; MKM=mindre känslig markanvändning)

Tabell 17.2. Analysresultat – Markprov under upplag av upphbruten asfalt.

<table>
<thead>
<tr>
<th>Ämnesgrupp/Nivå</th>
<th>Provgrop 1</th>
<th>Provgrop 2</th>
<th>Provgrop 3</th>
<th>Riktvärden (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm</td>
<td>10 cm</td>
<td>0 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>Tot. extraherbara allfater</td>
<td>1600</td>
<td>30</td>
<td>210</td>
<td>32</td>
</tr>
<tr>
<td>Opolära allfater</td>
<td>770</td>
<td>24</td>
<td>110</td>
<td>22</td>
</tr>
<tr>
<td>Tot. extraherbara aromater</td>
<td><0,2</td>
<td>2</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Avser riktvärden vid uppläggning av dikesmassor inom markklasserna KM resp. MKM (KM=känslig markanvändning; MKM=mindre känslig markanvändning)
Tabell 17.3. Analysresultat – Markprov från avvecklad upphagsplats.

<table>
<thead>
<tr>
<th>Markprovtagning, mellanupplag vid Överskog</th>
<th>Riktvärden enligt VV 1998:008*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provtagning på avvecklad upphagsplats</td>
<td></td>
</tr>
<tr>
<td>Halter av organiska ämnen (mg/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provgrop 1</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Åmnesgrupp\Nivå</td>
<td>0 cm</td>
</tr>
<tr>
<td>Tot. extraherbara allfater</td>
<td>4300</td>
</tr>
<tr>
<td>Opolåra alifater</td>
<td>1800</td>
</tr>
<tr>
<td>Tot. extraherbara aromater</td>
<td>210</td>
</tr>
</tbody>
</table>

* Avser riktvärden vid uppläggning av dikesmassor inom markklasserna KM resp. MKM (KM=känslig markanvändning; MKM=mindre känslig markanvändning)

Tabell 17.4. Analysresultat – Markprov från referenspunkter.

<table>
<thead>
<tr>
<th>Markprovtagning, mellanupplag vid Överskog</th>
<th>Riktvärden enligt VV 1998:008*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provtagning vid referenspunkter (skogsmark)</td>
<td></td>
</tr>
<tr>
<td>Halter av organiska ämnen (mg/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provgrop 1</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Åmnesgrupp</td>
<td></td>
</tr>
<tr>
<td>Tot. extraherbara allfater</td>
<td>28</td>
</tr>
<tr>
<td>Opolåra alifater</td>
<td>2</td>
</tr>
<tr>
<td>Tot. extraherbara aromater</td>
<td>1</td>
</tr>
</tbody>
</table>

* Avser riktvärden vid uppläggning av dikesmassor inom markklasserna KM resp. MKM (KM=känslig markanvändning; MKM=mindre känslig markanvändning)

Kommentarer:

Under upplaget med asfaltgranulat är halterna av organiska samlingsparametrar låga och överstiger inte i något fall de riktvärden som föreslås i en VV-rapport (Vägverket, 1998) för att användas vid uppläggning av dikesmassor inom områden med känslig markanvändning.

Under upplaget med uppbrent asfalt är halterna något högre än under asfaltgranulatet. I alla tre provpunkterna är också ytproven tydligt förhöjda jämfört med proven från 10 cm:s nivån. Noterbart är även att halterna av aromater, som skulle kunna indikera före-
komst av tjära, genomgående är mycket låga. Det gäller även provpunkt 1 där en tydlig luktt av tjära kunde märkas i samband med provtagningen.

Vid den avvecklade upplagsplatsen är halterna av organiska samlingsparametrar kraftigt förhöjda i de ytliga proven, jämfört med 10 cm:s nivån. Halterna överstiger också de riktvärden som föreslås i nämnda VV-rapport (Vägverket, 1998) för att användas vid uppläggnings av dikesmassor inom områden med mindre känslig markanvändning. Detta beror sannolikt på att upplagsplatsen var dåligt rensad och att ytproven därför innehöll en hel del rester av asfaltmaterial.

Noterbart är också de mycket låga halter av organiska samlingsparametrar som uppmättes vid referenspunkterna (tabell 17.4).

