Veg- og gate-utforming
HÅNDBØKER I
STATENS VEGVESEN

Dette er en håndbok i vegvesenets håndbokserie - en samling forløpende nummerete publikasjoner som først og fremst er beregnet for bruk innen etaten.

Håndbøkene kan kjøpes av interesserte utenfor Statens vegvesen til de priser som er oppgitt i håndbokoversikten - håndbok 022.

Det er den enkelte fagavdeling innen Vegdirektoratet som har hovedansvaret for utarbeidelse og ajourføring av håndbøkene.

De daglige fellesfunksjoner som utgivelse av håndbøker fører med seg, blir ivaretatt av det sentrale håndboksekretariat.

Vegvesenets håndbøker utgis på 2 nivåer:

Nivå 1 - Rød farge på omslaget - omfatter For- skrifter, Normaler og Retningslinjer god kjent av overordnet myndighet eller av Vegdirektoratet etter fullmakt.

Nivå 2 - Blå farge på omslaget - omfatter veiledninger, Læreborger og Vegdata godkjent av den enkelte fagavdeling i Vegdirektoratet.

Veg- og gateutforming

Nr.017 i vegvesenets håndbokserie
Forsidefoto: C.Lang, T&Ø
Ilustrasjoner: O.T.Bommen
L.O.Hoksrud, Skien
Sats og layout: ABB Infotema, Billingstad
Opplag: 5 000
Trykk: GCS A/S, Oslo

ISBN 82-7207-328-5
FORORD

Normalen inneholder fire hoveddeler:
- Del A - Dimensjonersgrunnlag
- Del B - Vegsystem og vegstandard
- Del C - Detaljkapitler
- Del D - Spesielle emner

Del B, Vegsystem og vegstandard, er den viktigste.

Denne delen inneholder prinsipper for vegnettsoppbygging, og hovedstørrelser for standardvalg på de enkelte veglenker. De øvrige kapitlene inneholder detaljert beskrivelse av de enkelte elementer et veganlegg består av.

I disse normalene er det lagt spesiell vekt på:
- Høyere standard på stamvegene
- Bedre tilpasning til byområder
- Bedre tilpasning til kommunalveger
- Harmonisk veg-geometri

Normalene innebærer at vegstandarden differensieres mer enn tidligere, avhengig av vegfunksjon, omgivelser, trafikkmengde og andre forhold.

Vegdirektoratet, november 1992
INNHOLD

<table>
<thead>
<tr>
<th>Del A – Dimensjoneringsgrunnlag</th>
<th>1. Dimensjoneringsgrunnlag</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del B – Vegsystem og vegstandard</td>
<td>2. Valg av standardklasse</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3. Hovedveg i spredt bebyggelse - H1</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4. Hovedveg i middels tett bebyggelse - H2</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>5. Hovedgate i tett bebyggelse - H363</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>6. Samleveg i spredt bebyggelse - S1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>7. Samleveg i middels tett bebyggelse - S2</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>8. Samlegate i tett bebyggelse - S3</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>9. Adkomstveg i spredt bebyggelse - A1</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>10. Adkomstveg i middels tett bebyggelse - A2</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>11. Adkomstgate i tett bebyggelse - A3</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>12. Frittliggende gang-/sykkelveg i spredt bebyggelse - GS1</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>13. Frittliggende gang-/sykkelveg i middels tett bebyggelse - GS2</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>14. Gågate i tett bebyggelse - GS3</td>
<td>119</td>
</tr>
<tr>
<td>Del C – Detaljkapitler</td>
<td>15. Tverrprofilet</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>16. Linjeføring</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>17. Forblikjøringsfelt</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>18. Vegkryss</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>19. Fartsdempende tiltak</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>20. Parkering</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>21. Kollektivtrafikk</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>22. Varelevering</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>23. Rasteplasser</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>24. Vegbelysning</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>25. Vegrekverk, støtputer</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>26. Ledegjerder</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>27. Kantstein</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>28. Vegetasjon</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>29. Tiltak mot vegtrafikkstøy</td>
<td>293</td>
</tr>
<tr>
<td>Del D – Spesielle emner</td>
<td>30. Bruer</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>31. Tunneler</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>32. Kabler og ledninger</td>
<td>379</td>
</tr>
<tr>
<td>Vedlegg</td>
<td></td>
<td>391</td>
</tr>
</tbody>
</table>
DEL A

Dimensjoneringsgrunnlag

1. Dimensjoneringsgrunnlag
 - Fotgjengere, syklister m.m. 9
 - Motorkjøretøyer 10
 - Dimensjonerende kjøremåte 17
 - Dimensjonerende fart, fartsgrense og fartsnivå 17
 - Dimensjonerende trafikk 18
 - Trafikkens sammensetning 20
 - Fordeling på kjøreretning 20
 - Arealbruk og turproduksjon 20
Fotgjengere, syklist m.m.

Figuren viser dimensjonerende størrelser for fotgjengere, syklister, personer med barnevogn, spark og rulleston.

Figur 1.1
Dimensjonerende fotgjengere og syklister.
Motorkjøretøyer

Figurene på denne og følgende sider viser mål og sporingssegenskaper for typekjøretøyer. Systemdelen (del B) angir hvilket typekjøretøy som er dimensjonerende for den enkelte veg.

Type P omfatter personbiler og varebiler. Type LL omfatter små lastebiler, renholds- biler og vanlige brannbiler, med unntak av stigebiler. Type L omfatter vanlige lastebiler og brannbiler med stige. Type B omfatter vanlige bybuser. Store turistbusser dekkes av type ST eller VT. Type ST omfatter semitrailer med inntil 15,5 m lengde. Type VT omfatter vogntog med inntil 22 m lengde.

De angitte kjøretøylengder avvik fra tillatte lengder. De er likevel dekkende for kjøretøyparken. En tilatt 17 m lang semitrailer sporer innenfor den semitrailer med lengde 15,5 m som er beskrevet i denne normalen.

Tidligere typekjøretøy T dekkes av LL. I tillegg til sporings- og omhyllingskurvene bør det regnes med 0,25 m kantsteinsskåring og ytterligere 0,25 m klaring til sidehinder. ATP-goddjente fryseskap med 2,60 m bredde dekkes innenfor de angitte sikkerhetsmargener.

<table>
<thead>
<tr>
<th>Typekjøretøy</th>
<th>of</th>
<th>A1</th>
<th>Ob1</th>
<th>A2</th>
<th>A3</th>
<th>Ob2</th>
<th>A4</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0,90</td>
<td>2,80</td>
<td>1,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,80</td>
</tr>
<tr>
<td>LL</td>
<td>1,40</td>
<td>4,50</td>
<td>2,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,00</td>
</tr>
<tr>
<td>L</td>
<td>1,40</td>
<td>6,40</td>
<td>3,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,00</td>
</tr>
<tr>
<td>B</td>
<td>2,80</td>
<td>6,40</td>
<td>3,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,40</td>
</tr>
<tr>
<td>ST</td>
<td>1,20</td>
<td>4,30</td>
<td>1,20</td>
<td>8,00</td>
<td>2,00</td>
<td>0,40</td>
<td></td>
<td>15,50</td>
</tr>
<tr>
<td>VT</td>
<td>1,20</td>
<td>6,40</td>
<td>1,20</td>
<td>4,40</td>
<td>7,50</td>
<td>2,50</td>
<td>1,20</td>
<td>22,00</td>
</tr>
</tbody>
</table>

Figur 1.2
Forklaring til figur 1.3.

Figur 1.3
Dimensjoner for typekjøretøy. Mål i m.
Figur 1.4

Radius ytre forhjul $R = 6,0 \text{ m}$
Figur 1.5
Figur 1.6
Figur 1.7
Figur 1.8
Figur 1.9
(ST er noe større enn VT og blir som regel dimensjonerende).
Dimensjonerende kjøremåte

Framkommeligheten for enkelte større kjøretøy må vurderes når et trafikkanlegg dimensjoneres for en mindre kjøretøytype. Det er derfor nødvendig å vurdere to kjøremøter:

Kjøremåte A, som betyr at

- Kjøretøyet kan bevege seg med dimensjonerende fart på fri vegstreknings
- Kjøretøyet under normale forhold bare bruker eget kjørefelt
- Kjøretøyet ikke behøver å rygge på snuplasser
- Farten er 15 km/t i kryss

Kjøremåte B, som betyr at

- Kjøretøyet må bevege seg med lavere fart enn dimensjonerende fart på fri vegstreknings
- Kjøretøyet må bruke en del av annet kjørefelt og/eller skulder for manøvrering i krappe kurver og i kryss
- Kjøretøyet i noen tilfeller vil måtte rygge på snuplasser
- Farten er mindre enn 15 km/t i kryss

Dimensjonerende fart, fartsgrense og fartsnivå

Dimensjonerende fart velges ut fra vegens funksjon og områdetype, og bør tilsvare fartsnivået, eller den hastighet som 85% av trafikantene overholder (85%-fraktile). Dimensjonerende fart er dermed ikke det samme som fartsgrensen. I spredtbygde områder bør dimensjonerende fart være 10-20 km/t over ønsket fartsgrense, men den kan settes lavere i vanskelig terreng eller på veger.
med lite trafikk. I tettbygd strøk må det ikke velges lavere dimensjonerende fart enn aktuell fartsgrense, helst bør dimensjonerende fart være minimum 10 km/t over fartsgrensen. Ved overgang fra god til mindre god linjeføringsstandard må forventet endring i fartsnivå vurderes, selv om dimensjonerende fart ikke endres. Nærermere beskrivelse av dimensjonerende fart og beregning av fartsnivå er gitt under avsnittet "Fartsprofil" i kapitlet om "Linjeføring".

Retningslinjer for bruk av fartsgrense blir gitt i Skiltnormalene med utgangspunkt i Vegtrafikklovens bestemmelser om generelle fartsgrenser på 80 og 50 km/t. Særskilt fartsgrenser (30, 40, 60 og 70 km/t) fastsettes ikke ut fra vegstandard, men ut fra vegens omgivelser, det vil si bebyggelsessettethet. Særskilt fartsgrense 90 km/t fastsettes av Vegdirektoratet ut fra vegstandard og omgivelser. Fartsgrensa kan være både høyere og lavere enn fartsnivået og dimensjonerende fart. I spredtbygde strøk vil den generelle fartsgrensen på 80 km/t gjelde selv om vejen er dimensjonert for f.eks. 60 km/t. Det er da trafikkreglene bestemmelser om å tilpasse farten etter forholdene som er avgjørende for det aktuelle fartsnivået. I tettbygd strøk vil ofte linjeføringsstandarden tilsvare et høyere fartsnivå enn den generelle fartsgrensen på 50 km/t, selv om det er valgt en lav dimensjonerende fart. Forskjellen mellom fartsgrense og fartsnivå vil øke med størrelsen på forskjellen mellom fartsgrense og dimensjonerende fart.

Dimensjonerende trafikk

Valg av tidsperspektiv for planleggingen varierer med vegens funksjon og typen utstyr. Ved utbygging av stamveger og
hovedveier bør det velges et 20-års perspektiv i forhold til åpningsåret. For utforming av vegkryss eller valg av teknisk utstyr vil ofte et 10-års perspektiv være riktig. Forventet trafikk skal kartlegges for alle trafikantgrupper.

Trafikkbelastningen angis vanligvis som årsdøgntrafikk, forkortet ADT. ADT er trafikkmengden pr. år dividert med 365. Vegkontorene har oversikter over ADT for riks- og fylkesveger. Egne analyser er ofte nødvendig i tillegg.

I enkelte tilfeller angis trafikken i sommerdøgntrafikk SDT. SDT er trafikkmengden i juni, juli og august dividert på 365/4.

For planlegging av kryss og andre kapasitetskritiske punkter i vegnettet er dimensjonerende timetrafikk interessant. Dimensjonerende time er tradisjonelt den trafikkmengde (kJv/t) som overskrides bare 30 ganger pr. år. De færreste steder vil vi ha tellinger som gir 30. høyeste time. En brukbar verdi kan fåes ved korttidstellinger i rushtid på vanlige hverdager eller på det tidspunkt som er sterkest belastet. Hvis dette ikke lar seg gjøre kan følgende tall benyttes. Prosentverdiene avtar vanligvis med økende ADT-verdier.

- Veger med dominerende arbeids-/reisetrafikk, f.eks innfartsvegene til de større byene: 8-12% av ADT.
- Veger med blandet kommersiell og reklasjonstrafikk, f.eks de store sammenbindingsvegene utenom byene: 12-20% av ADT.
- Veger med stor reklasjonstrafikk eller sterk sesongbetont trafikk, f.eks høy-fjellsveger, veger til badestrander og skisentre: 20-30% av ADT.
Som en støtte ved vurdering av trafikkens timevariasjon gjengis i tillegg figur 1.12. Vegdirektoratet har gitt ut egne veiledningshefter om kapasitetsberegning.

Trafikkens sammensetning
Andelen tunge kjøretøy oppgis vanligvis som en prosent av ÅDT. Denne andelen på riksveger er vanligvis 10-15%. For kapasitetsberegninger har andelen tunge kjøretøy i dimensjonerende time stor interesse. Vanligvis er tungtrafikkandelen lavere i dimensjonerende time enn i ÅDT. Ved kritiske kapasitetsberegninger bør tungtrafikkandelen fastlegges ved tellinger eller andre beregninger.

Fordeling på kjøreretning
Trafikkens fordeling på kjøreretning i dimensjonerende time er av interesse ved planlegging av kryss, stigninger m.m. Hvis egne analyser ikke kan gjennomføres, kan 2/3 fordeling anslås.

Arealbruk og turproduksjon
Anbefalte verdier (med variasjonsområde) knyttet til ulike typer virksomhet, er gjengitt i tabellen (neste side) både for personturer og bilturer. Med turproduksjon menes i denne sammenheng summern av turer ut av og inn til et område. For bilturer vil derfor gjennomsnittlig turproduksjon pr. døgn være det samme som ÅDT.
Figur 1.13
Turproduksjon pr. enhet pr. døgn.
DEL B

Vegsystem og Vegstandard

2. Valg av standardklasse
 - Vegtyper 25
 - Områdetyper 28
 - Standardklasser 30

3. Hovedveg i spredt bebyggelse - H1
 - Tverrprofilet 31
 - Viktige størrelser i tverrprofilet
 - stamveger 32
 - andre hovedveger 32
 - Linjeføring 34
 - Linjeføring gang-/sykkelveg 35
 - Kryss 35
 - Avkjørsler 37
 - Kryssing mellom gs-veg og bilveg 38
 - Parkering og stopp 39
 - Kollektivtrafikk 39
 - Serviceanlegg 40
 - Veglys 41
 - Sikkerhetsavstander 41
 - Byggegrenser 42
 - Linjeføringsparametre 43

4. Hovedveg i middels tett bebyggelse - H2
 - Tverrprofilet 49
 - Linjeføring 51
 - Linjeføring gang-/sykkelveg 51
 - Kryss 52
 - Avkjørsler 54
 - Kryssing mellom gs-veg og bilveg 54
 - Parkering og stopp 56
 - Kollektivtrafikk 56
 - Veglys 57
 - Sikkerhetsavstander 58
 - Byggegrenser 59
 - Linjeføringsparametre 60

5. Hovedgate i tett bebyggelse-H3
 - Tverrprofilet 63

 - Linjeføring 64
 - Linjeføring gang/sykkelbane 65
 - Kryss 65
 - Avkjørsler 67
 - Gang/sykkeltrafikkens kryssing av gate 68
 - Parkering og stopp 68
 - Kollektivtrafikk 68
 - Gatelys 69
 - Sikkerhetsavstander 69
 - Byggegrenser 69
 - Fartsdempende tiltak 69

6. Samleveg i spredt bebyggelse - S1
 - Tverrprofilet 71
 - Linjeføring 71
 - Kryss 72
 - Avkjørsler 73
 - Kryssing mellom biltrafikk og fotgjengere/syklister 73
 - Parkering og stopp 74
 - Kollektivtrafikk 74
 - Veglys 74
 - Sikkerhetsavstander 74
 - Byggegrenser 75

7. Samleveg i middels tett bebyggelse - S2
 - Tverrprofilet 77
 - Linjeføring 77
 - Linjeføring gang/sykkelveg 78
 - Kryss 79
 - Avkjørsler 80
 - Kryssing mellom gang/sykkelveg og bilveg 81
 - Parkering og stopp 82
 - Kollektivtrafikk 82
 - Veglys 83
 - Sikkerhetsavstander 83
 - Byggegrenser 83
 - Fartsdempende tiltak 84

forts.
8. Sam_legate i tett bebyggelse - S3
 - Tverrprofilet
 - Linjeføring
 - Linjeføring gang/sykkelt rasé
 - Kryss
 - Avkjørsler
 - Gang/sykkeltrafikens kryssing av gater
 - Parkering og stopp
 - Kollektivtrafikk
 - Gatelys
 - Sikkerhetsavstander
 - Byggegrenser
 - Fartsdempende tiltak

9. Adkomstveg i spredt bebyggelse - A1
 - Tverrprofilet
 - Linjeføring
 - Kryss
 - Avkjørsler
 - Parkering og stopp
 - Veglys
 - Sikkerhetsavstander
 - Byggegrenser

10. Adkomstveg i middels tett bebyggelse - A2
 - Tverrprofilet
 - Linjeføring
 - Kryss
 - Avkjørsler
 - Parkering og stopp
 - Veglys
 - Sikkerhetsavstander
 - Byggegrenser
 - Fartsdempende tiltak

11. Adkomstgate i tett bebyggelse - A3
 - Tverrprofilet
 - Linjeføring
 - Kryss
 - Avkjørsler
 - Gang/sykkeltrafikens kryssing av gater
 - Parkering og stopp
 - Gatelys
 - Sikkerhetsavstand
 - Byggegrenser
 - Fartsdempende tiltak

12. Frittliggende gang-/sykkelveg i spredt bebyggelse - GS1
 - Tverrprofilet
 - Linjeføring
 - Kryss
 - Veglys
 - Sikkerhetsavstander
 - Byggegrenser

13. Frittliggende gang-/sykkelveg i middels tett bebyggelse - GS2
 - Tverrprofilet
 - Linjeføring
 - Ramper
 - Trapper
 - Kryss
 - Veglys
 - Sikkerhetsavstander
 - Byggegrenser

14. Gågate i tettbebyggelse - GS3
 - Tverrprofilet
 - Linjeføring
2. VALG AV STANDARDKLASSE

Valg av standardklasse er utgangspunktet for planlegging og bygging av veger. Begrepet standardklasse er definert i dette kapittelet. Valg av standardklasse avhenger av vegens funksjon, og av omgivelsene som veggen føres fram gjennom, med andre ord av vegtypen og område-typen.

12 standardklasser er definert. Hver enkelt av disse er beskrevet i de følgende kapitlene. Her beskrives også krav til vegutformingen avhengig av trafikkmengde og andre forhold.

Vegtyper

DIFFERENSIERINGSPRINSIPPE skal legges til grunn for utforming av vegsystemet. Differensiering innebærer at vegsystemet delles inn i vegtyper avhengig av vegens funksjon. Bakgrunnen for vegtypeinndelingen er en avveining mellom vegens transport- og adkomstfunksjon.

Vegnettet deles på dette grunnlag inn i fire vegtyper som er beskrevet nedenfor: Hovedveg, samleveg, adkomstveg og gang-/sykkelveg.

Hovedveger
Hovedveger skal dekke behovet for transport mellom distrikter, områder og bydeler. Antallet avkjørsler skal være begrenset. Hovedveger kan utformes som:

- Motorveg klasse A (fire felt)
- Motorveg klasse B
- Avkjørselsfri hovedveg
- Avkjørselsregulert hovedveg

Motorveg klasse A har midtdeler, plansike kryss og ikke avkjørsler. Motorveg klasse B har ikke avkjørsler. Motorveg kan bare trafikkeres av motorvogn som lovlig kan kjøre med minst 40 km/t.

Stamveger utformes som hovedveger. Stamveger med ÅDT>5000 bør anlegges som avkjørselsfrie hovedveger eller motorveger. Avkjørselsfri veg bør vurderes også ved mindre trafikk der forholde- ne ligger til rette for det.

Samleveger
Samleveger er forbindelsesveger innenfor distrikter, områder og bydeler. Avkjøsel til samleveger kan tillates i visse tilfeller. Samleveger forbinder adkomstvegene med hovedvegene, og har en oppsamplings- og fordelingsfunksjon.

Industriadkomster utformes som samleveger. Samleveger utformes som avkjørselsfrie samleveger eller avkjørselsregulerte samleveger.
Adkomstveger
Adkomstveger har primært adkomstfunksjon. Det kan være adkomst til boliger, forretninger o.l.

Industriadkomster utformes som samleveger. Sambruk (blanding av biler, syklister og fotgjengere) kan være aktuelt på deler av adkomstvegnettet. Blandingene skal skje slik at de myke trafikanter blir prioritert.

Gang-/sykkelveger
Gang-/sykkelveger er forbeholdt fotgjengere og syklister. Unntaksvis kan gang-/sykkelveger brukes som adkomst til et fåtall boliger (maks. 10) i utbygde områder. I nye områder skal dette unngås.

Parallelført gang-/sykkelveg er behandlet under bilvegtypene. I tillegg behandles fritliggende gang/sykkelveger og gågater i egne kapitler.

Kollektivtrafikk
For å få et effektivt og attraktivt kollektivtrafikksystem må kollektivtrafikken inn som en del av transport- og areaplanleggingen.

Vegnettet bør utformes slik at det er mulig å betjene nye utbyggingsområder ved en forlengelse eller ombygging av eksisterende ruter.

Vegsystem, vegstandard og arealdisponering vil bestemme hvor nær målområdene busssruten kan gå. En må tilstrebe seg på å få kortest mulig gangavstand til holdeplass fra såvel boligene som andre viktige reisemål.

Innenframating og samleveg i sløyfe gir bedre bussbøtjening. Gangavstandene til holdeplass blir kortere og betjeningen blir ofte mer rasjonell. Dersom bilvegnettets oppbygging ikke tillater en slik løsning, bør det bygges en egen bussveg for innenframating.

Forkorting av busstraséen ved sammenknytning til hovedveg eller mateveg for andre boligområder kan gi besparelse i reisetid og driftskostnader.

Områdetyper

En veg fører til inngrep i terreng, bebyggelse, arealbruk og sosiale forhold. En veg bør derfor ha forskjellig dimensjon og form, avhengig av området den går gjennom. En bygate er forskjellig fra en landeveg, funksjonelt og estetisk.

Områder med spredt bebyggelse eller ubebygd
Her inngår områder utenom byer og tettsteder og områder med spredt randbebyggelse.

Områder med middels tett bebyggelse
I denne typen inngår utbyggingsområder, tomteområder, byene og tettstedene utenom sentrum, drabantbyene, mindre tettsteder. Et tettsted kan grovt defineres som et sted der det bor over 200 mennesker, og der det ikke er mer enn 50 meter mellom husene, dog skjønnsmessige avvik for parker, lagerplasser, idrettssporet osv. 60 km/t-soner vil ofte være middels tett bebyggelse.

Områder med tett bebyggelse
I denne typen inngår sentrumsområdene, gatene, kvartalene, de sammenhengende fasaderekkene, den tunge bebyggelsen. Et del middels tette områder av eldre dato har en streng kvartalsinndeling med rette linjer, og bør vurderes som tette ved utforming av gatene.
<table>
<thead>
<tr>
<th>UEBYGD El. SPREDT BEBYGGELSE</th>
<th>MIDDELS TETT BEBYGGELSE</th>
<th>TETT BEBYGGELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVEDVEG</td>
<td>H1</td>
<td>H2</td>
</tr>
<tr>
<td>SAMLEVEG</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>ADKOMSTVEG</td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>GÅVEG</td>
<td>G1</td>
<td>G2</td>
</tr>
</tbody>
</table>

Figur 2.9
Standardklasser.

Standardklasser

Denne inndelingen i vegtyper og område-typer gir 12 standardklasser. Utformingen av tverrprofilet, linjeferingen, kryssene og en del andre viktige størrelser er behandlet i det følgende. Uttyllende detaljer er behandlet i detaljkapitlene lenger bak.

Hovedveger med standardklasse H1 eller H2 kan være aktuelle i tett bebygde områder. Slike veger bør frigjøres fra bystrukturen f.eks. ved hjelp av en tunnel eller en omkjøringsveg.
3. HOVEDVEG I SPREDT BEBYGGELSE - H1

Dette er en veg med hovedsakelig transportfunksjon. H1 veg kan utformes som:

- Motorveg klasse A (fire felt)
- Motorveg klasse B
- Avkjørselfri veg
- Avkjørselregulert veg

På stamveger der det er aktuelt å frigjøre seg fra eksisterende trasé, legges som hovedregel motorveg til grunn. Forutsetningen for dette er at det foreligger et lokalvegnett som gjør det unødvendig å benytte stamvegen for gående og saktegående kjøretøyer. Ellers velges avkjørselfri veg. Der trafikkmengdene er små (<1500) og traséen følger eksisterende veg, kan avkjørselfsregulert veg med "meget streng holdning" legges til grunn.

På H1 veg forutsettes fartsgrense 80 eller 90 km/t. 70 km/t kan unntakvis benyttes på eksisterende veier med et mindre antall avkjører. På stamveger bør 90 km/t være et mål.

Hvis det er en del bebyggelse som påvirker vegens plassering og utforming, kan standardklasse H2 benyttes. H1 veg dimensjoneres for typekjøretøy ST.

Tverrprofilet
De viktigste dimensjonene i tverrprofilet er gitt i figurene på neste side. Figurene behandler stamveger og andre hovedveger. Figurene er veiledende. Utforming av tverrprofilet bør bl.a. vurderes i rutevis sammenheng.
Del B - 3. Hovedveg - H1

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>< 5000</th>
<th>5–10.000</th>
<th>10–15.000</th>
<th>> 15.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall felt</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Feltbredde (m)</td>
<td>3,25</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Skulderbredde (m)</td>
<td>1</td>
<td>1,5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Midtdeler (m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Skulder mot midtdeler (m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Vegbredde (m)</td>
<td>8,5</td>
<td>10</td>
<td>13*</td>
<td>29</td>
</tr>
<tr>
<td>Adskilt gs-veg</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
</tr>
<tr>
<td>Adskillelse (m)</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
</tr>
<tr>
<td>Dekkebredde gs-veg (m)</td>
<td>2,5-3</td>
<td>2,5-3</td>
<td>2,5-3</td>
<td>2,5-3</td>
</tr>
<tr>
<td>Skulderbredde gs-veg (m)</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
</tr>
</tbody>
</table>

*) Kan bygges som tofletsveg med forbiøregskift og skulder på 1,5 m, det vil si 3,5 x 3 + 1,5 x 2 = 13,5 m bredde

Figur 3.2
Viktige størrelser i tverrprofilet – stamveger.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>0-300</th>
<th>0-1500</th>
<th>1500-5.000</th>
<th>5.000-10.000</th>
<th>10.000-15.000</th>
<th>> 15.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall felt</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Feltbredde (m)</td>
<td>3</td>
<td>2,75</td>
<td>3</td>
<td>3,25</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Skulderbredde (m)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,75</td>
<td>1</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Midtdeler (m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>3</td>
</tr>
<tr>
<td>Vegbredde (m)</td>
<td>4</td>
<td>6,5</td>
<td>7,5</td>
<td>8,5</td>
<td>10</td>
<td>>20</td>
</tr>
<tr>
<td>Adskilt gs-veg</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
<td>Se teksten</td>
</tr>
<tr>
<td>Adskillelse (m)</td>
<td>-</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
</tr>
<tr>
<td>Dekkebredde gs-veg (m)</td>
<td>-</td>
<td>2,5-3</td>
<td>2,5-3</td>
<td>2,5-3</td>
<td>2,5-3</td>
<td>2,5-3</td>
</tr>
<tr>
<td>Skulderbredde gs-veg (m)</td>
<td>-</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Figur 3.3
Viktige størrelser i tverrprofilet andre hovedveger.
Vegbredden på riksveger bør ikke være mindre enn 6,5 m. Vegbredden på stamveger bør ikke være mindre enn 8,5 m. Bredden på motorveg klasse B bør være 10 eller 13 m. Bredden på motorveg klasse A bør være 29 m, men kan reduseres til 20 m utenom stamvegnettet.

De angitte skulderbredder er normalverdier mot grøft. Skulderbredden kan halvere i kostbart terreng (gjelder ikke skulderbredde 0,5 m) og mot kantstein (min. 0,25 m).

Firefelts H1 veg bør bygges med midtdeler som bør være minst 7 m bred. Skulder mot midtdeler bør være 1 m bred. På firefelts veg utenom stamvegnettet kan midtdelen bygges med 3-4 m mellom kjørebanelene, kombinert med rekkverk.

Stolper og andre hinder bør ikke plasseres i midtdelen. Evt. bør de gjøres ettergivende eller skjermes med rekkverk.

Hver 1,5-2 km skal midtdelen utformes slik at den kan krysses, av hensyn til vedlikehold og midlertidig trafikkregulering.

Egen gang-/sykkelveg bør bygges når biltrafikken er over 1000 og gang-/sykkeltrafikken er over 50 (ÅDT). Ved lavere trafikkmengder vurderes behovet spesielt ut fra om det er barn som ferdes på strekningen eller om gs-vegen er ledd i et større nett.

Gs-vegen bør bygges med minst 2,5-3 m dekkebredde og 0,25 m skulderbredde.
Trafikkdeler mellom bilveg og gs-veg bør være minst 3 m bred, regnet fra vegkant til vegkant. Trafikkdelen kan erstattes av rekkverk i kostbart terreng.

Egen gs-veg kan sløyfes hvis fotgjengere og syklister har tilfredsstillende tilbud på lokalvegnettet slik at hovedvegen bare sjelden benyttes. På strekninger der det ut fra ovenfor nevnte kriterier ikke anlegges egen gs-veg, der det er en del sykkeltrafikk, f.eks. turstykk i sommerhalvåret, bør det ved ÅDT > 1500 vurderes å utvide skulderen på hver side slik at det kan anlegges sykkelbaner med bredde 1-1,5 m.

Møteplasser skal anlegges på enfelt vegger. Avstanden mellom møteplasser bør være 200-300 m, men aldri lenger enn at vogntog kan se fra en møteplass til den neste. Ved møteplasser utvides kjørebanene til 6 m over en 20 m lang strekning, med 15 m rettlinjet overgangsstrekning på hver side. Møteplasser legges på den siden av vegen der det er mest hensiktsmessig ut fra terreng m.m.

Det bør settes av plass til langtidslagring av snø. Bredden på snøopplaget bør være anslagsvis halvparten av brøytem bredde (6 m brøytem bredde krever f.eks. 1,5 m snøopplag på hver side).

Linjeføring

Linjeføringen fastlegges på grunnlag av et fartsprofi.
Linjeføring gang-/sykkelveg

Linjeføringen på gang-/sykkelveg bør være minst like god som tilhørende bilveg (spesielt vertikaltraséen). Krappere horisontalkurvatur kan aksepteres. Brattere stigninger kan aksepteres ved over- og underganger. Geometrien bør forøvrig kontrolleres mot de anbefalingene som er gitt på side 111.

Kryss

Avstanden mellom planstilte kryss på H1 veg bør generelt være minst 3 km. På stamveg med ÅDT > 5000 bør kryssstettheten ikke være større enn 3 pr. 10 km.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th><1500</th>
<th>1500-5000</th>
<th>>5000</th>
<th>>15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryss-avstand</td>
<td>250 m</td>
<td>500 m (1)</td>
<td>1 km (1)</td>
<td>2-3 km (2)</td>
</tr>
</tbody>
</table>

1) To forskjøvede T-kryss kan ha en innbyrdes avstand på 40 til 100 m.

2) 2-3 km på motorveg.

Figur 3.5
Krysstyper (prinsipp) på H1 veg.

Figur 3.6
Anbefalte minimums kryssavstander.
Sikttrakanter i kryss og avkjørsler. L1 og L2 er gitt i teksten.

Kryss
L1 = 1,5 x Ls
L2 ≥ 10 m

Avkjørsel
L1 = 1,2 x Ls
L2 ≥ 4 m

Sikttrakanten i krysset bør være minst 1,5 x stoppsikt langs primærovegen (L1 på figuren) og minst 10 m inn på sekundæreovegen (L2 på figuren). Stoppsikt er gitt i tabellene bakerst i kapitlet. Primærovegens kjørebane bør være synlig over hele sikttrakantens lengde i primærovegen.

T-kryss vil være det vanligste på H1 veg. Graden av kanalisering avhenger av trafikkmengdene, og det bør legges vekt på ens krysstandard langs en vejestrekning. Sidevegskanalisering ("dråpe") bør alltid anlegges på stamveger, på andre hovedveger bør sidevegskanalisering vurderes når ÅDT er over 1500. Venstresvingfelt bør vurderes når ÅDT på gjennomgående veg er >1500 på stamveger og >5000 på andre hovedveger. Kanaliseringen i hovedvegen bør være malt hvis fartsgrensen er over 70 km/t. Malt kanalisering forutsetter at det er god oversikt og lite kryssende fotgjengere og syklister på stedet.

Rundkjøring er et alternativ hvis et vanlig kryss gir problemer med sikkerhet eller avvikling. Rundkjøringen brukes i kryss som er typiske knutepunkt og der mange vegarmer møtes. Kapasiteten for rundkjøringen med tre armer ligger i området 3-5000 kjt/time, og med fire armer 2-3500 kjt/time.

På stamveger bør planskilt kryss anlegges når ÅDT er over 5000, på andre hovedveger når ÅDT er over 10000. Planskilt kryss bør anlegges ved lavere ÅDT, hvis svingende og kryssende trafikk er stor, eller hvis terreng ligger til rette for det.
Planskilte kryss bør planlegges ut fra et perspektiv på 20 år, men en trinnvis utbygging kan velges.

Ut fra sikkerhets- og kapasitetsbetraktninger er planskilt kryss aktuelt når summen av to timestrømmer som er i konflikt med hverandre kommer opp i ca. 1000 kjt/t.

Avkjørsler

Siktterekant i avkjørsler bør være minst 1,2 x stoppsikt langs primærvegen (L1) og 4m inn på avkjørselsvegen (L2), se figur 3.7.

Avkjørsel dimensjoneres for typekjøretøy P eller LL. Avkjørsel til et fåttall boliger (1-3), hytte og driftsavkjørsler til jord og skogbruk utformes normalt for type P.

Hovedavkjørsel til gårdsbruk, mindre boligområder (<7 boliger) og hytteområder utformes normalt for type LL. Avkjørsel til boligområder, industriområder og serviceanlegg utformes som kryss (også siktterekantene).
Kryssing mellom gs-veg og bilveg

Kryssinger skal plasseres og utformes slik at de blir brukt. Kryssingstypen bør vurderes i hvert enkelt tilfelle, som en veiledning angis:

Ved ÅDT <1500 kan kryssingen legges i plan, med mindre spesielle forhold tiliser planskilt kryssing.

Ved ÅDT 1500-5000, kan planskilt kryssing bygges hvis forholdene ligger til rette for det, og kryssingen vil få god bruk. Planskilt kryssing bør anlegges der barn krysser vegen, f.eks. ved skoler.

Ved ÅDT 5000-15 000 bør planskilt kryssing anlegges etter kriteriene over, og dessuten hvis antallet fotgjengere og syklister (ÅDT) er større enn 100.

Ved ÅDT >15 000 bør planskilt kryssing alltid anlegges.

Der gang/sykkelveg munner ut i bilveg, skal siktterekanten i tilknytningen være stoppsikt langs bilvegen og 4 m inn på gs-vegen. "Ramper" ved avslutning av parallellført gs-veg skal utformes slik at bilføreren har oversikt over syklister som kommer ut i bilvegen. Der avkjørselsveg krysser langsgående gang/sykkelveg skal sikten være 20-40 m (avhengig av fall) langs gs-vegen og 3 m inn på avkjørselsvegen.
Parkerings og stopp
I følge trafikkreglene er stopp ikke tillatt på motorveg. På forkjørsveg med farts- grense høyere enn 50 km/t er det parkeringsforbud på kjørebanen. På veier med ADT over 5000 bør det være stoppmulig- het utenfor kjørebanen minst hver 500 m, dimensjonert for to stk. typekjøretøy P.

Kollektivtrafikk

Figur 3.10
Siktrekant der avkjørselsveg krysser gs-veg

Figur 3.11
Behovskriterium for busslommer (tofeltsveg)

Figur 3.12
Behovskriterium for leskur
Serviceanlegg

Stoppesteder for tungtrafikken ("truck-stopp") bør anlegges langs hovedvegene. Det skiller mellom tre typer truck-stopp:

A : Stort lastebilsenter, bør etableres i nærheten av de største byene. 100-200 oppstillingsplasser.

B : Vanlig stoppested for tungtrafikk, bør anlegges i nærheten av byer og tettsteder. Kan gjerne samlokalisertes med bensinstasjon/spisested. 10-20 oppstillingsplasser.

C : Parkeringslomme/rasteplass langs landeveien, bør etableres langs viktige transportruter etter behov. Kan gjerne samlokalisertes med vanlig rasteplass. 2-5 oppstillingsplasser.

Serviceanlegg bør plasseres på fri vegstrekkning.
Veglys

H1 veg som bygges iht. disse normaler trenger normalt ikke veglys. Spesielt farlige og kompliserte kryss kan belyses. Kryss med fysisk kanalisering i hovedveg skal belyses.

Når trafikken er stor (ÅDT > 15000) kan belysning være ønskelig både av hensyn til sikkerhet og avvikling. På strekning med ikke adskilt gang- og sykkeltrafikk kan belysning være et aktuelt tiltak for å bedre sikkerheten allerede ved ÅDT > 5000. Høye merkeulykkesandeler (over 40%) viser at belysning kan være et godt trafikksikkerhets tiltak på eksisterende veg. Tunneler (unntatt korte) skal ha belysning.

Kriterier for når det er trafikksikkerhetsmessig lønnsomt å anlegge veglys, samt lystekniske krav etc. er gitt i kapittel 24 "Vegbelysning" i del C.

Sikkerhetsavstander

Minste sikkerhetsavstand fra kjørebane- kant til farlig hinder eller skråning brattere enn 1:3, framgår av figur 3.15. Hvis faremomentet ligger innenfor sikkerhetsavstanden, bør det heist fjernes, evt. rekkeverk bør settes opp.
<table>
<thead>
<tr>
<th>ÅDT</th>
<th>0-300</th>
<th>300-5 000</th>
<th>5 000-10 000</th>
<th>10 000-15 000</th>
<th>Over 15 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fartsnivå km/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>70-80</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figur 3.15 Sikkerhetsavstander (m).

Fjellskjæring, ettergivende lysmaster og trær med stammediameter mindre enn 0,15 m krever normalt ikke rekkverk.

Byggegrenser

Vegloven angir 30 m byggegrense (unn-taksvis 50) langs riksveg og 12,5 m (unn-taksvis 20) langs fylkesveg og kommunal veg, regnet fra senterlinja. På firefells veg regnet fra senter nærmeste halvdel. På sterkt trafikkerte veier bør en betydelig større avstand tilstrebes gjennom arealplanarbeidet, ut fra en vurdering av miljø, sikkerhet osv. Ut fra slike vurderinger vil det ofte være ønskelig å legge bebyggelse minst 100-200 m unna sterkt trafikkerte veier.

Figur 3.16
Behandling av veg og terreng som alternativ til rekkverk.
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>Minste klotoideparameter (m)</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>Stoppunkt (s=0) (m)</td>
<td>49</td>
<td>64</td>
</tr>
<tr>
<td>Møtesikt (m)</td>
<td>108</td>
<td>138</td>
</tr>
<tr>
<td>Forbikjøringssikt (m)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Forbikjøringsmuligheter pr. 5 km</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>1200</td>
<td>2000</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>650</td>
<td>930</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste horisont. kurve uten overh. (m)</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>2460</td>
<td>4190</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Figur 3.17
Linjeføringsparametre. ÅDT 0–300 (enfelts veg).
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>110</td>
<td>160</td>
<td>230</td>
<td>330</td>
<td>480</td>
</tr>
<tr>
<td>Minste klotoideparameter (m)</td>
<td>75</td>
<td>95</td>
<td>125</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>Stoppiskt (s=0) (m)</td>
<td>64</td>
<td>82</td>
<td>102</td>
<td>124</td>
<td>149</td>
</tr>
<tr>
<td>Forbikjøringssikt (m)</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Forbikjøringssmåligheter pr. 5 km</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minste høybrekkssradius (m)</td>
<td>820</td>
<td>1350</td>
<td>2100</td>
<td>3200</td>
<td>4600</td>
</tr>
<tr>
<td>Minste lavbrekkssradius (m)</td>
<td>930</td>
<td>1270</td>
<td>1650</td>
<td>2090</td>
<td>2580</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,5</td>
<td>6,5</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9,5</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste horisont. kurve uten overh. (m)</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>250</td>
<td>350</td>
<td>450</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>Minste høybrekkssradius i kryss (m)</td>
<td>4190</td>
<td>6880</td>
<td>10650</td>
<td>15730</td>
<td>22710</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Figur 3.18
Linjeføringsparametre. ÅDT 0–1500 (tofelts veg).
Figur 3.19
Linjeforingsparametre. ÅDT 1500–5000 (tofelts veg).

<table>
<thead>
<tr>
<th>Dimensjonørende fart (km/t)</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>160</td>
<td>230</td>
<td>320</td>
<td>450</td>
<td>650</td>
</tr>
<tr>
<td>Minste klootoideparameter (m)</td>
<td>95</td>
<td>125</td>
<td>155</td>
<td>185</td>
<td>220</td>
</tr>
<tr>
<td>Stoppesikt (s=0) (m)</td>
<td>87</td>
<td>109</td>
<td>134</td>
<td>162</td>
<td>193</td>
</tr>
<tr>
<td>Forbikjøringssikt (m)</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>450</td>
<td>500</td>
</tr>
<tr>
<td>Forbikjøringsmuligheter pr. 5 km</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>1500</td>
<td>2400</td>
<td>3700</td>
<td>5500</td>
<td>7800</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>1270</td>
<td>1650</td>
<td>2090</td>
<td>2580</td>
<td>3120</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Minste horisont. kurve uten overh. (m)</td>
<td>1500</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>400</td>
<td>450</td>
<td>600</td>
<td>650</td>
<td>700</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>7750</td>
<td>12160</td>
<td>18770</td>
<td>26850</td>
<td>38100</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Dimensjonerende fart (km/t)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Minste horisontalradius (m)</td>
<td>230</td>
<td>320</td>
<td>450</td>
<td>620</td>
<td>830</td>
</tr>
<tr>
<td>Minste klotoideparameter (m)</td>
<td>125</td>
<td>155</td>
<td>190</td>
<td>225</td>
<td>260</td>
</tr>
<tr>
<td>Stoppsikt (s=0) (m)</td>
<td>119</td>
<td>147</td>
<td>178</td>
<td>215</td>
<td>255</td>
</tr>
<tr>
<td>Forbikjøringssikt (m)</td>
<td>400</td>
<td>450</td>
<td>450</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Forbikjøringsmuligheter pr. 5 km</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>2900</td>
<td>4400</td>
<td>6600</td>
<td>9800</td>
<td>14000</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>1650</td>
<td>2090</td>
<td>2580</td>
<td>3120</td>
<td>3710</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,4</td>
<td>6,7</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste horisont. kurve uten overh. (m)</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>500</td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>830</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>14490</td>
<td>22100</td>
<td>32410</td>
<td>47280</td>
<td>66510</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Figur 3.20
Linjeføringsparametre. ÅDT 5000—15000 (tofelts veg).*
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>230</td>
<td>320</td>
<td>450</td>
<td>620</td>
<td>830</td>
<td>1200</td>
</tr>
<tr>
<td>Minste kloitoideparameter (m)</td>
<td>125</td>
<td>155</td>
<td>190</td>
<td>225</td>
<td>260</td>
<td>325</td>
</tr>
<tr>
<td>Stoppunkt (s=0) (m)</td>
<td>119</td>
<td>147</td>
<td>178</td>
<td>215</td>
<td>255</td>
<td>302</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>2900</td>
<td>4400</td>
<td>6600</td>
<td>9800</td>
<td>14000</td>
<td>20000</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>1650</td>
<td>2090</td>
<td>2580</td>
<td>3120</td>
<td>3710</td>
<td>4350</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,4</td>
<td>6,7</td>
<td>5,1</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
<td>8,5</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste horisont. kurve uten overh. (m)</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>450</td>
<td>600</td>
<td>700</td>
<td>750</td>
<td>830</td>
<td>1200</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>14490</td>
<td>22100</td>
<td>32410</td>
<td>47280</td>
<td>66510</td>
<td>93300</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)*</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

*) Gjelder planskilt kryss

Figur 3.21
Linjeføringsparametre. ÅDT > 15000 (firefelts veg).
4. HOVEDVEG I MIDDELS TETT BEBYGGELSE - H2

Hvis det er lite bebyggelse som påvirker vegens plassering og utforming, kan standardklasse H1 benyttes. Hvis det er mye bebyggelse, kan standardklasse H3 benyttes. H2 veg dimensjoneres for typekjøretøy ST.

Tverrprofilet

De viktigste dimensjonene i tverrprofilet er gitt i figur 4.2.

De angitte skulderbredder er normalverdier mot kantstein. Skulderbredden kan økes hvis det ligger til rette for det, avhengig av trafikkmengde, fart, bebyggelse, terreng, arealbruk og dreneringsløsning.

Ved fartsgrense 50 og 60 km/t bør tverrprofilen reduseres til en lavere ÅDT klasse i forhold til tabellen (f.eks. fra 5–10000 til <5000), for å invitere til riktig fart. H2 veg med fartsgrense 50-60 km/t og ÅDT mindre enn 5000, kan bygges med 6,5 m bredde mellom kantsteinene.
<table>
<thead>
<tr>
<th>ÅDT</th>
<th>< 5000</th>
<th>5–10000</th>
<th>10–15000</th>
<th>>15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall felt</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Feltbredde (m)</td>
<td>3.25</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Skulderbredde (m)</td>
<td>0.5</td>
<td>0.75</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Midtdeler (m)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>>3</td>
</tr>
<tr>
<td>Vegbredde (m)</td>
<td>7.5</td>
<td>8.5</td>
<td>10</td>
<td>>20</td>
</tr>
<tr>
<td>Adskilt gs-veg</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Adskillelse (m)</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
<td>>3</td>
</tr>
<tr>
<td>Bredde gs-veg (m)</td>
<td>2.5-3</td>
<td>2.5-3</td>
<td>2.5-3</td>
<td>2.5-3</td>
</tr>
<tr>
<td>Skulderbredde gs-veg (m)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Figur 4.2
Verdier for utforming av tverrprofilet

Areal for nødstopp bør vurderes spesielt. Ved ΔT mindre enn 5000 bør det være minst en nødstoppmulighet pr. 500 m, cimensjonert for to P. Ved ΔT over 5000 bør det være minst en nødstoppmulighet pr. 200 m. Skulder kan brukes til nødstop.

Veg med fire eller flere felt bygges normalt med midtdeler. Midtdeleren kan sløyfes hvis fartsgrensen er 60 km/t eller lavere. Midtdeleren kan utføres med 3-4 m bredde mellom kjørebanene kombinert med betongrekker.

Parallelle gang-/sykkelveg kan sløyfes når ΔT på bilvegen er mindre enn 500, eller gang-/sykkeltrafikken har tilfredsstillende tilbud på lokalvegnettet slik at hovedvegen bare sjelden benyttes. 3 m adskillelse kan erstatte av rekkverk der det er trangt og dyrt.

Figur 4.3
Viktige størrelser i tverrprofilet

$K =$ Avstanden mellom langsgående linjer, det vil si midtlmje, kjørefeltlinje, kantlinje
$S_1 =$ skulder (regnes fra kantlinje til vegkant)
$S_2 =$ skulder (regnes fra dekkekant til vegkant)
$A =$ Adskillelse (regnes fra vegkant til vegkant)
Adskillelsen kan reduseres til 1 m i 50-
sone.

Det bør settes av plass til langtidslagring
av snø. Bredden på snøopplaget bør
være anslagsvis halvparten av brøytet
bredde (8 m brøytet bredde krever f. eks.
2 m snøopplag på hver side).

Linjeføring

Linjeføringen konstrueres på grunnlag av
et fartsprofil.
Verdiene i fartsprofilet (dimensjonerende
fart) brukes som inngang i figurene
bakerst i dette kapitlet.

Resulterende fall bør ikke overskride ca.
10%. Dette medfører bl.a. at minste hori-
sontalradius og største stigning ikke bør
opptre på samme sted.

Linjeføring gang-/sykkelveg

Gang-/sykkelvegene skal forbinde viktige
målområder som hjem, skole, butikk,
buss, bane, arbeid osv. Primært bør
gang/sykkelveg legges i egen trasé uav-
hengig av bilvegen og slik at den blir
naturlig å bruke. Denne typen gs-veg er
beskrevet på side 115. For parallellført
gang/sykkelveg er hovedregelen at verli-
kalkuraséen skal være like god som tillig-
gende bilveg.
Krappere horizonalkurvatur aksepteres.
Battere vertikalkurvatur aksepteres ved
bruer og underganger. Geometrien for
parallellført gs-veg bør kontrolleres mot
anbefalingene i figur 13.3 på side 116.
Kryss

Kryss med annen hovedveg dimensjoneres for typekjøretøy ST. Kryss med samleveg dimensjoneres for typekjøretøy ST eller L, etter en vurdering av virksomheterne som knytter seg til samlevegen. Det forutsettes kjøremåte A.

Ønskelig kryssavstand på H2 veg er minimum 500 m for kryss i plan og 1 km for planskilt kryss. Det kan være aktuelt å gå ned på dette, men ikke lenger ned enn at det blir plass til krysskanalisering og køappstilling, og aldri lenger ned enn 50 m. Avstanden mellom planskilt kryss kan i spesielle tilfeller reduseres ned til 500 m. Det forutsetter ekstra felt for veksling mellom kryssene.

Avstanden mellom planstilte kryss på H2 veg bør være minst 1 km, men kan reduseres ned mot 500 m forutsatt at detlegges inn ekstra felt for veksling mellom kryssene, og at avstanden til foregående kryss er så stor at forvarsling av kryssene kan bli tilfredsstillende.

Kryss på H2 veg bygges som T-kryss, rundkjøring eller planskilt kryss. X-kryss kan brukes hvis det signalreguleres, se nedenfor.

T-kryss vil være det vanligste. Graden av kanalisering avhenger av trafikkmengdene, og det bør legges vekt på ens kryssstandard langs en strekning. Sidevegsanalisering ("dråpe") bør anlegges. Venstresvingefelt bør anlegges hvis ADT på hovedvegen er over 1500 på stemveger og 5000 på andre hovedveger.

Sidevegsanalisering ("dråpe") bør alltid være fysisk opphøyd. Kanalisering i hovedvegen bør være malt hvis fartsgrensen er over 70 km/t.
Sikttrekantene i kryss bør være minst 1,5 \(x \) Ls (stoppsikt) langs primærvegen (L1 på figuren), og 10 m inn på sekundærvegen, (L2 på figuren). Stoppsikt er angitt i figurene bagerst i kapitlet. Primærvegens kjørebane bør være synlig over hele sikttrekantens lengde i primærvegen.

Rundkjøring er et alternativ hvis et vanlig kryss gir problemer med trafikksikkerhet eller avvikling. Rundkjøring brukes i kryss som er typiske knutepunkt. Hvis krysset har flere enn tre armer kan dette være et argument for rundkjøring. Likeledes hvis det er tett mellom kryssene, da gir rundkjøringen ofte bedre flyt i trafikken.

Kapasiteten for små rundkjøringar med tre armer ligger i området 3-5 000 kjøretøyer/time, og med fire armer i området 2-3 500 kjøretøyer/time.

Plansikt kryss bør anlegges når ÅDT på primærvegen er over 5 000 på stammveger, 10 000 på andre hovedveger. Plansikt kryss bør anlegges ved lavere ÅDT, hvis svingende og kryssende trafikk er stor, eller hvis terreng og bebyggelse ligger til rette for det. Ut fra sikkerhets- og kapasitetsbetraktninger er planskilt løsninger aktuelt når summen av konflikterende strømmer kommer opp i ca. 1 000 kjøretøyer/time.

Signalregulerte kryss kan brukes som alternativ til andre krysstyper der fartsgransen er 60 km/t eller lavere. Signalanlegg kan settes opp hvis kriteriet på figuren (mengde biltrafikk) eller kriteriet på figur 4.7 (mengde g-s-trafikk) er oppfylt.

Figuur 4.5
Sikttrekanter i kryss og avkjørsler. L1 og L2 er gitt i teksten.

Kryss
\[
L1 = 1,5 \times Ls \\
L2 \geq 10 \text{ m}
\]
Avkjørsler
\[
L1 = 1,2 \times Ls \\
L2 \geq 4 \text{ m}
\]

Figuur 4.6
Kriterium for signalanlegg. Aksene angir maks timebrafikk inn mot krysset på mest belastede hovedvegtilfart og sidevegtilfart.
Signallys kan også settes opp hvis det er nødvendig for at et samordnet lysanlegg skal fungere tilfredsstillende, selv om kriteriene ikke er oppfylt. Siktretkanten i signalregulerte kryss bør være \(1,2 \times L_s\) (stoppsikt) langs primærovegen (L1) og 10 m inn på sekundærovegen (L2).

Avkjørslar

H2 veg bør være avkjørselfri. Hvis det foreligger vedtak om motorveg eller avkjørselfri veg tillates ingen avkjørslar. Hvis avkjørslar anlegges skal følgende legges til grunn:

Siktretkantene i avkjørslar bør være \(1,2 \times L_s\) (\(L_s=\text{stoppsikt}\)) langs primærovegen (L1) og 4 m inn på sekundærovegen (L2).

Avkjørsl dimensjoneres for typekjøretøy P eller LL. Avkjørsl til et fåttal boliger (1-3) utformes normalt for type P. Avkjørsl til mindre boligområder (<7) utformes normalt for type LL. Avkjørsl til boligområder, industriområder og serviceanlegg utformes som kryss (gjelder også siktretkantene).

Kryssing mellom gs-veg og bilveg

Der gang-/sykkelveg munner ut i bilveg skal siktretkanten i tilknytningen være \(L_s\) (stoppsikt) langs primærovegen og 4 m inn på gs-vegen, se figur 4.9.
Der sideveg eller avkjørselsveg krysser parallellført gang/sykkelveg, skal sikttrekanten være 20-40 m langs gs-vegen og 3 m inn på sidevegen, se figur 4.11.

Kryssinger skal plasseres og utformes slik at de blir brukt. Figur 4.10 angir anbefalt kryssingstyp. Planskilt kryssing kan anlegges ved lavere trafikk der det ligger til rette for det eller der den planskiltte kryssingen er del av et sammenhengende system.

<table>
<thead>
<tr>
<th>ÅDT bilveg</th>
<th>Under 5000</th>
<th>5000–15000</th>
<th>Over 15000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–100</td>
<td>Plan</td>
<td>Plan</td>
<td>Planskilt</td>
</tr>
<tr>
<td>100–200</td>
<td>Plan</td>
<td>Planskilt</td>
<td>Planskilt</td>
</tr>
<tr>
<td>Over 200</td>
<td>Planskilt</td>
<td>Planskilt</td>
<td>Planskilt</td>
</tr>
</tbody>
</table>

Figur 4.10 Anbefalt kryss type.

Planskryssing kan anlegges som oppmerket gangsfelt der fartsgrensen er 60 km/t eller lavere. Grensekurve for gangsfelt ved fartsgrense 60 km/t er gitt på neste side. Tilsvarende kurver for fartsgrense 50 km/t er gitt på side 81. I feltet "vurderes spesielt" kan gangsfelt anlegges der gang-/sykkelveg krysser bilveg utenom vegkryss, der barn må kryssse i forbindelse med skole, barnehage o.l., på steder der det er høy andel eldre, svaksynte eller bevegelseshemmede, og andre steder med sterkt konsentrert fotgjengerkryssing.

Ved plassering og utforming av gangsfelt bør forevrig følgende kriterier legges til grunn: En billøper skal kunne se hele
gangfeltet og 1 m til siden for dette i en avstand lik stoppsiklet. Fortau, gang-/ sykkelveg eller plass til fotgjengere uten for kjørebanen skal være anlagt på begge sider før gangfeltet etableres. Gangfeltet bør plasseres slik at fotgjengerstrømmene ledes direkte inn mot gangfeltet. På en strekning bør gangfelt bare anlegges der minst 80% av fotgjengerne kan forventes å kryss i gangfeltet. Re- fuge bør anlegges hvis bredden på kjøre- banen som skal krysses er større enn 8 m. Avstanden mellom to oppmerkede gangfelt bør være minst 50 m. Avstand til nærmeste signalanlegg bør være minst 100 m. Strekning der gangfelt anlegges skal være belyst (1-2 cd/m²).

Kriterium for signalregulering av gangfelt er gitt på figuren. Gangfelt over veg med mer enn to kjørefelt bør alltid signalregulere.

Parkering og stopp

Kollektivtrafikk

Rutetraséer bør legges nær opp tilbefolk- ningskonsentrations og hovedaktiviteter. Gangavstand til stoppested bør ikke overstige 300 m i blokkebygging og 500 m i mer åpen bebyggelse, unntakvis
500 m og 1000 m. Disse anbefalingene gjelder ikke regionale ruter og ekspressruter.

Behovskriterier for busslommer og leskur framgår av figurene. Bussfelt kan være aktuelt, og bør vurderes sammen med signalprioritering og andre tiltak for å prioritere kollektivtrafikken.

Veglys

Foruten strekninger der behovskriteriene er tilfredsstilt, bør følgende steder alltid belyses:

- Tunneler
- Fotgjengerunderganger
- Gangfelt
- Kryss med fysisk kanalisering i primærveg
- Bruer med stor trafikk (ÅDT >10 000)
- Bruer med ikke adskilt gs-trafikk

Lysanleggene skal tilfredsstille krav til luminansnivå, luminansjevnhet og maks. tillatt blending gitt i kapittel 24 "Vegbelysning". For å unngå sjenerende blending for omgivelsene, bør det benyttes lysarmaturer med flatt avdekning (plane glass e.l.).

Figur 4.14
Behovskriterium for busslomme (tofelts veg).

Figur 4.15
Behovskriterium for leskur.
Sikkerhetsavstander

Minste sikkerhetsavstand (m) fra kjørebanekant til farlig hinder eller skråning brette enn 1:3, framgår av figuren. Hvis faremomentet ligger innerfor sikkerhetsavstanden, bør det heist fjernes, evt. rekkverk settes opp. Fjellskjæring, ettergivende lysmaster og trær med stammediameter mindre enn 0,15 m krever normalt ikke rekkverk.

Figur 4.16
Greensekurve for når investering i vegbelysning kan være trafikksikkerhetsmessig lønnsomt.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>< 5000</th>
<th>5–10 000</th>
<th>10–15 000</th>
<th>>15 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fartsnivå km/t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>70–80</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figur 4.17
Sikkerhetsavstander.
Byggegrenser

En H2 veg ligger vanligvis i regulert område. Hvis ikke annet er sagt i reguleringsplanen, gjelder veglovens byggegrensebestemmelser (30 m fra senter riksveg, unntaksvis 50 m, 12,5 m fra senter fylkesveg og kommunal veg, unntaksvis 20 m). Byggegrensene bør imidlertid primært vurderes og fastlegges gjennom reguleringsplanarbeidet. Av hensyn til drift og vedlikehold av vegen, sikkerhet ved utforkjøring, sikt i kryss o.l. er det vanligvis tilstrekkelig med en byggegrense 10-15 m fra vegkant. I tillegg kan det være aktuelt å sikre arealer for framtidige vegutvidelser. Slik båndlegging av areal bør bygge på konkrete vegplaner innen en tidsramme på 20 år.

I tillegg til byggegrensen bør det i reguleringsammenheng vurderes et bredt belte, 100-200 m til hver side, der arealene søkes disponert ut fra hensyn til miljø, trafikksikkerhet m.m.

Figur 4.18
Byggegrense og "vurderingssone".
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>70</td>
<td>100</td>
<td>150</td>
<td>210</td>
<td>300</td>
<td>420</td>
</tr>
<tr>
<td>Minste kloitoideparameter (m)</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>105</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>Stoppesikt (s=0) (m)</td>
<td>51</td>
<td>68</td>
<td>87</td>
<td>109</td>
<td>134</td>
<td>162</td>
</tr>
<tr>
<td>Forbikjøringsstiklengde (m)</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>500</td>
<td>900</td>
<td>1500</td>
<td>2400</td>
<td>3700</td>
<td>5500</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>390</td>
<td>560</td>
<td>760</td>
<td>990</td>
<td>1250</td>
<td>1550</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,7</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>9,5</td>
<td>9,5</td>
<td>9,5</td>
<td>9,5</td>
<td>9,5</td>
<td>9,0</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste hor. kurve uten overh. (m)</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>450</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>2670</td>
<td>4730</td>
<td>7750</td>
<td>12160</td>
<td>18370</td>
<td>26850</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figur 4,19
Linjeføringsparametre. ÅDT 0 – 5000
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>70</td>
<td>100</td>
<td>150</td>
<td>210</td>
<td>300</td>
<td>420</td>
</tr>
<tr>
<td>Minste kloitoideparameter (m)</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>105</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>Stoppunkt (s=0) (m)</td>
<td>54</td>
<td>73</td>
<td>94</td>
<td>119</td>
<td>147</td>
<td>178</td>
</tr>
<tr>
<td>Forbikjøringssiktmede (m)</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>600</td>
<td>1050</td>
<td>1800</td>
<td>2900</td>
<td>4400</td>
<td>6600</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>390</td>
<td>560</td>
<td>760</td>
<td>990</td>
<td>1250</td>
<td>1530</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7.7</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Minste hor. kurve uten overh. (m)</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>2990</td>
<td>5460</td>
<td>9040</td>
<td>14490</td>
<td>22110</td>
<td>32410</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Figur 4.20
Linjeføringsparametre. ÅDT 5000 – 15 000.
<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>70</td>
<td>100</td>
<td>150</td>
<td>210</td>
<td>300</td>
<td>420</td>
</tr>
<tr>
<td>Minste klootoideparameter (m)</td>
<td>50</td>
<td>60</td>
<td>80</td>
<td>105</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>Toppsikt (s=0) (m)</td>
<td>54</td>
<td>73</td>
<td>94</td>
<td>119</td>
<td>147</td>
<td>178</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>600</td>
<td>1050</td>
<td>1800</td>
<td>2900</td>
<td>4400</td>
<td>6600</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>390</td>
<td>560</td>
<td>760</td>
<td>990</td>
<td>1250</td>
<td>1550</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,7</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste hor. kurve uten overh. (m)</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Minste horisontale kurve i kryss (m)</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>2990</td>
<td>5460</td>
<td>9040</td>
<td>14490</td>
<td>22110</td>
<td>32410</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%) (planskilte)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Figur 4.21
Linjeføringsparametre. ÅDT >15000 (fire felt).
5. HOVEDGATE I
TETT BEBYGGLSE – H3

Dette er en gate med betydelig transportfunksjon, men en hovedgate kan også være oppholdssted, forretningsstrøk, "representasjonsgate". Fartsgrensen bør være 50 km/t. Det er forutsatt at trafikkanleggene i hovedsak tilpasses eksisterende bebyggelse. Hvis man ønsker å frigjøre seg fra bebyggelsen, f.eks. med tunnel, kan standardklasse H2 eller H1 benyttes. H3 gate dimensjoneres for typetjøretøy ST.

Tverrrprofilen
Fire felt bør benyttes ved ÅDT over 15000, ellers to felt.

Etterhils hovedgate skal ikke være smalere enn 3,5 m mellom kantstein. Tofelt hovedgate bør ikke være smalere enn 6,5 m mellom kantstein. Firefelt hovedgate bør ikke være smalere enn 12 m mellom kantstein.

Normal feltbredde bør være 3 m. Feltbredden kan økes eller reduseres med 0,25 m avhengig av plasförhold og andel store kjøretøyer. Normal skulderbredde til kantstein er 0,25 m. Skulderbredden regnes fra teoretisk kantlinje til front kantstein.

Midtdeler kan bygges hvis det er plass. Hvis det skal være trær i midtdelen, bør bredden på denne være minst 2 m. Skulder mot midtdeler 0,25 m.

Fotgiengere og syklister skal ha sitt eget areal. Fortau og evtl. sykkelfelt er som regel mest aktuelle. Trafikkdele bør anlegges der det er plass.

Avstanden fra eventuelle trær til kantsteinen bør være minst 0,5 m.
<table>
<thead>
<tr>
<th>BREDDER I METRE</th>
<th>GÅENDE/TIME (JENT)</th>
<th>TETTHET I PERSONER/M²</th>
<th>SYKEL/ADRETIME</th>
<th>FART 15-30 KM/H</th>
<th>ENVEGS TOVEGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><0,3</td>
<td>0,3-0,6</td>
<td>0,6-1,0</td>
<td>>1,0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>3600</td>
<td>1200</td>
<td>6000</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>1800</td>
<td>5400</td>
<td>1800</td>
<td>9000</td>
<td>3500</td>
</tr>
<tr>
<td>4</td>
<td>2400</td>
<td>7200</td>
<td>2400</td>
<td>12000</td>
<td>-</td>
</tr>
</tbody>
</table>

Figur 5.3
Trafikkavviklingstall for fotgjengere og syklister.

Fortau bør være minst 2 m brede. Adskilt gang/sykkelbane bør være minst 3 m bred. Sykkelbane i kjørebanenivå bør være minst 1 m.

Trafikkavviklingstall for fotgjengere og syklister er gjengitt i figuren. Valg av tettetet er et spørsmål om komfort og trivsel og hva gata bruker til.

Det bør settes av plass til korttidslagring av snø, anslagsvis fjerdedelen av brøytet brede (6 m brøytet brede krever f.eks. 0,75 m snøoppplag på hver side). Skulder, midtdeler, trafikkdele og sykkelbaner regnes med i snøoppplatet. Resten av snøoppplatet må som regel ligge på fortuavet. Den farbare fortuavbredden bør imidlertid aldri være mindre enn 2 m.

Linjeføring

Linjeføringen bør tilpasses gatearkitekturer. De rette linjefør dominerer gatebildet. I motsetning til utenfor tettbygd strek vil rette gater være å foretrekke ut fra estetiske hensyn.

I figuren er angitt minimumsverdier for linjeføring.

<table>
<thead>
<tr>
<th>Minste horisontalkurveradius (m)</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste vertikalkurveradius, høybrekk (m)</td>
<td>110</td>
</tr>
<tr>
<td>Minste vertikalkurveradius, lavbrekk (m)</td>
<td>100</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>5</td>
</tr>
<tr>
<td>Maksimal stigning, lengre strekning (%)</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning, <100 m (%)</td>
<td>9</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>1</td>
</tr>
<tr>
<td>Maksimal stigningsgrad i kryss (%)</td>
<td>6</td>
</tr>
</tbody>
</table>

Figur 5.4
Linjeføringsverdier
Linjeføring gang/sykkeltbane

Traseen for fotgjengere og syklister vil som regel følge gata med samme linjeføring.

Framkommeligheten bør kontrolleres mot geometrikravene for frittliggende gang/sykkeltveg i kapitlene 12 og 13. Disse kravene må normalt tilpasses noe i gater (gatehjørner etc.).

Gågater er beskrevet på side 119.

Kryss

Kryssplasseringen er som regel bestemt av eksisterende bebyggelse. Minste krysstavstand vurderes først og fremst fra nødvendig plasse til krysskanalisering og køoppstilling.

Kryssene bygges normalt som T-kryss, X-kryss, Y-kryss eller rundkjøring. Rundkjøring kan anlegges der det er plasse, evt. i ytterkant av H3-områder. Planfrie krysninger kan vurderes der sum kryssende strømmer i dimensjoneringen time er større enn ca. 1000 kjøretøy. Av estetiske og arealmessige grunner bør kryss innordnes i eksisterende gateløp, eller re- etablering av ødelagt bebyggelse bør planlegges sammen med gateanlegget.

Gatekryss bør utformes med konstante radier i kurvene, i motsetning til 2R-R-3R kombinasjonen som brukes i vegkryss. Linjene i gata, fortaslinjer, øyer og annen oppmerking bør være rette og parallelle med bebyggelsen.

Krysskanaliseringen bør begrensnes til evt. refuges ("hvilepause") for fotgjengere som skal kryss. Refuge bør tilstrèbes der sammenhengende kryssingslengde er mer enn 8 m. Der det er signalregulering eller der ADT er mindre enn 5000 kan denne lengden økes til 12 m.

Sikttrekkantene fra bil mot fotgjenger og fra bil mot bil framgår av figurene. Enkelt-stående hindre med bredder mindre enn 0,3 m kan stå i sikttekkanten.
Signalregulerte kryss er ofte aktuelt på H3 gate. Signalanlegg kan settes opp hvis kriteriene på figurene er oppfylt. Signallys kan også settes opp hvis det er nødvendig for at et samordnet signalanlegg skal fungere tilfredsstillende, selv om kriteriene ikke er oppfylt. Slikt i signalregulatede kryss bør være som på figuren med L1 lik 70 m og L2 lik 4 m.

Avkjørslar

Boligavkjørslar bør unngås i H3 gater. Avkjørslar til industri, forretninger osv. bør reduseres så mye som mulig. Siktretaknt i avkjørslar bør være som på figur 5.7, med L1 lik 60 m og L2 lik 4 m. De 4 m vil i noen tilfeller måte tilpasses fortas bredden. Sikt ved utkjøring fra parkeringshus og andre større trafikkskapinge virksomhet er vist på side 107.

Avkjørsla dimensjoneres for typekjøretøy P eller LL. Avkjørsla til et fåttall boliger (1-3), der boligavkjørsla må anlegges, utformes normalt for type P. Avkjørsla til et større antall boliger og til varelevering utformes normalt som type LL. Avkjørsla til industriområder og varelevering som trafikeres av større biler utformes som kryss.

Figur 5.8

Kriterium for signalanlegg. Aksene angir maks timetrafikk inn mot krysset, på mest belastede hovedvegtilfart og sidevegtilfart.

Figur 5.9

Kriterium for signalregulering av gangfelt.
Gang-/sykkeltrafikkens kryssing av gate

Kryssinger skal anlegges slik at de blir brukt. Planskilt kryssing kan anlegges der det ligger til rette for det og den vil få god bruk. Kryssing i plan vil være det vanligste.

Fotgjengerkryssing vil som regel skje i gangfelt ved kryss. Forøvrig kan gangfelt oppmerkes etter grensekurven på side 81.

Ved gangfelt bør det anlegges nedsenket kantstein, som utformes som vist på figuren.

Parkering og stopp

Parkering bør ikke tillates. Stopp kan aksepteres ved ÅDT under 5000.

Kollektivtrafikk

Busstrasseer bør legges nær bolig og aktivitetskonsentrasjoner. Gangavstand til stoppested bør ikke overskride 300 m, unntakvis 500 m.

Gatelys
Hovedgater bør belyses. Lystekniske krav m.m. er gitt i kapittel 24 "Vegbelysning" i del C.

I verneverdige miljøer med gammel bebyggelse kan de lystekniske kravene fravikes. Dette må imidlertid vurderes opp mot de trafikksikkerhetsmessige konsekvensene.

Sikkerhetsavstander
Trær og nødvendig vegutstyr kan placeres på fortuet og i midtdeler. For blinde og svaksynete er det naturlig å bevege seg langs fasadene, fortaske langskant eller andre langsgående kanter. Slike gangarealer bør om mulig være fri for stolper og andre hindringer.

Byggegrenser
Byggegrensen bør trekkes i fasadelinjen. Hvis det må rives i forbindelse med gateutvidelse, bør det tilrettelegges for ny fasadeetablering med byggegrense i den nye fasadelinjen.

Fartsdempende tiltak
Gatene bør primært utformes slik at fartsgrensen overholdes. Der dette ikke er mulig, f.eks. på eksisterende gater bør fartsdempende tiltak etableres. Fartsdempende tiltak er særlig aktuelt i forbindelse med miljøprioritert gjennomkjøring med fartsgrense 30 eller 40 km/t.
6. SAMLEVEG I
SPREDT BEBYGGELSE – S1

Tverrprofilet

De viktigste dimensjonene i tverrprofilet er gitt i figuren:

<table>
<thead>
<tr>
<th></th>
<th>0-300</th>
<th>300-1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall felt</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Feltbredde (m)</td>
<td>3</td>
<td>2,75*</td>
</tr>
<tr>
<td>Skulderbredde (m)</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Vegbredde (m)</td>
<td>4</td>
<td>6,5</td>
</tr>
</tbody>
</table>

*) 2,5 m kan brukes i kostbart terrenge

Figur 6.2
Verdier for utforming av tverrprofilet.

Figur 6.1
Eksempel på samleveg i spredt bebyggelse – S1.

Figur 6.3
Tverrprofil.

\[K = \text{kjørefelt (regnes fra midtlinje til kantlinje)} \]
\[S = \text{skulder (regnes fra kantlinje til vegkant)} \]
Linjeføring
Linjeføringsparametre er gitt i figuren. Resulterende fall bør ikke overskride ca. 10%.

Kryss
Kryss der samlevegen munner ut i hovedvegen er behandlet under H1. Nedenfor behandles kryss mellom samleveger og mellom samleveger og adkomstveger.

<table>
<thead>
<tr>
<th>Dimensjonserende fart (km/t)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalkurvatur (m)</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>200</td>
<td>270</td>
</tr>
<tr>
<td>Minste klotoideparameter (m)</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>115</td>
<td>145</td>
</tr>
<tr>
<td>Stoppstokt, s=0 (m)</td>
<td>49</td>
<td>64</td>
<td>82</td>
<td>102</td>
<td>124</td>
</tr>
<tr>
<td>Møtesikt (m)</td>
<td>108</td>
<td>138</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>500</td>
<td>800</td>
<td>1350</td>
<td>2100</td>
<td>3200</td>
</tr>
<tr>
<td>(1200)* (2000)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>650</td>
<td>930</td>
<td>1270</td>
<td>1650</td>
<td>2090</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,6</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Maksimal stigning, <100m</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>10,5**</td>
<td>10,5**</td>
<td>10,5**</td>
<td>10,5**</td>
<td>10,5**</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste hor.kurve uten overhøyde (m)</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>Minste horisontalkurve i kryss (m)</td>
<td>150</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>1580</td>
<td>2690</td>
<td>4410</td>
<td>6810</td>
<td>10070</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

*()-verdiene gjelder enfelts veg, der det må være møtesikt i høybrekk.

**) Verdi gitt for stigningslengde >100 m. For lengder <100 m er tillatt verdi 11,5%.

Figur 6.4
Linjeføringsparametre.

Avkjørsler

Antall avkjørsler bør begrenses så mye som mulig. Sikten måles som på figuren, med L1 lik stoppsikt og L2 lik 4 m.

Avkjørsler dimensjoneres for typekjøretøy P eller LL. Avkjørsel til et fåttall boliger (1-3), hytter og driftsavkjørsler til jord- og skogbruk utformes normalt for type P. Hovedavkjørsel til gårdsbruk, mindre boligområder (<7 boliger) og hytteområder utformes normalt for type LL. Avkjørsel til boligområder, industriområder og serviceanlegg utformes som kryss.

Kryssing mellom biltrafikk og fotgjengere/syklist

På steder der det forekommer mye kryssing, for eksempel ved skoler, butikker o.l., bør det være sikt som i avkjørsler. Kryssingspunktet bør utformes slik at syklister ikke ruser ut i veugen.
Parkerings og stopp
Stopp kan tillates. Parkering bør ikke tillates.

Kollektivtrafikk
Det er normalt ikke behov for kollektivfelt. Behovskriterier for busslomme og leskur er gitt i figurene.

Veglys
Det er normalt ikke behov for veglys. Hvis veglys unntaksvis settes opp, bør de lyst-tekniske kravene i kapittel 24 "Vegbelysning" i del C tilfredsstilles. Det kan være aktuelt med lyspunkter på bussholdeplasser o.l. I kapittel 24 "Vegbelysning" er det også gitt krav til slik belysning.

Sikkerhetsavstander
Minste sikkerhetsavstand (m) fra kjørebanekant til farlig hinder eller skråning brat-te en 1:3, framgår av figuren:

<table>
<thead>
<tr>
<th>Fartsnivå km/t</th>
<th>ÅDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-300</td>
<td>2</td>
</tr>
<tr>
<td>300-1500</td>
<td>2</td>
</tr>
<tr>
<td>≤ 50</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>70-80</td>
<td>3</td>
</tr>
</tbody>
</table>

Figurer:
- Figur 6.7: Behovskriterium for busslomme.
- Figur 6.8: Behovskriterium for leskur.
- Figur 6.9: Sikkerhetsavstander.
Hvis faremomentet ligger innenfor sikkerhetsavstanden, bør rekkverk settes opp eller terrenget bør mykbehandles. Fjellskjæring, ettergivende master og trær med stammediameter mindre enn 15 cm krever normalt ikke rekkverk.

Byggegrenser

Vegloven angir 30 m (unntakvisvis 50 m) byggegrense langs riksveg og 12,5 m (20 m) langs fylkesveg og kommunal veg, regnet fra senterlinja. På trafikerte veger bør en betydelig større avstand tilstretbes gjennom reguléringsplanarbeidet, ut fra en vurdering av støy, sikkerhet osv. Ut fra slike vurderinger vil det ofte være ønskelig å legge boligbebyggelse minst 50-100 m unna.

Industri og næringsvirksomhet kan det ofte være hensiktsmessig å plassere nærmere vegen. Garasjer kan ligge ved vegen, men plasseres slik at en unngår å bruke vegen som manøvreringsareal. Garasjer må ligge utenom grøft og snoopplag, og slik at sikten i avkjørsetolen blir tilfredsstillende.

Figur 6.10
Behandling av veg og terrenget som alternativ til rekkverk.
7. SAMLEVEG I
MIDDELS TETT BEBYGGELSE – S2

Dette er en veg med blandet transport- og adkomstfunksjon. Fartsgrensen bør være 50 eller 60 km/t. 40 km/t kan unntaksvise benyttes på eksisterende veg med smal vegbredde og mye bebyggelse. Samlevegene forbinder adkomstvegene med hovedvegene. Industriadkomster defineres også som samleveg. Samlevegen bør ikke være lenger enn 2 km. ÅDT bør ikke være over 1500, i byer kan det være aktuelt med samleveger med ÅDT opp til 5000. S2 veg dimensjoneres etter typekjøretøy L eller ST, etter en vurdering av virksomhetene i området.

Tverrprofilet

De viktigste dimensjonene i tverrprofilet er gitt i tabellen.

Vegnettet bør planlegges slik at gang/sykkeltrafikken ikke følger bilvegen. Hvis gs-trafikken likevel må følge samlevegen, bør det anlegges fortøy, eller adskilt gang/sykkelveg hvis biltrafikken er over 1500 eller fartsnivået høyere enn 50 km/t.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>0–1500</th>
<th>1500–5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall felt</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Feltbreddde (i boligområder)</td>
<td>2,5 m</td>
<td>2,75 m</td>
</tr>
<tr>
<td>Feltbreddde (i næringsområder)</td>
<td>2,75 m</td>
<td>3 m</td>
</tr>
<tr>
<td>Skulder mot grøft</td>
<td>0,5 m</td>
<td>0,5 m</td>
</tr>
<tr>
<td>Skulder mot kantstein</td>
<td>0,25 m</td>
<td>0,25 m</td>
</tr>
</tbody>
</table>

Figur 7.2
Verdier for utforming av tverrprofilet.
Bredden på fortaut bør være minst 2 m, på gang/sykkelveg bør bredden være 2,5-3 m. Det bør være 3 m adskillelse mellom gang/sykkelveg og bilveg. Hvis det er transt og tosigg bebyggelse, foretrekkes tosigg fortaut framfor ensidig gang/sykkelveg.

Det bør settes av plass til langtidslagring av snø. Bredden på snølageret bør være anslagsvis halvparten av brøytet bredde (6 m brøytet bredde krever f.eks. 1,5 m snøoppplag på hver side). Skulder kan brukes til snøoppplag. Fortaut kan også brukes til snøoppplag, hvis det kan skje uten at fordselsbredden på fortautet blir smalere enn 2 m.

Linjeføring

Linjeføringsverdier er gitt i figur 7.4 på neste side.

Linjeføring gang/sykkelveg

<table>
<thead>
<tr>
<th>Dimensjonserende fart (km/t)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalkurveradius (m)</td>
<td>35</td>
<td>60</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>Minste kloetoideparameter (m)</td>
<td>30</td>
<td>45</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Stoppssikt (s=0) (m)</td>
<td>36</td>
<td>50</td>
<td>66</td>
<td>85</td>
</tr>
<tr>
<td>Minste høybrekksradius (m)</td>
<td>250</td>
<td>500</td>
<td>800</td>
<td>1460</td>
</tr>
<tr>
<td>Minste lavbrekksradius (m)</td>
<td>250</td>
<td>390</td>
<td>560</td>
<td>760</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7,4</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maks stigning, stigningslengde <100m (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>9,5*</td>
<td>9,5*</td>
<td>9,5*</td>
<td>9,5*</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste horisontalkurve uten overhøyde (m)</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>Minste horisontalkurve i kryss (m)</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Minste høybrekksradius i kryss (m)</td>
<td>850</td>
<td>1640</td>
<td>2860</td>
<td>4730</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

*) Verdi gitt for stigningslengde >100 m. For lengder <100 m er tilatt verdi 10,5%.

Figur 7.4
Linjeføringsverdier

Kryss

Kryss mellom samleveg og hovedveg behandles under hovedveg. Nedenfor behandles kryss mellom samleveger og mellom samleveg og adkomstveg.

Kryssavstanden bør ikke være mindre enn 50 m og bestemmes forøvrig ut fra trafikktekniske hensyn (køopphopning m.m.). Kryssene bygges normalt som T- eller X- kryss. T-kryss bruker der tilknytning er det primære. X-kryss bruker der
Kryssing er det primære. Rundkjøring kan være et alternativ i kryss som er typiske knutepunkt og der mange vegarmer møtes.

T- og X-kryss bør ikke kanaliseres. Eventuelt kan drapé benyttes i sideveg ved stor svingende strøm. Kryss på samleveg dimensjoneres normalt for typekjøretøy L, evt. ST etter kjøremåte B.

Siktterekantene utformes som vist på figuren.

Avkjørsler

Antallet avkjørsler bør reduseres så mye som mulig. Som veiledende øvre grense for antall avkjørsler settes 6 avkjørsler pr. km for nyanlegg og 10 for utbedringer. Aktuelle avkjørsler på samleveg kan f.eks. være til garasjehusbygning, bedrifter og andre større trafikkspående virksomheter.

Siktterekant i avkjørsel framgår av figur 7.5.
Kryssing mellom gang/sykkelveg og bilveg

Der gang/sykkelveg munner ut i bilveg, skal sikten være som i avkjørsler. "Ramper" ved avslutning av parallellført gang/sykkelveg skal plasseres og utformes slik at bilførere har oversikt over syklister som kommer ut på bilvegen. Ved avslutning av gang/sykkelveg bør det anlegges en hump, av hensyn til blinde og svaksynte og for å redusere syklestatens fart.

Der avkjørselsveg krysser langsgående gang/sykkelveg skal sikten være som vist på side 55.

Planløst kryssing er aktuelt der kryssende gang/sykkeltrafikk er over 400 og ellers der det ligger til rette for det. Oppmerket gangfelt kan anlegges etter figurene, for henholdsvis fartsgrense 50 km/t og 60 km/t. I det skraverte feltet ("vurderes spesielt") kan gangfelt anlegges der gang/sykkelveg krysser bilveg utenom vegkryss, der barn må kryse i forbindelse med skole, barnehave o.l., på steder der det er høy andel eldre, svaksynte og bevegelseshemmede, og andre steder med sterkt konsentrert fotgjengerkryssing.

Ved plassering og utforming av gangfelt bør forøvrig følgende kriterier legges til grunn:

En bilfører skal kunne se hele gangfeltet og 1 m til siden for dette i en avstand lik stoppsikt. Fortau, gang/sykkelveg eller plass til fotgjengere utenfor kjørebanen

Figur 7.7
Kriterium for gangfelt, fartsgrense 50 km/t.

Figur 7.8
Kriterium for gangfelt, fartsgrense 60 km/t.
Figur 7.9
Kriterium for busslomme.

Sone I Pakrevd under dårlige klimatiske forhold
Sone II Pakrevd under svært dårlige klimatiske forhold

Kollektivtrafikk

Rutetraséer bør legges nær bolig- og aktivitetskonsentrationsjoner. Gangavstand til stoppested bør ikke overskrive 300 m i blokkbebyggelse og 500 m i mer åpen bebyggelse, unntakvis 500 m og 1000m.

Behovskriterier for busslommer og leskur framgår av figurene. Bussfelt kan være aktuelt, og bør vurderes sammen med andre tiltak for å prioritere kollektivtrafikken.
Veglys

Vegen bør belyses hvis både tilstøtende adkomstveg, samleveg eller hovedveg er belyst. Belysning kan sløyfes hvis en av tilstøtende veger ikke har belysning. Behovet for belysning bør dessuten sjekkes mot grensekurven i kapittel 24 "Vegbelysning" i del C. Belysning på S2-veg bør tilfredsstille lystekniske krav m.m. i kapittel 24.

For å unngå synsnedsettende blending for de kjørende og ubehagsblending-dominante lyspunkter for omgivelsene, bør det benyttes lysarmaturer med flat avdekning (plane glass el.l.).

Sikkerhetsavstander

Minste sikkerhetsavstand fra kjørebane- kant til farlig hinder eller skråning brattere enn 1:3, fremgår av figuren. Hvis faremomentet ligger innenfor sikkerhetsavstanden bør rekkverk settes opp eller terrenget bør mykbehandles. Fjellskjæring, ettergivende lysmast eller trær med stammediameter mindre enn 15 cm krever normalt ikke rekkverk.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>0–300</th>
<th>300–1500</th>
<th>>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fartsnivå km/t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤40</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Figur 7.11
Sikkerhetsavstander (m)

Byggegrenser

En S2 veg vil vanligvis ligge i regulert område. Hvis ikke annet er sagt i reguleringssplanen, gjelder veglovens byggegrensebestemmelser. Byggegrensene bør imidlertid primært vurderes og fastlegges gjennom reguleringssplanarbeidet.
Av hensyn til drift og vedlikehold av vegen, sikkerhet ved utforkjøring, sikt i kryss o.l. er det vanligvis tilstrekkelig med en byggegrense omkring 8-12 m fra vegkant. I tillegg kan det være aktuelt å sikre areal for framtiden vegutvikling. Slik båndlegging av areal bør bygge på konkrete vegplaner i overskuelig framtid. I tillegg til byggegrensen bør det i reguleringsammenheng vurderes et forholdsvis bredt belte, 100-200 m til hver side, der arealene bør søkes disponert ut fra hensyn til støy, trafikksikkerhet o.l.