5.6.3. Metallhalter i vattenprov

I tabell 18 redovisas halter av vissa metaller i vattenprov från upplagsplatsen Överskog.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>"Lakvatten"</th>
<th>Bäck</th>
<th>Bakgrundshalter (SNV)</th>
<th>Dricksvattenhalter (SLV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>3660</td>
<td>441</td>
<td>40-300</td>
<td><500 t*</td>
</tr>
<tr>
<td>As</td>
<td>4,13</td>
<td>0,303</td>
<td>0,1-0,4</td>
<td><10 h*</td>
</tr>
<tr>
<td>Cd</td>
<td>0,181</td>
<td>0,0375</td>
<td>0,005-0,12</td>
<td><1 h*</td>
</tr>
<tr>
<td>Cr</td>
<td>7,19</td>
<td>0,51</td>
<td>0,1-0,4</td>
<td><50 h*</td>
</tr>
<tr>
<td>Cu</td>
<td>17,5</td>
<td>1,1</td>
<td>0,3-1,0</td>
<td><50 h*</td>
</tr>
<tr>
<td>Ni</td>
<td>8,71</td>
<td>0,71</td>
<td><0,9-1,2</td>
<td>-</td>
</tr>
<tr>
<td>Pb</td>
<td>26</td>
<td>0,465</td>
<td>0,3-1,1</td>
<td><10 h*</td>
</tr>
<tr>
<td>Zn</td>
<td>54,2</td>
<td>7,93</td>
<td>4-25</td>
<td><300 et*</td>
</tr>
</tbody>
</table>

* Anmärkning ur: e=estetisk; t=teknisk; h=hälsomässig synpunkt

Kommentarer:

Metallhalterna i det "lakvattenprov" som togs vid upplagshögen med upprutnen asfalt är tydligt förhöjda jämfört med provet från bäcken. Bortsett från aluminium och bly är dock halterna förhållandevis låga. Noterbart är också att aluminium är något förhöjt i bäckvattenprovet vilket indikerar förhöjd aluminiumhalt i det lokala ballastmaterialet. Det mest anmärkningsvärda är den höga blyhalt som uppmättes i "lakvattenprovet". Såvitt känt finns det ingen naturlig förklaring till detta utan det mest sannolika är att den förhöjda blyhalten beror på någon form av förorenning. Inom upplagsplatser förekommer en relativt omfattande trafik med olika transport- och lastfordon och det är inte helt ovanligt att det uppkommer läckage/föroreningar av olika slag. Ett exempel på detta noterades i samband
med provtagningen då en lastbilstrailer fick ett brott på en hydraulslang varvid en hel del hydraulolja läckte ut inom upplagsplatsen.

5.6.4. Halter av organiska samlingsparametrar i vattenprov

I tabell 19 redovisas organiska halter i vattenprov från upplagsplatsen Överskog.

Tabell 19. Analysresultat – Vattenprov från upplagsplatsen Överskog.

<table>
<thead>
<tr>
<th>Provtagnings mellanupplag vid Överskog</th>
<th>Riktvärden enligt SNV 4889*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organiskt innehåll i vatten (μg/l)</td>
<td>(μg/l)</td>
</tr>
<tr>
<td>Ämnesgrupp</td>
<td>"Lakvatten"</td>
</tr>
<tr>
<td>Tot. extraherbara alifter</td>
<td>670</td>
</tr>
<tr>
<td>Opolära alifter</td>
<td>180</td>
</tr>
<tr>
<td>Tot. extraherbara aromater</td>
<td><200</td>
</tr>
</tbody>
</table>

* Förslag till riktvärden för förorene bensinstationer (grundvatten)

Kommentarer:

Av tabell 19 framgår att de organiska halterna i "lakvattnet" är något förhöjda. Förhöjningarna är dock relativt måttliga och när det gäller totalt extraherbara alifter kan det eventuellt till del bero på förekomst av humus.

5.7. Slutsatser

Markproven uppvvisar genomgående låga halter av oorganiska ämnen. Halterna av organiska samlingsparametrar är däremot tydligt förhöjda. Förhöjningen är begränsad till ytskiktet av underliggande mark (ca 10 cm) men sannolikt måste ytskiktet tas om hand och transporteras till deponi.

Lakvattnet uppvissar förhöjda halter både vad gäller vissa metaller och organiska samlingsparametrar. Sannolikt boror dock de förhöjda metallhalterna (framförallt bly) på någon form av förorening inom upplagsplatsen. De organiska halterna av totalt extraherbara ämnen kan eventuellt till del vara orsakade av humus påverkan i vattnet.

De provtagningar som har utförts i enlighet med det miljökontrollprogram som föreslås i informationsföldern, bedöms ge en god uppfattning om spridningen av olika ämnen inom upplagsplatsen. Kontrollprogrammet bedöms också ha en rimlig omfattning vad gäller provtagningsförfarande och antal prov.
6. REFERENSER

ECDIN databas. http://ecdin.etomep.net/
NV Rapport 4889. Förslag till riktvärden för förorenade bensinstationer. Naturvårdsverket, SPI.
SLV FS 1993:35. Livsmedelsverkets kungörelse om dricksvatten. Livsmedelsverket. ISSN 0346-119X.