Fartsdempende tiltak

Vegen bør primært utformes slik at fartsgrensen overholdes. Fartsdempende tiltak kan være aktuelt på eksisterende S2 veier, særlig der fartsgrensen er lavere enn 50 km/t.
8. SAMLEGATE I
TETT BEBYGGELSE – S3

Tverrofilet
Samlegater bygges med to felt. Kjørefeltbredden bør være 3 m pluss 0,25 m skulder (kantsteinsklaring) på hver side, det vil si 6,5 m mellom kantstein. Kjørefeltbredden kan reduseres til 2,75 m der det er lite store biler.

Bredden på parkeringsfelt bør være 2 m for personbiler, 3 m hvis parkeringsfeltene unntaksvis skal dimensjoneres for større biler. Det bør være 0,5 m klaring mellom parkeringsfelt og teoretisk kjørebanekant. Det vil si at 3 m kjørefelt med tosidig parkering krever 7 m mellom parkeringsstripene.

Fotgjengere og syklister skal ha sitt eget areal (fortau). Trafiikkdeler kan anlegges der det er plass. Bredden på fortau bør være minst 2 m, helst 4-5 m eller mer.

Figur 8.1
Eksempel på samlegate i tett bebyggelse – S3.

Figur 8.2
Tverrofilet.
K = kjørefelt (regnes fra midtlinje til kantlinje)
S = skulder (regnes fra kantlinje til front kantstein)
F = fortau
A = adskillelse
Bredden på adskilt gang-/sykkelbane bør være minst 3 m. Bredden på evt. sykkelbane i nivå med kjørebanen bør være minst 1 m. Trafikkavviklingstall for gående og syklende framgår av figuren. Valg av tetthet er et spørsmål om komfort og trivsel, og hva gata bruker til.

Det bør settes av plass til korttidslagring av snø, anslagsvis en fjerdedel av brøytet bredde. Skulder og sykkelbane kan brukes til snøoppplag, likeledes deler av fortøy, men farbar forutbredde bør ikke være mindre enn 2 m.

Linjeføring

Noen viktige linjeføringsverdier framgår av figuren:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalkurve radius (m)</td>
<td>20</td>
</tr>
<tr>
<td>Minste vertikalkurve radius, høybrekk (m)</td>
<td>100</td>
</tr>
<tr>
<td>Minste vertikalkurve radius, lavbrekk (m)</td>
<td>100</td>
</tr>
<tr>
<td>Maksimal overhøyde (%)</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning (%)</td>
<td>7</td>
</tr>
<tr>
<td>Maksimal stigning kort strekning (< 100 m) (%)</td>
<td>9</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>8,5*</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>1</td>
</tr>
<tr>
<td>Maksimal stigning i kryss (%)</td>
<td>7</td>
</tr>
</tbody>
</table>

*) Verdi gitt for stigningslengde >100 m. For lengde <100 m er tillatt verdi 9,5%.

Linjeføring gang-/sykkeltrasé
Gang-/sykkeltraséen vil som regel være fortvilet, som følger samme linjeføring som gata. Framkommeligheten for fotgjengere og syklister bør kontrolleres mot geometrikravene for frittliggende gang-/sykkelveg på side 115. Disse kravene må normalt tillempes i gater (gatehjørner o.l.)

Kryss
Kryss der samlegate munner ut i hovedgate, er beskrevet under H3. Nedenfor er beskrevet kryss mellom samlegater og mellom samlegate og adkomstgate.

Kryssplasseringen er som regel bestemt av eksisterende bebyggelse. Minste kryssavstand vurderes forøvrig ut fra nødvendig plass til krysskanalisering og køoppstilling.

Kryssene bygges normalt som T-kryss, X-kryss eller rundkjøringar.

Kryssene bør i utgangspunktet utformes ut fra tilgjengelig areal og eksisterende gatearkitektur. Deretter bør framkommeligheten for dimensjonerte kjøretøy og kapasiteten kontrolleres. Kryss på samlegater dimensjoneres for typekjøretøy L,

Figur 8.5
Eksempler på kryss der adkomstgate munner ut i samlegate.
evt. ST etter en behovsvurdering. Kjøre-
måte B aksepteres, men bilene må ikke
slippe inn på arealer der det kan befinner
seg fotgjengere.

Gatekryss bør utformes med konstante
radiær i kurvene, i motsetning til 2R-R-3R
kombinasjonen som brukes i vegkryss.
Linjene i gaten, fortaslinjer og annen
oppmærking bør være rette og parallele
med bebyggelsen. Kryssområdet bør
være mest mulig konsentrert, slik at fot-
gjengere kommer godt fram på hjørnene.
Krysskanalisering er som regel ikke
aktuelt.

Siktetrekanten i kryss framgår av figurene.
Det bør spesielt kontrolleres at biler som
kommer inn mot kryset, kan se fotgjeng-
er som befinner seg 3-4 m ut til siden for
kjørebanekant. Enkeltstående hindre med
diameter mindre enn 30 cm kan stå i sikt-
etrekanten. Ved kryss uten vikepliktsregu-
lering skal siktetrekantene være tilfredsstillt
for alle vegarmer.

Innkjøring til adkomstgate (f.eks. bolig-
gate) bør markeres visuelt ved hjelp av
geometrien, vegetasjon, bebyggelse,
portaler o.l.
Avkjørsler

Gang-/sykkeltrafikkens kryssing av gater

Ved gangfelt bør det anlegges nedsenket kantstein. Nedsenkingen utføres som vist på figuren på neste side.

Opphøyd gangfelt, evt. andre tiltak for å prioritere fotgjengerne, bør vurderes.

Signalregulert gangfelt er aktuelt på S3 gate når kriteriet i figur 8.8 er oppfylt. Når gangfeltet ligger nær et vegkryss, kan det være aktuelt å signalregulere hele kryss-området.

Figur 8.8
Kriterium for signalregulering av gangfelt.
Parkerings og stopp

Stopp kan tillates. Parkerings legges primært til fellesanlegg, men kan tillates i gater med lite boliger.

Kollektivtrafikk

Busstraséer bør legges nær bolig- og aktivitetssentrumasjoner. Gangavstand til stoppested bør ikke overskride 300 m, unntakvis 500 m. Kollektivfelt og buss-lommer er som regel ikke aktuelt. Kriterier for leskur framgår av figuren.

Gatelys

Samlegater bør belyses. Av hensyn til trafikksikkerheten bør belysningen tilfredsstille de fysiotekniske kravene i kapittel 24 "Vegbelysning" i del C.

I verneverdige miljøer med gammel bebyggelse vil det kunne være aktuelt å fravike kravene.

Sikkerhetsavstander

Trær og nødvendig gateutstyr kan plasseres på fortuet.

For blinde og svaksynne er det naturlig å bevege seg langs fasadene, fortauskanter eller andre langsgående kanter. Slike gangarealer bør om mulig være fri for stolper og andre hindringer.
Byggegrenser
Byggegrensen bør trekkes i fasadelinjen. Hvis det må rives i forbindelse med gateutbedring, bør det tilrettelegges for ny fasadeetablering med byggegrense i den nye fasadelinjen.

Fartsdempende tiltak
Gatene bør primært utformes slik at farksgrensen overholdes. Der dette ikke er mulig, f.eks. på eksisterende gater, bør fartsdempende tiltak etableres. Fartsdempende tiltak er særlig aktuelt i tilknytning til miljøprioritert gjennomkjøring med fartsgrense 30 eller 40 km/t.
9. ADKOMSTVEG I
SPREDT BEBYGGELSE – A1

Dette er en veg med hovedsakelig adkomstfunksjon. Vegen gir adkomst for et lite antall boliger eller virksomheter. ÅDT bør ikke overskride 300, lengden bør ikke overskride 3 km. Hvis vegen er lenger eller det er mer trafikk, kan standardklasse S1 benyttes. For boligfelt benyttes A2. For industriadkomster benyttes S2. A1 veg dimensjoneres for typekjøretøy ST eller L.

Tverrprofilet

Figur 9.1
Eksempel på adkomstveg i spredt bebyggelse – A1.

Figur 9.2
Tverrprofilet.
K = kjørebane (kantlinje - kantlinje)
S = skulder (kantlinje - vegkant)
Linjeføring

Hvis vegen er kortere enn 250 m, stilles ingen spesielle krav til linjeføringen, unntatt at typekjøretøy ST (evt. L) skal kunne komme fram. Figuren viser eksempel på en sving dimensjonert for ST. P og L kan møtes i svingen. For veger lenger enn 250 m framgår linjeføringsparametrene av figuren. Parentesverdiene gjelder tofells veg.

Figur 9.3
Eksempel på sving kombinert med møteplass.

<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste horisontalradius (m)</td>
<td>20</td>
<td>35</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Minste kloitoideparameter (m)</td>
<td>20</td>
<td>30</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Stoppsikt (m) (flat veg)</td>
<td>24</td>
<td>35</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>Møtesikten (m)</td>
<td>58</td>
<td>80</td>
<td>106</td>
<td>138</td>
</tr>
<tr>
<td>Rv min høybrekk (m), for møtesikten for stoppsikt</td>
<td>350 (120)</td>
<td>670 (250)</td>
<td>1170 (460)</td>
<td>1980 (630)</td>
</tr>
<tr>
<td>Rv min lavbrekk (m)</td>
<td>100</td>
<td>180</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Maks overhøyde (%)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maks stigning (%)</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Største resulterende fall (%)</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Minste resulterende fall (%)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Minste hor.kurve uten overhøyde (m)</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Minste hor. kurve i kryss (m)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Maks stigning i kryss (%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Figur 9.4
Linjeføringsparametre for A1 veger som er lenger enn 250 m.

94
Kryss

Sikttrykanten utformes som på figuren. Alle vegarter bør ha den gitte sikten.

Avkjørsler

Det stilles ingen krav til avstand mellom avkjørsler. Fellesavkjørsler bør tilstrekkes. Sikttrykانتens størrelse bør være 4 m fra vegkant og stoppsikt langs primærvegen (se figuren).

Avkjørsel dimensjoneres for typekjøretøy P eller LL. Avkjører til et fåttall boliger (1-3), hytter og driftsavkjørsler til jord og skogbruk utformes normalt for type P. Hovedavkjørsel til gårdsbruk, mindre boligområder (<7 boliger) og hyttetomter utformes normalt for type LL.

Parkering og stopp

Veglys

Veglys er som regel ikke aktuelt. Det kan eventuelt være aktuelt med punktlys, som har lav lysytelse (mindre enn 5000 lumen) og ikke virker blendende.

Sikkerhetsavstander

Minste sikkerhetsavstand fra kjørebanekant til farlig hinder eller skråning brattere enn 1:3, settes til 2 m. Hvis faremomentet ligger innenfor sikkerhetsavstanden, bør rakkverk settes opp eller terrenget mykbehandles. Fjellskjæring, ettergivende master eller trær med stammediameter <15 cm krever ikke rakkverk.

Byggegrenser

Veglovens bestemmelser kommer til anvendelse hvis ikke annet framgår av reguleringsplan. Ved regulering anbefales at byggegrensen trekkes min. 8 m fra vegkant. Garasje kan stå i ytterkant grøft hvis krav til sikt og snøoppdrag oppfylles.
10. ADKOMSTVEG I
MIDDELS TETT BEGYGGELSE – A2

Dette er en veg med hovedsakelig adkomstfunksjon, f.eks. boligadkomster. Industriadkomster bygges etter standardklasse S2. Fartsgrense 30 eller 50 km/t. Boligveger bør utformes slik at farten blir lav (15-30 km/t).

Vegene bør utformes som blindveger eller sløyfer. Blindveger bør ikke være lenger enn 250 m, sløyfer maks 600 m. Figuren viser utforming av A2 veger i prinsipp.

På boligveger med opp til 30 boliger (60 hvis vegen er utformet som sløyfe) kan blantet trafikk (bil, fotgjengere og syklister på samme areal) aksepteres. Forutsettingen er at det er egnet leke-, oppholds- og parkeringsarealer utenom veggrunn.

Gang-/sykkelveg med tillatt kjøring til eiendommene kan brukes som adkomstveg i utbygde områder, for inntil ca. 10 boliger.

Innerst i boligvegen kan det være aktuelt å anlegge et fellesareal for opphold og lek, der det også er mulig å kjøre. Slike arealer lages, det ikke normaler for. Arealene bør utformes slik at bilføreren kjerer meget langsamt (5-15 km/t). Hvis dette...
Figur 10.3
Adkomstveg i småhusområde.

Figur 10.4
Adkomstveg i rekkehusområde.

Figur 10.5
Adkomstveg i blokommråde.

ikke lar seg gjøre, bør ikke slike arealer anlegges.

På boligveger med fra 30 til ca. 150 boli-
ger bør det som et minimum anlegges fortau. Adskilt system for fotgjengere og syklister bør tilstrebes der det ligger til rette for det.

På boligveger med mer enn ca. 150 bo-
liger anbefales adskilt system for fot-
gjengere og syklister. Adkomstvegnettet kan for eksempel bygges i kombinasjon med gang-/sykkelveger med standard-
klasse GS2, som er beskrevet på side 115.

Figurene viser tre eksempler på adkomst-
veg i boligområder.

Tverrprofilet
Tofeltts boligveg (f.eks. 5 m kjørebane pluss skuldre) bør vurderes når vegen betjener mer enn 50 boliger langs blind-
veg eller 100 boliger langs en sløyfe. For-
øvrig er enfels veg å foretrekke, av areal-
og kostnadshensyn, og for å holde farten nede.

Enfels veg kan utformes med 3 m kjøre-
bane pluss skulde. Skulde bør være 2 x 0,5 m mot grøft og 2 x 0,25 m mot kantstein. Dette gir 3,5 m samlet dekke-
bredde. Hvis det er ønskelig av hensyn til snøopplag, plassering av kabler og led-
ninger o.l., kan kjørebanebredde 4 m nytt-
es, det vil si samlet dekkebredde 4,5 m. 4 m kjørebane bør også nytties hvis stig-
ingen er mer enn 7%.
Eventuelt fortau bør ha minst 2 m bredde. Hvis fortau anlegges, kan kjørebanebred- den reduseres med 0,5 m.

Det bør settes av plass til langtidslagring av snø. Anslagsvis 2/3 av brøyet bredde (3,5 m brøyet bredde krever ca. 1,2 m snøopplag på hver side). Det kan godt være grøntareal under snøen. Smale adkomstveger (f.eks. 3,5 m dekkebredde med blandet trafikk) bør brøyet i full bredde. Forøvrig kan skulder og grøter brukes til snøopplag. Fortausbredde overskytende 2 m kan også brukes til snø.

Vegens sideområder bør utføres slik at bilføreren har oversikt over lek og aktivite- ter langs vegen i et område 20-30 m framover og 4 m fra vegkant.

Linjeføring

Framkommelighet for dimensjonerende kjøretøy gir kravene til horisontalgeometri- en. Som nevnt over skal det være møte- muligheter for typekjøretøy P og LL. Figurern var hvordan dette kan løses i forbindelse med en kurve.

Stigninger bør ikke overstige 7% for 3 m kjørebane og 10% for bredere kjørebane. Vertikalkurveradiene bør ikke være mindre enn 100 m.

Tverrfall kan bygges ensidig med 3-5%, tverrfall bør imidlertid ikke helle utover i kurver. Takfall og V-fall kan også nyttes. Det stilles ikke generelle krav til over- høyde i kurver.

Figur 10.6

Tverrprofil.

K = kjørebane (regnes fra kantlinje til kantlinje)

S = skulder (regnes fra kantlinje til vegkant, evt. front kantstein)

F = Fortau

Figur 10.7

Eksempel på sving kombinert med møteplass.
Sikten bør være minst stoppsikt, det vil si 30 eller 50 m framover avhengig av om fartsgrensen er 30 eller 50 km/t.

Snuplasser bør utformes som vist på figuren. "Hammer" kan brukes i kostbart terrenget.

Kryss

Avkjørsler

Det stilles ingen krav til avstand mellom avkjørsler. Siktterkanten i avkjørsler bør være 4 m fra vegkant og stoppsikt langs vegen, se figuren.

Avkjørsel dimensjoneres for typekjøretøy P eller LL. Avkjørsel til et fåttall boliger (1-3) dimensjoneres normalt for P.
Avkjørsel til mindre boligområder (<7 boliger) dimensjoneres normalt for LL. Avkjørsel til større boligområder utformes som kryss.

Parkering og stopp

Veglys

Veglys bør settes opp. De lystekniske krav i kapittel 24 "Vegbelysning" i del C bør tilfredsstilles, i alle fall når fartsgrensen er 40 eller 50 km/t.

Lysanlegget må tilpasses omgivelsene. Det må derfor tas hensyn til mastehøyde og blendring. Lysarmaturene med flat avdekning (plane glass el.l.) anbefales.

Sikkerhetsavstander

Det stilles ingen krav til sikkerhetsavstander, utenom klaring for overheng.

Byggegrenser

En A2 veg ligger vanligvis i regulert område. Hvis ikke annet er sagt i reguleringss-planen gjelder veglovens byggegrense-bestemmelser. Byggegrensene bør imidlertid primært vurderes og fastlegges gjennom reguleringsplanarbeidet. Av hensyn til drift og vedlikehold av vegen, sikt i kryss o.l. er det vanligvis tilstrekkelig med en byggegrense 5-6 m fra vegkant. Garasjer kan stå nærmere, men skal ikke hindre sikt og snøopplag.

Fartsdempende tiltak

Boligveger bør utformes slik at fartsnivået blir lavt (lik eller mindre enn 30 km/t). Der dette ikke lar seg gjøre (f.eks. på eksisterende vefer) bør det iverksettes fartsdempende tiltak. Fartsdempende tiltak bør anvendes som supplement der 30-skiltet ikke kan forventes å ha tilstrekkelig effekt. Dette gjelder:

- Der hvor rettstrekninger i området er lenger enn 150 m. Som rett regnes også kurve med horisontalradius over 100 m.
- Der hvor området er belastet med gjennomgangstrafikk (bør ikke forekomme)
- Der hvor fartsnivået av andre grunner er for høyt. Gjennomsnitt bør ikke være over 30 km/t. Maks 15% bør være over 40 km/t. Ingen bør kjøre fortere enn 50 km/t.
Figur 10.10
Humper er et effektivt og rimelig fartsdempende tiltak.

Tiltakene bør utformes slik at farten blir jevnest mulig rundt et fartsnivå på 30 km/t eller lavere, og slik at bilførerens oppmerksomhet rettes minst mulig mot tiltakene og mest mulig mot forholdene på og ved vegen.

Humper er et rimelig og godt tiltak for å holde farten nede. Ved fartsgrense 30 km/t må ikke hver enkelt hump varsles. Er fartsgrensen 40 km/t er slik varsling nødvendig.

Kjørefarten skal ikke søkes redusert ved hjelp av dårlig sikt.
11. ADKOMSTGATE I TETT BEBYGGELSE – A3

For boliggater gjelder at kjøreavstand fra bilplass til mer overordnet gate ikke bør være mer enn 300 m. Parkering kan ordnes i fellesanlegg eller på gategrunn. Parkering bør om mulig legges i boligområdets ytterområder. Biloppstillingsplasser skal være oppmerket. Boliggata forøvrig brukes til opphold, sosial kontakt, lek. Disse delene av gata bør være skjermet for biler, av trafikkssikkerhetsgrunner og for å unngå uønsket parkering. Innkjøring til og utkjøring fra boliggata bør markeres visuelt ved hjelp av geometrien, vegetasjon, bebyggelse, portaler e.l.

Gatetun er en variant av boliggata som bør utformes slik at farten blir <15 km/t. Innkjøring til og utkjøring fra gatetunområdet skal skje over kantstein.

Figur 11.1
Eksempel på adkomstgate i tett bebyggelse – A3.

Figur 11.2
Tradisjonell disponering av gatetverrsnittet: Fasade-fortau-gate-fortau-fasade evt. med forhave.
Tverrprofilet

Adkomstgater utformes med ett eller to kjørefelt. I enfelt gater bør det være møteplasser anslagsvis hver 50 m. I boliggater er to felt aktuelt når gata betjener mer enn 100-200 boliger. Dette gir vanligvis en ADT på 300 til 600 eller litt mer. Feltbredden bør være 2,75 m eller 3 m, pluss minst 0,25 m kantsteinsklaring på hver side. Dette gir bredde 3-3,5 m mellom kantstein på enfelt gate, og 6-6,5 m på tofels gate.

Fortau bør være minst 2 m brede.

Det bør om mulig settes av plass til langtidslagring av snø. Bortkjøring av snø er aktuelt der det er trangt. Snøopplag kan lages som sykkelbane, rabatt o.l. Snø kan legges på fortuasbrenede overskytende 2 m. Snø kan også legges f.eks. på lekeareal hvis det ikke ødelegger leken. For langtidslagring av snø kreves et lagerareal anslagsvis halvparten av det brøytede arealet.

Linjeføring

Dimensjonere kjøretøyets framkommelighet bestemmer minste tillatte kurveradi-
er. Av estetiske, anleggsmessige og ved-
likeholdsmessige grunner bør bygater
normalt ha en rettlinjet, aksial utforming.

Kryss

Kryss der adkomstgate munner ut i sam-
legate er beskrevet under S3. Nedenfor
beskrives kryss mellom adkomstgater.
Kryssplasseringen er som regel bestemt
av eksisterende bebyggelse. Det stilles
ingen krav til kryssavstand. Kryssene
bygges normalt som T-kryss, X-kryss eller
mini-rund- kjøringer.

Kryssene bør i utgangspunktet utformes
ut fra tilgjengelig areal og eksisterende
gatearkitektur. Deretter bør framkomme-
ligheten for dimensjonere kjøretøy og
kapasiteten kontrolleres. Kryss på
adkomstgater dimensjoneres for typekjø-
retøy LL, evt. L etter kjøremåte B. ST (Kjø-
remåte B) kan vurderes hvis virksomhete-
ne i området tilsetter det.

Gatekryss bør utformes med konstante
radier i kurvene, i motsetning til 2R-R-3R
kombinasjonen som brukes i vegkryss.
Linjene i gata, fortaslinjer og oppmer-
king bør være rette og parallele med
bebyggelsen. Kryssområdet bør være
mest mulig konsentrert, slik at fotgjenger-
ne kommer godt fram på hjørnene. Kryss-
kanalisering bør ikke brukes.

Figur 11.5
I mange byer er det vanlig med trafikkdeler
mellom fortau og kjørebane.

Figur 11.6
Linjeføringen bør normalt ha et rettlinjet aksialt
preg.
Figurene viser eksempler på kryss mellom A3 gater.

Figur 11.7
Eksempel på kryss. Minirundkjøring.

Figur 11.8
Eksempel på kryss. Innsnevring.

Figur 11.9
Eksempel på kryss. Opphøyde gangfelt.

Figur 11.10
Eksempel på kryss. Brostein/heller, evt. opphøyd.
Siktterkanter er vist på figurene. Enkeltstående hindre med diameter mindre enn 30 cm kan stå i siktterkanten. Ved kryss uten vikepliktsregulering skal sikt fra bil mot bil være tilfredsstillt for alle vegarter.

Avkjørsler
Siktterkanten i avkjørsel er vist på figuren. Utkjørsel fra felles parkeringsanlegg eller andre avkjørsler med stor trafikk, bør i tillegg ha siktterkant utenfor fortuuet som vist på figuren.

Avkjørsel dimensjoneres for typekjøretøy P eller LL. Avkjørsel til et fåtall boliger utformes normalt for type P.

Gang-/sykkeltrafikkens kryssing av gater
I endel tilfeller kan blandet trafikk være akseptabelt i boliggater. Gata bør da utformes slik at konflikten mellom biler og fotgjengere blir minst mulig. Dette oppnås ved lav fart (<15 km/t) og god sikt.

I adkomstgater ellers bør fotgjengerkryssing skje ved kryss. Forovrig kan gangfelt oppmerkes etter grensekurven på figuren (neste side). I det skraverte feltet kan gangfelt anlegges der fotgjengere og syklister krysser gata utenom kryss, der barn må krysser i forbindelse med skole, barnehage o.l., på steder hvor det er høy andel eldre, svaksynte eller bevegelseshemmede, og andre steder med sterkt konsentrert fotgjengerkryssing. På en
strekning bør gangfelt bare anlegges der minst 80 % av fotgjengerne kan forventes å kryse i gangfeltet. Avstanden mellom to oppmerkede gangfelt bør være minst 50 m.

Gangfelt bør gå vinkelrett ut fra fortaret, av hensyn til blinde og svaksynes orientering. Ved gangfelt bør det anlegges nedsenket kantstein, som vist på figuren.

Gangfelt utenom kryss bør markeres visuelt.

Opphøyd gangfelt, evt. andre tiltak for å prioritere fotgjengerne, kan vurderes når kryssende gang-/sykkeltrafikk er høyere enn 400 i ÅDT, eller hvis slike tiltak er ønskelige som fartsdempere.

Parkerings og stopp
Stopp tillates i adkomstgate. Parkering tillates i fellesanlegg eller på gategrunn. Det anbefales en parkeringsdekning på 0,5-1 biloppstillingsplass pr. bolig og ca. 1 sykkelplass pr. bolig, som plasseres nær inngangen. Se forøvrig innledningen og avsnittet om tverrprofil.

Parkeringsfelt for personbil bør være 2 m brede hvis bilene står etter hverandre, 2,5 m hvis bilene står ved siden av hverandre. Parkeringsplasser for funksjons- hemmede bør være 3,8-4 m brede. Klaring mellom teoretisk kjørebanekant og parkerte biler bør være minst 0,5 m.
Gatelys
Adkomstgater bør belyses. Av hensyn til gåendes sikkerhet bør belysningen tilfredsstille de lystekniske krav i kapittel 24 “Vegbelysning” i del C. Dette er særlig viktig der fartsgrensen er 40 eller 50 km/t.

Lysanlegget må tilpasses omgivelsene, spesielt med hensyn til mastehøyde og armaturblending.

Sikkerhetsavstand
Det stilles ingen krav til sikkerhetsavstand, utenom klaring for overheng.

For blinde og svaksynte er det naturlig å bevege seg langs fasadene eller fortakstbord. Disse gangerealene bør om mulig være fri for stolper og andre hindringer.

Byggegrenser
Byggegrensen bør trekkes i fasadelinjen.
Fartsdempende tiltak

Boliggater bør utformes slik at fartsnivået blir lavt (lik eller mindre enn 30 km/t). Der dette ikke lar seg gjøre (f.eks. på eksisterende gater) bør det i tillegg til dets dempende tiltak. Fartsdempende tiltak bør brukes som supplementeringsmetode der hvor 30- skiltet og utformingen ikke kan forventes å ha tilstrekkelig effekt. Dette gjelder:

- Der hvor rettstrekninger evt. avstand mellom kryss er lenger enn 150 m

- Der hvor området er belasted med gjenomgangstrafikk (bør ikke forekomme)

- Der hvor fartsnivået av andre grunner er for høyt. Gjennomsnittet bør ikke være over 30 km/t. Maks 15 % bør være over 40. Ingen bør kjøre fortere enn 50 km/t.

Tiltakene bør utformes slik at farten blir jevnest mulig rundt et fartsnivå på 30 km/t eller lavere, og slik at bilførerens oppmerksomhet rettes minst mulig mot tiltakene og mest mulig mot forholdene i gata ellers.

Av kostnadsmessige og estetiske grunner er som regel humper og opphøyde gangfelt mest aktuelt som fartsdempende tiltak. Små kjørebanel og visuell markering av innkjøring til A3 gate kan også virke fartsdempende.
12. FRITTLIGGENDE GANG/SYKKELVEG I SPREDT BEBYGGELSE – GS1

Parallellført gang/sykkelveg er behandlet under de enkelte vegtyper foran.

Tverrprofilet
Det anbefales en dekkbredde på 2,5 til 3 m og en grusinnspenning på 0,25 m på hver side. Åpne grøfter er det mest aktuelle.

Snøopplaget bør være minst 2 m totalt, f.eks. 1 m på hver side.

Dekkebredden bør ikke reduseres i underganger. Fri høyde i underganger bør være 2,75 m, kan reduseres til 2,25 m.

Figur 12.1
Eksempel på gang/sykkelveg i spredt bebyggelse – GS1.

Linjeføring
- Gang/sykkelvegen bør ha minst like gunstig reisetid som alternativ bilveg
- Gang/sykkelvegen bør ikke ha større stigning enn alternativ bilveg (må ofte fravikes ved over- og underganger)
- Minste horisontalradius 15 m
- Stoppssikt for syklister på flat veg (<3%) 20 m
- Stoppssikt i utførbakke 40 m
- Tverrfall 3% ensidig
- Veiledende maks stigning som vist i figur 12.3 på neste side:

Figur 12.2
Tverrprofilet.
GS = gang/sykkeltunnel = dekkedebrede
S = skulder = grusinnspenning

111
Figur 12.3
Veiledende maks. stigningsforhold for GS1

<table>
<thead>
<tr>
<th>Stigningslengde m</th>
<th>Fotgjenger</th>
<th>Syklist</th>
<th>Rullestol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>8%</td>
<td>5%</td>
<td>2,5%*</td>
</tr>
<tr>
<td>50-200</td>
<td>6%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>>200</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
</tr>
</tbody>
</table>

* 8% når kortere enn 6 m

Stigninger lenger enn 200 m bør deles opp med horisontale strekninger hver 50 m, av hensyn til funksjonshemmede.

Vertikalkurvenes radius bør være minst 50 m og kurvelengden minst 15 m.

Kryss

Siktetrekanten der gang/sykkelveg munner ut i bilveg bør være 4 m inn på gs-vegen og stoppsikt langs bilvegen. Der avkjør-selsveg krysser gang/sykkelveg bør siktetrekanten være 3 m inn på avkjørselsvegen og stoppsikt for syklister langs gs-vegen. Stoppsikt for syklist er 20 m på flat veg og 40 m i utførbakke (>3%). Der to gang-/sykkelveger krysser hverandre, bør siktetrekanten være 10 m i begge retninger. Figurene på side 117 viser hvordan siktetrekantene måles.

Der gang-/sykkelvegen munner ut i bilveg, bør gs-vegen ha en hump, for å dempe syklistenes fart og for å varsle blinde og svaksynete.
Veglys

Behov for belysning av gang/sykkelvegen må vurderes i hvert enkelt tilfelle. Underganger bør ha lys.

Lystekniske krav er gitt i kapittel 24 "Veg-belysning" i del C.

Sikkerhetsavstander

Stolper, trær og andre faste hindre bør ikke stå nærmere asfaltkanten enn 0,5 m. Sporing for vedlikeholdsmaskiner må kontrolleres. På fylling bør hellingen nærmest vegen (<1 m) ikke overskride 1:4.

Byggegrenser

Det anbefales ca. 2 m fra vegkant (ytterkant skulder).
13. FRITTLIGGENDE GANG/SYKKELVEG I MIDDELS TETT BEBYGGELSE - GS2

Parallelført gang/sykkelveg er behandlet under de enkelte vegtyper foran.

Gang/sykkelveg med tillatt bilkjøring kan brukes som adkomst til ca. 10 boliger. Dette gjelder utbygging i områder med eksisterende boliger.

Tverrprofilet

Dekkebredden bør være 3 m, 4 m anbefales ved gang/sykkeltrafikk over 50 i mest belastede 15 min. Smalere bredde kan tillates etter nærmere vurdering av trafikk og vedlikehold.

Lukket drenering er som regel det mest aktuelle. Det stilles ingen krav til kantsteinsklaring.

Snøopplag bør være minst 2 m totalt, f.eks. 1 m på hver side.

Dekkebredden bør ikke reduseres i underganger. Fri hoyde i underganger bør være 2,75 m, kan reduseres til 2,25 m.

Linjeføring

- Gang/sykkelveg bør ha minst like gunstig reisetid som alternativ bilveg.

- Gang/sykkelveg bør ikke ha større stigning enn alternativ bilveg (må ofte fravikes ved over- og underganger).

![Figur 13.1](image1)
Eksempel på gang/sykkelveg i middels tett bebyggelse – GS2.

![Figur 13.2](image2)
Tverrprofilet.\nGS = dekkebredden\nS = skulder
• Minste horisontalradius 15 m
• Stoppesikt for syklister på flat veg (<3%) 20 m
• Stoppesikt i utforbakke 40 m
• Tverrfall 3% ensidig
• Veiledende maks stigning som vist i figur 13.3

Stigninger lenger enn 200 m bør deles opp med horisontale strekninger hver 50 m, av hensyn til funksjonshemmede.

Vertikalkurvens radius bør være minst 50 m og kurvelengden minst 15 m.

Ramper

Rullestoler kan forserre en stigning på 8% når den er kortere enn 6 m og en stigning på 5% når den er opp til 10 m. Mellom to ramper må det anlegges hvileplan (repos) med lengde minst 1,4 m. Rampene bør ha håndlister på begge sider i høyde ca. 0,95 m og 0,75 m. Håndlister bør begynne og slutte ca. 50 cm utenfor rampeløpet.

<table>
<thead>
<tr>
<th>Stigningslengde m</th>
<th>Fotgjenger</th>
<th>Syklist</th>
<th>Rullestol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>8%</td>
<td>5%</td>
<td>2,5%*</td>
</tr>
<tr>
<td>50-200</td>
<td>6%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>>200</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
</tr>
</tbody>
</table>

* 8% når kortere enn 6 m

Figur 13.3
Anbefalt stigning for forskjellige trafikanter
Trapper
I bratt terreng (stigning over 8%) kan det være aktuelt med trapper som supplement til gang-/sykkelveg og ramper. Opptrinnet bør være maks 0,15 m og inntrekk ca. 0,33 m. Ved høydeforskjeller over 2,5 m bør det legges inn hvileplan (repos). Det bør være håndlist på begge sider av trappa med høyde ca. 0,9 m. Håndlistene bør forlenges ca. 0,3 m ut på plant nivå.

Kryss
Sikttrekanten der gang-/sykkelveg munner ut i bilveg bør være 4 m inn på gsvegen og stoppsikt langs bilvegen. Der avkjørselsveg krysser gang-/sykkelveg bør sikttrekanten være 3 m inn på avkjørselsvegen og stoppsikt for syklister langs gsvegen. Stoppsikt for syklister er 20 m på flat veg og 40 m i utforbakke (>3%). Der to gang-/sykkelveger krysser hverandre bør sikttrekanten være 5 m i begge retninger.

Der gang-/sykkelveg munner ut i bilveg bør gsvegen ha en hump, for å dempe syklistenes fart og for å varsle blinde og svaksynte.

Veglys
Gang/sykkelveg bør belyses. Lystekniske krav er gitt i kapittel 24 "Vegbelysning" i del C.
Sikkerhetsavstander
Stolper, trær og andre faste hindre bør ikke stå nærmere asfaltkanten enn 0,5 m. Sporing for vedlikeholdsmaskiner må kontrolleres. På fylling bør hellingen nærmest vegen (<1 m) ikke overskride 1:4.

Byggegrenser
Byggegrensen bør avklares gjennom en reguleringsplan. Det anbefales byggegrense ca. 2 m fra vegkant.
14. GÅGATE I
TETT BEBYGGELSE – GS3

Figur 14.1
Eksempel på gågate i tett bebyggelse – GS3.
15. Tverrofilet
- Kjørebane og skuldre
- Grøfter, drenering
- Gang/sykkelveg, fortav
- Adskillelse mellom bilveg og gang/sykkelveg
- Middelfar
- Skråninger i løsmasser
- Skjæringer i fjell
- Møteplasser
- Fri høyde

16. Linjeferje
- Veggeometri og visuell føring
- Bruk av fartsprofil
- Klotodeparameter
- Overhøyde
- Breddetutvidelse
- Sliktkontroll
- Styring

17. Forbikjøringsfelt
- Forbikjøringsfelt i stigning
- Forbikjøringsfelt på flatte
- Forbikjøringsfelt på 13,5 m veg
- Geometrisk utforming av forbikjøringsfelt

18. Vegkryss
- Kryssplassering
- Valg av kryssetype
- Detaljutforming av kryss i plan
- Detaljutforming av rundkjøringer
- Detaljutforming av lyssignal-regulerte kryss
- Detaljutforming av planårte kryss

19. Fartsdempende tiltak
- Fartsgrenser
- Humper
- Innsnevirer
- Trafikkøyer

- Sideforskyvninger
- Rumlefe
- Fortutsutvidelse i kryss

20. Parkering
- Sykkelplasser
- Bilplasser ved bolig
- Bilplasser ved annen bebyggelse
- Utforming av sykkelplasser
- Utforming av bilplasser
- Parkeringshus

21. Kollektivtrafikk
- Generelt
- Generelle geometriske krav
- Holdeplasser og snuplasser
- Utstyr på holdeplassen
- Terminaler
- Kollektivprioritering
- Fartsdempende tiltak

22. Varelevering
- Antall losseplasser
- Utforming

23. Rasteplasser
- Avstand mellom rasteplasser
- Antall rasteplassenheter
- En eller begge kjøreretninger?
- Organisering og utstyr
- Vegetasjon
- Utforming av trafikkrealene

24. Vegbelysning
- Generelt
- Etablering av vegbelysning
- Utforming av veglysanlegg
- Blending
- Spesielle lysanlegg
- Avkjørsler
- Bussløyer

forts.
<table>
<thead>
<tr>
<th>25. Vegrekkerkverk</th>
<th>265</th>
<th>265</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behov for rekkverk</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>Plassering og utforming av rekkverk</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>Forlengelse av rekkverk</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Forankring av rekkverk</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Overgång mykt-stivt rekkverk</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Rekkverkstyper</td>
<td>269</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26. Ledegjerder</th>
<th>271</th>
<th>271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plassering</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Utforming</td>
<td>272</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27. Kantstein</th>
<th>273</th>
<th>274</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betongkantstein</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Granittkantstein</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Kantstein ved gangfelt</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Kantstein ved avskjørsler</td>
<td>276</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28. Vegetasjon</th>
<th>277</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fördeler og ulemper</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Ullk vegetasjonsbruk i og utenfor by</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Tett bebyggelse</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Busk-, staude- og gressrabatter</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Spredt bebygde områder</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>Middels tett bebygde områder</td>
<td>289</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29. Tiltak mot vegtrafikkstøy</th>
<th>293</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innladning</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Retningslinjer</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Generelt om støytiltak</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Arealplanlegging</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Vegers utforming</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Voller og skjermer</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>Fasadeisolering</td>
<td>308</td>
<td></td>
</tr>
</tbody>
</table>

122
15. TVERRPROFILET

Bredde på kjørebane, skuldre, snøopplag og sideklaring er angitt i systemdelen. Systemdelen angir også adskillelse mellom bilveg og sykkelveg.

Nedenfor følger utformingsdetaljer for kjørebane, skuldre, grøfter, gang/sykkeltbane, trafikkdeleere, midtdelere, skråninger, skjæring og møteplasser.

Breddeterminisering på kurver og for vegrekkerverk er behandlet i kapittlene "Linjeføring" og "Vegrekkerverk".

Kjørebane og skuldre

Normalt tverrfall på rettlinje med fast dekke skal være 3%. På veger med sterk piggedekksitasje bør tverrfallet økes til 4%. På grusveger bør 4% benyttes.

Tofelts veg er er normalt takprofil på rettsstrekning. Enflets veg kan ha ensidig tverrfall på rettlinje. Fireflets veg er normalt tverrfall fra midten.

Skulder asfalteres i full bredde unntatt grusavrundingen ytterst, som vanligvis kan gis en teoretisk bredd på 25 cm. Skulder skal ha samme tverrfall som kjørebanen, unntatt i ytterkurver der

Figur 15.1
Kjørebane og skulder. Størrelsene er gitt i systemdelen.
skulder med asfaltetr bredde ≥ 1 m bør helle utover med maks 2%.

Grøfter, drenering

Grøfteskråninger skal ikke være brattere enn 1:2. I midlertid bør slakte grøfter vurderes da disse kan ha fordeler som både er sikkerhetsmessige, vedlikeholds-messige, konstruksjonsmessige og estetiske. Eksempler på dette kan være at grøfteskråning 1:3 reduserer faren for velt, og grøfteskråning 1:4 gir muligheter for kontrollert oppbremning.

Detaljert beskrivelse av drenering er gitt i håndbok 018 Vegbygging

Gang-/sykkelveg, fortau

Dekkebredd og skulderbredd er definert i figuren. Tværfall på gang-/sykkelveg bør være 3%. Det kan benyttes takfall eller ensidig tværfall.

Sideklaring til stolper, hus o.l. bør ikke være mindre enn 0,5 m.
Breddetutvidelse i kurver er aktuelt avhengig av hva slags vedlikeholdsutstyr som benyttes.

Fortausbredden regnes fra husvegg eller annet fast sidehinder til front kantstein. Hvis skilt, lysmaster, trær, gjerder o.l. står på fortuet bør en breddeøkning på 0,5 m vurderes. Fortau bør ha tverrfall 2-3% mot kantstein.

Adskillelse mellom bilveg og gang-/sykkelveg

Bredden regnes fra skulderkant på bilvegen til skulderkant på gang-/sykkelvegen.

Trafikkdeleren kan bygges som grøft, med lukket, delvis lukket eller åpen drenering. Hellingen bør ikke være større enn 1:3.

Der det ligger til rette for det, bør gang-/sykkelvegen legges høyere enn bilvegen, av hensyn til trivselen for fotgjengerne og syklistene.

Trafikkdeleren bør gresskles og eventuelt beplantes med busker og/eller trær, i henhold til de sikr- og avstandskrav som er gitt i systemdelen.

Der det ikke er plass til trafikkdeler, bør det skilles med vegrekkverk.

Figur 15.4
Eksempler på adskillelse mellom bilveg og gang-/sykkelveg. Bredden er angitt i systemdelen.
Midtdeler
Breddet på midtdeler regnes fra skulderkant til skulderkant. Eventuelt rekkverk bør plasseres sentrisk.

Midtdeler bør gresskles og evt. beplantes med busker. Smale midtdeler med rekkverk kan ha fast dekke. Figurene viser aktuelle utførelser.

Kantstein mot midtdeler skal være ikke-avvisende.

Lysemaster og andre faste innretninger i midtdeleren bør være ettergivende, eller skjermet med rekkverk.

For hver 1,5-2 km bør midtdeleren kunne krysses av vedlikeholdsmaskiner. Kryssingspunktene bør også kunne brukes ved midlertidige trafikkomlegginger. Kryssingspunktene bør normalt være stengt med kjetting el.l.

Skråninger i løsmasser
Morener og usorterte friksjonsmasser kan stå i helling 1:1,5. Skråning i silt, finsand og leire bør normalt ikke gjøres brattere enn 1:2 til 1:3. Som i avsnittet om grøtter og drenering bør også her slake skråninger vurderes. Skråning 1:3 reduserer
faren for veit, og skrån ing 1:4 gir muligheter for kontrollert oppbremsing.

Skrån ing bør ikke være brattere enn angitt og utformes i harmoni med landskapet. Avvikende form, farge og overflate bør unngås der det er mulig. Skrån ing bør avrundes mot terreng.

I områder med jord- og skogbruk bør skrån ingene utformes slik at de kan inngå i produktivt areal.

Flyllinger bør primært utformes slik at rekkverk unngås, se rekk verkskapitlet.

Figuren viser aktuelle skråningsutforminger.

Skjæringer i fjell

Skjæringer gir vanligvis en helling mellom 10:1 og lodrett. I dårlig fjell kan lodrett skjæ ring kombinert med Fanggrefl gi en god løsning. Hvis fjellet ikke stiger for bratt, og det er godt fjell, kan toppen av skjæ ringen gis en avrunding for å bedre landskapstilpasningen.

Korte, lave fjellskjæringer bør om mulig formes med samme helling som tilstøtende jordskrån ing.

Utstikkende fjellpartier på mer enn 0,5 m bør fjernes. Figuren på neste side viser eksempler på fjellskjæringer.

Figur 15.6
Eksempler på skråningsutforming.
Møteplasser

På enkelts veg skal det anlegges møteplasser. Avstanden mellom møteplasser bør være 200-300 m, men aldri lengre enn at en bilfører kan se fra en møteplass til den neste. Møteplasser anlegges på den side av veien der det er mest hensiktsmessig.

Figuren viser møteplassens minste dimensjoner.

Eventuelle nødstoppeplasser kan utformes som møteplasser.

Fri høyde

Målt fri høyde over ferdig kjørebane skal være 4,70 m (4,60 m i tunneler) og 2,50 m over skulder. Fri høyde over kjørebanen kan reduseres til 3,85 m på veger som ikke trafikeres av høye kjøretøy, (4,10 m i tunneler). Ved bygging bør det legges inn en sikkerhetsmargin.

Fri høyde over jernbane skal normalt være 5,3 m. Unntakvis tillater NSB ned til 5,2 m. I parkeringshus kan det benyttes fri høyde 2,50 m når det kun er åpent for privatbiler, typekjøretøy P.
16. LINJEFØRING

Figurer med linjeføringsparametre er gitt i del B "Vegsystem og vegstandard". Nedenfor følger en mer detaljert beskrivelse av veggeometri, fartsprofi, klopotder, overhøyde, breddeutvidelse, siktkontroll og slyng.

Veggeometri og visuell føring

Romkurvaturen

Når kurvepunktene i horisontal- og vertikalplanet faller sammen, oppnås ideell linjeføring både ut fra hensynet til estetikk, visuell føring, planeringsarbeid og vannavrenning.

![Diagram av vertikalkurvatur og horisontalkurvatur](image)

Figur 16.1
Når horisontal- og vertikalkurvepunktene faller sammen, oppnås en jevn romkurvatur.
Figurer viser kurvekombinasjoner som bør unngås:

Figur 16.2
En kort vertikalkurve i en lang horisontalkurve gir en skjemmmende uregelmessighet i linjeføringen. Horisontalkurven framtrer ikke som sammenhengende.

Figur 16.3
Dersom endringene i vertikalplanet er store, vil trafikantene se vegen stykkevis. Dette kan gi trafikkfarlige situasjoner.

Figur 16.4
Linjeføring som gir "sprang" i perspektivet.
Overhøyde

Vegens geometriske form beskrives først og fremst av vegkantene og markert ved kantlinjer/rekkverk. Ved bruken av overhøyde får disse forskjellig vertikalgeometri.

Visuell føring

En riktig utformet veg hvor kjørebanekantene føres synlig og symmetrisk om vegens senterlinje vil normalt gi en tilfredsstillende visuell føring uten overraskelser. Horizontalkurver må da for eksempel startes før bakketopp slik at trafikantene oppfatter vegens videre forløp. Spesielt bør det unngås å legge overgangen mellom to motsatt rettede horizontalkurver i et høybrekk.

Bruk av fartsprofil

Dette avsnittet gjelder standardklassene H1 og H2, men kan også brukes for andre standardklasser.

For hver standardklasse er det gitt min-imums-/maksimumsvardier for de geometriske elementer. Inngangen til dimensjoneringstabellene for standardklassene H1, H2, S1, S2 og A1 er dimen- sjonerende fart og trafikkmengden.

For de øvrige standardklassene settes
bare minstekrav til geometri ut fra framkommelighet for dimensjonenede kjøretøy.

For standardklassene S1, S2 og A1 er dimensjoneringen basert utelukkende på dimensjonerede fart. Minsteverdiene finnes i dimensjoneringstabellene i systemdelen. For standardklassene H1 og H2 skal det dimensjoneres ut fra et forventet fartsprofil. Hensikten er å sette krav til samordning også når andre element enn minimums-/maksimumsverdier benyttes. Dette vil i prinsippet si at en varierer dimensjonerede fart.

De ulike geometriske verdiene må koordineres slik at det oppnås en tilfredsstillende jevnhet i forventet fartsprofil. For store ujevnheter i fartsprofilen må føre til justering av utformingen eller at spesielle tiltak foreskrives.

Fartsprofil ved fastsetting av linjeåringsparametre

Dersom linjenforkonstruksjonen har ført til at en på delstrekninger har fått en horizon
talkurvatur som er en del romsligere enn minstekurvaturen, skal H1- og H2-veger
dimensjoneres etter et forventet fartspro
c. Forutsetningen er at minstekurvaturen på disse delstrekningene representerer
en dimensjonerede fart som minst er 10
km/t større enn dimensjonerede fart for naboparsellen. Alle parametre i linjeårings
stabellene unntatt horisontalkurve

dien, skal da dimensjoneres for en høyere
verdi enn den generelle dimensjonerede
fart. En skal her legge til grunn en verdi på dimensjonerede fart som samsvarer med minste horisontalkurve radius på dis-
se delstrekningene. Delstrekninger med
varierende verdi på dimensjonerede fart
bør ikke være for korte.

For å lette arbeidet med linjetilpassingen,
er det i det følgende gitt noen retningslinjer
for konstruksjon og bruk av fartsprofil.

Hva representerer et fartsprofil?

Et fartsprofil beskriver forventet fart for
lette kjøretøy (dimensjonerede fart) ut fra valgt geometrisk utforming. I tillegg til at
en strekning bør ha en viss minste lengde, bør det ikke være for stort sprang mellom dim. fart V for nabostrekninger.

**Hvilke forhold påvirker fartsprofi
tefifles?**

Fartsprofilen skal simulere den fart førere
av lette kjøretøy vil velge ut fra vegens
 utforming under gitte vær- og føreforhold
(våt, men ren isfri vegbane i daglig

I denne sammenheng brukes 85% frakti
len. Et fartsprofil brukt f.eks i forbindelse
med effektbearbegning, må legge en
annen frakt til grunn. Mest aktuell er
middelverdien.

Det er en rekke forhold som påvirker en
bilførers fastivalg. Dette, sammen med at
metodikken helst skal brukes før for
mange detaljer er avklart, gjør det nød
vendig å forenkle. Et teoretisk riktig resul
tat ville kreve omfattende og detaljerte
ingangsdata og en komplisert regne
modell.

Fartsprofilverdien er knyttet hovedsaklig
til variasjonene i horisontalkurvene. Det
har vist seg at det er denne som er den
viktigste faktor når bilførere velger fart.
Hensikten med dimensjonering ut fra et fartsprofil er ikke å få et teoretisk helt riktig resultat, men å gi en enkel, praktisk anvisning som sikrer mot de virkelig uhel- dige løsningskombinasjoner. I tillegg til de resultater fartsprofiutformingen gir, må en selvsagt ikke gleme de vegestetiske grunnregler.

Kombinasjon av nabokurver i horisontaltraséen

Som et hjelpemiddel for å oppnå et fornuftig utgangspunkt, gir figuren til høyre vekledende verdier for akseptable kombinasjoner av nabokurver. Ved bruk av figuren vil en snart få problemer med å defi- nere hva som er nabokurver. Følgende legges til grunn som rettledende:

- Overgangskurver regnes ikke som kurver
- Når fellestangenten mellom to sirkelkurver er kortere enn 2 x minsteradien, regnes sirklene som nabokurver
- Når fellestangenten er lenger enn 2 x minsteradien, regnes rettlinje som nabokurve til de to sirkelkurvene

Kurvenes lengde har betydning for hvordan bilførerne vil oppfatte kurvens krumning. For korte sirkelkurver kan den teoretiske radius økes noe ved at personbiler i en viss grad kan "kutte" korte kurver og dermed øke kjøreradien.

![Figur 16.7](image-url)

Akseptable kombinasjoner av nabokurver i horisontaltraséen.
Klotoideparameter

Dette avsnittet gjelder for standardklassene H1, H2, S1, S2 og A1

Klotoideparameteren \((A)\) mot minste kurve finnes i dimensjoneringsfigurene i systemdelene.

Når større radier enn minsteradien benyttes, hentes dimensjonerende minste klotoideparameter fra figur 16.11. Verdien gjøres kun avhengig av standardklasse og horisontalkurveradius.

Figur 16.8
Klotoiden som enkel overgangskurve.

Figur 16.9
Vendeklotoide.

Figur 16.10
Eggkurve.

Figuren er laget for \(R\), fra \(R_{\text{min}}\) til den verdi av \(R\) hvor kurven legges med overhøyde med helling lik takfallsverdien.

For horisontalkurve radier utover dette er det ikke gitt eksakte krav til klotoideparameter. Verdien må ikke velges lavere enn den øvre verdi for standardklassen. Som veiledende verdi antydes \(A=R/4\).

Kravene gjelder både for klotoider benyttet som enkel overgangskurve, vendekurve, sammensatte klotoider og sammenstøtende klotoider.

For eggkurver benyttes parameter 0,5 . \(R_2 < A < R_2\), der \(R_2\) er den minste radien i kombinasjonen. I tillegg skal klotoideparameteren tilfredsstille kravet til \(A_{\text{min}}\) gitt i figur 16.11. Forholdet mellom de to radiene i eggkurven skal tilfredsstille krav til nabokurver gitt i figur 16.7.
<table>
<thead>
<tr>
<th>St. kl.</th>
<th>H1</th>
<th>H2</th>
<th>S1</th>
<th>S2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1-felt</td>
<td>0-1500</td>
<td>1500-5000</td>
<td>>5000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>110</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>120</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>130</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>140</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>160</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>170</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>180</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>190</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>200</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>210</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>220</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>230</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>240</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>250</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>260</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>270</td>
<td>290</td>
<td>290</td>
<td>290</td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td>280</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>290</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>300</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>310</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>330</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>340</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>

Figur 16.11
Minste klotodeparameter som funksjon av horisontalkurveradius, standardklasse og ÅDT.
Mot radier over 2000 m for standardklasse H1, over 1500 m for H2 og S1 og over 1000 m for S2 og A1 kan kloitoide sløyfes som overgangskurve. Når kloitoiden brukes som selvstendig trageringselement er kravene bare veiledende.

Overhøyde

Dette avsnittet gjelder standardklassene H1, H2, S1, S2 og A1.

En veg legges med overhøyde gjennom kurver for delvis å motvirke den tverrkraften som virker inn på kjørerøyets førings og kjøreromfort. Resten må tas opp ved sidefriksjon. Overhøyde er vegens ensidige tverrfall i kurve.

Maksimal overhøyde i horisontalkurver framgår av dimensjoneringstabellene.

Maksimal overhøyde (8 %) brukes for radier inntil en gitt radius avhengig av standardklassen. For større radier reduseres overhøyden lineært inntil ensidig tverrfall med helling lik takfallsverdien er nådd (normalt 3 %). Dersom større verdi for takfall benyttes, velges den benyttede verdi som nede verdi for overhøyde.

Laveste verdi for overhøyde benyttes inntil radius for overgang til takfall gjennom kurven er nådd. Denne radien er gitt i dimensjoneringstabellene i systemdelen.
Ved fastsetting av overhøyde til primærvegen i kryssområder brukes i utgangspunktet figur 16.13 på side 136. Dersom avlest verdi for aktuell kurveradius gir større overhøyde enn 4,5%, brukes overhøyde lik 4,5%. Dersom avlest verdi er mindre enn 4,5%, brukes avlest verdi for overhøyden.

I kryssområder bør resulterende fall minst ha en verdi som tilsvarer takfallsverdien.

<table>
<thead>
<tr>
<th>STANDARD-KLasse</th>
<th>e_d m/m</th>
<th>DIMENSIJONERENDE FART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>H1, S1</td>
<td>0,01</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0,02</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0,03</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0,04</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>0,07</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>0,09</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0,11</td>
<td>55</td>
</tr>
<tr>
<td>H2, S2, A1</td>
<td>0,01</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>0,02</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td>0,03</td>
<td>6,8</td>
</tr>
<tr>
<td></td>
<td>0,04</td>
<td>9,2</td>
</tr>
<tr>
<td></td>
<td>0,05</td>
<td>11,5</td>
</tr>
<tr>
<td></td>
<td>0,06</td>
<td>13,8</td>
</tr>
<tr>
<td></td>
<td>0,07</td>
<td>16,1</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td>18,5</td>
</tr>
<tr>
<td></td>
<td>0,09</td>
<td>20,8</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>23,1</td>
</tr>
<tr>
<td></td>
<td>0,11</td>
<td>25,4</td>
</tr>
</tbody>
</table>

Figur 16.14

Overhøyderampens lengde er avhengig av V, e_d og standardklasse.
DEL C – 16. LINJEFØRING

Overhøyderampens lengde Lo, varierer med standardklasse, verdi for V og den overhøyde e_d, som skal bygges opp. Som verdi for V benyttes dimensionsen- de fart eller verdi i fartsprofilen ($H1$ og $H2$). Lo beregnes etter formlene:

- $Lo = 10 \cdot V \cdot e_d$ for standardklasse $H1$ og $S1$
- $Lo = 7,7 \cdot V \cdot e_d$ for standardklasse $H2$, $S2$ og $A1$

e_d = den overhøyde som skal bygges opp totalt. Fra tverrfall (normalt 3%) til endelig overhøyde e. Tverrfall og overhøyde regnes i forhold til hori-

sontalt nivå.

Normalt skal overhøyden bygges opp i klotoiden, og full overhøyde skal være etablert i det punkt sirkelen begynner. Ved små klotoider kan overhøyden byg-

ges opp fra takfallsverdi til $e=0$ på rett-

linje. For klotoider som er lengre enn Lo bygges overhøyden opp til 3% for ytre kjørefelt raskest mulig, mens resten byg-

ges opp over resterende klotoidelengde. I vendekurve bygges overhøyden opp i prinsippet som to enkelklotoider, men en bygger ikke ned til takfallssituasjon for punktet med $R=00$. Her blir overhøyden 0% for begge kjørefelt.

Oppbyggingen skjer ved dreining om senterlinjen for 1 og 2-felts veger. Flerfelts veger behandles i prinsippet på samme måte som 2-felts veger. Hver kjørebane dreies samlet om kjørebanekant mot midtdeler (tilsvarer senterlinjen for 2-felts veger).

Alternativt kan oppbyggingen skje med vandrende knekkpunkt.
Figur 16.17
Overhøydeoppbygging ved overgang rettlinjesirkel, der parameter A er endel større enn A_{min}.

Figur 16.18
Overhøydeoppbygging ved overgang rettlinjesirkel, med parameter A mye større enn A_{min}.

Figur 16.19
Overhøydeoppbygging i vendekurve med parameter A tilnærmelik A_{min}.

Figur 16.20
Overhøydeoppbygging i vendekurve med parameter A mye større enn A_{min}.

Figur 16.21
Overhøydeoppbygging med overgang rettlinjesirkel, der parameter A er tilnærmelik A_{min}.

Figur 16.22
Overhøydeoppbygging med direkte overgang mellom rettlinje og sirkel.
Breddeutvidelse

Dette avsnittet gjelder alle standardklasser. Nødvendig breddeutvidelse for 2-felts veg på fri vegstrekning er gitt i figuran. Figuran gjelder for 2-felts veg og gir total breddeutvidelse RB basert på formelen:

$$\Delta B = 2bs + bo + 0.15 \text{ (m)}$$

der bs = økning i sporingsbredde
bo = økning p.g.a. overheng
0,15 = fast styringstillegg

Breddeutvidelsen gjelder alle standardklasser og er uavhengig av vegbredden. Det er forutsatt kjøremåte A, og de teoretiske mål for dimensjonerende kjøretøy er lagt til grunn.

Regler for breddeutvidelse der:

- Det vil være aktuelt å legge inn breddeutvidelse for alle kurver med horisontalkurveradius mindre enn 500 m, noe varierende avhengig av hvilke type-kjøretøy som er dimensjonerende
- Avlest, interpolert verdi for breddeutvidelse i figuran rundes av til nærmeste 0,10 m
- Breddeutvidelsen fordeles med en halvpart på hver side av vegen
- Breddeutvidelsen bygges normalt opp lineært over overgangskurvens lengde. Ved lange overgangskurver kan breddeutvidelsen utføres over en kortere strekning
- I vendekurver hvor begge sirkelkurvene har breddeutvidelse, kan det være aktuelt å ikke bygge ned breddeutvidelsen til 0 i vendepunktet. Et alternativ kan være å bygge ned breddeutvidelsen til $\Delta B/2$ i hver krótoide, og så fordele forskjellene i breddeutvidelsen lineært på mellomliggende strekning forbi vendepunktet
- Ved sammenstøttende krótoider eller der en har korte sirkelkurver bør breddeutvidelsen utføres over en lengde tilsvarende V/3
- 4-felts veger behandles som to 2-felts veger
- 4-felter veger gis halv breddeutvidelse i forhold til 2-felts veg

<table>
<thead>
<tr>
<th>TYPE KJØRETOY</th>
<th>HORISONTALKURVERADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Semitrailer ST</td>
<td>2,7</td>
</tr>
<tr>
<td>Vogntog VT</td>
<td>2,3</td>
</tr>
<tr>
<td>Buss B</td>
<td>1,8</td>
</tr>
<tr>
<td>Lastebil L</td>
<td>1,5</td>
</tr>
<tr>
<td>Liten lastebil LL</td>
<td>0,9</td>
</tr>
<tr>
<td>Personbil P</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Figur 16.23
Breddeutvidelsen i kurver på 2-felts veg for ulike dimensjonerende typekjøretøy.

140
I kryss eller trange partier kan det være aktuelt å se på hvert enkelt kjørefelt for seg. Disse partier må kontrolleres med kjøretøysjabloner.

Siktkontroll

Ved prosjektering av en veglinje vil siktkrav være knyttet til enkeltelementene i horisontal- og vertikalkurvaturen. Det må derfor kontrolleres at sikttforholdene i romkurven blir tilfredsstillende. Dette har betydning for utformingen av tverrprofil og sideterræn. Hverken i minstekurve i fjellskjæring eller i tunnel er stoppsiktkravet sikret uten at grøfta utvides.

Siktkontrollen kan utføres ved bruk av standard EDB-program.

I normalen er gitt en enkel metode som viser sikkombinasjon av lang horisontalkurve og vertikalcurve.

Figur 16.25 på neste side viser nødvendige verdier for B for ulike kurverader og siktkrav (siktkravet er forutsatt målt langs senterlinjas bue).

Verdien for h vil variere. I figur 16.26 og 16.27 på side 143 er vist verdier for h for ulike vertikal kurverader og siktkrav for dimensjonering etter henholdsvis stoppsikt og møtesikt (forbikkjøringssikt).

Ved dimensjonering brukes s=0 selv om det er mindre fall eller stigning, unntatt for tunneler.

Figu 16.24
Prinsippskisse siktkontroll.

\[
\begin{align*}
a_1 &= 1,1 \text{ m} \\
a_2 &= 0,3 \cdot 2,9 \times 10^{-4} \text{ Ls} \\
a_3 &= 1,35 \cdot 2,9 \times 10^{-4} \text{ Lm, Lf}
\end{align*}
\]
Vertikalkurver dimensjonert etter stoppsiktkrav for horisontal veg (s=0) kan gi for dårlig sikt dersom annen stigning legges til grunn ved beregning av siktkravet. Ved fall på 8-10% bør Ls økes med 10-20%

Dette aksepteres for rettlinjer og slake kurver. Her kan mer av friksjonen brukes til bremsing da det er mindre behov for å oppta sidekrefter. Sikkontroll vil derfor begrense seg til å kontrollere sikten når siktlinja ligger utenfor vegkanten.

<table>
<thead>
<tr>
<th>Horizontal kurveradius (m)</th>
<th>SIKTLENGDE, (L_s), (L_m), (L_f) (m) MÅLT LANGS SENTERLINJEN</th>
<th>I AKTUELT KJØREFELT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>4.4</td>
<td>6.3</td>
</tr>
<tr>
<td>80</td>
<td>3.9</td>
<td>5.6</td>
</tr>
<tr>
<td>90</td>
<td>3.4</td>
<td>5.0</td>
</tr>
<tr>
<td>100</td>
<td>3.1</td>
<td>4.5</td>
</tr>
<tr>
<td>125</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>150</td>
<td>2.1</td>
<td>1.0</td>
</tr>
<tr>
<td>175</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>200</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>225</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>250</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>300</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>350</td>
<td>2.3</td>
<td>2.9</td>
</tr>
<tr>
<td>400</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>450</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>500</td>
<td>2.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Figur 16.25
Samhørende verdier for avstand (B) senter kjørefelt til sidehinder ved ulike kurveradier (R) og siktkrav (L)
Del C - 16. Linjeføring

Tabell

<table>
<thead>
<tr>
<th>L</th>
<th>Lengde Ls (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>30, 50, 75, 100, 125, 150, 200, 250, 300,</td>
</tr>
<tr>
<td>300,</td>
<td>.321</td>
</tr>
<tr>
<td>500,</td>
<td>.471</td>
</tr>
<tr>
<td>600,</td>
<td>.508</td>
</tr>
<tr>
<td>700,</td>
<td>.535</td>
</tr>
<tr>
<td>800,</td>
<td>.555</td>
</tr>
<tr>
<td>1000,</td>
<td>.583</td>
</tr>
<tr>
<td>1250,</td>
<td>.606</td>
</tr>
<tr>
<td>1500,</td>
<td>.621</td>
</tr>
<tr>
<td>2000,</td>
<td>.639</td>
</tr>
<tr>
<td>2500,</td>
<td>.651</td>
</tr>
<tr>
<td>3000,</td>
<td>.658</td>
</tr>
<tr>
<td>4000,</td>
<td>.668</td>
</tr>
<tr>
<td>5000,</td>
<td>.673</td>
</tr>
<tr>
<td>6000,</td>
<td>.677</td>
</tr>
<tr>
<td>7000,</td>
<td>.680</td>
</tr>
<tr>
<td>8000,</td>
<td>.682</td>
</tr>
<tr>
<td>10000,</td>
<td>.694</td>
</tr>
<tr>
<td>15000,</td>
<td>.688</td>
</tr>
<tr>
<td>20000,</td>
<td>.690</td>
</tr>
<tr>
<td>30000,</td>
<td>.692</td>
</tr>
<tr>
<td>40000,</td>
<td>.693</td>
</tr>
<tr>
<td>50000,</td>
<td>.693</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>30, 50, 75, 100, 125, 150, 200, 250, 300,</td>
<td></td>
</tr>
</tbody>
</table>

Figur 16.26
Verdi for h for ulike vertikalkurveradier ogstoppsiktigkrav.

<table>
<thead>
<tr>
<th>R_v</th>
<th>Lengde L_m (L_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500</td>
</tr>
<tr>
<td>600</td>
<td>0.04</td>
</tr>
<tr>
<td>700</td>
<td>0.21</td>
</tr>
<tr>
<td>800</td>
<td>0.34</td>
</tr>
<tr>
<td>1000</td>
<td>0.51</td>
</tr>
<tr>
<td>1250</td>
<td>0.65 0.21</td>
</tr>
<tr>
<td>1500</td>
<td>0.75 0.38</td>
</tr>
<tr>
<td>2000</td>
<td>0.86 0.59 0.23</td>
</tr>
<tr>
<td>2500</td>
<td>0.93 0.71 0.43 0.08</td>
</tr>
<tr>
<td>3000</td>
<td>0.98 0.79 0.56 0.27</td>
</tr>
<tr>
<td>4000</td>
<td>1.04 0.90 0.72 0.50</td>
</tr>
<tr>
<td>5000</td>
<td>1.07 0.96 0.82 0.64</td>
</tr>
<tr>
<td>6000</td>
<td>1.10 1.00 0.88 0.74 0.36</td>
</tr>
<tr>
<td>7000</td>
<td>1.11 1.03 0.93 0.80 0.48 0.07</td>
</tr>
<tr>
<td>8000</td>
<td>1.13 1.05 0.96 0.85 0.57 0.21</td>
</tr>
<tr>
<td>10000</td>
<td>1.14 1.09 1.01 0.92 0.70 0.41 0.08</td>
</tr>
<tr>
<td>15000</td>
<td>1.17 1.13 1.08 1.02 0.86 0.67 0.43 0.15</td>
</tr>
<tr>
<td>20000</td>
<td>1.18 1.15 1.11 1.06 0.95 0.80 0.62 0.41 0.17</td>
</tr>
<tr>
<td>30000</td>
<td>1.19 1.17 1.14 1.11 1.03 0.93 0.81 0.66 0.50 0.32 0.11</td>
</tr>
<tr>
<td>40000</td>
<td>1.20 1.18 1.16 1.13 1.07 0.99 0.90 0.79 0.67 0.53 0.37</td>
</tr>
<tr>
<td>50000</td>
<td>1.20 1.19 1.17 1.15 1.10 1.03 0.96 0.87 0.77 0.65 0.53</td>
</tr>
</tbody>
</table>

Figur 16.27
Verdier for h for ulike vertikalkurveradier og møte/forbikjøringsiktigkrav.

143
Slyng

En slyng er et linjeføringselement med liten horisontalkurveradius (RCL ≤ 40 m) og som har en retningsforandring vesentlig større enn 90°. I en slyng travikes bevisst kravene i henhold til dimensjoneringende fart for tilstøtende veg.

<table>
<thead>
<tr>
<th>KJØREBANEBREDDE (m)</th>
<th>SLYNGKLASSE</th>
<th>DIMENSIJONERES FOR MØTING MELLOM</th>
<th>MINSTE RADIUS (m)</th>
<th>MERKNADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5-7.0</td>
<td>12</td>
<td>ST</td>
<td>12</td>
<td>ST og P kan møtes. Konstrueres med L i indre kjørefelt, ST kan trafikere slyngen. 10 m er minsteradius for brøyting med lastebil. ST kan trafikere slyngen med redusert fart.</td>
</tr>
<tr>
<td>5.5-6.0</td>
<td>2</td>
<td>2 L</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5.0-5.5</td>
<td>3</td>
<td>L og P</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td><5.0</td>
<td>4</td>
<td>2 P</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Figur 16.28
Slyngklasser.

Slyngklasser
Slyngklassene knyttes til tilstøtende vegs kjørebanebredder i henhold til figuren.

Horisontalkurvature
Senterlinjen består av en sirkelkurve og opprettingskurve mot tilstøtende elementer, se figur.

Opprettlingskurven O–K, består av 1-3 sammensatte klotoider, avhengig av minsteradien i slyngens senterlinje.

Figur 16.30 på neste side viser opprettingskurvens sammensetting for variertende slyngklasse og senterlinjens minste horisontalkurveradius.
Figur 16.30
Opprettingskurvens sammensetning.

<table>
<thead>
<tr>
<th>SLYNGKLASSE</th>
<th>R ≤</th>
<th>1. KLOTOIDE</th>
<th>2. KLOTOIDE</th>
<th>3. KLOTOIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R beg.</td>
<td>R slutt</td>
<td>R beg.</td>
<td>R slutt</td>
</tr>
<tr>
<td>1</td>
<td>R < 20</td>
<td>A=40</td>
<td>A=15</td>
<td>A=8</td>
</tr>
<tr>
<td></td>
<td>R=∞</td>
<td>R=70</td>
<td>R=70</td>
<td>R=20</td>
</tr>
<tr>
<td>40>R ≥ 20</td>
<td>A=40</td>
<td>A=15</td>
<td>R=∞</td>
<td>R=70</td>
</tr>
<tr>
<td>2 og 3</td>
<td>R < 30</td>
<td>A=40</td>
<td>A=17,5</td>
<td>A=8</td>
</tr>
<tr>
<td></td>
<td>R=∞</td>
<td>R=100</td>
<td>R=100</td>
<td>R=30</td>
</tr>
<tr>
<td>40>R ≥ 30</td>
<td>A=40</td>
<td>A=17,5</td>
<td>R=∞</td>
<td>R=100</td>
</tr>
<tr>
<td>4</td>
<td>R < 30</td>
<td>A=13</td>
<td>A=6,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R=∞</td>
<td>R=30</td>
<td>R=30</td>
<td>R=R ≤</td>
</tr>
<tr>
<td>40>R ≥ 30</td>
<td>A=13</td>
<td></td>
<td>R=∞</td>
<td>R=R ≤</td>
</tr>
</tbody>
</table>

Figur 16.31
Verdier for total ∆R og opprettingskurvens lengde (m).

<table>
<thead>
<tr>
<th>SLYNGKLASSE</th>
<th>1</th>
<th>2 og 3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R ≤</td>
<td>ΔR</td>
<td>L_{opp.k.}</td>
<td>ΔR</td>
</tr>
<tr>
<td>10</td>
<td>2,51</td>
<td>33,03</td>
<td>1,39</td>
</tr>
<tr>
<td>12</td>
<td>2,23</td>
<td>32,26</td>
<td>1,24</td>
</tr>
<tr>
<td>14</td>
<td>2,00</td>
<td>31,69</td>
<td>1,12</td>
</tr>
<tr>
<td>16</td>
<td>1,80</td>
<td>31,25</td>
<td>1,03</td>
</tr>
<tr>
<td>18</td>
<td>1,62</td>
<td>30,89</td>
<td>0,94</td>
</tr>
<tr>
<td>20</td>
<td>1,43</td>
<td>29,64</td>
<td>0,85</td>
</tr>
<tr>
<td>22,5</td>
<td>1,29</td>
<td>28,64</td>
<td>0,77</td>
</tr>
<tr>
<td>25</td>
<td>1,17</td>
<td>27,82</td>
<td>0,70</td>
</tr>
<tr>
<td>27,5</td>
<td>1,08</td>
<td>27,14</td>
<td>0,63</td>
</tr>
<tr>
<td>30</td>
<td>0,92</td>
<td>26,07</td>
<td>0,51</td>
</tr>
<tr>
<td>35</td>
<td>0,80</td>
<td>25,27</td>
<td>0,44</td>
</tr>
</tbody>
</table>
Figur 16.32
Breddesøknings forløp i indre kjørefelt i slyng

<table>
<thead>
<tr>
<th>Normal kj.banebredde m</th>
<th>Slyngklasse</th>
<th>Kjørefelt</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Indre</td>
<td>8.80</td>
<td>7.80</td>
<td>7.10</td>
<td>6.60</td>
<td>6.20</td>
<td>5.60</td>
<td>5.30</td>
<td>5.00</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>6.20</td>
<td>5.90</td>
<td>5.70</td>
<td>5.50</td>
<td>5.30</td>
<td>5.00</td>
<td>4.80</td>
<td>4.60</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>1</td>
<td>Indre</td>
<td>8.50</td>
<td>7.50</td>
<td>6.90</td>
<td>6.30</td>
<td>6.00</td>
<td>5.30</td>
<td>5.00</td>
<td>4.80</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>6.00</td>
<td>5.70</td>
<td>5.50</td>
<td>5.30</td>
<td>5.10</td>
<td>4.80</td>
<td>4.60</td>
<td>4.40</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>1</td>
<td>Indre</td>
<td>6.00</td>
<td>5.50</td>
<td>5.20</td>
<td>4.90</td>
<td>4.70</td>
<td>4.40</td>
<td>4.20</td>
<td>4.00</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>4.30</td>
<td>4.20</td>
<td>4.10</td>
<td>4.00</td>
<td>3.90</td>
<td>3.70</td>
<td>3.60</td>
<td>3.60</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>2</td>
<td>Indre</td>
<td>5.80</td>
<td>5.30</td>
<td>5.00</td>
<td>4.70</td>
<td>4.50</td>
<td>4.20</td>
<td>3.90</td>
<td>3.70</td>
<td>3.60</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>4.10</td>
<td>4.00</td>
<td>3.90</td>
<td>3.80</td>
<td>3.70</td>
<td>3.50</td>
<td>3.40</td>
<td>3.40</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>2</td>
<td>Indre</td>
<td>5.60</td>
<td>5.30</td>
<td>5.00</td>
<td>4.70</td>
<td>4.50</td>
<td>4.20</td>
<td>3.90</td>
<td>3.70</td>
<td>3.60</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>3.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
</tr>
<tr>
<td>5.5</td>
<td>3</td>
<td>Indre</td>
<td>5.50</td>
<td>5.00</td>
<td>4.70</td>
<td>4.40</td>
<td>4.20</td>
<td>3.90</td>
<td>3.70</td>
<td>3.50</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>3.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
</tr>
<tr>
<td>5.0</td>
<td>3</td>
<td>Indre</td>
<td>3.90</td>
<td>3.20</td>
<td>3.00</td>
<td>2.90</td>
<td>2.90</td>
<td>2.80</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.60</td>
</tr>
<tr>
<td>3.0</td>
<td>4</td>
<td>Indre</td>
<td>3.90</td>
<td>3.20</td>
<td>3.00</td>
<td>2.90</td>
<td>2.90</td>
<td>2.80</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ytre</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Figur 16.33
Kjørefeltbredder (m) i slyng.

Til hjelp ved konstruksjon av slyng, er det totale tangentinnykket for den sammen- satte klotoiden (ΔR) og kurvens lengde gitt i figur 16.31 på forrige side.

Indre kjørefeltkant utformes som en sirkelkurve over samme vinkel og med samme senter som senterlinjens sirkelkurve. Breddeutvidelsen i slyngen foretas over en strekning lik opprettingskurvens lengde + 15 m.
Ytre kjørefeltkant består av en sirkelkurve med samme senter som senterlinjens sirkelkurve. En eventuell retningsforandring på ytre kjørefeltkant fra tilstøtende element til sirkelkurven, jevnes ut over en strekning på 15 m fra det punkt hvor tangenta til sirkelkurven er parallell med tilstøtende element (Oy-Ky på figur 16.29).

Bredder

Kjørefeltbredden i slyngens sirkelkurver framgår av figur 16.33 på forgående side. I slyngen reduseres skulderbredden til 0,40 m.

Overhøyde

Overhøyden i slyngen gis samme tallverdi som takfallet på rettlinje. Senterlinjen nyttes som dreiningsaks for overhøydeoppbyggingen.

Stigninger og vertikal kurvatur

Maksimal stigning i indre kjørefeltkant skal ikke overstige maksimal tillatt stigning for vegen forøvrig. Dette, sammen med en del kjøretøytekniske forhold ved kjøring i kruppe kurver, gjør at tillatt stigning langs senterlinjen i slyngen må reduseres vesentlig. Figuren gir maksimale stigningsverdier for slyngens senterlinje.

I slyng hvor maksimalstigningen i henhold til dimensjonerende fart ikke benyttes på tilstøtende vegstrekning, bør anvendt maksimalstigning benyttes som S_{max} for ikke å gi skjerpet stigning gjennom slyngen.

![Figur 16.34](image)

Maksimal tillatt stigning (%) i senterlinjen i slyng avhengig av maksimal tillatt stigning på tilstøtende vegstrekning og slyngens horisontalkurve radius i senterlinjen.
I slyngen skal stigningen reduseres fra sirkelkurvens begynnelselse til det profil der indre kjørefelt har normal vegbredde. Slyngen betraktes ved kjøring oppover. Figuren viser hvordan avslakingen skal utføres.

Figur 16.36 viser minste vertikalkurve-radius i slyng.

Vertikalkurvene utføres slik at kurvene avsluttes, eventuelt begynner, omtrent i samme profil som stigningsreduksjonen begynner, eventuelt slutter.
17. FORBIKJØRINGSFELT

Forbikjøringsfelt er mest aktuelt på H1 og H2 veger.

I prinsippet kan forbikjøringsfelt brukes på fire måter:

- I stigning, (tidligere kalt krabbefelt).
- Som forbikjøringsmulighet på flat veg, da som alternativ til forbikjøringsisikt.
- Som kontinuerlig forbikjøringsfelt på 13,5 m veg.
- I lange bratte utforbakker

Forbikjøringsfelt i stigning

Ekstra felt i stigning anlegges etter følgende kriterier:

- Når trafikkmengden er så stor at stigningene gir stor kapasitetsreduksjon.
- Når stigningen er så lang og bratt at kritisk fartsdifferanse mellom tunge og lette biler opptrer.

Ekstra felt i stigning kan også anlegges som ren forbikjøringsmulighet.

Trafikkmengde

Trafikkmengde som nødvendiggjør ekstra felt i stigning, vurderes bl.a. ut fra vegfunksjon og andel tunge biler. Som håndregel anbefales at ekstra felt anlegges ved ÅDT > 3000 på stamveger, og ved ÅDT > 5000 på andre veger.

Kritisk fartsdifferanse

Forbikjøringsfeltets begynnelse skal senest være i det punkt der fartsreduksjonen for en tung bil er lik kritisk verdi.
Figur 17.1
Kurve som viser tunge kjøretøys fart i stigning.

Figuren til venstre gir grunnlag for å bedømme feltets begynnelsel.

Den kritiske eller dimensjonerende fartsreduksjon, Vd, som legges til grunn for detaljplanleggingen knyttes generelt til vegtypen.

\[V_d = 15 \text{ km/t for motorveg og avkjørselsfri veg.} \]

\[V_d = 20 \text{ km/t for avkjørselsregulert veg.} \]

Sterkt trafikerte avkjørselsregulerte veger bør dimensjoneres for \(V_d = 15 \text{ km/t,} \)
spesielt der hvor tungtrafikken er relativt betydelig.

Hvor stigningsendringen er liten, regnes stigningens lengde fra tangentenes skjæringspunkt. Ved større verdier av stigningsendringen, f.eks. sd større enn 8%, bør bare ca. 1/4 av vertikalkurven regnes å tilhøre stigningen. Forbikjøringsfellet sløyfes hvis beregnet lengde blir mindre enn 2-300 m.

Forbikjøringsfelt på flat veg

Det er ønskelig å sikre tilstrekkelig forbikjøringssekt langs 2-felts veger. Det vises til systemdelen, der det angis et antall forbikjøringsmuligheter per 5 km:

- ÅDT 0–1500 → 1 mulighet
- ÅDT 1500–5000 → 2 muligheter
- ÅDT > 5000 → 3 muligheter
På motorveger og andre viktige veier vurderes forbikjøringsmulighetene spesielt.

I kupert terreng kan forbikjøringssikt føre til store anleggskostnader. Forbikjøringsfelt kan da være et gunstig alternativ. Veglinjen kan fylges bedre i terrengen, og til tross for bredere tverrprofil kan det oppnås besparelser. Strekninger med forbikjøringsfelt bør imidlertid ikke ha mindre horisontalkurvatur enn \(1.5 \cdot R_{\text{min}}\).

Slike forbikjøringsfelt bør være minst 1 km lange, og kan med fordel legges til stigninger.

Forbikjøringsfelt på 13,5 m veg

På 13,5 meters veier med tre kjørefelt, fungerer det ene feltet som et kontinuerlig forbikjøringsfelt.

Slike veier er aktuelle på stamveger utenfor tettbygd strøk ved ADT 10–15000.

Overganger ved forbikjøringsfelt i begge retninger, må plasseres på oversiktlig steder slik at man får tilstrekkelig gode siktforhold.

![Diagram](image)
Figur 17.2
Kontinuerlig forbikjøringsfelt med overgang. (80 km/t).
Lengden på slike forbikjøringsfelt bør være minst 3 km, og kan med fordel legges til stigninger.

Geometrisk utforming av forbikjøringsfelt

På tofelts vejer skal høyre felt være gjenomgående, det ekstra kjørefeltet betegnes som forbikjøringsfelt.

Forbikjøringsfeltet gis samme bredde som det gjenomgående kjørefelt. Skulderen skal være like bred som langs vegen forøvrig.

2-felts vegens midtlinje må være tydelig oppmerket.

Forbikjøringsfelt i stigning skal ha full bredde i det punkt hvor kritisk stigningslengde er nådd. Forut for dette punktet bygges en overgang.

Forbikjøringsfelt i stigning har sin teoretiske slutt i det punkt hvor dimensjonerende fartsdifferanse igjen realiseres. Fra dette punktet videreføres feltet med en tilpasningslengde på min. 60 m. Deretter følger overgangsstrekningen.

Ved feltets avslutning må siktforholdene være slik at en sikker sammenføring av trafikken oppnås.

Figuren viser utforming av forbikjøringsfelt og overgang.
18. VEGKRYSS

Hovedprinsipper for kryssplassering og kryssutføring er gitt i systemdelen. Nedenfor følger utfyllende stoff, herunder detaljutføring.

Vegkryss skal plasseres og utformes slik at de er;

- tidsnok synlige,
- oversiktlige,
- lette å oppfatte og
- farbare.

Trafikkssikkerhetsensyn skal være den viktigste forutsetningen for både plasse-ring av vegkryss, valg av kryssstype og detaljutføring av kryss.

Vegfunksjon og trafikkforhold

Vegkryssene formidler to funksjoner; kryssing av trafikkstrømmer og tilknytning mellom trafikkstrømmer.

Ut fra de trafikkmessige forhold som trafikkens sammensetning, størrelse og retningsfordeling, må det først fastlegges om kryssets primære oppgave er å tilfredsstille behovet for kryssing eller for tilslutning.

Utformingen er videre avhengig av farts-nivå og kjøreruter. Vegkryss skal utformes slik at de kryssende vegers innbyrdes status er umiddelbart klar for trafikantene. Vurdering av hvilken av vegene i et kryss som skal betraktes som primæreveg, kan foretas etter følgende retningslinjer:

Figur 18.1
Trafikantene skal umiddelbart kunne oppfatte kryssende vegers innbyrdes status.
• Høyere vegtype er alltid primærveg i forhold til lavere vegtype
• Stamveger er primærveg i forhold til andre hovedveger
• En forkjørsveg er primærveg i forhold til kryssende veier
• Når vegens status ikke følger av funksjon eller vikepliktsregulering, bør den veg velges som primærveg som har
 - størst gjennomgangstrafikk
 - størst trafikkbelastning
 - høyest fartsnivå
 - funksjon som primærveg over lengst strekning til begge sider av det aktuelle kryss

Det må legges vekt på ensartet standard og unngås at en vegs status veksler fra kryss til kryss.

Dimensjonerende kjøretøy for de forskjellige standardklasser er gitt i systemdelen. Dimensjonerende type kjøretøy skal kunne kjøre gjennom kryset med kjøremåte A. Større kjøretøy skal kunne kjøre gjennom kryset med kjøremåte B. Et kryss dimensjonert for P skal kunne trafikeres av L og LL med kjøremåte B.

Det er viktig å få så små fartsforskjeller som mulig i kryset. Fartsutjevning kan oppnås ved anlegg av venstre- og høyresvingefelt. Farten på sekundærvegen inn mot kryset begrenses ved avbøyeende linjeføring og anlegg av trafikkøy.

Sikkerheten og framkommeligheten for fotgjengere og syklister må vies spesiell oppmerksomhet. Et hovedkrav til gang-/sykkelsystemet er at det skal være sammenhengende og gi mest mulig direkte og bekvemme forbindelser for denne trafikken. Eventuelle gang-/sykkels-
anlegg skal planlegges som en integrert del av kryssutformingen, likeå behov for og plassering av bussholdeplasser.

Markering av kryssområdet

Trafikantene skal se at de kommer til et kryssområde tidssnok til å avpasse kjøringen og de skal oppfatte hvilken av de kryssende veger som er den primære. Dette kan oppnås ved å legge vekt på følgende tiltak:

1. Krysset bør anlegges i lavbrekk der det er mulig
2. Framhevelse av primærvegen ved at dens kjørefelt gis en naturlig og direkte linjeføring gjennom krysset
3. Markering av sekundærvegen ved at den avbøyes og føres tilsynelatende vinkelrett på primærvegen og ved anlegg av trafikkøyer
4. Framhevelse av vegenes innbyrdes status ved skilting og oppmerking. Spesielt bør det legges vekt på at det er samsvar mellom kryssutforming og vikepliktsregulering
5. Bruk av optisk linjeføring ved å fremheve den kryssende veglinje med beplantning e.l. Dette er spesielt viktig når krysset må ligge i høybrekk.

Konfliktpunkter og konfliktområder

Vegkrysset skal utformes slik at trafikantene uten vanskelighet kan forstå hvor i kryssområdet konflikt kan oppstå og slik at beslutningsprosessen blir enklest mulig.

Figur 18.4
Primaervegen fremheves og gis en naturlig og direkte linjeføring. Sekundærvegen avbøyes og føres tilsynelatende vinkelrett på primaervegen.

Figur 18.5
Vegarmer skal kryssse hverandre tilsynelatende vinkelrett.
Helst skal trafikantene bare stilles overfor en beslutning av gangen. Dette kan oppnås ved at:

- Kryssområdet innskrenkes til det som er nødvendig for sikker og bekvem manøvrering av dimensjonering kjøretøy.
- Vegarmene krysser hverandre tilsynelatende rettvinklet, utenfor tettbygde strøk er 75-85° gunstigste vinkel.
- Kjøreturer defineres ved hjelp av kanalisering.
- Kryssformen er slik at den gir færrest mulig konfliktpunkter.

Kryssplassering

Kryssenes plassering er i hovedtrekk bestemt av arealavendelse og bebyggelse. Der kryssplasseringen kan bestemmes fritt, eller der det er justeringsmuligheter, bør følgende forhold tillegges vekt:

- Tilstrekkelig lengde for ordning av trafikkstrømmene på kryssflertarmene (flettet, veksling).
- Tilstrekkelig oppstillsplass for ventende kjøretøy, slik at disse ikke blokkerer bakenforliggende kryss.
- Tilstrekkkelig avstand for tilfredsstillende geometrisk utforming og skilting.
- Mulighet for gunstig samkjøring ved signalregulering.

Andre forhold som virker inn på detalj-plasseringen er i første rekke:

OBS!

Vurder skilting på et tidlig stadium.

Vanskeligheter med å skille er tegn på for korte kryssavstander eller for komplisert utforming.

Figur 18.6
Målet er færrest mulig konfliktpunkter.

Figur 18.7
Skilting i vegkryss.
• Hensynet til trafikksaneringstiltak i tilstøtende områder
• Hensynet til kontinuitet i gang-/sykkel-systemet
• Hensynet til eventuelle stoppesteder for buss
• Framtidige planer om signalregulering eller ombygging til planskiltte kryss
• Spesielle terrengmessige og geometriske forhold
• Krav til sikt og veggenes linjeføring i krysset

Hensynet til fotgjengere og syklister bør nøye vurderes ved plassering av kryss i tettbygd strøk, slik at de i størst mulig grad krysser vegene på sikre overgangssteder. Fordi denne gruppen er meget føl som overfor omveger, er det viktig at krysset plasseres og utformes slik at forbindelsene gjennom kryssene blir mest mulig direkte og bekvemme. Kryssingssteder i plan bør helst plasseres i vegkryss.

Rådgivende kryssavstander er gitt i systemdelen. Nedenfor følger noen utdypende kommentarer om avstand mellom ulike typer kryss.

Figur 18.8
Kryssingssteder for fotgjengere bør være mest mulig direkte.
Kryssavtander vanlige plankryss

Kryssene kan (som angitt i systemdelen) ligge forholdsvis nær hverandre, dog med så lang avstand at geometri og kjøre-remenster lett oppfattes av trafikanterne. Minste avstand mellom to forskjøvne T-kryss bør ikke være under 40 m målt mellom sentrer av kryssene. Ved oppkøring i venstresvingefelt o.l. bør avstanden være så lang at tilbakeblokkering ikke oppstår.

Kryss med fysisk kanaliserings vil normalt gi noe lenger minsteavstand enn ukanalisererte.

Kryssavtander rundkjøringer

Rundkjøringer med moderat belastningsgrad gir lige ventetider og kan om ønskelig ligge meget nær hverandre. Relativt langvarig tilbakeblokkering av rundkjøringer fra nærliggende kryss kan gi dårlig avvikling og bør unngås. Men avstanden mellom en rundkjøring og et signalregulert kryss trenger ikke være større enn 40–50 m, såfremt signalanlegget avvikler trafikken greit med korte omløpstider.

Kryssavtander signalanlegg

Signalanlegg må ikke ligge så nær hverandre at trafikanterne misforstår hvilket konfliktområde signalene gjelder for. 60 m er minimumsavstand, helst bør avstanden være over 100 m.
Når avstanden mellom signalregulerte kryss er mindre enn 500–600 m, bør anleggene som regel samkjøres i deler av døgnet. Dette er særlig aktuelt når kryssavstanden er svært liten eller det er flere enn to signalanlegg etter hverandre. Samkjøring reduserer normalt kapasiteten noe.

Samkjøring av signalanlegg i torvstrafikkert gate med gode grønne bølger i begge retninger forutsetter en gunstigste kryssavstand (l) avhengig av kjørefarten (v) og signalanleggenes omløpstid (c) etter formelen

\[l = v \cdot c/2 \]

Den minst gunstige kryssavstand vil være halvparten av den gunstigste (kнутepunkttsavstanden). Når kryssavstanden avviker fra den gunstigste, må det ofte prioriteres grønn bølge i en av kjøreretningene.

Det fremgår av figur 18.12 at den ideelle kryssavstand fort kommer opp i 400 m ved fartsgrense på 50 km/t. Dette er svært meget i forhold til vanlige krysavstander i byer, og det er nesten alltid et problem i tovegs samkjørte system at kryssene blir liggende for tett.

<table>
<thead>
<tr>
<th>Fart km/t</th>
<th>Omløpstid i sekunder</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>188 225 263 300 338 375</td>
</tr>
<tr>
<td>36</td>
<td>250 300 350 400 450 500</td>
</tr>
<tr>
<td>45</td>
<td>313 375 438 500 563 625</td>
</tr>
<tr>
<td>54</td>
<td>375 450 525 600 675 750</td>
</tr>
<tr>
<td>63</td>
<td>438 525 613 700 788 875</td>
</tr>
</tbody>
</table>

Figur 18.11
Veg/tid-diagram. Med kryssavstand lik knутepunkttsavstanden blir det ideelle grønne bølger i begge retninger.

Figur 18.12
Gunstigste kryssavstander (m) ved tovegs samkjøring i grønne bølger.
Kryssavstander mellom planskilte kryss

Kryss i flere plan er først og fremst aktuelt på H1 og H2 veger. På H1 veger bør avstand mellom planskilte kryss ikke være mindre enn 3 km. På H2 veger kan avstanden reduseres til 1 km. Større tilknytningsbehov bør primært løses gjennom utbygging av sekundærvegnettet. Kryssavstanden kan likevel reduseres ytterligere til ca. 500 m dersom det legges inn et ekstra felt for vekslende mellom krysse og avstanden til foregående kryss er så stor at forvarsling av krysse kan bli tilfredsstillende.

Valg av kryssytype

Figurer viser hovedtypene: Ukanaliseret plankryss, plankryss med trafikkøy i sideveg, fullkanaliseret plankryss, signalregulert kryss, rundkjøring og planskilt kryss. Figurene angir hvilke kryssyper som er aktuelle for de forskjellige standardklasser.

T-kryss er en enkel kryssform med få konfliktmuligheter, og er derfor en sikker kryssytpe. T-kryss på hovedvegnettet bør være forkjørsregulerte.
Normalt er T-kryss å foretrekke framfor X-kryss. To forskjøvede T-kryss er oftest bedre enn et X-kryss. Utenfor tettbygd strøk er forskyvningen venstre-høyre sikrere enn forskyvning høyre-venstre.

X-kryss er aktuelt i tett bebyggelse (H3, S3 og A3 gater), i signalregulerte kryss, der ÅDT er under 300 eller der kryssing er den primære funksjon.

Rundkjøring kan være et alternativ til alle de forskjellige krysstyypene.

Valg av krysstyp er avhengig av hensynet til trafikksikkerhet og kapasitet. Kapasitetsbegrensninger er behandlet i håndbok 127.

Ukanaliserete plankryss
Dette er den aller enklaste krysstypen og bør velges om ikke forholdene på stedet tilsier andre mer kostnadskrevende og arealkrevende løsninger. Krysset kan være regulert som forkjørs-kryss eller med vanlig vikeplikt etter høyreregelen, såkalt uregulert.

Det er viktig for avviklingen i hovedretningen og for trafikksikkerheten at kjørebanebredden tillater passering på høyre side av kjøretøyene som venter på å foreta venstre styring. Dersom ÅDT i et ukanaliseret kryss er større enn 1500, men ikke så stor at det bør anlegges venstrevevning, bør det foretas en breddeutvidelse i kryssområdet.

Figur 18.15
På hovedveg utenom tettbygd strøk bør venstre - høyre forskyvning benyttes.

Figur 18.16
Ukanaliseret vegkryss med breddeutvidelse.
Kanalisert plankryss

Kanalisering definerer ønsket kjøremåner som i krysset og deler konfliktområdet opp i adskilte konfliktpunkter.

Trafikkøy ("dråpe") i sekundærveg bør anlegges på H1, H2, S1 og S2 veger, der ADT er over 1500. På stamveger bør dråpe alltid anlegges, men kan sløyfes i lavt trafikerte kryss der kanalisering er åpenbart uønskelig.

Venstresvingefelt bør vurderes når ADT på primærvegen er over 5000. Dette gjør at venstresvingefelt stort sett er aktuelt på H1 og H2 veger. På stamveger bør venstresvingefelt vurderes når ADT er over 1500.

Figurene gir grunnlag for en nærmere vurdering av behovet for ekstra felt. Figurene bør ikke brukes på kryssene enkeltvis, men bør brukes ut fra typiske situasjoner langs en veggstrekkning, med sikte på ens krysstandard.

Kanaliseringen kan være malt eller fysisk (med kantstein). Dråpe i sideveg skal alltid være fysisk. Kanalisering i hovedveg bør være malt hvis fartsgrensen er 70 km/t og høyere. Kanaliseringen kan også være malt ved lavere fartsgrense, men bare hvis det er god oversikt og lite fotgjengere på stedet.
Dersom kryss er plassert på høybrekk eller like bak dette, bør eventuell kanalisering være fysisk. Kanaliseringen må trekkes over høybrekken slik at den ikke kommer overraskende på trafikantene.

Fysisk kanalisering i hovedveg forutsetter belysning av hele krysset. Ved stor andel svingende trafikk bør også kryss med malt kanalisering vurderes belyst.

I tett bebyggelse (H3, S3 og A3 gater) vil omfanget av og formen på kanaliseringen først og fremst avhenge av gatens dimensjon og form, og fotgjengernes kryssings-behov. I mange tilfeller vil det være fordelaktig å lage et komprimert kryss, uten kanalisering. Hvis kanalisering er ønskelig bør den give en bymessig form, som vist på figur 18.21.

Antall gjennomgående kjørefelt foran og gjennom krysset skal være det samme, og totalt antall felt etter kryss skal være minst like stort som gjennomgående felt i krysset. Imidlertid kan to kjørefelt fages sammen til et felt like etter krysset, forutsatt at det skiltes med fletting og utformes deretter.

Av hensyn til sikt bør det ikke brukes flere felt på sekundærovegen inn mot krysset med mindre krysset er rundkjøring eller signalregulert.
Rundkjøring eller signalregulering

Dersom det er problemer med sikkerhet eller avvikling i et vanlig plantkryss, kan etablering av rundkjøring eller signalregulering være aktuelt.

Signalregulering kan benyttes der summen av de største konfliktstående trafikkstrømmene inn mot krysset (all trafikk på tilfan-ten) overstiger 600 kj/t/time. Mer detaljerte kriterier er gitt i håndbok 050 - "Skiltnor- maler".

Til rundkjøring knytter det seg ingen spesiell trafikkbegrensning. Rundkjøring er egnet best i kryss mellom veger av samme type, dvs. hovedv. x hovedveg, samleveg x samleveg og adkomsveg x adkomsveg. Rundkjøring er også egnet i kryss mellom hovedveg og samleveg og mellom samleveg og adkomsveg når laveste vegtype har betydelig trafikk.

Ramper fra hovedveg (motorveg) kan med fordel knyttes til en annen hovedveg eller samleveg ved hjelp av rundkjøring.

Dersom det er valgt rundkjøring som kryss mellom overordnede veger, kan en adkomstveg eller en sterkt trafikkert avkjørsel knyttes direkte til rundkjøringen. F.eks. kan et større serviceanlegg knyttes til en rundkjøring mellom to hovedveger. Avkjørselen bør da utformes som en vanlig vegarm de siste 20 m inn mot rundkjøringen.

På stamveger bør rundkjøring bare anlegges i såkalte knutepunkt, fortrinnvis i middelstalletbygd og tetthetbygd strek. Med knutepunkt menes kryss mellom to stamveger eller mellom stamveg og viktig riksveg.
I oversikten på side 166 er det listet opp en del viktige forhold som kan ha betydning for valg mellom signalregulering og rundkjøring.

Minirundkjøringar (sentraløy med diametre mindre enn 4 m og som normalt er overkjørbar) kan bare anvendes innenfor tettbygd strøk. Krysstypen kan være en aktuell løsning i kryss med lavt hastighetsnivå (hastigheten på armene ikke høyere enn 50 km/t) og der det samtidig har vært problemer med sikkerhet og avvikling og det ikke er nok areal tilgjengelig til å bygge en vanlig rundkjøring, f.eks. i sentrale bystrøk.

Små rundkjøringar kan være et gunstig trafikksikkerhetstiltak i relativt lite trafikerte kryss i lokalvegnettet, mens større rundkjøringar på mer overordnet vegnett gjerne også er motiveret ut fra hensynet til avvikling.

Typiske kryss hvor signalregulering vil være å foretrekke, er trange bykryss med mye fotgjengere og kryss på flerfelts (inntarts) årer med underordnede sideveger.

På et overbelastet vegnett kan det være nødvendig å signalregulere kryss for å prioritere rettferdig mellom trafikken på de enkelte vegarter og hindre kø på veglenker hvor kollektivtrafikken ikke har egne felt. Skjev trafikkbelastning sammen med svært høye belastningsgrader er også et argument for signalregulering.
<table>
<thead>
<tr>
<th>Sikkerhet</th>
<th>SIGNALREG. KRYSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUNDKJØRINGER</td>
<td></td>
</tr>
<tr>
<td>+ sikrest form for plankryss,</td>
<td>+ fjerner kryssingsulykker</td>
</tr>
<tr>
<td>3armet: Uf=0,03</td>
<td>+ fotgjengere føler seg trygge</td>
</tr>
<tr>
<td>4armet: Uf=0,05</td>
<td>- ulykker med påkjøring bakfra og</td>
</tr>
<tr>
<td>+ få konfliktpunkter</td>
<td>mellom gående og svingende</td>
</tr>
<tr>
<td>+ hastighetsdempende</td>
<td>kjøreretter kan øke</td>
</tr>
<tr>
<td>+ få fotgjengerulykker</td>
<td>- T-kryss: Uf=0,05</td>
</tr>
<tr>
<td>- syklister er en utsatt gruppe,</td>
<td>- X-kryss: Uf=0,10</td>
</tr>
<tr>
<td>særlig i store rundkjøringer</td>
<td></td>
</tr>
<tr>
<td>Avvikling</td>
<td></td>
</tr>
<tr>
<td>+ høy kapasitet</td>
<td>+ velegnet for kollektivprioritering</td>
</tr>
<tr>
<td>+ smidig avvikling med små for-</td>
<td>+ kan prioritere mellom trafikk-</td>
</tr>
<tr>
<td>sinkelser. Få må stoppe helt opp</td>
<td>strømmene</td>
</tr>
<tr>
<td>+ fleksibel for trafikkvariasjoner</td>
<td>+ velegnet for tillfartskontroll</td>
</tr>
<tr>
<td>- uegnet i sterk belastede kryss</td>
<td>+ ventetiden ved signalveksling</td>
</tr>
<tr>
<td>med skjev fordeling av trafikken</td>
<td>(tildels umotivert)</td>
</tr>
<tr>
<td>Plassering</td>
<td></td>
</tr>
<tr>
<td>/arealbehov</td>
<td></td>
</tr>
<tr>
<td>+ kryss kan ta flere enn 4 veg-</td>
<td>+ lett å tilpasse i trange bykryss</td>
</tr>
<tr>
<td>armer</td>
<td>- krever lange oppstillingfelt på</td>
</tr>
<tr>
<td>+ velegnet ved korte kryss-</td>
<td>armene</td>
</tr>
<tr>
<td>avstander</td>
<td>- kan ikke benyttes på høyfarts-</td>
</tr>
<tr>
<td>- nøe arealkravende i selve krysset</td>
<td>veger</td>
</tr>
<tr>
<td>Kostnader</td>
<td></td>
</tr>
<tr>
<td>+ lave anleggskostnader på nye</td>
<td>+ rimelig løsning i eksisterende</td>
</tr>
<tr>
<td>veger og i eksisterende store kryss</td>
<td>kryss når det ikke er behov for</td>
</tr>
<tr>
<td>+ krever lite oppfølging og teknisk</td>
<td>flere kjørefelt</td>
</tr>
<tr>
<td>vedlikehold</td>
<td>+ oppfølging og teknisk vedlikehold</td>
</tr>
<tr>
<td></td>
<td>er ressurskrevende. Blir ofte</td>
</tr>
<tr>
<td></td>
<td>forsømt m.p.h. trafikkteknisk opp-</td>
</tr>
<tr>
<td></td>
<td>følging</td>
</tr>
<tr>
<td>Annet</td>
<td></td>
</tr>
<tr>
<td>+ mulighet for U-sving (fordel for</td>
<td></td>
</tr>
<tr>
<td>ukjente og gir anledning til</td>
<td></td>
</tr>
<tr>
<td>sanering av svingbevegelser av</td>
<td></td>
</tr>
<tr>
<td>og på en veglenke)</td>
<td></td>
</tr>
<tr>
<td>- enkelt trafikanter føler seg</td>
<td></td>
</tr>
<tr>
<td>usikre (overgangsfase?)</td>
<td></td>
</tr>
</tbody>
</table>

Figur 18.25
Oversikt over forhold som har betydning for
valg mellom signalregulering og rundkjøring.
Dersom argumentene i konkrete tilfeller faller noenlunde likt ut for rundkjøring og signalregulering, tilsier funksjonelle og driftsmessige forhold at rundkjøring foretrekkes.

Planskilte kryss

Planskilte kryss bør vurderes på H1 og H2 veier når ÅDT på primærvegen overstiger 10 000. På stamveger bør planskilte kryss anlegges når ÅDT på primærvegen overstiger 5000 eller sommerdøgntrafikken (SDT, basert på juni, juli og august) overstiger 8000.

Planskilte kryss er under alle omstendigheter aktuelt der summen av de konfliktrende trafikkstrømmer kommer opp mot 1000 kjøretøyer pr. time. Planskilte kryss kan være aktuelt ved lavere trafikktyll enn de som her er angitt, der terrenget ligger til rette for det eller der andre løsninger gir avviklingsmessige eller sikkerhetsmessige problemer.

Motorveg klasse A skal ha planskilte kryss. Motorveg klasse B bør ha planskilte kryss.

Figur 18.26 viser de viktigste typer planskilte kryss.

Valg av krysstype bør foretas etter en konkret vurdering av den aktuelle vegstrekningen. I denne vurderingen bør det legges vekt på følgende:
Ens kryssutforming langs en vegstrekkning bør tilstrekkes. Som et minimum bør avfartene utformes og plasseres ensartet.

Når sekundærvegen ikke er gjennomgående, altså et 3-armet kryss, vil trompetkryss eller en kombinasjon av trompet og halv kløverbladkryss som regel være å foretrekke.

I kryss hvor også sekundærvegen er gjennomgående (4-armete kryss) anbefales generelt ruterkryss (også kalt diamantkryss) med rundkjøring i tilslutningene mellom rampene og sekundærvegen. Ruterkryss vil være spesielt godt egnet på H2 veier på grunn av begrenset arealbehov.

Dersom trafikken på sekundærvegen og rampene er stor, bør det imidlertid generelt velges et halvt kløverbladkryss med rundkjøring på sekundærvegen. Denne løsningen gir bedre avviklingsforhold i rundkjøringene enn i ruterkryss fordi alle vegarmene får to-veis trafikk.

Det bør tilstrekkes å utforme et halvt kløverbladkryss slik at avkjøringsrampene kommer utenfor påkjøringsrampene. Eventuelt kan det være ønskelig å plassere
Alle ramper på samme side av sekundærvegen for å kunne føre en gang- og sykkelveg konfliktfritt forbi kryssområdet på motsatt side.

Hankkryss bør kun benyttes ved utbedring av eksisterende veger og der anleggs av halvt kløverblad forhindres av andre hensyn.

Hankkryss med en hank er i prinsippet å betrakte som to plankryss.

Lokale tilknytninger bør ikke forekomme i kryssområdet, bortsett fra som en fjerdé arm i rundkjøringen på sekundærveg.

Detaljutforming av kryss i plan

Sikt

Siktkrav for de forskjellige standardklassene framgår av systemdelen og avsnittet om utforming av rundkjøringar i dette kapittel.

Siktlinjering for respektive veger finnes i del B Vegsystem og vegstandard. For kontroll av sikt settes bilførers øyehøyde til 1,10 m og kjøretøyhøyde til 1,35 m.

Enkeltstående trær, skiltstolper o.l. kan stå i siktetrekanten.

Primærvegens linjeføring

Primærvegens gjennomgående felter bør føres gjennom krysset med samme standard som for fri strekning. For vegkryss i kurver på hovedveger bør imidlertid
primærvegen ikke ha større overhøyde enn 4,5\% i kryssområdet. Primærvegen bør da ikke ha mindre radius en angitt i tabellen i del B. For planskiltte kryss gjelder særskilte krav, se detaljutforming av slike kryss.

Stigningsgraden for primærvegen i kryssområdet bør ikke være større enn 2/3 av primærvegens største tillatte stigningsgrad. Maksimumsverdier for de ulike standardklassene er gitt i del B. Kryss med større stigning enn ca. 7\% vil kreve spesiell utforming, som vist på figur 18.33.

Sekundærvegens linjeføring

Sekundærvegen bør gis en standardisert utforming de nærmeste 20 m før primærvegen. Tilknytningssvinkelene bør være tilnærmet rettvinklet. En vinkel på 75–85° har vist seg å gi færrest ulykker på hovedveg utenfor tettbygd støk. Tilknytningssvinkler på under 70° eller over 110° bør unngås.

Sporingskurvene i Del A Dimensjoneringssgrunnlag og de anbefalte kantradier forutsetter en kjøre fart på ca. 15 km/t. Dersom større fart for spesielle svingebegavelser er ønskelig, bør kjøretøyet følge en radius som ikke er mindre enn vist på figur 18.35.

Nærmest primærvegen bør sekundærveggen over en strekning som minst svarer dimensjonerende kjøretøys lengde ha en stigningsgrad på maks 2,5\%.

Figur 18.33
Kryss i stigning.

Figur 18.34
Sekundærvegen bør ha en standardisert utforming inn mot primærvegen.

Figur 18.35
Minste tillatte kurveradius ved ulik dimensjonerende fart og overhøyde basert på kjøre- måte A.
Sekundærvegens lengdefall bør til.slutes primærvegens tverfall tangentiell. Dersom dette ikke lar seg gjøre kan det lages en knekk som ikke må ha større fallendring enn 5,5%.

Sekundærvegens vertikalradius fram mot krysset bør ikke være mindre enn 400 m i høybrekk og 250 m i lavbrekk. På samle- og adkomstveger settes disse verdiene til 300 og 200 m.

Hjørneavrunding

Avrundingen mellom primærvegens og sekundærvegens kjørabanekanter bør i bystrøk utformes som enkel sirkel og utenfor bystrøk som kurvekombinasjon 2R-R-3R. Valget av R avhenger av dimensjonerende kjøretøy og i noen grad av kryssingsvinkelen. Av hensyn til gåendes sikkerhet og plassering av eventuelle skilt og signaler, bør hjørneavrundingen i bystrøk ikke være større enn R=12 m.

I tett bebyggelse kan andre mer spesielle hjørneavrundinger være aktuelle, f.eks. Briskebyvarianten, men må alltid kontrolleres med dimensjonerende kjøretøy.

Trafikkøy i sekundærveg

Trafikkøy i sekundærveg bør ligge 2-5 m fra primærvegens kantlinje.

På H3, S3 og A3 gater bør øya være min. 2 m bred og fortrinnsvis ca. 10 m lang. Dersom det legges gangfelt over øya skal bredden under ingen omstendigheter være mindre enn 1,5 m.
Øya bør gis en bymessig form og utførelse, som vist på figur 18.40.

På andre veier bør øya gis dråpeform ut fra sporingskurvene. Hvis det ikke er kanalisering i primærevegen, bør øya være 10-12 m lang og ca. 3 m på det bredeste. Hvis det er kanalisering i primærevegen, settes disse verdiene til henholdsvis 10-25 m og inntil 4 m.

Figuren viser spesielle breddekrav ved trafikkøy i sekundærveg. Breddene b1 og b2 regnes fra kantstein på dråpeøya til kjørerefeltkant og inkluderer eventuell oppmerking som bør ligge minst 0,25 m fra kantstein. Summen av breddene b1 og b3 bør holdes til et minimum ved lite tungtrafikk, se figur 18.41.

Endeavrundingene bør ikke ha mindre radius enn 0,75 m.

Venstresvingefelt

Foruten å gi oppstillsningsmuligheter for svingende kjøretøy, bidrar også et svingefelt til at en del av retardasjonen før avsving kan utføres utenfor gjennomgående kjørefelt.

Ved anlegg av venstresvingefelt bør vegen utvides til begge sider på rettstrekning, og innover i kurver. Utvidelsen kan foretas med en kurvekombinasjon. Det må påses at minimumskvaturen tilpasses linjeføringen på vegen forevrig, samt at det ikke oppstår uønskede kontrakurver.
Konstruksjonsprinsippet for venstresvingefelt er vist på figur 18.42. Bredddeutvidelsen utføres lineært over lengden L3 som vist i figuren. Overgangslengetg kan utføres med rettlinje og radiører med f.eks. R 50 m.

De angitte verdier av L1 er minimumsverdier. Består den venstresvingende trafikken av mer enn 15% tungt kjørerøy, er bør lengden L1 økes med minst 20%.

Av kapasitetsgrunner kan det være nødvendig å øke lengden L1. En enkel metode for å beregne kørlengden er gitt nedenfor. Dimensjonerende kørlengde settes gjerne til den kørlengde som ikke overskrider i mer enn 5% av tiden i dimensjonerende time. Denne kørlengden, L0,05, finnes ved hjelp av følgende totrinnsmetode:

1. Beregn kapasiteten Kv før venstresvingefeltet ved hjelp av figur 18.44.

2. Beregn belastningsgraden B (forholdet mellom trafikkbelastning og kapasitet) og finn dimensjonerende kørlengde L0,05 fra figur 18.45.

Gjennomgående kjørefelt skal ha minst samme bredde som på tilstøtende strekning. Venstresvingefeltets bredde bør ha samme bredde, men kan reduseres til 2,75 m der det er nødvendig for å få anlagt svingefelt.

Kanaliseringen i primærveg utføres enten malt eller med kantstein. Malt kanalisering følger de teoretiske kantlinjene. Kantstein legges som vist på figurene. Avstanden til

<table>
<thead>
<tr>
<th>Dimensionerende lengde (L1) (m)</th>
<th>Total lengde av svingefelt (L1) (m)</th>
<th>Overgangslenge L3 av konstruksjonsprinsippet (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d=0,250</td>
<td>d=0,200</td>
<td>d=0,150</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
<td>125</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>100</td>
<td>135</td>
<td>150</td>
</tr>
</tbody>
</table>

1) Einsegt bredddeutvidelse: d = bredden av venstresvingefelt (b) + evakuert trafikkei.

Figur 18.43
Dimensjoneringsverdier for total lengde av svingefelt (L1) og av bredddeutvidelse (L3).

Figur 18.44
Kapasiteten Kv før venstresvingefelt ved beregning av kørlengder.

Figur 18.45
Dimensjonerende kørlengde L0,05 ved ulik belastningsgrad B.
kantlinjen skal være 0,25 m ved fartsgrense 50 og 60 km/t; ved høyere fartsgrense bør ikke avstanden være mindre enn 0,5 m.

Bredden av kanaliseringen langs venstrevingefeltet bør ikke være mindre enn 1,5 m, og skal ikke være mindre enn 1 m. Ved gangfelt og hvis trær skal stå i trafikkdelen, bør bredden ikke være mindre enn 2 m. Der gangfelt krysser kanaliseringen, bør bredden på denne være minst 1,5 m, helst 2 m eller mer.

Høyresvingefelt

Høyresvingefelt kan være parallellført eller kileformet. Parallellført høyresvingefelt benyttes fremfor kileformet etter følgende kriterier:

- Når høyresvingende trafikk regelmessig må vente for fotgjengere og syklister
- I signalregulerte kryss
- Når antatt fartsnivå (85% - fraktlen) på primærvegen er > 70 km/t
- Når det er nødvendig for å markere avkjøringen
- Ved hanklyss

Trekantøy
Vanligvis bør trekantøy avgrenses av kant-stein, men små trekantøyer uten gangfelt kan markeres bare med oppmerking. I tettbygd områder bør trekantøyene være min. 8 m². Trekantøy i signalregulerte kryss og trekantøy utenfor tettbygd strøk bør være større enn 50 m². For fartsgrense 80 km/t eller høyere skal avstanden mellom kantstein og trekantøy og kjørebanebrett på primærvegen være lik skulderbredden eller minimum 1,5 m. For fartsgrense 60 km/t og 70 km/t kan avstanden reduseres til 1,0 m, for lavere fartsgrense til 0,5 m. Hjørneav- rundingen bør ha R=0,5 m.

Flettetrekning (innsnevring fra 2 til 1 kjørefelt.)
Dersom to kjørefelt skal føres sammen til ett felt nedstrøms krysset, skal dette baseres på fletting. Minimumslengder på flettetrekningen fremkommmer av figurene.

<table>
<thead>
<tr>
<th></th>
<th>Fartsgrense km/t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>L1 m</td>
<td>30</td>
</tr>
<tr>
<td>L2 m</td>
<td>40</td>
</tr>
<tr>
<td>L3 m</td>
<td>30</td>
</tr>
<tr>
<td>Sum</td>
<td>100</td>
</tr>
</tbody>
</table>

Figur 18.49
Minimumslengder på flettetrekning.

Breddeutvidelse
En breddeutvidelse på høyre side av vegen, som skal gi mulighet til å kjøre forbi biler som venter på å kunne foreta venstresving, bør være på minst 1,5 m gjennom krysset. Helst bør utvidelsen ha en bredde på 3,0–3,5 m over en strekning på minst 30 m i kryssområdet.
Fotgjengere og syklister i kryss
Gang-/sykkelsystemet i krysset skal virke attraktivt på trafikantene, slik at kryssing skjer ved overgangsstedene. Overgangsstedene bør være slik plassert at de faller naturlig inn i gang-/sykkelsystemet og ikke representerer en vesentlig omveg. Figurene viser eksempler på hvordan kryss kan legges til rette for fotgjengere og syklister.

Avkjørsler
Siktkrav i avkjørsler er vist i figur 18.55.

<table>
<thead>
<tr>
<th>H1</th>
<th>H2</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2Ls x 4</td>
<td>1,2Ls x 4</td>
<td>60m x 4</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>Ls x 4</td>
<td>Ls x 4</td>
<td>50m x 4</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>Ls x 4</td>
<td>30m x 4</td>
<td>30m x 4</td>
</tr>
</tbody>
</table>

Figur 18.55
Siktkrav i avkjørsler.

Siktkrav 30 m i avkjørsler forutsetter fartsnivå ≤30 km/t. Ved høyere fartsnivå (opp til 50 km/t) brukes 50m.

Avkjørsler bør utformes som type P eller LL.

Avkjørsler til 1-3 boliger, hytter og driftsavkjørsel til jord- og skogbruk utformes normalt som type P.

Hovedavkjørsel til gårdsbruk, boligområder med mindre enn 7 boliger og hytteområder utformes normalt som type LL.

Figur 18.54
Utforming av avkjørsler.
Avkjørsel til boligområder, industriområder og serviceanlegg utformes som kryss.

Figurene viser avkjørselsgeometrien.

Detaljutforming av rundkjøringer

Ethvert kryss med et envegskjørt sirkulasjonsareal rundt en oppbygget eller malt sentraløy betegnes som rundkjøring. Sentraløya bør være sirkulær, men kan også ha andre former.

Rundkjøringer skal være regulert med vikeplikt på vegarmene.

Viktige elementer og geometriske faktorer er vist på figuren.

Det må legges stor vekt på riktig utforming for at en rundkjøring skal fungere tilfredsstillende med hensyn på blant annet sikkerhet og avvikling.

Sikt

Siden hastighetsnivået generelt er lavere i rundkjøringer enn i vanlige forkjørsregulerte kryss, er kravene til sikt mindre strenge. For dårlig sikt kan imidlertid resultere i mange konflikt- og redusert kapasitet.

For kontroll av sikten brukes kjøretøyhøyde 1,35 m og bilførers øyehøyde 1,10 m.

Følgende siktforhold må kontrolleres:
• Stoppssikt i tilfarten
• Sikt til venstre i tilfarten
• Sikt fremover i rundkjøringen
• Sikt til gangfelt
• Spesielle sikthinderer

Stoppssikt i tilfarten
Sikten fremover mot rundkjøringen i en tilfart skal tilfredsstille kravene til stoppsikt for de forskjellige standardklassene, se systemdelen.

Sikt til venstre i tilfarten
Fra et punkt midt i kjørebanen 10 m bak vikelinjen skal føreren kunne se minst 50 m tilbake i forrige tilfart. I større rundkjøringer med fartsnivå høyere eller lik 60 km/t bør sikten være 1,2 ganger stoppsikt for mulige hastigheter.

Føreren bør også kunne se 50 m bakover langs sirkulasjonsarealets senterlinje. I rundkjøring med lavt fartsnivå (mindre enn 30 km/t) er det tilstrekkelig å se 30 m bakover.

Sikt framover i rundkjøringen
Førere som nærmer seg vikelinjen, eller som befinner seg i rundkjøringen, skal kunne se hele sirkulasjonsarealet framover til neste utfart, eller minst 50 m langs sirkulasjonsarealets senterlinje dersom avstanden til neste utfart er større enn dette.

Sikt til gangfelt
Førere som skal passe et gangfelt skal kunne se hele gangfeltet samt 2,0 m av fortuet på begge sider på en avstand minst lik stoppsikt.
Spesielle sikthindringer

Trafikkskilt, tette rekneverk, beplantning og annet må ikke hindre sikten. Enkeltstående lysmaster, stolper, trær o.l. anses ikke som sikthindrende.

Når diameteren på sentraløya er større enn 10 m, kan det plasseres enkeltstående trær med stammediameter mindre enn 30 cm og stammehøyde (oppstammet) 250 cm.

I relativt store rundkjøringer hvor diameteren på sentraløya er større enn 22 m, vil en indre del av sentraløya falle utenfor frisktområdet. Her kan vegetasjon brukes fritt uten siktbegrensninger. Av hensyn til påkjøringsfaren må stammediameteren likevel ikke bli for stor. Innenfor frisktområdet gjelder kravene til mindre enkeltstående trær som beskrevet i forrige avsnitt.

Uansett størrelse på sentraløya kan det plantes busker som ikke blir høyere enn 75 cm over kjørebanen.

Ved dimensjonering bør det legges inn rom for mindre snørengder.

Avbøyning

Tilstrekkelig fartsdempende avbøyning er den viktigste faktor for å oppnå god sikkerhet i rundkjøringer.

Det generelle kravet til avbøyning er at ingen kjøretovbane (bredde 2 m) gjennom krysset skal beskrive en kurve med radius større enn 100 m. Dette tilsvarer en maksimal hastighet på 50 km/t.
I rundkjøringer på lokale veger bør det til-strebes at ingen kjøretøybane får en ra-dius større enn 50 m.

God avbøyning kan oppnås ved
- hensiktsmessig valg av plassering og størrelse på sentraløya
- forskyvning av vegarmene eller kontrakurve
- bruk av ledeøyer
- å unngå for stor breddeutvidelse i tilfartene

Rundkjøringens størrelse og plassering

Størrelsen på rundkjøringer vil være avhengig av følgende forhold:
- Vegstandardklasse (vegtype og områdetype)
- Tilgjengelig areal
- Krav til fartsdemping
- Antall vegarmer
- Antall felt på vegarmene

Krav til fartsdempende avbøyning inne-bærer at sentraløya ikke kan være for liten.

Behov for god kapasitet og framkomme-
lighet for store kjøretøy tilsier en viss bredd på sirkulasjonsarealet.

Rundkjøringer deles i fire typer etter stør-
relsen. De vanligste typene som anbe-
fales er mellomstor og liten rundkjøring.
Stor rundkjøring:
Sentraløya \(d \geq 25 \text{ m} \)

Mellomstor rundkjøring:
Ytre diameter \(D = 31-45 \text{ m} \)
Sentraløya \(d \geq 10 \text{ m} \)

Liten rundkjøring:
Ytre diameter \(D = 26-30 \text{ m} \)
Sentraløya \(d \geq 5 \text{ m} \)

Minirundkjøring:
Ytre diameter \(D = \leq 25 \text{ m} \)
Sentraløya \(d = 1.5-4 \text{ m} \)

Mellomstor rundkjøring bør anlegges på hovedveger og veier med stor andel busser og tunge kjøretøy. Som normal standard på rundkjøring anbefales en ytre diameter på 35 m. På veger med 4 kjørefelt og i sterkt belastede kryss bør den ytre diameteren være 40 til 45 m.

Liten rundkjøring er aktuelt for mer lokale veier med liten andel tunge kjøretøy og busser.

Dersom arealet er svært begrenset, eller kjøreforholdene er vanskelige, bør sentraløya være delvis overkjørbart. *Minirundkjøring* med fullstendig overkjørbar sentraløy kan være en god løsning for trange problemkryss i sentrumsområder hvor signalregulering vil være uheldig av hensyn til estetikk eller avvikling. Det må vises forsiktighet med bruk av denne krysstypen siden den gir liten eller ingen fartsdempende avbøyning og tildels er basert på oppmerking som kan være skjult på vinterstid.

![Diagram av forskjellige typer rundkjøringer](image)

Figur 18.65 Rundkjøringer inndelt etter størrelse.
Rundkjøringens senter bør plasseres i skjæringspunktet mellom senterlinjene til de kryssende veger, slik at ikke avbøyningen blir for liten for en eller flere kjøretøynings og unødvendig stor for andre. Det har også betydning for den visuelle føringer og trafikantenes oppfattelse av krysset. Særlig er det viktig at rundkjøringen med tre armer (T-kryss) ligger symmetrisk om en hovedvegs senterlinje.

Sentraløya

Ved utforming av sentraløya bør følgende punkter tillfredsstilles:

- Øya bør medvirke til at rundkjøringen er godt synlig fra alle kanter. Den bør markere rundkjøringen slik at trafikantene straks gjenkjenner denne kryssen. I dette henseende bør øya være noe opphøyd i forhold til nivået på sirkulasjonsarealet og få en overflate som utseendemessig skiller den fra kjørebakken. Sentraløya bør aldri ligge lavere enn sirkulasjonsarealet.

- Små og mellomstore sentraløyer kan med fordel bygges opp kjelegformet med høyde på 0,5 – 0,75 m. For små sentraløyer (diameter mindre enn ca. 10 m) benyttes helning 1:5 –1:10.

- Små sentraløyer bør utformes slik at store kjøretøy kan trafikere over de ytre deler av øya, se figuren. Av samme grunn må skilting i ytterkant av øya unnås.
• Sentraløya bør avgrenses med ikke-avvisende kantstein.

• I minirundkjøringer (d<4 m) bør hele øya være overkjørbar.

Når diameteren er under 10 m er det oftest vanskelig å oppnå god avbøyning for alle tifarter.

Sirkulasjonsarealet

Sirkulasjonsarealet bør være sirkelformet, plant og ha mest mulig konstant bredde.

Normalt bør bredden på kjørebanen rundt sentraløya i små og mellomstore rundkjøringer være 8 – 11 m.

I små rundkjøringer på tofelts veier vil dimensjonerende kjøretøy bestemme bredden på sirkulasjonsarealet. Selv om tifarten er utvidet fra ett til flere kjørefelt de siste 10 til 20 m før vikelinjen, kan det forutsettes at store kjøretøy utnytter hele kjørebanebredden. De største kjøretøyene bør også kunne benytte en ytre overkjørbar del av sentraløya. Også sideareal et og deler av deleøy kan gjøres overkjørbart når en særskilt stram utforming er ønskelig.

I mellomstore rundkjøringer på hovedveger eller viktige samleveger med to innkjøringsfelt bør personbiler kunne kjøre parallelt med store kjøretøy gjennom hele rundkjøringen. I rundkjøringer på firefelts veier eller der tifarten utvides til flere felt et stykke før krysset, skal større lastebiler (typekjøretøy L) og busser kunne kjøre parallelt.
Bredden på kjørebanen bør ikke være unødvendig stor. Den skal ikke overstige 15 m.

I rundkjøringen med mange armer er det viktig å tilstrebe god avstand mellom de enkelte armene.

Generelt anbefales ensidig tverrfall ut fra sentraløya. Tverrfallet bør være maksimalt 2,5%. Når sentraløydiameteren er større enn ca. 15 m bør takfall vurderes.

I skrående terreng bør stigning normalt tas på vegarmene. Eventuelt kan hele krysset ligge i et skråplan med stigning på maksimalt 3%.

Tilfartene

Utforming av tilfartene er helt avgjørende for hvordan en rundkjøring vil fungere med hensyn på trafikavgjøring, sikkerhet og kjørekomfort. Som regel er det nødvendig å forsøke seg frem med flere alternativer på planstadiet før endelig utforming fastlegges.

Tilfartskapasiteten øker med økende antall felt på tilfarten, forutsatt at alle feltene utnyttes. Flere kan da benytte samme tidsluke i den sirkulerende trafikken. Kapasiteten er derfor primært avhengig av følgende størrelser:

- Innkjøringsbredden (e)
- Gjennomsnittlig effektiv breddeutvidelseslengde (l')
For å få tilfredsstillende fartsdempning og enkle kjøreforhold bør det generelt i utgangspunktet vurderes om 1 felt på tilfarten gir tilstrekkelig kapasitet. Dette kan betraktes som en standardløsning på lokale vejer samt samle- og hovedvejer med liten eller moderat trafikk.

Når kapasitetsmessig tilsier utvidelse av tilfarten til 2 innkjøringsfelt, bør feltbredden være minst 2,6 m. Store feltbredder anbefales, blant annet av hensyn til store kjøretøy. Standard *innkjøringsbredde* bør derfor være 7–8 m.

I rundkjøringer med ytre diameter (D) større enn 35 – 40 m kan tilfartene ha mere enn to kjørefelt når trafikkbelastningen er særskilt stor. Det må imidlertid vises forsiktighet med dette siden store innkjøringsbredder gir dårligere avbøyning og dermed bidrar til større fart og dårligere sikkerhet.

Breddeutvidelse bør foretas gradvis inn mot rundkjøringen og på høyre side av tilfarten. Anbefalte minimumslengder på den gjennomsnittlige effektive breddeutvidelsen, l', er ca. 10 m i tettbygd strøk og 25 m utenfor tettbygd strøk. Kapasiteten bedres ved økning av l'.

Den totale lengden av breddeutvidelsen bør være omlag det dobbelte av den effektive (l'). Den gradvisse utvidelsen bør ikke skje raskere enn 1:3. For rask utvidelse kan gjøre det unaturlig å benytte alle feltene.
Innkjøringsvinkelen (w) bør være mellom 20 og 60 grader. Små vinkler gir vanskelige siktvilkår mens store vinkler kan føre til bråbremsing og er særlig uheldig utenfor tettbygd strøk.

Innkjøringsradius bør være i området 10 til 100 m med 20 m som anbefalt normalverdi. Verdi under 10 m bør ikke benyttes av hensyn til store kjøretøyer.

På flerfelts veger med minst to kjørefelt i samme retnings, bør innkjøringsradien være minst 30 m. Den tilhørende innkjøringskurve bør også være lengre enn normalt.

På vegarter med høyt fartsnivå bør innkjøringskurven være ca. 60 m lang.

Deleøy bør generelt benyttes for å
- sikre god avbøyning
- skille innkjørende og utkjørende trafikk
- hindre venstresvingende å ta nærvegen på feil siden av sentraløya
- lete og sikre fotgjengernes kryssing av vegarmen

En deleøy bør være fysisk og med kantstein. Bredden bør være noe økende inn mot rundkjøringen.

Føringen på deleøy skal være slik at en rett forlengelseslinje tangerer sentraløya, se figuren. Dette medvirker til at kjøretøy til venstre i tilfarten ikke presses inn mot sentraløya og øker bruken av et venstre innkjøringsfelt.
I store rundkjøringar (sentraløydiameter større enn ca. 25 m) med forholdsvis lange innkjøringsskurver er det tilstrekkelig at føringen på deleøya er slik at kurvens forlengelse (samme R) tangerer sentraløya.

I rundkjøringar på veger med kun ett felt på tilfartene, er det ikke nødvendig å ta hensyn til ovennevnte krav til føringen på deleøya. Her kan det også benyttes malte øyer, eventuelt bare sperrelinje.

I rundkjøringar med 5 eller flere armer, kan det være gunstig å sløyfe deleøyer på lokale vegaarmer med liten trafikk. Det vil medvirke til å tone ned de lokale tilknytningene slik at rundkjøringen blir mer oversikelig.

Når gangfelt er lagt over eller gjennom deleøya, bør bredden på øya være 2 m. Øya bør strekke seg et par meter forbi gangfeltet.

På veger med høyt fartsnivå (skilt farts- grense 80 eller 90 km/t) bør det vurderes å forlengte deleøyene opp til 60 m.

Deleøyer kan utstyres med vegvisnings- skilt. Men det må påses at skilt ikke blir sikthindrende.

Stigningen i tilfarten nærmest vikelinjen bør over en strekning som minst tilsvarer dimensjonerende kjøretøy ikke overskride 3%.
Filterfelt, dvs. separate svingfelt utenom rundkjøringen, er aktuelle der svingetrafikken er så stor at det ellers vil oppstå kapasitetsproblemer. Løsningen kan også nyttes for å gi hierarkisk overordnede trafikkstrømmer en bedre føringer gjennom rundkjøringen.

Filterfelt bør avsluttes med akselerasjonsfelt og fletting.

Filterfelt bør ikke anvendes unødvendig.

Utfartene

Utfartene på tøftels vegar i mellomstore rundkjøringar utformes traktformet. Utkjøringsbredden (målt vinkelrett på kjøreretningen) bør være omlag ett kjørefelt bredere enn kjørebanebredden etter at innsnevringen er avsluttet. Innsnevringen kan foregå i forholdet 1:15, altså adskillig langsommere enn for tfartene.

Når det er stort behov for at biler kan kjøre parallelt ut av rundkjøringen, bør det nødvendige antallet felt føres med full bredde 20 – 50 m ut på utfarten før innsnevring.

Utkjøringsradien for høyre kjørebanebakk bør være ca. 40 m og ikke mindre enn 20 m.

Fotgjengeranlegg

Gangfelt ved rundkjøringar bør trekkes 10 – 12 m tilbake på vegarmene og føres gjennom/over deleøy. I bystråk bør det vurderes å legge gangfeltet nærmere rundkjøringen dersom fartsnivået er lavt, men ikke nærmere vikelinja enn 5 m.
På vegarmer uten deleøy, bør det vurderes å anlegge opphøyd gangfelt.

Signalregulerte gangfelt må trekkes minst 30 m tilbake på vegarmene. Som regel er det nødvendig å benytte ledeghjerder.

Sykkelanlegg
For å ivareta syklistenes sikkerhet, bør det generelt prioriteres en trafikksikker utforming av rundkjøringen (hastighetsdempende avbøyning) fremfor en utforming som gir høy kapasitet. I store rundkjøringer bør syklister (og fotgjengere) separeres fysisk fra biltrafikken og fortrinnvis krysse vegarmene/sirkulasjonsarealet planskilt.

Bymessig utforming
I bystrøk med stram gatestruktur må rundkjøringen tilpasses omgivelsene.

Minirundkjøringar med overkjørbar sentraløy kan være en aktuell løsning i problemkrissy i by siden de tar liten plass og er lite dominante i forhold til omgivelsene. De bør utformes slik at trafikanterne blir oppmerksom på at de ankommer en rundkjøring. Feks. vil et mønstret belegg i sirkulasjonsarealet kunne markere rundkjøringa godt.

Figur 18.82
Rundkjøring uten deleøy på tilfarten kan ha en strammere geometri og dermed bedre fartsdempning. Først og fremst aktuell på lokale veger i bystrøk. Spesielt fordelaktig for syklister.

Figur 18.83
Mønstret belegg i sirkulasjonsarealet markerer rundkjøring i bystrøk.
Rundkjøringar av mer vanlig størrelse kan benyttes i brede gater og på plasser. Også disse kan med fordel markeres med mønster i dekket. *Sentraløya* bygges opp med en ytre overkjerbar del og en indre kjerne som heves med høyde på maksimalt 75 cm. Den må bygges med materiale som visuelt skiller seg klart fra kjørebanen.

En lysmast i sirkelpunktet vil både markere rundkjøringen godt og være en lysteknisk god løsning. Der en av gatene har trær eller annen vegetasjon, kan dette også benyttes til å markere sentraløya. Det forutsettes i så fall at øya har en diameter større enn 10 m (se avsnitt om sikt).

Der forholdene ligger til rette for det, kan sentraløya utformes mer monumental, f.eks. med en skulptur eller lignende som passer inn i omgivelsene.

Deleøya i tilfarten bør utformes som et rektangel og ligge symmetrisk om vegarmens senterlinje. Endene må være rette, men avrundet i hjørnene. Dersom det er viktig med en god føring av trafikken eller det er flere enn ett innkjøringsfelt, bør deleøya utvides symmetrisk inn mot rundkjøringen.

I minirundkjøringar med tre vegarmer og ca.120 grader mellom armene (Y-kryss) blir alle kjøreretningene avbøyd selv uten en fysisk øy.
I store og mellomstore rundkjøringer bør det settes kantstein langs den innskrevne sirkelen mellom vegarmene slik at den sirkulære formen markeres. Uansett størrelse på rundkjøringen bør det tilstrekkes at den innskrevne sirkelen tangerer fortauskanter i hvert hjørne. Radien på fortauskanter bør være konstant.

Detaljutforming av lyssignalregulerte kryss

Lyssignalregulerte kryss skal i prinsippet utformes geometrisk i samsvar med denne normals retningslinjer for utforming av uregulerte og forkjørsregulerte kryss. Signalgulering stiller imidlertid spesielle krav til kryssutformingen.

Forskjøvede kryss og kryss med flere enn fire vegarmer er vanskelig å signalregulere og vil fungere dårlig både med hensyn til sikkerhet og avvikling. Derfor bør nye kryss som planlegges for signalregulering utformes som vanlige T-kryss eller X-kryss.

Eksisterende kompliserte kryss som skal signalreguleres, bør forenkles. Dette kan gjøres på følgende måter:

- Omfattende ombygging (omlegg av vegarmer m.m.)
- Stenging av vegarmer
- Envegsregulering
- Svingeforbud

Figur 18.86
Lyssignalregulerte kryss bør utformes som vanlige T-kryss eller som X-kryss.
Geometrien må være enkel å oppfatte for trafikantene siden mye av oppmerksomheten vil være rettet mot signalene.

Sikt

Sikttrekanter er nødvendige også i signalregulerte kryss for å ivareta sikkerheten når signalene faller ut. Det reduserer også faren for ulykker ved rødlyskjøring. Sikttrekanter skal være minimum 1,2 Ls x 4 m.

Minst ett primærsignal på hver tilfart skal være kontinuerlig synlig for trafikk inn mot kryset over en lengde minst lik stoppsikten for tillatt hastighet. Fortrinnvis bør det tilstrebes sikt lengder på 1,5 ganger stoppsikten.

Antall kjørefelt

Signalregulering krever ofte flere kjørefelt inn mot kryset enn andre reguleringsformer. Trafikkstrømmer som reguleres med egne signaler, må ha egne felt.

Behovet for separat regulering av de enkelte trafikkstrømmene og feltbeov generelt, er avhengig av hvilken faseplan som velges. En faseplan er en oversikt over de trafikkstrømmer som kan få grønt samtidig.

Gunstig bruk av felt og faser bestemmes på grunnlag av størrelse og fordeling av trafikkstrømmene, tilgjengelig areal og kostnader. Jo flere svingebevegelser med eget felt, desto friere står man ved utarbeidelse av faseplanen. Til gjengjeld er det viktig å ha en forholdsvis stram geometri for å holde tømmings- og vekslingstidene nede og få kortest mulige gangfelt.
Ved sammenligning av avviklingsevnen til forskjellige felt- og faseønsninger, vil den løsning som har lavest belastningsgrad, være den beste. Imidlertid er det hensynet til sikkerheten det bør legges størst vekt på ved valg av løsning.

Av sikkerhetsmessige grunner bør venstresvingende trafikk reguleres med egne (pil)signaler og dermed ha eget felt når

- tillatt hastighet er over 50 km/t med unntak av de tilfellene hvor venstresvingende trafikk er meget liten.
- det er mere enn ett venstresvingefelt i samme tifart.
- når størrelsen på en venstresvingende trafikkstrøm er større enn 100-200 kj/t
- motgående tifarter har to eller flere felt for trafikk rett fram eller til høyre
- antall politianmeldte venstre-svingeulykker overskrider 6 i løpet av en 3-års periode og andre tiltak har vist seg å være uten virkning eller ikke gjennomførbar.
- venstresvingende trafikk går i konflikt med mange fotgjengere eller syklister.
- venstresvingende trafikk har en slak kurve over gangfelt.

Det er også ønskelig å regulere venstresvingende trafikk med egne signaler når venstresvinge-trafikken i motgående tifart er separatregulert.

Figur 18.89
Standard utforming av T-kryss som med viste faseplan gir konfliktfri og fleksibel avvikling.

Figur 18.90
Venstresvingende trafikk bør ofte reguleres med egne signaler.
Høyresvingende trafikk bør av hensyn til sikkerheten ha eget felt og separatreguleres når;

- den går i konflikt med mange fotgjengere og syklister,
- den har en slak kurve over gangfelt,
- der høyresvingende trafikk er stor.

For å øke kapasiteten kan det på tofeltsveger være aktuelt å anlegge doble felt for den gjennomgående trafikken eller en svingretning. I så fall må innsnevring fra to til ett felt etter krysset skje ved fletting. Krav til lengde på flettestrekning er gitt i eget avsnitt under kapitlet om detaljutforming av kryss i plan.

Høyresvingende trafikk fra sekundærveg kan unntas fra signalreguleringen og reguleres med vikeplikt dersom det anlegges et eget høyresvingefelt bak en trekantøy hvor siden langs primærvegen er minst 10 m ved fartsgrunne på 50 km/t og 15 m ved fartsgrunne på 60 km/t.

Bredde og lengde av kjørefelt

I signalregulerte kryss bør det tilstrebes å ha kjørefeltbredder på 3,5 m. Dersom det er kantstein på begge sider av et kjørefelt, bør bredden (kantstein kantstein) være minst 4,0 m. I byområder med farts- nivå 50 km/t eller lavere kan 3,5 m mellom kantstein aksepteres.
Svingefelt kan være smalere enn gjenomgående felt, dog ikke smalere enn 2,75 m. For smale felt kan gi sikkert-problemer fordi store kjøretøy kommer nær kantstein/fortau og syklister kommer i en klemt posisjon.

Der det ikke anlegges venstresvingefelt, bør det være så bredt at kjøretøy som venter på å ta venstresving ikke hindrer trafikken som skal rett fram. Eventuelt bør det foretas en breddutvidelse.

Det er viktig å påse at dimensjonende kjøretøy kan foreta alle aktuelle svingbevegelser uten å måtte benytte deler av kjørefelt til konfliktende trafikk. Til forskjell fra ikke-signalregulerte kryss vil det til enhver tid kunne stå biler på rødt lys som ikke kan jenke seg for store kjøretøy som har vanskeligheter med å foreta en svingbevegelse.

Dersom et signalregulert kryss er for tranget for dimensjonende kjøretøy, er minst ett av følgende tiltak nødvendig:

- Trekke stopplinjen (samt signalstolpe med primærsignal) lenger tilbake i tilfarten
- Øke bredden på utfarten f.eks. ved å sløyfe egne svingefelt på vegarmen
- Øke radien på hjørneavrundingen (som regel estetisk og arealmessig uaktuelt i sentrale bystrøk)
- Envegsregulere vegarmene
- Innføre svingeforbud.

Figur 18.93
Nødvendige tiltak dersom et signalregulert kryss er for tranget for dimensjonende kjøretøy.

Figur 18.94
Tilbaketrukket stopplinje i signalregulerte kryss.
Egne svingefelt må være så lange at gjennomgående kjørefelt i et normalrush sjelden blokkeres av venstresvingende kjøretøyer som kører seg opp på rødt signal.

Trafikkøyer

Trafikkøyer i signalregulerte kryss brukes for å dempe fartsnivået, gi bedre optisk ledning gjennom kryset, trygge de gåendes fersdel og plassere signalstolper hensiktsmessig. Nærmere regler for plassering av signalstolper er gitt i skilt-normalene.

Øy, som det skal plasseres signalstolpe på, bør ha en bredde på minst 1,5 m. Der gangfelt føres over en trafikkøy bør bredden være minst 2,0 m. Hvis det dessuten signalteknisk legges opp til at fotgjengere skal bli stående på øya og vente på grønt lys, bør bredden økes ytterligere.

Trafikkøy (midtdeler) bør anlegges når gangfelt er lenger enn ca. 8 m.

Med trekantøy blir gangfeltene kortere. Avviklingen av høyresvingende trafikk blir også noe bedre. Det samme gjelder kjørekomforten. Trekantøyer har imidlertid følgende ulemper:

- Fotgjengere må benytte flere gangfelt for å kryss veien. Dette kan gi økte ventetider og fare for misforståelse med hensyn til hvilke signaler de skal rette seg etter.
• Vanskelig å plassere trykknapper entydig.

• Lite pent med mange stolper.

• Høyere fart på svingetrafikken kan øke faren for ulykker

• Arealkrevende

Små trekantøyer bør derfor unngås i signalregulerte kryss.

Større trekantøyer (siden langs primærvegen større enn ca. 10 m) kan være gunstig når det er et beskjedent antall fotgjengere. Dersom den høyresvingende trafikken heller ikke er for stor, bør både denne svingetrafikken og det kryssende gangfeltet unntas fra signalreguleringen. Svingetrafikken reguleres med vikeplikt for trafikken fra krysset.

Hjørneavrunding

Det bør tilstrebos en stram geometri med små hjørneradier for å redusere hastigheten på svingende kjøretøy i konflikt med fotgjengere som har grønt samtidig. En stram geometri gir også kortere kryssingslengde for fotgjengere, reduserer vekselstidene og er estetisk bedre i by og tettsted.

Radien på hjørneavrundinger skal være maks. 12 m der fotgjengere går i konflikt med svingende kjøretøy.

Figur 18.97
Radien på hjørneavrundinger skal være maks 2 m der fotgjengere går i konflikt med svingende kjøretøy.
Gangfelt
Gangfelt bør legges der det er naturlig for gående å kryss. Spesielle kapasitetsmessige forhold kan gjøre det nødvendig å lede gangtrafikken bort fra en naturlig trasé. Hele gangsystemet (gangtilfarter m.m.) bør da omformes og/eller det bør brukes ledegjerder.

Signalregulerte kryss i byer og tettsteder skal normalt ha gangfelt over alle armer hvor det leder fortau eller gang-/sykkelveg fram til kryset. Dette gjelder uten unntak for gangtrasé langs primærveg.

Gangfelt skal ligge minst 1,0 m fra kjørebanelinjen av parallellgående veg. Dersom det ikke er eget felt for avsvingende trafikk, bør gangfeltet vanligvis trekkes 4 til 5 m unna kjørebanelinjen slik at et avsvingende kjøretøy kan vente foran gangfeltet uten å hindre trafikk som skal rett fram. Gangfelt bør aldri trekkå lenger unna enn 5 m.

Bredden på gangfelt skal være minst 3,0 og 4,0 m på veg med fartsgrense på henholdsvis 50 og 60 km/t. Ved store fotgjengermengder kan gangfeltbredden med fordel økes. Stopplinjen skal ligge 0,5 – 1,0 m foran gangfeltet.

Gangfelt over to kryssende gater bør ikke overlappe hverandre.

Stigning på tilfarten
For å unngå problemer med oppstarting og nedbremsing på glatt fører, bør tilfarten ikke ha større stigning eller fall enn 3% over en strekning fra stopplinjen og så langt tilbake i tilfarten som køen normalt vil strekke seg i rushperiodene. Større stigningsgrader vil kreve særlig gode rutiner med hensyn til snøbryting og strøing.
Detaljutforming av planskiltte kryss

Sikt

Målt fra det punkt hvor kjørebanekanten på gjennomgående felt og påkjøringsrampen møtes bør det være sikt mellom et gjenomgående felt og et punkt 50 m tilbake i rampen. I bystrøk kan siktkravet langs rampen reduseres vesentlig, men det må vurderes om akselerasjonsfeltet bør forlenges.

Akselerasjonsfelt i høyrekurve kan gi dårlig sikt bakover for påkjørende trafikk. Horizontalstriden i høyrekurve bør derfor ikke være krappe enn angitt i figur 18.101

<table>
<thead>
<tr>
<th>Dimensjonser-ende fart km/h</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste kurve- radius m</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1200</td>
<td>1400</td>
<td>1600</td>
</tr>
</tbody>
</table>

Figur 18.101
Sikt ved påkjøring. Minste horisontalradius i høyrekurve for primærvegen.

Primærvegens linjeføring

Primærvegen bør føres gjennom kryssområdet med samme standard som på fri vegstrekning. Overhøyden i kryssområdet bør ikke være større enn 4,5%, av dette

Figur 18.100
Anbefalt sikt fra påkjøringsrampe. Kan reduseres i bystrøk.
følger minimumskrav til horisontal linjeføring ved rampetilutninger (tabellen). Tabellen må ses i sammenheng med siktskravet ovenfor, som i noen tilfeller vil bli dimensjonerende.

<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste kurvemodus (m)</td>
<td>600</td>
<td>700</td>
<td>850</td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
</tr>
</tbody>
</table>

Figur 18.102
Minste horisontalradius på primærvegen i kryssområdet (se også figur 18.101 på forrige side).

Minste tillatte vertikalradius for primærveg er gitt i figuren.

<table>
<thead>
<tr>
<th>Dimensjonerende fart (km/t)</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minste kurvemodus (m)</td>
<td>2000</td>
<td>3000</td>
<td>4500</td>
<td>6500</td>
<td>10000</td>
<td>14000</td>
</tr>
</tbody>
</table>

Figur 18.103
Minste tillatte vertikalradius (høybrekk) for primærveg.

Ved akselerasjonsfelt er det viktig at primærvegen har så liten stigning som mulig. Tunge kjøretøy kan akselerere meget dårlig i stigninger over 3%, for lette biler er tallet 5%. Dersom større stigning ikke kan unngås må lengden på akselerasjonsfeltet økes. For akselerasjonsfelt i fallende retning og for retardasjonsfelt, kan primærvegens stigning ligge på det maksimalt tillatte.

Primærvegens tverrprofil
Tverrprofilen på fri vegstrekkning skal beholde seg gjennom kryssområdet. Generelt gjelder følgende retningslinjer for forandring av antall kjørefelt:

200
• Antall gjennomgående kjørefelt bør beholdes gjennom kryssområdet
• Kjørefelt bør ikke avsluttes ved å føre direkte ut til avkjøringsrampe. Unntaksvis kan slik avslutning benyttes i tettbygd strøk
• Økning av antall kjørefelt etter krysset bør utføres ved å fortsette påkjøringsrampen som eget felt

Avslutning av forbikjøringsfelt er illustrert på figur 18.118 og 18.119.

Midtdeler i primærveg

Sekundærevengens utforming

Sekundærevegen betraktes som primærveg i forhold til rampene. Den skal oppfylle de samme krav som primærveg gjennom kryss i plan.

Rampenes linjeføring

På veg med fartsgrense 80 km/t eller høyere bør dimensjoneringen bært på rampene nærmest primærvegen ikke være under 40–60 km/t. På rette ramper kan et fartsnivå på 70–80 km/t være aktuelt. Påkjøringsramper kan være krappe enn avkjøringsramper, men ved begynnelsen av akselerasjonsfeltet bør fartsnivået være minimum 50 km/t. Ved lavere fartsnivå bør akselerasjonsfeltets lengde økes.
I middels tett bebyggelse og i hankkryss kan et fartsnivå på rampene på 30 km/t legges til grunn. I tett bebyggelse, hvis det er aktuelt med planskilt kryss i slike områder, kan sporingskurvene legges til grunn for utforming av påkjøringsrampene. Avkjøringsrampene dimensjoneres for fartsnivå på 30 km/t.

Hvis rampen tilknyttes primærovegen i venstre kurve, bør det påses at rampen ikke forstyrer primærovegens optiske linjeferd.

Ramer bør normalt ikke ha større stigning eller fall enn 6-7%, i bystrøk kan større verdier benyttes. Det skal benyttes vertikalkurver som sikrer stoppsikt.

Rampenes tverrprofil

Ramer skal normalt ha ett kjørefelt. Utvidelse til to eller flere felt kan være nødvendig på grunn av trafikkavviklingen.

Envegskjorte ramper utformes med 3,5 m kjørerom og 0,5 m skulder med fast dekke på hver side. Dessuten bør tilleggsareal til nødstop på høyre side vurderes i hvert enkelt tilfelle. Nødstoppareal kan utføres som 1 m ekstra skulderbedde, som havariommer eller som slak avrundning mot grøft. Nødstoppareal er sjelden nødvendig hvis rampen ligger i fall.

Ramer skal ha breddesetning i henhold til linjeføringskapitlet. Det skal benyttes overgangskurver.

Tverrfallet på envegskjorte ramper kan økes utover standard normalkrav, men resulterende tverrfall må ikke være over 12%.

Figur 18.108 viser rampens tverrprofil. Indre skulder bør flates ut til ca. 5% tverrfall.

Figur 18.106
Rampens linjeføring i tett bebyggelse.

Figur 18.107
Rampens tverrprofil.

Figur 18.108
Overhøyde på ramper for ulike horisontalradier.

202
Retardasjonsfelt
Alle avkjøringer skal være til høyre for gjennomgående trafikk og ha en retardasjonsstrekning. Parallelført retardasjonsfelt bør benyttes framfor kileformet ved fartsgrense ≥ 70 km/t og generelt der avkjøringsrampen går i fall ned til en sekundærveg som ligger lavere enn primærvegen. Figur 18.109 viser standardutforming. L1 og L2 avhenger av fartsnivået.

Bredden på retardasjonsfeltet bør være som teltbredden på gjennomgående veg. Skulderen bør også være som på gjennomgående veg, dog ikke bredere enn 1.5 m. Fra retardasjonsfeltet skal det være så god oversikt over den videre rampefering at fartsnivået kan tilpasses rampekurvature. Dette er spesielt viktig ved eventuelt direkteførte ramper. Minstekrav til horisontalkurveradius ved begynnelsen av rampen er vist i figur 18.111.

Avstanden fra avkjøringsnesen til nærmeste sted det kan bli stopp (kryss o.l.) bør ikke være mindre enn 75 m. Stillestående kør tilbake til retardasjonsfeltet må unngås.

Ved fartsgrense 50 km/t kan avkjøringen utformes som vanlig högresving, parallelført eller kileformet, se side 174.
Akselerasjonsfelt

All påkjøring skal være til høyre for gjennomgående trafikk. Planskilt kryss skal normalt ha akselerasjonsfelt. Kryss på motorveg skal alltid ha akselerasjonsfelt.

Standardutføring er vist på figuren. Akselerasjonsfelt skal være parallellført og bør ha samme bredde som feltbredningen på gjennomgående veg, dog ikke bredere enn 3,5 m. Figuren angir krav til lengden på akselerasjonsfeltet avhengig av dimensjonerende fart. Ved stigning skal lengden økes som beskrevet i noten til figuren. Ved fall kan lengden reduseres.

Overgangslengden kan reduseres til 30 m der det er trangt.

Overhøydeutjevning

Figurene viser eksempler på utjevning av overhøyde ved rampetilslutninger. Tverrfallforskjellen mellom gjennomgående felt og fartsendringsfelt bør ikke være større enn 4,5%.
Avstand mellom rampetilslutninger
Avstanden mellom ramper, der avkjøringsrampen kommer først, bør ikke være mindre enn 75 m.

Avstanden mellom raspeforgreninger bør ikke være mindre enn 100 m.

Vegserviceanlegg
Vegserviceanlegg i tilknytning til planskiltte kryss må plasseres på utsiden av rampene.

Både inn- og utkjøring til anlegget bør legges til egen avkjøringsrampe. I sekundærvegen, eventuelt til en annen lokal veg utenom hovedkrysset. I ruterkryss er det ofte akseptabelt med direkte innkjøring til anlegget fra avkjøringsrampen, forutsatt at dette skjer minst 100 m fra avkjøringsnesen på primærvegen.

I 3-armede rundkjøringer mellom rampe og sekundærveg kan vegserviceanlegg knyttes til rundkjøringen som en fjerde arm. Avkjøringsen må i så fall utformes som en mulig vegarm de siste 20 m inn mot rundkjøringen.

For å unngå farlig feilkjøring, er det viktig at serviceanlegg ved planskiltte kryss har en oversiktlig utforming.

Figur 18.115
Avstand mellom av- og påkjøringsrampe.

Figur 18.116
Avstand mellom raspeforgreninger.

Figur 18.117
Aktuelle plasseringer av vegserviceanlegg.
Figur 18.118
Avslutning av forbikjöringsfelt efter rampetilslutningar, skiftet hastighet ≥ 80 km/t.

Figur 18.119
Avslutning av forbikjöringsfelt i kryssområde med skiftet hastighet ≥ 80 km/t.
Vekslingsstrekninger
Dersom påkjøringsrampen ligger før avkjøringsrampen, må trafikkstrømmene vekse. Slik utforming bør unngås.

Korte kryssavstander kan også medføre behov for vekslingsstrekninger.

Lengden på en vekslingsstrekning bør være minst 300 m. På veger med lavt fartsnivå kan lengden reduseres til 200 m. Ved store mengder vekselende trafikk og høye fartsgrenser bør lengden økes til opp mot 600 til 700 m.

Vekslingsstrekninger kan inndeles i 3 forskjellige hovedtyper etter utforming.

Type A innebærer at alle vekselende kjøreveier må foreta feltskifte.

I type B og C unngås feltskifte for en av kjøreveistrekkene som skal vekse. Den andre kjøreveistrekkens må skiftes felt en gang i type B og to ganger i type C. Begge disse typene krever minst 2 kjørefelt på tilfarten fra høyre. Type C bør unngås.

![Figur 18.121A](image)
Figur 18.121A
Vekslingsstrekning av type A.

![Figur 18.121B](image)
Figur 18.121B
Vekslingsstrekning av type B.

![Figur 18.120](image)
Figur 18.120
Vekslingsstrekning. Minimumslengder.

![Figur 18.121C](image)
Figur 18.121C
Vekslingsstrekning av type C.
Når trafikken er stor er det nødvendig med kapasitetsberegninger for å kunne velge riktig type veiklingsstrekning og lengden på denne. Type B gir høyere kapasitet.
Beregning av kapasitet for veiklingsstrekninger er omtalt i håndbok for kapasitetsberegning av vegstrekninger og i HCM (85).

Tilslutning til sekundærveg
Tilslutning til sekundærveg utføres normalt som plankryss. Fortrinnsvis bør det velges standardløsninger med rundkjøringar som vist på figurene. Randkjøringar er fleksible for variasjoner i trafikken og sjansen for kloppbygging på retardsjonsrampen er liten. En annen fordel med rundkjøringar i planskilte kryss er at det ikke er behov for lange svingefelt og at det således kan bygges smalere bro eller undergang (kostnadsbesparende).

Tilslutningen kan også (f.eks. ved trompetkryss) utføres med rampetilslutning som utformes på samme måte som beskrevet foran.

For å unngå kø på rampene bør kapasiteten i kryss med sekundærvegen vurderes.

Bussholdeplasser i planskilte kryss
Bussholdeplasser langs primærvegen bør unngås. I stedet bør holdeplassene plasseres på påkjøringssrampene nær sekundærvegen slik at bussene får benytte av- og påkjøringssrampene på ordinær måte.
Dersom spesielle grunner tilsetter at det må plasseres holdeplasser langs primærvegen må dette gjøres uten å skape konflikter med normal retardasjon og akselerasjon.

Bymessig tilpasning

Plansikte kryss kan være aktuelt i tett bebyggelse, i kryss mellom H3 gater eller mellom H3 og S3. Slike kryss bør som hovedregel tilpasses eksisterende bebyggelse og gatetarkitektur.

Som en veiledning anges de viktigste geometriske verdiene i figur 18.124.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>ST/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim. kjøretøy, H3</td>
<td>ST</td>
</tr>
<tr>
<td>Dim. kjøretøy, S3</td>
<td>ST/L</td>
</tr>
<tr>
<td>Avstand mellom kantstein, tofelts</td>
<td>6,5 m</td>
</tr>
<tr>
<td>Avstand mellom kantstein, enfelt</td>
<td>4,5 m</td>
</tr>
<tr>
<td>Minste horisontalradius</td>
<td>30 m</td>
</tr>
<tr>
<td>Minste vertikalradius, høybrekk</td>
<td>600 m</td>
</tr>
<tr>
<td>Minste vertikalradius, lavbrekk</td>
<td>400 m</td>
</tr>
<tr>
<td>Maks overhøyde</td>
<td>5%</td>
</tr>
<tr>
<td>Maks stigning, >100 m</td>
<td>7%</td>
</tr>
<tr>
<td>Maks stigning, <100 m</td>
<td>9%</td>
</tr>
<tr>
<td>Maks stigning i tilknytninger</td>
<td>6%</td>
</tr>
</tbody>
</table>

Figur 18.124
Plansikt kryss i tett bebyggelse. Geometriske verdier.
19. FARTSDEMPENDE TILTAK

Bruk av fartsdempende tiltak i boligområder er detaljert beskrevet i håndbok 072. Skilting er beskrevet i håndbok 050.

Fartsdempende tiltak er først og fremst aktuelt på A2 og A3 veger. I forbindelse med miljøprioritert gjennomkjøring, er tiltakene også aktuelle på H3, S2 og S3 veger. Fartsdempende tiltak bør ikke brukes på stamveger og på veger der ADT er over 5000.

I utgangspunktet bør vegene utformes slik at trafikantene naturlig velger en kjørefart som samstemmer med vegens funksjon. Fartsdempende tiltak blir derfor først og fremst aktuelt i utbygde områder.

De mest aktuelle tiltakene er:

- Fartsgrense 30-40 km/t evt. fartsgrensesone 30 km/t
- Humper
- Innsnevninger (fortrinnsvis kombinert med andre tiltak)
- Trafikkøyer
- Sideforskyvninger
- Rumløft
- Fortausutvidelse i kryss

Redusert sikt må ikke brukes som fartsdempende tiltak.

Tiltakene må utformes slik at de faller naturlig inn i vegmiljøet. Midlertidige tiltak er ofte lite pene og kan føre til at tiltakene kommer i miskreditt.
På boligvæg og -gater bør fartsnivået ikke overstige 30 km/t. Der fartsdemping ønskes på samlevæger, vil 40 km/t gjerne være et naturlig fartsnivå.

Det bør utvises forsiktighet når fartsdemping på veger med busstrafikk planlegges. Kontakt med busselskaper må tas tidlig i planleggingen.

Fartsdempende tiltak bør anlegges for større områder samtidig, slik at alle alternative kjøreruter i adkomstvegnettet behandles ensartet. Dette vil redusere mulighetene for ønsket omkjøring og vil sikre at tiltakene får et enhetlig preg.

Fartsgrenser

Bruk av særskilte fartsgrenser er beskrevet i håndbok 050. Det har vist seg at fartsgreenskiltene sjelden har gitt reduksjon i fartsnivået på mer enn 2-4 km/t. Fartsgrenser må derfor normalt suppleres med fysiske tiltak.

Slike suppleringer vil normalt være nødvendige der:

- Rettstrekninger evt. kryssavstand overstiger 150 m (kurver slakere enn 100 m radius regnes som rett)
- Området er belastet med gjennomgangstrafikk
- Fartsnivået er for høyt (gjennomsnitt over 30 km/t, 15% over 40 km/t).

Figur 19.3
Skilting. Må ofte suppleres med fysiske tiltak.
Humper

Humper er som regel et effektivt, rimelig og pent tiltak. Vanligvis ligger fartsreduksjonen mellom 15 og 20 km/t. En annen fordel er at svært få kjører fortere enn fartsgrensen.

De tre aktuelle utformingene er vist på figurene.

Humper brukes ikke på veger med fartsgrense 50 km/t eller høyere.

For å hindre retardasjon og akselerasjon i forbindelse med hver hump, bør avstanden mellom humpene ikke overstige 50-75 m.

Ved fotgjengerkryssinger kan gangfelt males på standard hump (opphøyd gangfelt). Dette tiltaket kan også benyttes på veger med fartsgrense 50 km/t, hvis det anvendes "bushump" og farten skilles ned til 40 km/t i tilknytning til humpen.

Innsnevringer

Innsnevringer brukt alene har vanligvis litem eller ingen fartsdempende effekt. En del trafikanter vil til og med øke hastigheten for å komme gjennom innsnevringen før bil i motgående retning.

Slike kombinasjonsløsninger vil f.eks. egne seg godt ved bussenhodeplasser. Kjørebanerbredden gjennom innsnevringeren bør være 3 – 3,5 m.

Figur 19.4
Denne humpen brukes ved fartsgrense 30 km/t på veger uten busstrafikk.

Figur 19.5
Denne humpen brukes ved 40 km/t og på veger med 30 km/t og busstrafikk.

Figur 19.6
Denne humpen brukes på veger med fartsgrense 40 km/t og busstrafikk.

213
Dersom innsnevninger anlegges alene, bør avstanden mellom disse ikke overstige 50-75m.

Hvis ÅDT er større enn 5000, vil det kunne oppstå kø ved innsnevringen.

Trafikkøyer

Trafikkøyer gir fartsdemping omtrent som en innsnevning. De egner seg best på veger som er bredere enn 7,5 m, og i forbindelse med gangfelt. Utformingen kan være som vist på figuren.

Sideforskyvninger

Sideforskyvning har ofte liten effekt, da vegarealet blir for romslig av hensyn til dimensjonerende kjøretøy. Sideforskyving kan imidlertid gi en viss reduksjon og utjevning av fartsnivået i områder der farten er hoy (60 km/t). I sentrale byområder er sideforskyvninger ofte lite tilfredsstillende estetisk og arealmessig, og andre tiltak bør velges.

Rumlefelt

Rumlefelt kan gi en fartsreduksjon på ca. 5 km/t der farten på forhånd er hoy (60 km/t). Tiltaket egner seg for å varsle at farten må senkes. Tiltaket er mindre egnet til å holde farten nede. Rumlefelt kan utformes som tværgrående plaststripes i vegbanen med høyde 5-10 mm og bredde 5-10 cm.
Fortausutvidelse i kryss

Fortausutvidelse ved kryss vil, foruten å virke fartsdempende, bidra til å fjerne parkerte biler ved kryset slik at fotgjengere og bilister synes bedre for hverandre. Fortausutvidelse vil også gi redusert kryssingslengde for fotgjengere. Fortausutvidelse kan bli kostbart dersom lukket drenering må legges om. Eksempel på utføring er vist på figuren.

Figur 19.11
EKSEMPEL PÅ FORTAUSUTVIDELSE I KRYSS.
20. PARKERING

Behovet for å legge forholdene til rette for parkering i sentrale byområder vil variere med bl.a. bystørrelse. I mindre byer og utenfor sentrum i større byer kan det legges til rette for parkering så nær bestemmelsesstedet som mulig. Korte gangavstander gir mulighet for effektiv transport av personer og gods.

På samle- og adkomstveger bør parkering legges til spesielle plasser og i parkeringshus. Kantsteinsparkering kan unntakvis tillates på S2-veger med ÅDT under 1500 og lite gang-/sykkeltrafikk. Kantsteinsparkering kan også tillates på S3-gater med lite boliger.

På adkomstveger bør parkering legges til fellesanlegg eller på den enkelte eiendom, ikke på veggrunn. I A3-gater legges parkering til fellesanlegg eller gategrunn.

Parkeringsanleggene bør legges nær hovedveger og de aktiviteter de skal betjene. Viktig er også gode tilknytningsmuligheter til ganganlegg og kollektivnett. Lokal visning til anleggene er viktig for å redusere unødvendig kjøring.

Parkeringshus er ikke spesielt behandlet her. P-hus kan være aktuelt ved større bo- og sentrumskonsentrasjoner.

Sykkelplasser

I boligområder bør det legges vekt på å finne en god løsning for sykkelparkering. Det bør helst ordnes separat for hver oppgang, og det bør settes av to plasser pr. leilighet.
Ved skoler bør det anlegges sykkelparkeringsplasser for minimum 50% av antallet elever og ansatte som kan bruke sykkel. Plassene bør ligge inne i skolegården, eller slik at de kan være under stadig oppsyn.

Ved forretninger og i forretningsstrøk bør det anlegges minst 3-4 sykkelparkeringsplasser for forretninger opp til 100 m² og i tillegg 1 sykkelparkeringsplass pr. 50 m² forretningsareal utover 100 m².

Ved offentlige bygninger bør det anlegges sykkelparkeringsplasser for minst 10% av de ansatte og for besøkende. Der sykler brukes mye, bør det anlegges flere plasser.

Bilplasser ved bolig

Figur 20.2 angir antall bilplasser pr. bolig (egenparkering + besøksparkering) for forskjellige bebyggelsestyper. Tabellen gjelder planlegging av nye boligområder.

I eksisterende boligområder viser det seg ofte at behovet er mindre enn det som er angitt i tabellen, særlig gjelder dette små leiligheter og sentrumsnære områder. For eksempel vil ca. 0.5 ofte gi brukbar dekning i indre sone i byene.

Besøksplasser kan legges slik at de ligger lengre fra boligene enn plassene for egenparkering.

Utover disse tall bør det legges til rette for ordnet oppstilling av lastebiler, campingvogner, båter, mindre tilhengere etc.
Til dette trengs normalt 2,5 plasser pr. 10 parkeringsplasser for personbil.

Parkeringsplasser bør legges i nær tilknytning til adkomstvegen, og bør skilles fra lekearealer og gang-/sykkelveger.

Bilplasser ved annen bebyggelse

Normalvedtektene til Plan og bygningslovens 69, punkt 3, gir følgende retningsgivende tall for nødvendig antall parkeringsplasser for enkeltpersoner og nybygg i sentrum og for sentrumsbebyggelse utenom sentrum.

"Forretningsbebyggelse bør ha oppstillsplass på egen tomst eller på fellesareal for 1 bil pr. 50 m² gulvflate i bebyggelsen. Hertil kommer lasteareal for vare- og lastebiler.

Industri og lagerbebyggelse bør ha oppstillsplass for 1 bil pr. 100 m² gulvflate i bebyggelsen. Hertil kommer lasteareal for vare- og lastebiler.

For institusjoner, hoteller, restauranter, forsamlingslokaler, teater, skoler, universiteter, idrettsanlegg, sykehus og andre bygningsanlegg hvor spesielle forhold gjør seg gjeldende, vurderes behovet for bilopplgning plasser i hvert enkelt tilfelle."

Det forutsettes videre at det vurderes i hvert enkelt tilfelle om behovet er dekket.
I sentrumsområder kan det kreves færre plasser enn angitt.

På andre anlegg kan det angis en spredning på parkeringsplassbehovet basert på observasjoner. Tallene i figur 20.3 tar utgangspunkt i 3-400 biler pr. 1000 innbyggere. Tallene vil for øvrig variere med bilutnyttelse, kollektivtilbud, om virksomhetene kan utnytte plassene i fellesskap etc.

Kiosk, gatekjøkken o.l. bør legges slik at de har god tilgjengelighet, og slik at stopp og korttidsparkering kan skje utenfor gategrunn og uten hinder for annen trafikk.

Utforming av sykkelplasser

Ved bolig, skole, forretning, arbeidsplass, kollektivholdeplass og fritidsaktivitet bør det legges til rette for sykkelparkering.

Syklenes plassbehov ved parkering er vist på figur 20.4.

Der sparkstøtting brukes mye om vinteren, bør sykkelparkeringen utformes slik at den gir plass for sparkstøtting. Utforming av sparkstøtting er vist på side 9.
Utforming av bilpasser

Dimensjonene i dette avsnittet forutsetter korttidsparkering. Ved langtidsparkering kan bilene stå noe tettere.

Kantsteinsparkering er aktuelt i en del tilfeller, se innledningen. Kantsteinskapering bør skje i kjøreretningen parallelt med kantstein. Figuren og tabellen viser dimensjonene. Parkering er forbudt nærmere kryss og gangfelt enn 5 m.

I parkeringsanlegg bør trafikken ensrettes og legges opp slik at gjennomkjøring er mulig. Behovet for rygging må reduseres til et minimum. Figurene 20.6 og 20.7 viser parkeringsanlegg for personbil.

Bruk av 90° parkering må vurderes nøye fordi det krever store kjørearealer for å kunne fungere tilfredsstillende.

<table>
<thead>
<tr>
<th>Type kjøretøy</th>
<th>B(m)</th>
<th>L(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>LL</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Figur 20.5
Parkerings langs kantstein.

<table>
<thead>
<tr>
<th>α°</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>Areal pr. bil: m² brutto for 10 pl.</th>
<th>Areal pr. plass når 100 plasser anlegges</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>2,30</td>
<td>5,2</td>
<td>2,8</td>
<td>3,2</td>
<td>13,2</td>
<td>5,2</td>
<td>27,9</td>
<td>21,9</td>
</tr>
<tr>
<td>60</td>
<td>2,30</td>
<td>5,5</td>
<td>4,0</td>
<td>2,7</td>
<td>15,0</td>
<td>3,2</td>
<td>24,7</td>
<td>20,4</td>
</tr>
<tr>
<td>90</td>
<td>2,30</td>
<td>5,0</td>
<td>7,0</td>
<td>2,3</td>
<td>17,0</td>
<td>2,3</td>
<td>19,5</td>
<td>19,5</td>
</tr>
<tr>
<td>45</td>
<td>2,40</td>
<td>5,2</td>
<td>2,8</td>
<td>3,4</td>
<td>13,2</td>
<td>5,2</td>
<td>29,4</td>
<td>23,2</td>
</tr>
<tr>
<td>60</td>
<td>2,40</td>
<td>5,5</td>
<td>3,8</td>
<td>2,8</td>
<td>14,0</td>
<td>3,2</td>
<td>25,3</td>
<td>21,1</td>
</tr>
<tr>
<td>90</td>
<td>2,40</td>
<td>5,0</td>
<td>6,5</td>
<td>2,4</td>
<td>16,5</td>
<td>2,4</td>
<td>19,8</td>
<td>19,8</td>
</tr>
<tr>
<td>45</td>
<td>2,50</td>
<td>5,3</td>
<td>2,8</td>
<td>3,5</td>
<td>13,4</td>
<td>5,3</td>
<td>30,6</td>
<td>24,3</td>
</tr>
<tr>
<td>60</td>
<td>2,50</td>
<td>5,6</td>
<td>3,5</td>
<td>2,9</td>
<td>14,7</td>
<td>3,2</td>
<td>25,8</td>
<td>21,6</td>
</tr>
<tr>
<td>90</td>
<td>2,50</td>
<td>5,0</td>
<td>6,0</td>
<td>2,5</td>
<td>16,0</td>
<td>2,5</td>
<td>20,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Figur 20.7
Dimensjoner for parkering i vinkel (P).
For at en parkeringsplass skal fungere må det være et tilstrekkelig manøvreringsrom. Disse kjørearealetene bør kontrolleres med sporingskurver.

Normalt bør alle offentlige parkeringsanlegg ha 5-10% plasser for bevegelseshemmede. Plasser for bevegelseshemmede bør ha en bredde på 3,5 m og ligge så nær heis eller gangarealer som mulig.

Figuren til venstre viser eksempel på hvordan en parkeringsplass kan ordnes.

Eksempel på anlegg for typekjøretøy ST, L og LL er gitt i figurene.

Ved planlegging av parkeringsanlegg bør renhold og snørydding vurderes spesielt. Areal for snøopplag bør være anslagsvis 10-30% av brøytet areal, avhengig av om det dimensjoneres for korttidslagring eller langtidslagring av snø.

Plasser som brukes mye i mørket, bør være belyst.
Figur 20.12
Eksempel på parkeringsplass. Vegetasjonen leder fotgjengerne mot en klart markert gangstripe.

Figur 20.13
Eksempel på parkeringsplass. Parkeringsanlegget er kombinert med en liten park som munner ut i et separat gangvegsystem til hoyre på bildet.
Parkeringshus
I de fleste større byer bygges det nå parkeringshus fordi det ikke er ønskelig eller mulig å få tilstrekkelig plass på gategrunn eller i anlegg i dagen.

Fra eksisterende parkeringshus er det samlet inn en del opplysninger som kan være av interesse. Det viser seg at den trafikkmessige utforming har stor betydning for bruken av P-husene.

Detaljutformingen av huset må avgjøres lokalt ut fra tomten, arealkostnad, området rundt etc.

De forhold som synes å være av stor betydning er følgende:
• Halvetasjer gir store fordeler med korte og slake ramper
• Ramper bør være envegskjørte og ha bredd min. 4,25 m
• Rampenes stigning bør ikke overstige 1:7, overgangskurver er nødvendige
• Ramper utendørs bør ikke overstige 1:10
• Fri høyde bør ikke være mindre enn 2,25 m, og det må tas hensyn til vedlikeholdsmaskiner

• Parkeringsbåser bør ha dimensjon på 2,50 (2,40) x 5 m, dette er et minimum og eventuelle søyler må plasseres utenfor dette arealet
• Vinkelparking 70° kan gi enkere kjøreforhold
• Fall på parkeringsdekke bør være min. 1:40
• Ved takparkering uten oppvarming av dekket må det tas hensyn til snøutkast
• Det bør være oppvarmede takrenner og nedløp i frittstående P-hus
• Det bør være 7,0 m (6,5 m) mellom parkeringsbåsene for kjøreareal
• Det bør ikke være søyler ute i parkeringsarealet
• Dimensjonene kan være noe mindre der det er overveiende langtidsparkering
• God visning ut og inn for kjørende så vel som for gående er viktig.
21. KOLLEKTIVTRAFFIKK

Generelt

I disse normalene er hovedvekten lagt på kollektivtrafikk med buss. Tiltak for kollektivtrafikken består av tidsmessige holdeplasser og terminaler, hensiktsmessige rutetraseer, etablering av egne gater eller kjørefelt og prioritering i vegkryss. Ved planleggingen må det tas hensyn til de krav de ulike rutetyper stiller. Ekspressbusser må ha høy fart og lang holdeplassavstand. For lokale ruter er holdeplassavstanden kort, og farten vesentliglavere. For begge rutetyper er det viktig at antallet og lengden av stopp og venting pga. annen trafikk reduseres.

Lokale ruter trafikerer normalt samlevge, og i noen tilfeller adkomstvæger, mens ekspressrutene trafikerer hovedvegnettet.

Planlegging av tiltak for kollektivtrafikk må skje i nært samarbeid med ruteselskapene i området.

Kriterier for busslomme, leskur og gangavstander er gitt i systemdelen.

Gangavstandene gjelder i flott terreng. I kupert terreng bør avstandene reduseres.

Kollektivtrafikken vil som oftest bruke det samme vegnett som øvrig trafikk, og dette må utformes med en slik forutsetning.

Veger som er forutsatt trafikert med buss bør dimensjoneres for 10 t aksellaast og typekjøretøy B. Sporingskurvene angir nettoareal og det må i tillegg sikres areal til snøopplag etc. Videre må det sikres areal til holdeplasser og eventuelt innfartsparkering. Ved utforming av holdeplasser, terminaler og snuplasser må det tas hensyn til hvilken type buss som trafikerer strekningen.

Kantsteinparkering i bussgater bør unngåes eller foregå i egne parkeringslommer.

Kollektivfelt i en vanlig gate bør markeres med en annen dekketype eller med lav overkjørbar kantstein.

Generelle geometriske krav

De målsatte figurene i disse normalene viser dimensjonering for 13 m lang "standardbuss" og 18 m lang leddbuss med sving på bakhjulene. Denne type leddbuss har tilhørermote samme svingegenskaper som "standardbuss", slik at kun oppstilingslengden blir forskjellig i figurene.

Kollektivfelt bør være 3,5 m bredt og ha en kantsteinsklaring på 0,25 m, unntaksvis kan det være 3,0 m bredt og ha kantsteinsklaring på 0,25 m. Vegbredder forøvrig er gitt i del B.

Veger med busstrafikk bør ikke ha stigning eller fall større enn 6%, unntaksvis 8%. Holdeplasser i stigning over 4% (unntaksvis 6%) bør unngås. Tverrfall på buss holdeplasser bør ikke overstige 3%.
Sikt når bussen stopper på kjørebanen må minst være lik stoppsikt i begge retninger. Ved busslomme bør sikten bakover være 1,5 x stoppsikt og bør kunne oppnås via bussens venstre spell.

Holdeplasser og snuplasser

Plassering
Følgende redningslinjer legges til grunn for plassering av holdeplasser.

- Holdeplasser bør plasseres slik i forhold til boligområde, skole, institusjon m.v. at trafikantene unngår unødig kryssing av veg. Det kan være nødvendig å anlegge ensidig busslomme med trafikk i begge retninger.

- Bussholdeplassene bør legges slik at de er i kontakt med gangvege, og så nær servicesentre, forretning o.l. som mulig. Der busserter krysser hverandre, må overgangen gjøres enkel og sikker med kort gangavstand, liten høydeforskjell o.l.

- Dersom holdeplassen anlegges i tilknytning til kryss, bør den plasseres etter krysset på primærvegen, såfremt ikke gangveg går på den andre siden av krysset. Skal bussen svinge av fra primærveg til sekundærveg eller omvendt, bør holdeplassen legges på sekundærveg.

- Kriterier for når bussholdeplasser bør legges utenfor gjennomgående kjørefelt er gitt i systemdelen. Dersom bussen blir stående på gjennomgående kjørefelt, må holdeplassen plasseres på steder der det etter trafikkreglene er tilrett å stoppe. Det må i alle tilfeller sørges for at passasjerene kan vente utenfor kjørebanen.

- Holdeplass skal aldri legges i et retardasjonsfelt

- Plassering av bussholdeplass bestemmes av skiltmyndighet (jfr. skiltreglens 11) i samråd med samferdselssejfen og ruteselskapene. Busslommer må innarbeides i detalj- og reguleringsplaner.

Utforming av holdeplass utenfor kjørebanen

En holdeplass utformet som busslomme bør være minst 3 m bred og så lang at det er plass til det antall busser som forventes å stoppe der samtidig.

Ved plassering og utforming av holdeplass er det viktig å passe at tilfredsstilende sikt oppnås ved kjøring til/fra holdeplass. Særlig bør en være oppmerksom på begrensningen i sikt via bussens venstre spell dersom busslommer plasseres i eller like etter en høyrekurve (jfr. avsnitt generelle geometriske krav i denne delen av normalene).

Busslommer utformes og plasseres slik at knepunktene i vegens linjeføring unngås.

Figurene 21.1, 21.2, og 21.3 viser dimensjonering ved forskjellige typer bussholdeplasser:

De tre figurene viser plassering og dimensjonering av busslommer på henholdsvis fri veg-/gatestrekkning og i tilknytning til kryss med f.eks. samlevet.
Figur 21.1
Busslomme på fri veg-/gatestrekning.

Figur 21.2
Busslomme ved kryss med f.eks. samleveg.

<table>
<thead>
<tr>
<th>Fartsgrense</th>
<th>Innkjøringslengde i m</th>
<th>Lengde bussplass</th>
<th>Utkjøringslengde i m</th>
<th>R_1 i m</th>
<th>R_2 i m</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 km/t og lavere</td>
<td>20</td>
<td>$n \ 15 \ 20^*$</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>70 km/t og høyere</td>
<td>25</td>
<td>$n \ 15 \ 20^*$</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

$n =$ antall busser som forventes å stoppe samtidig.

*) = gjelder leddbuss

Figur 21.3
Dimensjonering av busslommer uten trafikkøy.

227
Figur 21.4
Eksempel på utforming av busslomme på 4-
felts veg og på veg der fartsgrensen er over 70
km/t og ADT over 10000. Busslommen kan
også legges i forbindelse med toplankryss og
plasseres da på påkjøringsrampen. Ved høy
fart og ADT bør akselerasjonsfelt for buss
vurderes. R1 og R2 er gitt i figur 21.3.
Det er i det følgende vist eksempler på ensidige busslømmer/holdeplasser og snuplasser. Disse typene brukes ved ensidig bebyggelse.

Ved bygging av bussholdeplasser må det alltid avsettes tilstrekkelig plass (min. 2 m) til ventende passasjerer. Dette kan være en del av gangveg.

Figur 21.5
Snuplass og holdeplass i tilknytning til T-kryss.

Figur 21.6
Ensidig busslomme for trafikk i begge retninger (envegskjørt) og snuplass for begge retninger.
<table>
<thead>
<tr>
<th>Plass for</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>en buss</td>
<td>45</td>
</tr>
<tr>
<td>to busser</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plass for</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>en buss</td>
<td>50</td>
</tr>
<tr>
<td>to busser</td>
<td>60</td>
</tr>
</tbody>
</table>

Figur 21.7
Holdeplass og snuplass ved f.eks. skoler.

Utstyr på holdeplassen

Det må være tilstrekkelig informasjon på holdeplassen, i form av rutetabeller, rutekart, rutenummer og holdeplassens stedsnavn.
Leskur må plasseres slik at de står nær bussens inngangsdør og ikke hindrer sikten i vegkryss eller kurver.

Kriterier for leskur er gitt i systemdelen.

Ved valg av leskurtype må det stilles følgende funksjonskrav:

- God skjæring mot vind
- Gode utsikts- og innkikkssforhold
- Plass til minst 5-6 personer, derav sitteplass til 2-3 personer, samt rullestol
- Plass for soppelbeholder, informasjonskelk, benk
- Mulighet for lysopplegg
- Mulighet for rasjonelt vedlikehold og enkel reparasjon/montasje

Holdeplassen bør ha hvilebenk og soppelkurv. Hvis holdeplassen benyttes av skolebarn bør det settes opp et trafikksikkert gjerde mot kjøreebanen. Et opphøyet venteareal kan anlegges for å lette på og avstigningen for funksjonshemmede og andre. En slik nivåholdeplass krever bussmateriell med en spesiell lem som felles ut i samme nivå som plattformen.

Det bør etter behov settes opp sykkelstativ, f.eks. på sideveggen av leskuret.

Kummer og sandfang bør ikke legges i bussens hjulspor i busslommene. Hvis det er vanskelig å legge kummer og sandfang andre steder, må det påsles at lokkene ligger jevnt med vegdekket. Langs busslommens rettlinje bør det være ikke avvisende kantstein.

Det må sørges for god vannavrenning, helst bort fra rettlinjens kantstein.

Der plass og krav til sikt tillater det bør vegetasjon være en naturlig del av holdeplassen. Riktig brukt kan vegetasjon gi flere fordeler: triveligere omgivelser, ly mot vær og vind, mindre eksosplage, mindre erosjon, bedre visuell førings osv.

Belysning av holdeplasser er beskrevet i kapittel 24.

Terminaler

Terminaler er knutepunkt hvor flere busstruter møtes eller hvor det foregår overgang fra et transportmiddel til et annet. I de tilfellene terminalen også blir brukt til omlasting av gods, må området utformes med tanke på dette.

Generelt gjelder at kun busser (og evt. drosjer) trafikkerer plassen.

Trafikken må være ensrettet og bussene må ha faste oppstilingsplasser som er tydelig angitt ved skilt.

Terminaler bør som et minimum være utstyrt med leskur, og ellers bør utstyr og vegetasjon være som for holdeplass.

Leskurseområdet og gangareal må dimensjoneres etter antall passasjerer.
Det må tas hensyn til funksjonshemmede ved utforming av terminalen.

Alt etter størrelsen på terminalen kan det videre være behov for innendørs venterom for trafikanter, hvilerom for bussbetalningen, drosjeholdeplass, kiosk, kafeteria, toalett, billettsalgs og informasjon. Større terminaler bør ha plass til korttidsparkering av busser. Langtidsoppstilling kan også være aktuelt, men bør ikke skje i de sentrale byområdene. I tilknytning til terminalen kan det også være behov for innfartsparkering (park and ride).

Større terminaler (Busstasjon) vil som regel være utgangspunkt for både regionale ruter og nærtrafikkværer. Terminalen bør derfor ligge sentralt i bytettsted, og må ha god forbindelse til både innfartsåder og det sekundære vegnett. Det kan være behov for priorisert utkjøring til vegnett via signalregulering. Ved større terminaler bør det være plass for korttidsstopp med personbiler. Parkeringsplass for bil og sykkel bør anordnes i rimelig gangavstand fra terminalen.

Terminalen må utformes og tilpasses omgivelsene slik at gangtrafikken inne på terminalen og til/fra området kan skje på en sikker måte. En grundig kartlegging av gangmønstret er nødvendig for å forsikre seg om at kryssingsstedene det legges opp til virkelig blir benyttet.
Figurene viser dimensjoner for forskjellige oppstillingsmåter for buss. Det er også tatt med to eksempler på hvordan terminaler kan tilpasses tilgjengelig areal. Selv kjørearealet kan legges ut ved hjelp av sporingskurver.

Den første figuren viser langsgående oppstilling på faste plasser, hvor bussene kan kjøre ut og inn uavhengig av hverandre. Der flere busser kjører inn på samme holdeplass (uavhengig innkjøringsrekkefølge) og der de tillates å kjøre ut uavhengig av hverandre, avsettes 12 m mellom hver buss og 18 m til innkjøring bak den bakerste bussen (23 m ved leddbuss). Sagtannoppstilling er en variant av langsgående oppstilling. Ved oppstilling på faste plasser vil sagtannoppstilling kreve mindre plass i lengderetningen, men større bredde enn ved vanlig langsgående oppstilling. Sagtannoppstilling egner seg også for bruk rundt en perrong med vensteral.

Figur 21.8
Langsgående oppstilling på faste plasser.

Figur 21.9
Sagtannoppstilling (variant av langsgående oppstilling).

<table>
<thead>
<tr>
<th>Mål</th>
<th>Lengde i m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.0</td>
</tr>
<tr>
<td>b</td>
<td>14.5</td>
</tr>
<tr>
<td>c</td>
<td>18.5</td>
</tr>
<tr>
<td>d</td>
<td>10.5</td>
</tr>
<tr>
<td>e</td>
<td>8.0</td>
</tr>
</tbody>
</table>

*Gjelder leddbuss
Vinkeloppstilling som vist på figur 21.10 egner seg for større plasser. 90° oppstilling egner seg best når bussene kan kjøre rett inn langs refugen.

Langtidsoppstilling av busser krever mindre areal enn det figurene viser, men det må være tilstrekkelig gangareal (ca. 1 m bredde) mellom bussene.

De to siste figurene er eksempler på utformning av bussterminaler. I praksis vil det være form og størrelser på tilgjengelig areal som bestemmer detaljutformingen og oppstilingsmåte for bussene.

Kollektivprioritering

Prioritering av kollektivtrafikken gjøres som et ledd i den øvrige transportplanlegging, og er nødvendig for å sikre ønsket fremkommelighet.

Det må tas spesielt hensyn til kollektivtrafikken når særskilte trafikktillåt skal planlegges. Dette gjelder f.eks. ved innføring av svingebånd og gjennomkjøringsforbud, envegskjæringer, samkjæringer av trafikkspor og fartsdempede tillåt.

På strekninger med kapasitetsproblemer kan bussen prioriteres ved å anlegge kollektivfelt fram mot flaskehalsen. Dersom dette ikke er mulig, bør tilfartskontroll etableres for å sikre optimal avvikling over hele strekningen med kapasitetsproblem.

Erfaringer viser at kollektivfelt kan avvikle ca. 100 busser pr. time når holdeplassen ligger ved kantstein. Ligger holdeplassene
i busslommer med tilstrekkelig lengde, øker kapasiteten betydelig. Vanligvis kan derfor taxi også tillatess i kollektivfelt, bortsett fra når det benyttes aktiv signalpriori-

Foruten kollektivfelt og egne kollektivgater kan kollektivtrafikken prioriteres ved å innføre restriksjoner overfor øvrig trafikk. Aktuelle tiltak er redusert parkeringstilbud, envegsregulering, gjenomkjøringsforbud, reduserte svingemuligheter osv.

Prioritering av kollektivtrafikk på signalregulerte strekninger kan enklast gjøres "passivt", det vil si at systemet med grønt-tider i nærleggende kryss, holdeplasser m.m. anlegges slik at bussen får færrest mulig stopp og forsinkelser. I enkelte kryss kan aktiv prioritering benyttes, dvs. at bussen kaller opp grønt lys ved detektering i eget felt eller med radiosender.

.Figur 21.12
Eksempel på større terminal (busstasjon).

.Figur 21.13
To typer kollektivfelt. Nederste kollektivfelt er åpent for høyresvingende kollektivtrafikk.
De neste figurene viser eksempler på ulike kollektivprioriteringer.

Figur 21.14
Motstrøms kollektivtrafikk.

Figur 21.15
Bussprioritering inn mot rundkjøring.

Figur 21.16
Eksempel på utforming av buss-sluse.
Figur 21.17
Bussprioritering i T-kryss med oppmerking.

Figur 21.18
Bussprioritering i eget felt/gjennom kryss signalregulert med eget kollektivsignal.
Fartsdempende tiltak

Der bussen kjører på adkomstveger sammen med annen trafikk, kan det unntakvis være behov for fartsdempende tiltak.

Fartsdempende tiltak for veier med busstrafikk og utforming av eventuelle humper er vist i håndbok-072 Fartsdempende tiltak i boligveger. Utforming av "busshump" er vist på figuren til venstre.
22. VARELEVERING

Levering av varer til forretnings og andre virksomheter er en viktig funksjon i byen og er en forutsetning for et blomstrende næringsliv.

Levering direkte til virksomhetene bør fortrinnvis skje på baksiden, hvor ofte lager er lokalisert.

<table>
<thead>
<tr>
<th>Virksomhetstype</th>
<th>Ankomster pr. dag pr. 100 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gullsmed</td>
<td>0,05–0,10</td>
</tr>
<tr>
<td>Kler, sko</td>
<td>0,10–0,30</td>
</tr>
<tr>
<td>Service, frisør, optiker, urmaker</td>
<td>0,10–0,70</td>
</tr>
<tr>
<td>Varemagasin</td>
<td>0,20–0,80</td>
</tr>
<tr>
<td>Møbler, tepper, jernvare, elektrisk</td>
<td>0,10–2,00</td>
</tr>
<tr>
<td>Frukt, tobakk, kiosk</td>
<td>1,00–2,50</td>
</tr>
<tr>
<td>Matvarer</td>
<td>1,00–4,00</td>
</tr>
<tr>
<td>Vaskeri</td>
<td>0,30–0,50</td>
</tr>
<tr>
<td>Produksjonsbedrift</td>
<td>0,10–0,30</td>
</tr>
<tr>
<td>Engros, distribusjon (ikke mat)</td>
<td>0,40–4,00</td>
</tr>
<tr>
<td>Engros, distribusjon (mat, drikke)</td>
<td>0,50–2,50</td>
</tr>
<tr>
<td>Bilservice, rep.</td>
<td>2,00–2,50</td>
</tr>
<tr>
<td>Lagervirksomhet (ikke distribusjon)</td>
<td>0,60–1,20</td>
</tr>
<tr>
<td>Entreprenør, bygg og anlegg</td>
<td>2,00–2,50</td>
</tr>
<tr>
<td>Bygningsmaterialer</td>
<td>0,3</td>
</tr>
<tr>
<td>Annet volumgodts</td>
<td>0,7</td>
</tr>
<tr>
<td>Bensin, olje distribusjon</td>
<td>0,6</td>
</tr>
<tr>
<td>Transittlager, godssentral</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Figur 22.1
Varelevering for ulike bransjer. Ankomster pr. dag pr. 100 m².
Antall losseplasser

Behov for antall plasser må beregnes spesielt da det er stor variasjon mellom virksomhetene. Plassbehovet vil også bli påvirket av distribusjonsformen.

Beregning av plassbehovet kan tilnærmes ved å forutsette at 15% av det daglige antall lossinger finner sted i maksimaltiden. I gjennomsnitt har det vist seg at en lossing tar ca. 15 minutter pr. kjøretøy. Hver losseplass kan således losse 4 kjøretøy i maksimaltiden eller ca. 26 kjøretøy om dagen.

I figur 22.1 er det gitt en del eksempler på ankomster pr. dag for ulike virksomhetsyper pr. 100 m² areal.

Der det er flere virksomheter som kan dekkes av samme losseareal, kan antall plasser reduseres noe.

Utforming

Dimensjoner for nødvendig oppstillingsareal for typekjøretøyene LL, L og ST er vist på skissene. Det er vist eksempler på nødvendig areal for kantsteinsplasser og 90° parkering der rygging er mulig.

Den frie høyde i porter er avhengig av det dimensjonerende kjøretøy. Under normale forhold settes høyden lik:

<table>
<thead>
<tr>
<th>Bær personbil (P)</th>
<th>2,25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>L og LL</td>
<td>3,50 m</td>
</tr>
</tbody>
</table>
For anlegg hvor større trailere – ST kjører inn, må høyden settes til 4,35 m, for brannvesenets stigebiler 3,50 m og for spesial søppelbiler 3,60 m. Brannvesen og renholdsverk bør alltid kontakte for å undersøke om innkjøring er nødvendig. Containerbil kan kjøre gjennom porten med fri høyde lik 3,25 m. For av og på-feeding trengs større høyde.

De samme krav til frie høyder må også holdes på opp og nedkjøringsramper.

Kjørefelt bør være avgrenset av styrekanter. Mål på kjørefelt og styrekanter er gitt på figuren til høyre.

Hvis gående er nødt til å følge ramper eller kjørefelt, utvides den ene styrekannten til et fortøy med bredde minst 1,25 m. I kurver bør fortøy legges i yttersving.

Ved utforming av horisontalkurver brukes de respektive sporingskurver slik at kjørefeltet gjøres 0,25 m bredere enn disse viser. Styrekanter utføres slik at vegger e.l. ligger 30 cm utenfor linja som markerer overheng.

Anbefalt vertikalkurvatur framgår av figuren til høyre. Ramper i friluft med større stigning enn 1:8 (12,5%) bør ha varmekabler.

<table>
<thead>
<tr>
<th></th>
<th>Kjørebane m</th>
<th>Styre-</th>
<th>Sum m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>m</td>
<td>kant m</td>
<td>a+b</td>
</tr>
<tr>
<td>Ett felt eller envegs</td>
<td>3,00</td>
<td>0,35</td>
<td>3,35</td>
</tr>
<tr>
<td>To felt, P</td>
<td>5,00</td>
<td>0,25</td>
<td>5,25</td>
</tr>
<tr>
<td>To felt, LL</td>
<td>5,50</td>
<td>0,35</td>
<td>5,85</td>
</tr>
<tr>
<td>To felt, L</td>
<td>6,00</td>
<td>0,35</td>
<td>6,35</td>
</tr>
</tbody>
</table>

Figur 22.5
Bredde på ramper.
1): Kan som tovegskjort anlegg bare brukes av personbiler (P) og da med kjørebane 4 m.

Figur 22.6
Vertikalkurvatur for ramper.
Vareleveringsgater bør baseres på gjennomkjøring. Hvis snuplasser brukes, bør disse minst gis dimensjoner som snuplasser på adkomstveger. For enkelt-eiendommer, med moderat behov for varelevering, kan arealet hvor kjøretøyetlosses og lastes inngå i snuplassens areal.

Sikt i utkjøring bør være som i avkjørsler.

På figurene er gitt noen eksempler på spesialiserte utforminger i forbindelse med rygging.

Figur 22.7
Eksempel på rygging med semitrailer under trange forhold der sjåføren må få hjelp av anviser.

Figur 22.8
90° oppstillingsvinkel og tovegskjørt inn- og utkjøring.

Figur 22.9
45° oppstillingsvinkel og envegskjørt inn- og utkjøring.
23. RASTEPLASSER

Dette kapitlet omhandler rasteplasser.
Andre typer serviceanlegg er behandlet i håndbok 124.

Samlokalisering mellom kommersielle og ikke-kommersielle anlegg kan innebære fordeler både før trafikanterne og utbyggerne, og bør derfor vurderes under planleggingen.

Rasteplasser er først og fremst aktuelt på H1 veger. Stammegler og andre viktige turistveger bør prioriteres. Rasteplasser bør trekkes bort fra vegen.

Avstand mellom rasteplasser

Anbefalt avstand mellom rasteplasser er angitt på figureren. Den første figuren gjelder motorveg og avkjørselsfri veg, den andre gjelder avkjørselsregulert veg.

I figurene skiller mellom liten rasteplass og hovedrasteplass. Liten rasteplass utstyres normalt med avfallsdunk og 2-4 bord. Hovedrasteplass bygges med høyere standard, med mer romsleg geometri, flere bord, toalett m.m.

Figur 23.1
Avstand mellom rasteplasser på motorveg og avkjørselsfri veg.

Figur 23.2
Avstand mellom rasteplasser på avkjørselsregulert veg.

Antall rasteplassenheter

Behovet for rasteplassenheter langs en vegstrekning (antall enheter = antall bilplasser = antall bord) kan beregnes etter formelen

\[
B = k \times \text{ÅDT} \times L
\]

åårstødntrafikken
\[
L = \text{vegstrekningens lengde i km}
\]
\[
k = \text{en beregnet faktor, som kan settes til 1/3000}
\]

Formelen er kun egnet til overslagsberegning og bør suppleres med konkrete vurderinger i hvert tilfelle.

En eller begge kjøretninger?

Rasteplasser bør betjene kun en kjøretning i følgende tilfeller:

- På motorveger og avkjørselsfrie veger
- På fire eller fjerfeletsveger
- Der sikten og trafikken er slik at venstresving bør unngås av trafikk-sikkerhetsgrunner
- På veger med fartsgrense 90 km/t
Organisering og utstyr

Organisering av rasteplassen

Rasteplassens utforming og utstyr må tilpasses omgivelsene.

Bord og benker
Bord og benker bør være så tunge at de er vanskelige å velte. Det bør være fast dekke under de bordene som vil bli mest brukt. Minst ett av bordene skal være tilgjengelig for rullestolbrukere.

Avfallsbeholderer
Avstand mellom bord og avfallsbeholder bør ikke overstige 10-15 m. For bord som ligger noe vekk fra bilen, skal avfallsbeholderen plasseres mellom bord og bil. Avfallsbeholderne skal ha tette lokk og være enkle å betjene. En avfallsbeholder plasseres i toalettets umiddelbare nærhet.
Belysning
På store rasteplasser kan det være aktuelt å sette opp belysning. Belysningoen bør koncentreres om toalett og parkeringsareal. Lyset må ikke være til sjælensese
for trailersjåfører som overnatter i bilene, og ikke blende kjørende.

Toalett
På hovedrasteplasser skal det være toalett. På andre rasteplasser bør det være toalett, eller rasteplassen skal planlegges slik at toalett kan settes opp senere. Toalettet må være lett å finne og lett tilgjengelig, også for funksjonshemmede. Toalettet bør imidlertid ikke plasseres så nær bord og benker at det er sjenerende. Interiøret må være ukuselig og lett å holde rent. Eventuelt septiktank må ikke ligge lenger unna veg enn 15 m og ikke mer enn 6 m lavere.

Aktivitetsmuligheter

Trafikkteknisk utstyr
Vegetasjon
Vegetasjonens funksjon i forbindelse med rasteplasser er å skape skjerming, skape romdannelser og gi rasteplassen en naturlig sammenheng med omgivelsene. Eksisterende vegetasjon bør bevares i størst mulig grad. Eventuelt bør det plantes nytt, dersom dette ikke bryter med områdets karakter.

Skjerming

Romdannelser

Mellom sitteplass og bilplass kan det være en fordel med høystammede trær, da mange ønsker å se bilen. Dessuten kan slike trær gi ønsket skygge på bilen på varme dager.

Figur 23.9
Romdannelse ved sitteplass.

Figur 23.10
Vegetasjon kan brukes til å skape naturlige traséer for trafikk og aktiviteter, bl.a. for å unngå uønsket slitasje.

Vegetasjonstyper

Utforming av trafikkarealene

Sikt

Sikttrekkanten bør være stoppsikt pluss 50% langs primærovegen og 10 m inn på sekundærovegen (unntaksvis 4 m, men ikke på motorveg og avkjørselsfri veg).

Dimensjonerende kjøretøy

Interne veger

Interne veger på rasteplassen dimensjoneres for de kjøretøy som forutsettes å bruke plassen. Som regel er det ikke behov for spesielle krav til dimensjonerende fart. Enfolds veier vil som regel være tilstrekkelig. Interne veger bør ikke være brattere enn 10%, gangveger ikke brattere enn 8%.

Table:

<table>
<thead>
<tr>
<th>TRAFIKNIVÅ [ÅDT]</th>
<th>STØRRELSE PLASS</th>
<th>DIM. KJØRE-TØY</th>
<th>FREMKOMMELIG FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITEN [0-1500]</td>
<td>LITEN</td>
<td>P</td>
<td>LL</td>
</tr>
<tr>
<td>LITEN [0-1500]</td>
<td>STOR</td>
<td>LL</td>
<td>ST</td>
</tr>
<tr>
<td>MIDDLES [1500-5000]</td>
<td>LITEN /STOR</td>
<td>LL / ST</td>
<td>ST / -</td>
</tr>
<tr>
<td>STOR [≥ 5000]</td>
<td>LITEN /STOR</td>
<td>ST</td>
<td>-</td>
</tr>
</tbody>
</table>

Figur 23.12

Dimensjonerende typekjøretøy (veiledende).
Oppstillingsplasser
Det bør være like mange oppstillingsplasser som antall bord. Oppstillingsplasser for store kjøretøyer bør ikke anlegges for nær bord.

Oppstillingsplasser for personbiler bør være 2,5 x 5 m. Oppstillingsplasser for vogntog og semitrailere bør være 18 m (gjennomsnitt) x 3,5 m. Dersom det bare er en plass bør denne være 22 m lang.

Oppstillingsplassene for vogntog anlegges langs en intern veg med 10 m innkjøringslengde og 2 m utkjøringslengde. Se figuren, som også viser oppstillingsplass for bil med campingvogn.

Figur 23.13
Utforming av parkeringslommer.
24. VEBELYSNING

Generelt

Med vegbelysning forstås belysning av både veg og gategrunn inkludert eventuall gang/sykkelveg og/eller fortau.

Vegbelysning er i første rekke motivert ut fra hensynet til sikkerhet, avvikling og trivsel. Belysningen skal medvirke til at trafikantene får tilstrekkelig synsinformasjon i mørke om fotgjengere og farlige hindringer, andre kjøretøys plassering og fart på veien, gangfelt, vegkryss, vegens linjeføring samt skilting og oppmerking.

Dette kapitlet inneholder anbefalinger og krav til belysning ut fra trafikksikkerhetsmessige hensyn.

Etablering av vegbelysning

Behovsvurdering

Ut fra trafikksikkerhetsmessige hensyn bør veglys anlegges når sparte ulykkeskostnader oppveier kostnadene til anlegg og drift av veglyset, se figur. Virkninger av alternative trafikksikkerhetstiltak eller tiltak som utføres samtidig med belysning må også inngå i vurderingene.

Figuren bygger blant annet på følgende erfaringssmessige gjennomsnittsverdier:

- Ca. 35% mørkeulykkesandel
- Belysningens ulykkesreduserende effekt er ca. 30% på alle mørkeulykker
- Ensidig plassering av lysspunkter

![Figur 24.1](image)

Grensekurver for når investering i veglys kan være trafikksikkerhetsmessig lønnsomt.
Når mørkeulykkesandelen avviker vesentlig fra 35%, bør lønnsmøtheten beregnes for den aktuelle vegstrekningen. Likeledes krever spesielle anlegg, f.eks. større kryss og utbedring av eksisterende anlegg særskilt beregning.

Foruten de strekningene og kryss hvor behovskriteriet er tilfredsstilt skal følgende steder alltid belyses:

- Tunneler (unntatt "korte" tunneler).
- Fotgjengerunderganger (unntatt der det er lite fotgjengertrafikk og kostnadene for fremføring av strøm er utforholdsmessig store).
- Gangfelt.
- Kryss med fysisk kanalisering i primærvegen og rundkjøringen.
- Ferjeleirer.
- Bruer med stor trafikk (ÅDT > 10 000) eller ikke adskilt gang/sykkeltrafikk av en viss størrelse.

Belysning av veglyse for andre formål enn trafikkssikkerhet, f.eks. av hensyn til den almenne sikkerheten, trivsel og miljø, vil vanligvis være avhengig av lokalpolitiske ønsker og prioriteringer. Det er ikke utarbeidet generelle behovskriterier for dette.

Disse faktorene skal sammen gi tilfredsstillende synsforhold for kjørende og gående. Som regel vil de kjøreroutes muligheter til å se fotgjengere og hindringer i vegbanen bli bestemmede for lysanleggenes dimensjonering.

Lysanleggene skal normalt utformes slik at hindringer på kjørebanen og fotgjengere opptrer som mørke silhuetter mot en lysere bakgrunn (negativ kontrast). Dette oppnås ved vanlig vegbelysning. Lysanlegg som gir det motsatte, lys hindring mot mørk bakgrunn (positiv kontrast), er kun aktuelt i helt spesielle tilfeller, f.eks. intensivbelysning av gangfelt på bakke topp.

Lystekniske krav

Belysning av kjøroveg bør tilfredsstille krav til luminansnivå (enhet cd/m²) gitt i tabellen på neste side. For adkomstveger vil det oftest være hensiktsmessig å benytte horisontal belysningsstyrke (enhet lux) istedenfor luminans.

Luminansnivå og belysningsstyrke fastsettes ut fra vegstrekningens standardklasse og trafikkmengde, se figur 24.2.

Kravene til luminans er gitt som driftsverdier. Det skal regnes at driftsverdien utgjør 75% av nyverdien for natriumlamper. For kvikksølvlamper skal det regnes med 50% av nyverdien.

Utforming av veglysanlegg

Generelt

Følgende faktorer er avgjørende for belysningskvaliteten på veien:

- **Lyskilde** (lampetype og -effekt)
- **Armatur** (lysfordeling og virkningsgrad)
- **Geometri** (armaturplassering og vegbredde)
- **Vegdekke** (refleksjonsegenskapen)
Derfiguren angir et intervall på 1-2 cd/m², vil fastsettelse av luminansnivået være avhengig av en nærmere vurdering av trafikkmiljøet. F.eks. kan det være tilstrekkelig med 1 cd/m² når det er forbudt for gående og syklende å ferdes langs vegen og når en i praksis oppnår nær 100% separasjon av trafikkgruppene ved hjelp av gs-veg og planskilt kryssing. Ved lyse omgivelser (sidelysanlegg, lysreklame) og stor trafikkbelastning bør det velges et luminansnivå på 2 cd/m² imidlertid bør det da vurderes å medregne bidrag fra sidelysanleggene.

Et ca. 5 m bredt felt utenfor kjørebanekanten bør ha midlere belysningsstyrke på minst 50% av midlere belysningsstyrke for den tilgrensende 5 m bredde av kjørebanen.

Foruten krav til luminansnivå og belysningsstyrke må krav til jevnhet og maksimal tillatt blending tilfredsstilles. Se figuren.

Det kan være vanskelig og kostbart å oppnå tilfredsstillende total jevnhet på vått kjørebaner (Uov) og langsgående jevnhet (UI) samtidig. Ved lave fartsgrenser bør jevnhet på vått kjørebaner prioriteres. På veger med fartsgrense 90 km/t og på veger med fartsgrense 80 km/t og lite fotgjengertrafikk kan en legge mer vekt på langsgående jevnhet.

Kravene til maks. tillatt blending gjelder tørr vegbane. Som angitt i fotnoten til figur 24.3 kan blendingskravene reduseres ved lyse omgivelser.

Blending er behandlet mer ingående i avsnitt "Blending" på side 255.

Figur 24.2
Krav til luminansnivå, driftsverdier.

<table>
<thead>
<tr>
<th>Standard-klasse</th>
<th>Midlere luminansnivå (cd/m²)</th>
<th>ÅDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 500</td>
<td>1500-5000</td>
</tr>
<tr>
<td>H1</td>
<td>0,7</td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H3</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>S1</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>0,7</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>A1, A2, A3</td>
<td>0,7 cd/m² eller midl. hor. belysningsstyrke Ehm = 7-10 lux</td>
<td></td>
</tr>
</tbody>
</table>

Figur 24.3
Krav til jevnhet og maks. blending.

<table>
<thead>
<tr>
<th>Standard-klasse</th>
<th>Jevnhet</th>
<th>Blending</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total midl. jevnhet Uo (Lmin/Lm)</td>
<td>Langsgående jevnhet (Lmin/Lmake)</td>
</tr>
<tr>
<td></td>
<td>Tørr tilstand</td>
<td>Våt tilstand</td>
</tr>
<tr>
<td>H1, H2</td>
<td>0,4</td>
<td>0,15</td>
</tr>
<tr>
<td>H3</td>
<td>0,4</td>
<td>0,15</td>
</tr>
<tr>
<td>S1, S2, S3</td>
<td>0,4</td>
<td>0,15</td>
</tr>
<tr>
<td>A1, A2, A3</td>
<td>0,3*</td>
<td>0,15</td>
</tr>
</tbody>
</table>

*) (Ehmmin/Ehm) når luminans ikke kan beregnes og måles
***) Minste G-verdi kan benyttes ved lyse omgivelser.
****) Ved vanlige markør omgivelser bør ca. 2/3 av angitt T1-verdier ikke overskrides.
Lystekniske beregninger og målinger

Lystekniske beregninger og målinger utføres som angitt i CIE-rapport 302. For kontroll av nye lysanlegg bør det utføres luxberegninger i tillegg til luminansberegningene.

Vegdekker

Et vegdekktes refleksjonsegenskaper har direkte betydning for både luminansnivå og jevnhet og må derfor tas hensyn til ved planlegging av vegbelysning. Refleksjonsegenskapene beskrives av luminansfaktoren Qo og spillingsfaktor 1, S1, definert og beskrevet av CIE.

Ved luminansberegninger skal normalt dekkelasse C2 benyttes med angitte "S1 standard" og "Qo normal". Når et dekke er vesentlig lysere enn disse verdiene tilsi, kan dekkelasse C1, eventuelt de reelle verdiene for S1 og Qo benyttes. Det forutsettes da at det er overveiende samme med tilfel et slike veier også i fremtiden får dekke med minst like gode refleksjonssegenskaper.

For beskrivelse av dekke i vått tilstand skal dekkelasse W4 benyttes. Skaleringen av refleksjonstabell for W4 påvirker ikke jevnheten (LUV).

Avslutning av veglysanlegg

Et lysanlegg må ikke avsluttes på trafikkmessige farlige punkter som f.eks. like før et vegkryss, gangfelt, skarp sving, bakke topp e.l.
Dersom den innbyrdes avstand mellom to belyste vegstrekkninger inkludert overgangssoner er mindre enn ca. 500 m, bør også den mellomliggende vegstreknings belyses.

Der luminansnivået er over 1 cd/m² skal det benyttes overgangssoner. Overgangssonen bør ha et luminansnivå på ca. 0,5 cd/m². Figur 24.5 angir lengder av overgangssonen ved ulike fartsgrenser.

Blending

Blending fra veglysarmaturer

Maksimal tillatt ubehagsblending (G) og synsnedsettende blending TI% er gitt i figur 24.3 under avsnitt "Lystekniske krav". Av hensyn til både de kjørende og omgivelsene bør det generelt benyttes armaturer med flat avdekning, fortrinnsvis plane glass og armaturvinkel 0°. Blendingstallet G vil da som regel være tilfredsstilt. Der vegen går i relativt krappe kurver utenfor bebygdte områder, bør det likevel vurderes om det er uheldig å anvende plane glass av hensyn til den visuelle foringen.

På steder hvor armaturene må være spesielt godt avskjermet av hensyn til omgivelsene f.eks. broer, ferjeleirer og i utpregede boligområder, bør det alltid benyttes flat avdekning.

Det må også tas hensyn til omgivelsene ved valg av lyskilde og plassering av lyspunktet.

![Table](image)

<table>
<thead>
<tr>
<th>Fartsgrense (km/t)</th>
<th>Overgangssonens lengde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
</tr>
</tbody>
</table>

Figur 24.5

Overtangssonens lengde ved ulike fartsgrenser.

![Table](image)

<table>
<thead>
<tr>
<th>Ubelyst veg</th>
<th>Belyst veg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lm(cd/m²)</td>
<td></td>
</tr>
<tr>
<td>En enkelt blend.kilde</td>
<td>0,025</td>
</tr>
<tr>
<td>Flere blendingskilder</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Figur 24.6

Maksimal tillatt søringsluminans (Lv) fra sidelysanlegg.

![Diagram](image)

Figur 24.7

Lysstolper som er høyere enn gesimslinjen er alltid vesentlig mer synlig enn lysstolper som er lavere.

![Diagram](image)

Figur 24.8

Lysstolper som er lavere enn gesimslinjen gir et rolig og mer visuelt tilfredsstillende inntrykk.
Blending fra sidelysanlegg

Visuell føring

Et lysanlegg må medvirke til at trafikante-ne får et korrekt, hurtig og orienterende bilde av vegens forløp. Det må tas hensyn til den visuelle føringen både i dagslys og i mørke.

Lyuspunkt bør plasseres i ytterkurve. I spesielle tilfeller med guard-rail eller lyse betongblokker langs ytterkurve, kan plassering i innerkurve aksepteres.

Estetikk

Et lysanlegg må i størst mulig grad harmonere med vegens utforming og omgivelsene.

I dagslys bør anlegget være minst mulig synlig. F.eks. gir rett stolpe uten utligger mindre dominerende lysanlegg.

I mørke må det bl.a. tas hensyn til lysets farve. Lamper som gir svært dårlig fargegjengivelse (natrium lavtrykk), bør kun benyttes på motorveger, tunneler o.l. der det ikke er fotgjengere. Unntakvis kan natrium lavtrykk-lamper benyttes på andre vegstrækninger i strøk som ofte hjemsøkes av tåke.
I spesielle verneverdige miljø med gammel bebyggelse kan de lystøkniske kravene i denne normal unntakvis fravikes.

Lysstolper

Langs hoved- og samleveg skal lysstolper normalt ikke plasseres nærmere kjørebanekant (hvit kantlinje) enn 3 m uten beskyttelse av rekkverk. I bystrøk må stolpeplasseringen vurderes spesielt. Nødvendig rekkverksrom er gitt i eget kapittel i denne normal.

Ettergivende master skal benyttes ved fartsgrense på 70 km/t eller høyere dersom det ikke er rekkverk eller lignende. Slike master bør som regel også benyttes der fartsgrensen er 60 km/t.

Ettergivende master kan klassifiseres i to hovedtyper:

a) Avskjæringsmast
 (maks ca. 12 m høye)

b) Deformasjonsmast.

Avskjæringsmaster gir minst skade på kjøretøyet, men skal ikke benyttes på steder med stor gang-/sykkeltrafikk.

Deformasjonsmaster må benyttes der det er spesielt viktig å fange opp ulykkeskjøretøyet, f.eks. foran fjellskjæringer og andre farlige hinderinger, i midtdeler uten rekkverk og på steder med stor gang-/sykkeltrafikk.

Stålmaster med rottdiameter mindre enn 108 mm og trestolper med jordbånddiameter mindre enn 21-22 cm kan regnes for å ha en viss grad av ettergivende egenskaper.

Enkeltstolper kan vanligvis plasseres innenfor siktsonen.
Spesielle lysanlegg

Belysning for fotgjengere og syklister

I de etterfølgende lystekniske krav for gående og sykende inngår følgende tre parametre:

- Horisontal belysningsstyrke, Eh (middel)
- Halvromlig belysningsstyrke, Ehs (middel) på bakkenivå
- Jevnhet, U (min : maks belysningsstyrke)

Ved dimensjonering av lysanlegg skal kun én av de to belysningsstyrkene tilfredsstilles. Den halvromlige belysningsstyrken er et bedre mål på lysets evne til å framheve romlig struktur, f.eks. ujevnheter og gjenstander på gangbanen, enn den horisontale belysningsstyrken.

Dimensjonering av lysanlegg for gågater, gatetun, gangveg i parker og lignende bør derfor basere seg på halvromlig belysningsstyrke.

For gang-/sykkelveg langs kjøreveg vil det vanligvis være tilfredsstillende å benytte den horisontale belysningsstyrken.

Gang-/sykkelveg langs kjøreveg

En gang-/sykkelveg langs en kjøreveg skal av hensyn til trafikksikkerheten til både de kjørende og gående/sykkelende normalt ikke belyses uten at kjørevegen er belyst.

Når kjørevegen er belyst, må gs-vegen få tilstrekkelig belysning til at den virker attraktiv å benytte. Belysningsnivået bør være minst 50% av belysningsnivået på kjørevegen. Dessuten bør kravene i figur 24.12 være tilfredsstilt.

<table>
<thead>
<tr>
<th>Liten og middels gs-trafikk</th>
<th>Eh midl.</th>
<th>E min:maks</th>
<th>Ehs midl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 lux</td>
<td>1:20</td>
<td>2,5 lux</td>
<td></td>
</tr>
<tr>
<td>Størst gs-trafikk bykjerne</td>
<td>7-10 lux</td>
<td>1:20</td>
<td>5,0 lux</td>
</tr>
</tbody>
</table>

Figur 24.12
Krav til midlere belysningsstyrke og jevnhet på gs-veg. Driftsverdier.
Når trafikkdeleren (T) mellom gang-/sykkelvegen og kjørevegen er smalere enn 7 m, skal begge belyses samtidig. Når trafikkdeleren er smalere enn ca. 4 m anbefales stolpene plassert på den siden av vegen hvor det ikke er gs-veg.

Når trafikkdeleren er smalere enn 2,5 m, kan lysstolpene også plasseres på utsiden av gs-vegen som et alternativ til motsatt side av vegen. Løsningen bør normalt unngås.

Gang-/sykkelveg som føres langs kjørevegen i en større avstand enn 7 m, bør belyses separat. Det må da benyttes små lyspunkt-høyder og flat avskjerming.

For å unngå ubehagsblending av fotgjengere ved små lyspunktshøyder, må følgende krav tilfredsstilles:

Armaturblendingstall =

\[
\frac{1}{\sqrt{A}} = \frac{1}{A^{0.5}} < 500
\]

\[I = \text{maksimal lysstyrke i vinkel-området 85 – 90°}\]
\[A = \text{tilsynelatende lysende areal i retning 85° fra vertikalen}\]

Planskilt gang-/sykkelvegkryssing

Belysning av overgang vurderes som gang-/sykkelveg generelt med hensyn på behov og kvalitet.

Underganger for gående og syklende skal normalt være belyst. Også rampene bør belYES.
<table>
<thead>
<tr>
<th></th>
<th>Eh midl.</th>
<th>E min:maks</th>
<th>Ehs midl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag*</td>
<td>40–50 lux</td>
<td>1:10</td>
<td>7–14 lux</td>
</tr>
<tr>
<td>Natt</td>
<td>10–20 lux</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Gjelder kun lange tunneler hvor daglys ikke slipper tilstrekkelig inn og hvor det er stor gang-/sykkeltrafikk.

Maksimalt armaturblendingstall i gangtunneler:

\[
\frac{1}{A_{60}} < 300
\]

Gangfelt

Det skal være et luminansnivå på minst 1 cd/m² 50100 m til hver side for kryssingsstedet. For å oppnå tilfredsstillende kontrast mellom gående og bakgrunnen (kjørebanen) bør lyspunktet plasseres i en avstand fra gangfeltet minst lik lyspunkthøyden.

Ved intensivbelysning oppstår det gjerne et mørkt felt bak gangfeltet som gjør det vanskelig å oppdage fotgjengere som krysser i dette området. Intensivblyste gangfelt bør derfor kun benyttes der det kan sikres at gående ikke krysser vegen utenfor gangfeltet, og skal ikke benyttes på ubelyste veger eller på veger med luminansnivå under 1 cd/m².

Gangfelt på bakketopp kan med fordel intensivblyses dersom vegen forøvrig er belyst.
Vegkryss
Belysning av vegkryss skal tilfredsstille kravene i figurene 24.2 og 24.3 til luminansnivå, jevnhet og blending. I viktige og kompliserte kryss på belyst veg bør luminansnivået heves med 0,5 –1 cd/m².

I kryss med separate svingefelt m.m. kan belysningen prosjekteres etter tabellen til høyre.

Vegkryss skal være fullverdig belyst i en avstand av stoppsikt fra midten av krysset. I kanaliserede vegkryss må den fullverdige belysningen i innkjøringsfeltene strekke seg til enden av kanaliseringen dersom denne er lenger enn stoppsikt.

På ubelyst veg skal det benyttes overgangssoner når luminansnivået i krysset er over 1 cd/m², som for avslutning av veglys på strekninger (figur 24.5).

I T-kryss er det viktig at det er lys bakgrunn på motsatt side av sidevegens innmunning, belyst av nærmeste armatur.

Lysstolper skal vanligvis ikke plasseres på trafikkøyere av hensyn til fare for påkjørsel. Unntak gjelder for rundkjøringer der det med fordel kan settes opp en stolpe med 3 til 4 armaturer i sentraløyra. Det kan også settes opp stolpe på større "trekantøyere" godt til siden for gjennomgående felt.

<table>
<thead>
<tr>
<th>Luminansnivå på gjennomgående kjørefelt</th>
<th>Midlere horisontal belysningsstyrke på svingefelt</th>
<th>Jevnhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lm (cd/m²)</td>
<td>Eh (lux)</td>
<td>Uo = Emin / Emed</td>
</tr>
<tr>
<td>0,7</td>
<td>10</td>
<td>0,4</td>
</tr>
<tr>
<td>1,0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Figur 24.15
Krav til belysningsstyrke og jevnhet i svingefelt. Driftsverdier.

Figur 24.16
Belysningssoner.
Avkjørsler

Ubelyst veg
Avkjørsler på ubelyst veg skal normalt ikke belyses særskilt. Det må heller ikke settes blendende lamper i portstolper o.l.

Når spesielle hensyn tilsier at en avkjørsel kan belyses, må lysarmaturen plasseres slik at kravene til maksimal blending fra sidelysanlegg tilfredsstilles. Som regel må følgende betingelser være oppfytt:

- Lysstolpen bør plasseres min. 15 m fra vegkanten på hovedvegen.
- Armaturen bør ha flat avdekning og armaturvinkel 0°.
- Det må ikke benyttes sterkere lamper enn 125 W kvikksøvlampe eller andre lamper med lysytelse på mer enn ca. 6000 lumen (driftsverdi).

Det er viktig at trafikantere ikke får feil informasjon om vegens linjeføring. I kurver må en derfor være særlig varsom med å belyse avkjørsler.

Større offentlige avkjørsler bør betraktes som vegkryss ved planlegging av veglys.

Belyst veg
På belyste vefer skal lysytelsen i lampene på avkjørselen ikke overstige lysytelsen i lampene på hovedvegen. Det kan med fordel brukes lamper med annen lysfarge. Lysstolpene plasseres min. 10 m fra vegkanten på hovedvegen.
Busslommer

Ubelyst veg
Generelt bør busslommer på ubelyst veg ikke belyses. Lyset som faller på kjøre-vegen kan ellers gi fotgjengere som krysser i nærheten av busslommen en falsk trygghetsfølelse.

Dersom holdeplassen av spesielle grunnbør belyses, skal det benyttes armaturer med flat avdekning og armaturvinkel 0° for å unngå blending. Det må ikke benyttes sterkere lampe enn lamper med lysytelse på mer enn ca. 4000 lumen. Lyspunkthøyden bør være liten. Eventuelt kan det brukes hærverkssikre armaturer i leskur.

Belyst veg
På belyste veier vil det sjelden være behov for separat belysning av busslommen. Eventuelt kan det settes opp et ekstra lyspunkt ved buss-skiltet og fortrinnvis slik at det kaster lys inn i leskuret hvis slik finnes. Det må påsæs at et slikt lyspunkt ikke virker ødeleggende for den visuelle føring av vegen.

Ferjeleier
Krav til belysning av landområdet er gitt i tabellen til høyre. Der vegen benyttes som oppstillingsplass, bør belysningen strekkes så langt som det vanligvis står ventende biler og nivået bør være minst 15 lux.

For å unngå blending av sjøtrafikken, må det benyttes flat avdekning.

<table>
<thead>
<tr>
<th>Landområde</th>
<th>Midlere horisontal belysningsstyrke Eh > (lux)</th>
<th>Jevnhet Uo ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjøereområde</td>
<td>15</td>
<td>0,4</td>
</tr>
<tr>
<td>Oppstillingsplass</td>
<td>15</td>
<td>0,4</td>
</tr>
<tr>
<td>Oppstillingsplass m/billettalig</td>
<td>50</td>
<td>0,4</td>
</tr>
<tr>
<td>Ferjelem/kalområde</td>
<td>30</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Figur 24.17
Krav til belysning av ferjeleier. Driftsverdier.
Belysning av ferjekai kan slås av utenom driftstiden når dette ikke innebærer fare for utforkjøring. Langtidsparkeringssplassen bør alltid være belyst av hensyn til faren for tyveri og hærverk.

Bomstasjoner o.l.

Bomstasjoner, tollstasjoner, vektkontroll og lignende bør ha en midlere belysningsstyrke på horisontalplanet (Eh) på minst 15 lux på inn- og utkjøringsareal samt på eventuell oppstillingsplass. Jevnheten bør være minst 0,5.

På et automatisk betjeningsområde bør belysningsstyrken heves til 30 lux. eventuelt mer hvis spesielle grunner tiliser dette.

Et manuelt betjeningspunkt krever 50 lux.

Tunnelbelysning

Tunnelbelysning er beskrevet i kapittel 31.
25. VEGREKKVERK, STØTPUTER

Rekkverk settes opp for å reducere skadeomfanget ved utforkjøringer. Rekkverk skal bare settes opp hvis det er farlige å kjøre utfør veggen enn å kjøre inn i rekkverket. Alternativer til rekkverk bør vurderes. Ofte kan det bli billigere, penere og sikrere å;

- flytte veglinja
- fjerne eller flytte faremomentet,
- flate ut fylling og runde av overganger,
- fylle opp sideterrenget,
- benytte lukket grøft,
- benytte ettergivende master.
- øke midtdelerbredden

Rekkverkstypene som er beskrevet i dette kapitlet brukes normalt ikke i tett bebyggelse. Spesielle rekkverkstyper kan utvikles ut fra funksjonelle og estetiske vurderinger, men må tilfredsstille internasjonalt aksepterte testkrav.

Figur 25.1
Rekkverk kan ofte unngås ved behandling av sideterrenget.

Behov for rekkverk
Hvorvidt rekkverk bør settes opp, avhenger av avstanden mellom kjørebanekanten og faremomentet. Hvis denne avstanden er større enn angitt i systemdelen, regner vinkelrett fra kjørebanekant, vil færeren av kjøretøyet kunne bremsse tilstrekkelig ned eller styre unna før hindret. Flatt terreng eller skråning slakere enn 1:4 regnes som retardasjonsstrekning.

Faremoment kan være fyllinger eller farlige hindere, se figuren. Foruten fyllinger og udeformerbare gjenstander kan faremomentene være dype grøfter, vann m.m.

Figur 25.2
Faremomentet kan være skråning eller farlig hinder.

1) For \(a \leq 1:2 \) gir fyllingen fare for velt \(X=L_1 \).
For \(1:3 < a < 1:4 \) vil velt kunne unngås, men fyllingene kan gi tvungen føring \(X=L_1+L_3 \).
For \(a > 1:4 \) kan fyllingen brukes til retardasjon \(X=L_1+L_2+L_3 \).
Fjellskjæringer, tunnelvegger m.m. krever rekkverk hvis det forekommer utstikkende partier på mer enn ca. 0,5 m og som har en form som vil bremse eller deformere kjøretøyet slik at alvorlig personskade må påregnes.

Mot skråning avhenger rekkverksbehovet av avstanden til skråningsstoppen, skråningshøyden og skråningshellingen. Rekkverk mot skråning kan sløyfes hvis skråninga er lavere enn angitt i figuren.

Rekkverk kan benyttes i midtdeler og mellom bilveg og gang-/sykkelveg som angitt i systemdelen, for å hindre at biler kjører ut. Rekkverk i midtdeler bør plasseres sentrisk. Dersom midtdelen skråner og hellingen overskrider 1:4, skal rekkverket plasseres ved den høyeste kjørebanen. På større murer etc. og på steder der ikke deformerbart rekkverk må velges, bør brurekkverk benyttes.

Plassering og utforming av rekkverk

Stålrekkverk skal plasseres minst 0,5 m fra kjørebanekant. Fronten av rekkverkskinna bør fluktne med eller komme utenfor skulderkant. Overkanten av skinna skal være 0,75 m over bakkenivå.

Det skal være minst 0,4 m innspenning fra bakkanten av stolpen til skråningskanten der skråningen er 1:3 eller bratere. Der denne minimumsavstanden benyttes, bør det brukes et rekkverk som kun gir 0,5 m utbøyning. Der innspenningen må
være mindre, må det anvendes lengre stolper som rammes lenger ned, tettere med stolper eller rekkenverket må avstives for å unngå at rekkenverket gir for lett etter. Figuren på forrige side viser utforming og plassering av stålrekkenverk. Stivt stålrekkenverk utblokkes når kjørebanebredden er bredere enn 6 m.

Rekkverk og kantstein bør ikke brukes samtidig. Der dette ikke kan unngås, skal rekkverkets forkant flukte med kantsteinen.

Betongrekkverk (New Jersey-profil e.l.) plasseres minst 0,5 m fra kjørebanekant ved fartsgrense 60 eller lavere, 1 m ved fartsgrense 70 eller høyere. Betongrekkverket skal under alle omstendigheter plasseres helt utenfor skulderen eventuelt flukte med skulderkanten.

Høyden på betongrekkverk skal være 0,65 m for fartsgrenser 60 km/t eller lavere og 0,8 m for fartsgrense 70 km/t eller høyere.

Betongrekkverk kan støpes på stedet. Elementene må sikres innbyrdes f.eks. ved bruk av forspenning med wire gjennom elementene og elementer med not og fjær. For å forhindre deformasjon kan en asfaltere litt opp på begge sidene eller foreta annen avstiving i bakkant der rekkverket står i vegens ytterste.

Plassering av rekkverk i kryss og viktige avkjørsler er vist på figuren. I vanslige avkjørsler utformes åpningen som to forankrede rekkverksavslutninger (se neste side). Ved plassering av rekkverk på slike steder må det foretas en siktkontroll.

Figur 25.5
Utforming av betongrekkverk. Mål i mm.

Figur 25.6
Plassering av rekkverk i kryss og viktige avkjørsler.
Forlengelse av rekkverk

Rekkverket må være så langt at det dekker faremomentet det skal beskytte mot. Utover dette må det påses at kjøretøyer som forlater vegen i spiss vinkel ikke kommer inn bak rekkverket og treffer faremomentet eller rir oppen på rekkverket. Dersom hinderet er mindre enn 2 m fra forkant skinner bør rekkverket svinges godt ut eller erstattes med støtpute foran hinderet. Alternativt må forlengelsens settes til min. 50 m.

Den nødvendige forlengelsen settes til \(b = 10 \cdot f \), der \(f \) er avstanden fra rekkverkets forkant til hinderets bakkant. For vegrekverk på skråning beregnes forlengelsen i forhold til det punkt på skråningen der rekkverksbeovet oppstår.

\(b1 \) angir forlengelse før hinderet i fartsrenningen. Etter hinderet brukes en forlengelse som varierer etter vegutformingen, se figuren.

Dersom avstanden mellom to rekkverks-seksjoner etter dette blir mindre enn 50 m bør også den mellomliggende strekning ha rekkverk.

Forankring av rekkverk

Rekkverk må forankres i begge ender. Forankringslengden kommer i tillegg til rekkverkslengden og forlengelsen. Forankring kan utføres etter to prinsipper:

- Rekkverket nedsenkes til bakkenivå over en strekning på minst 12 m. Rekkverket bør også føres vekk fra vegkanten til en avstand på minst 1 m bak monteringslinja.
• Rekkverket føres i sin opprinnelige høyde til forankring i jordskråing, bergvegg, betongkonstruksjon e.l.

Forankring av rekkverk skal utføres med 2 m stolpeavstand. Det anvendes standard stolpelengde over hele forankringslengden, slik at stolpene rammes dypere enn normalt.

Nedføringen kan unntakvis skje over 4m, men forankringslengden skal likevel være 12 m. Forankringslengden kan imidlertid reduseres til 8m ved fartsgrense 50 km/t eller lavere.

Endene på betongrekkverk føres ned over en lengde på minst 12 m.

Overgang ettergivende/ikke ettergivende rekkverk

Det må sikres gradvis stivhetsøkning inn mot det stive rekkverket, for å unngå bråstopp. Figuren viser en mulig løsning.

Rekkverkstyper

Et vegrekkverk karakteriseres ved den utbøyning det gir ved påkjøring. Gjenstander eller aktivitet bak rekkverket kan gjøre det nødvendig å bruke rekkverk som gir liten utbøyning. Der det er mulig bør imidlertid rekkverk som gir stor utbøyning brukes.

Nærmere teknisk beskrivelse med detaljtegninger av det enkelte vegrekkverk er gitt i informasjonsheftet "Vegrekkverk. Monteringsveiledning. Detaljer".
DEL C – 25. VEGREKKVERK, STØTPUTER

<table>
<thead>
<tr>
<th>Type</th>
<th>Ikke ettergivende</th>
<th>Ettergivende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betong</td>
<td>Stålskinner</td>
</tr>
<tr>
<td></td>
<td>Udefomerbart</td>
<td>Stivt*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halvstivt (forspent)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mykt****</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mykt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stolpe</th>
<th>Stil</th>
<th>Tre</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE 100***</td>
<td>130x150 eller Ø150±20</td>
<td></td>
</tr>
<tr>
<td>IPE 80***</td>
<td>75x150 eller Ø115±15</td>
<td></td>
</tr>
<tr>
<td>IPE 80***</td>
<td>75x150 eller Ø115±15</td>
<td></td>
</tr>
<tr>
<td>IPE 80***</td>
<td>130x150 eller Ø150±20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stolpeavstand, m**</th>
<th>Dobbelt</th>
<th>Enkelt</th>
<th>Dobbelt</th>
<th>Enkelt</th>
<th>Dobbelt</th>
<th>Enkelt</th>
<th>Dobbelt</th>
<th>Enkelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/60</td>
<td>0</td>
<td>0,4</td>
<td>0,2</td>
<td>0,5</td>
<td>0,3</td>
<td>0,6</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>70/80</td>
<td>0</td>
<td>0,5</td>
<td>0,3</td>
<td>0,7</td>
<td>0,4</td>
<td>0,9</td>
<td>0,4</td>
<td>1,0</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0,7</td>
<td>0,5</td>
<td>1,0</td>
<td>0,6</td>
<td>1,2</td>
<td>0,8</td>
<td>1,6</td>
</tr>
</tbody>
</table>

*) Stivt rekkgverk utblokes når kjørefarten er bredere enn 6 m.
**) I kurver endres stolpeavstanden slik: R = 150 m c/c = 4 m. 150 m > R > 25 m c/c = 2 m. R < 25 m c/c = 1 m.
****) Svak festebritt på ikke utblokket rekkgverk.

Figur 25.10

Rekkverkstyper. På bruer, støttemurer etc. der kun svært liten deformasjon kan aksepteres, bør brurekkgverk benyttes, se Bruhåndboka.

Støtputter

Støtputter settes primært opp foran farlige hindringer som befinner seg innenfor minste tillatte sikkerhetsavstand, og som ikke kan flyttes, gis en mindre farlig utformning eller skjermes med vegkrekkerkverk. De er aktuelle bl.a. foran brupillarer, fjellstøtter etc. mellom kjørefelt, spesielt i forbindelse med avramper i kryss.

En støtpute skal bidra til å retardere et kolliderende kjøretøy på en kontrollert og tilfredsstillende myk måte eller bidra til å lede kjøretøyet forbi faremomentet på samme måte som et vegkrekkverk. Støtputter vil vanligvis være utformet slik at deler av den deformeres ved en påkjøring.

Støtputter må være godkjent av Vegdirektoratet, og testet i full skala i henhold til internasjonalt godkjente betingelser.
26. LEDEGJERDER

Ledegjerder settes opp for å lede fotgjengere og syklister, f.eks. mot ønskede kryssingssteder. Gjerder skal ikke brukes som vanlig vegrekkverk. De skal ikke stå imot påkjørsler men må tåle vanlig vedlikehold. De bør kun brukes der fartsgrensen er 60 km/t eller lavere.

Ledegjerder er dyrt, vanskelig å bygge, kan være et estetisk problem, kan være farlige å kjøre på og kan hindre sikt, og bør derfor bare settes opp der det er helt nødvendig.

Gjerdenhetene bør tilpasses vegens/gatens arkitektur. Dette gjelder gjerdens mengde, form og farge.

Plassering

Ledegjerder bør ikke plasseres mindre enn 2 m fra husvegg eller annet fast hinder, og ikke mindre enn 25 cm fra kantstein, av hensyn til brøyting. De skal ikke plasseres i kjørebanen.

I forbindelse med gangfelt bør gjerdet føres 20-30 m til hver side. I de fleste tilfeller vil oppsetting av gjerde langs det ene fortetet være tilstrekkelig for å lede fotgjengere og syklister på begge fortauer.

I gatekryss der fotgjengere og syklister ofte krysser gaten utenfor gangfeltene, kan ledegjerderen brukes som vist på figuren nederst.

Figur 26.1
Ledegjerd ved gangfelt.

Figur 26.2
Ledegjerd på fortauer.

Figur 26.3
Ledegjerd i kryss.
På refugier kan det være aktuelt å bruke ledegjerder i forbindelse med 'saksing' av gangfeltet, særlig hvis de to kryssingene har forskjellige grønnfaser. Saksingen bør da foretas fra venstre mot høyre så fotgjengerne ser mot møtende biler.

Utforming

Ledegjerder bør normalt ha en høyde på 0,8 til 1,1 m.

Ledegjerder bør plasseres og utformes slik at de ikke er sikthindrende. Særlig små fotgjenger kan i noen tilfeller være skjult bak gjerderne. I slike situasjoner bør særlig gjerder med vertikale sprosser kontrolleres for sikt.

Gjerderne bør om mulig utformes slik at de er vanskelige å klatre over. Ut fra dette er vertikale sprosser å foretrekke. Hvis dette kommer i konflikt med siktforholdene, anses siktforholdene å være viktigst.

Ledegjerder bør utformes og dimensjoneres slik at de ikke er til fare ved påkjørsel. Særlig kan det være et problem at overliggeren løsner og trenger inn i kjøretøyet. Dette problemet kan unngås ved at overgangen mellom overligger og stolpe lages så solid at overliggeren dras ned ved påkjørsel. Eventuelt kan problemet løses ved å bruke frittstående stolper forbundet med kjetting.

Mellom ledegjerde og kantstein bør det være en avstand på 0,25 m.
27. KANTSTEIN

Kantstein brukes for å lede bort overvann, for å forenkle gaterenhold og for å avgrense arealer for kjøretøytrafikk. Synshemmede har bruk for kantstein til retningsorientering.

Kantstein er inndelt i to hovedtyper: avvisende og ikke-avvisende.
Avvisende kantstein brukes mot fortøy eller andre arealer som ønskes skjermet mot kjøretøytrafikk. Mot trafikkøyer og trafikkdelere på veier med høyt fartsnivå (70 km/t eller høyere) brukes normalt ikke-avvisende kantstein, for å hindre at en fører som ved et uhell kjører på kantsteinen, mister kontrollen. Ikke-avvisende kantstein brukes også mot arealer som sporadisk må overkjøres, f.eks. sentraløyer i trange rundkjøringer.

Ved avvisende kantstein skal det være en avstand på 0,25 m til kantlinjen.

Kantstein utføres i betong eller granitt. Granitt er dyrere, men penere og mer solid, og bør derfor vurderes, særlig i byområder.

Asfaltkantstein slites fort og bør bare brukes på midlertidige anlegg (< 3 år).

Kantstein i kombinasjon med vegrekkverk bør unngås.

Figur 27.1
Avvisende kantstein brukes mot arealer som ønskes skjermet mot kjøretøytrafikk, f.eks. fortøy.

Figur 27.2
Ikke-avvisende kantstein brukes f. eks. mot trafikkøyer ved høyt fartsnivå, for å redusere faren ved påkjørsel.
Betongkantstein

Figurene viser aktuelle typer betongkantstein. Kantsteinene skal ha mål og form som vist med heltrukket linje. Stiplet linje angir valgfri utforming.

Lengdene er i Norsk Standard satt til 250, 500 og 1000 mm. Radier for buet stein er satt til 0,5 m, 1 m, 2 m, 3 m, 4 m eller 5 m.

Øverst er vist en avvisende kantstein som limes evt. spikres/limes på slitetaget. Høyden 130 mm gir avvisende effekt.

Steinen øverst til høyre er nesten den samme, men er 160 mm høy. 160 mm kan brukes for å beholde avvisende kantsteinshøyde også etter reasfaltering. 160 mm kan også brukes der det ønskes bedre innspenning av steinen ved å sette den på bindlaget.

Midt på siden er vist en stein som kan brukes liggende eller stående. Liggende brukes den som ikke-avvisende stein og bør da senkes noe ned evt. settes på bindlaget. Stående brukes den som avvisende stein som bør settes i mørtel.

På viktige veger med tungt vedlikehold bør kantsteinene ha en solid utførelse. Det anbefales 130 x 250 (midt på siden).
Granittkantstein

Figurene viser aktuelle typer granittkantstein.

Alle disse steinene bør settes i mortel og spekkes.

Øverst er vist avvisende vinkelkantstein. Nederst til venstre er vist to typer avvisende faskantstein. Midt på siden er vist tre typer mindre stein som er mest aktuelle på lettere trafikkanlegg (gang/sykkelveger o.l.).

Nederst til høyre er vist en ikke-avvisende stein.

Alle disse gir en solid og pen utførelse. På viktige veger med tungt vedlikehold vil faskantstein med dimensjon 150×300 kunne passe i mange tilfeller. I sentrale bystrøk, "representasjonsgater" m.m. kan vinkelstein gi et godt resultat.

Figur 27.6
Vinkelkantstein (granitt).

Figur 27.7
Råkantstein, parkkantstein og strålestein.

Figur 27.8
Faskantstein (granitt).

Figur 27.9
Ikke-avvisende granittstein (ikke Norsk Standard).
Kantstein ved gangfelt
Kantsteinshøyden skal reduseres ved gangfelt. Kantsteinen senkes ned over en lengde 1-1,5 m (0-20mm kantsteinshøyde). Nedsenkingen forbinder med fortausnivå med skråplan med maks helling 1:6. For gangfelt ved kryss legges nedsenkingen i den enden av gangfeltet som er lengst bort fra krysset.

Kryssing av trafikkøy eller midtdeler utføres med nedsenket kantstein (0-20 mm). Dekket på trafikkøya eller midtdeleren bør skrås noe av hensyn til vannavrenning. Dekket bør skille seg fra dekket på kjørebanene, f.eks. ved bruk av heller eller avstrødd asfalt. Figuren viser eksempel på utførelse.

Kantstein ved avkjørser
Ved avkjørser senkes kantsteinshøyden til 40-50mm. Hvis avkjørselen har liten trafikk kan ikke-avvisende kantstein brukes i stedet for nedsenking.

Figur 27.10
Nedsenking av kantstein ved gangfelt.

Figur 27.11
Kryssing av trafikkøy.

Figur 27.12
Avkjørsel med nedsenket kantstein.

Figur 27.13
Avkjørsel med ikke-avvisende kantstein.
28. VEGETASJON

Både eksisterende og ny vegetasjon må inngå i planene. Eksisterende vegetasjon skal normalt bevares og ny vegetasjon må brukes bevisst for å oppnå de kvaliteten anlegget og omgivelsene trenger.

Fordeler og ulemper

Vegetasjon ved veg og gate kan gi fordeler og ulemper både ut i fra miljø, estetikk, framkommelighet og trafikksikkerhet. En sammenstilling er gitt på neste side.

Gjennom planlegging skal fordelene sikres og ulempe unngås. Dette kan gjøres ved å følge vegnormalene om vegetasjon og bruke fagfolk som landskapsarkitekter under planlegging og oppfølging av anlegg.

Ulik vegetasjonsbruk i og utenfor by

På samme måte som ved utforming av veger og gater må det også ved planlegging av vegetasjon brukes ulike regelsett i og utenfor by og tettsted.

Figur 28.1
Utøver byer og tettsteder er vegetasjon et viktig hjelpemiddel for å reparere sår og gi vegen en bedre forankring i landskapet.

277
Vegetasjon kan bl.a. gi følgende fordelers:

- Binde sammen veg og omgivelser
- Skape, gjenskape, avslutte grønne områder eller landskapsrom
- Skjule stygge sår i landskapet eller skjemmmende og sjenerende omgivelser og utstyr
- Gi leskjerming og stabilisering av sideterrenget
- Gi vegen en bedre optisk linjeføring
- Understreke spesielle situasjoner og elementer i trafikkbildet
- Danne fysiske skiller
- Hindre innsyn, blending og skjemmmende utsikt
- Redusere vegtrafikkstøy og vegstøv til omgivelsene
- Skjerme fotgjengere på fortøy og gang-/sykkelveg
- Danne bakgrunn for skilt, stolper og annet utstyr
- Fylle tomrom i fasaderekker i bygater

Figur 28.2 Fordeler og ulemper ved vegetasjon.
Utenfor by og tettsted er vegetasjon et viktig hjelpemiddel for å istandsette landskapet etter tekniske ingrep som bygging. Her er målet vanligvis å skape naturlig vegetasjon som ikke skiller seg ut fra omgivelsene. Plantearter som finnes i omgivelsene er normalt løsningen. Detaljene i en slik etablering har som regel mindre betydning.

I tett by derimot skal det normalt ikke skapes natur. Her skal vegetasjonen som regel gis en arkitektonisk utforming. Form, volum, farger og detaljer har stor betydning. Oftest nyttes plantearter med dekorasjonsverdi i vekstform, blomstring m.m.

Tett bebyggelse
Vegetasjonselementer for tett by er trær, busk- og stauderabatter og plenarealer. Elementene kan delvis kombineres eller brukes hver for seg.

Vegtrafikkmiljø er ikke optimale vekselplasser for vegetasjon. Vegforurensning (avgasser, støv, salt m.m.), tunge brøytekanter med skitten snø og is, vibrasjoner, vindslit og ofte komprimerte undergrunnsmasser skaper vanskelige vekstforhold. Trafikkmengde på vegen, avstand fra kjørebanen til vegetasjon og fallretning på terrenget i forhold til kjørebanen er viktige faktorer.

Figur 28.3
I tett bebyggelse skal vegetasjon gis en arkitektonisk utforming i samspill med bygningsarkitekturen rundt.
Under planlegging og anlegg skal forholdene legges til rette slik at vekstmiljøet ikke reduseres ytterligere. Ellers kan resultatet bli dårligere vekst, økt vedlikeholdsbehov eller at plantene dør.

Det er stor forskjell på de ulike planteparters evne til å kunne leve i vegtrafikkmiljø. Det pågår kontinuerlig forskning for å finne fram til gode og minst mulig vedlikeholdskenessende plantearter for vegtrafikkmiljø.

Trær
Trær er ut i fra tradisjonelle, estetiske og praktiske hensyn byens og bygatene viktigste vegetasjonselement. Trær tar liten plass på bakken i samtidig som de gir stor visuell effekt i gaterommet og i forhold til fasadene.

Med barokkens geometriske byplanlegging med akser og rette gateplan bekjent trær et bevisst formingeelement i bygater. Parallelle treerrekker på begge sider i viktige gater ble et kjent formationsmotiv i by. Flere av disse gatene er blant de vakreste gatene vi har å vise til i dag.

Bevaring av trær
Eksisterende trær skal i utgangspunktet bevares i bymiljø. Desto eldre og større treet er, desto viktigere er det å bevare det forutsatt at det er relativt friskt. Det trengs eksperter for å vurdere trær helsetilstand. Gamle, store trær kan være flere hundre år gamle. De gir omgivelserne et historisk perspektiv. Trær vi planter i bygater i nåtid, vil synligvis ikke bli så store og kraftige som de som ble etablert i bygatene for mer enn 50 år siden. Vanskelligere vekstforhold både over og under bakken er viktigste årsak til det.

Der det ikke er mulig å avsette areal til inngjerdning, skal minimum trestammen beskyttes for mekaniske skader. Det kan gjøres på flere måter f.eks. ved bruk av treplanker, bildekk og ulike typer matter rundt stammen.

Det skal settes tilstrekkelige økonomiske bøter på trærne. Bøtene må være proporsjonale med skadeomfanget som påføres.

Graving i rotsonen skal gjøres med stor forsiktighet. Før graving nærmere enn 2,5 m fra stammen skal fagfolk på trær konsulteres. Det bør aldri graves rundt stammen nærmere enn kronens prosjeksjon på bakken.

Det skal i utgangspunktet ikke fylles opp med masse rundt trær. Enkelte trearter kan tåle spesielle oppfyllinger på 0,5-1 m. Fagkyndige må konsulteres i planfasen.

Trær kan flyttes avhengig av treart, størrelse, kondisjon og vokseplass. Fagfolk på trær må konsulteres i planfasen.
Plassering

Nye treerker i bygater med to kjørefelt, plassers normalt på fortutskantene på begge sider av gaten. Hvis gateprofilet er for smalt kan det nyttes én treerke. Trefekene skal være parallele med linjene i gaterommene, det vil som regel si parallele med fasadene.

Gater med fire kjørefelt bør ha en tredje treerke i midtdeler. En slik treerke vil fordelaktig redusere den visuelle virkningen av et eventuelt gjerde i midtdeler. Hvis gateprofilet er for trangt til tre treerker, bør treerken i midtdeler vanligvis prioriteres når det settes opp gjerde der.

Foruten treerker kan trær også plantes i grupper eller som enkeltstående trær. I tett by er dette mest aktuelt i tilknytning til plasser, parker ved hønsegårder, i forhager, i rundkjøringer, i trafikkøyer og i mer åpne (funksjonalistiske) bydeler. Det kan nyttes store, middelstore og små trær i bygater. Små trær bør unngås der treet skal stå svært nær kjørebanen. Dette fordi ferdig utvokste små trær ikke får kronen tilstrekkelig høy over kjørebanen (min. 4,2 m) samt tidig som trestammen ikke blir kraftig nok til å tåle minde skader.

Gateprofilet bør helst disponeres slik at beplantning holds adskilt fra tekniske anlegg i grunnen. Imidlertid må det godtas at trær plantes over ledninger og kabler i tett by der det er teknisk mulig.
Avstand, bredde og sikt

I tett by stilles det ikke krav om sikkerhetsavstand for påkjørsel av trær eller krav om rekkverk mellom kjørebaner og trær.

Det skal avsettes tilstrekkelig plass til trærne både over og under bakken. Figurren viser relativt realistiske og tilfredsstillende bredder som er nødvendige over bakken. Det er imidlertid en fordel å øke breddene der forholdene ligger til rette for det. Minimumsmål i figuren (i parentes) skal bare nyttes når gaterommet mellom fasadene er smalt.

<table>
<thead>
<tr>
<th></th>
<th>Fortausbredde*</th>
<th>Avstand tre/fortauskant</th>
<th>Midtrabattbredde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Små eller formklipte trær</td>
<td>4 m (3)</td>
<td>1 m (0,75)</td>
<td>3 m (2)</td>
</tr>
<tr>
<td>Middels store trær</td>
<td>4,5 m (3,5)</td>
<td>1 m (0,75)</td>
<td>3,5 m (2)</td>
</tr>
<tr>
<td>Store trær</td>
<td>5 m (4)</td>
<td>1,5 m (1)</td>
<td>5 m (2,5)</td>
</tr>
</tbody>
</table>

*) Ved stor gangtrafikk eller hvis fortaket også nyttes vesentlig av syklende, bør fortausbredden økes med ca. 0,5 m.

Trær kan stå i fast dekke, i busk eller gressrabatt. Overflaten under hvert tre (min. 1 x 1 m) må være gjennomtrengelig for vann. Hvert tre skal ha minst 2 x 2 x 1 m plantegrop. Der dette er vanskelig kan målene reduseres til 1,5 x 1,5 x 1 m som et minimum. Trærnes greiner bør ikke stikke ut i kjørebanen lavere enn 4,2 m over bakken. Trær bør derfor være relativt store ved planting med en stammehøyde på nærmere 3-4 m. Dette er viktigere.

Figur 28.6
Avstand til trær.
desto nærmere treet plasseres kjørebanen og hvis treet får kjørebane på begge sider (middeler, trafikkøy). Treart, stammehøyde på treet, treetets plassering og avstand til kjørebanen må sees i sammenheng. Dette for å sikre at kultivering av treet fra till stammehøyde på 4,2 m kan skje uten at treetets trivsel og utseende forringes.

Veggvirkning av en trerække bør unngås.

Kvalitet og størrelse

Busk-, staude- og gressrabatter

Plassering

Figur 28.8
Krav til bredder ved beplantning.

<table>
<thead>
<tr>
<th></th>
<th>Planterabattbredde på fortau (m)</th>
<th>Midtrabattbredde (trafikkøy) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busk- og stauderabatt</td>
<td>3 (2)</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Gressrabatt</td>
<td>2,5 (1,5)</td>
<td>3 (1,5)</td>
</tr>
</tbody>
</table>

Tett by krever en estetisk standard der det bør nyttles foredlede busk- og stauderarter som har kvaliteter i form av vakker blomstring, farve, vekstform o.l.

Rabatter med busker eller stauder skal bare plasseres på steder som ikke utsettes for tråkk. I siktetrekanter skal det ikke brukes planterarter som kan hindre sikt.

Gressarmeringssække krever uforholdsmessig mye vedlikehold for å holdes grønt. Et slikt dekke skal derfor normalt ikke brukes.

Avstand og brede
Rabattene skal ha tilfredsstillende bredder. Figurken viser relativt realistiske og tilfredsstillende bredder. Det er imidlertid en fordel om feltene er bredere der forholdene ligger til rette for det. Oppgitte minimumsmål i tabellen må ikke nyttles for busker høyere enn 1 m ferdig utvokst.

Rabatten må skilles fra kjøreareal med f.eks kantstein. Rabatten bør også skilles fysisk fra areal med stor gangtrafikk.

Arealer for buskrabatter i tett by er som regel små og ofte smale. Der er det plass bør det imidlertid være en 1-3 m bred gressrabatt foran buskene mot vegen. Det skaper adskillig bedre sekkforhold for plantene og vil forenkle vedlikeholdet. Riktig plantestasjoner mellom de enkelte buskene/staudene i en rabatt, har stor betydning for senere vedlikeholdsbehov.

Spredt bebygde områder
Spredt bebygde områder er natur-, jord- og skogbrukslandskap. Forekiet består disse landskap av lav markdekkende vegetasjon og/eller av høyere vegetasjon som trær og buskas.

For å oppnå ovenstående må ny vegetasjon i forbindelse med et veganlegg primaært tilhøre landskapet visuelt og ikke vegen. Tilhører vegetasjonen vegen visuelt, kan de reisendes opplevelse av variasjon reduseres, samtidig som vegen negativt understrekes og dermed framheves istedenfor å underordnes landskapet. I praksis bør derfor ny vegetasjon brukes slik at den på et overordnet nivå knyttes til og henger sammen med eksisterende vegetasjon og landskapet.

I enkelte anlegg kan det imidlertid være riktig å understreke vegen som en vakker linje i landskapet. Et eksempel er tradisjonell bruk av alléer (treppe) langs veger i åpne jordbrukslandskap.

Bevaring av naturlig vegetasjon

Eksisterende vegetasjon skal i utgangspunktet bevares og må derfor ligge urørt gjennom anleggstiden. Dette er særlig viktig ved avgrensning av veganlegg og riggområder samt arealer mellom ramper i kryss.

Naturlig vegetasjon har sin egenverdi i landskapet både estetisk og økologisk. Ved å bevare eksisterende vegetasjonsarealer reduseres totalt areal som må istandsettes i forbindelse med anlegget, og som senere må vedlikeholdes. Naturlig vegetasjon trenger ikke vedlikehold.

I enkelte jordbrukslandskap finnes kulturverdier som enkeltrær og trerekker. Disse trærne skal i utgangspunktet bevares. Desto større og eldre trærne er desto viktigere er det å beholde dem. Fjerning av slike trær, særlig i åpne jordbrukslandskap, kan forandre landskapet radikalt i negativ retning.

Det er først og fremst enkelte fylker som har gamle trerekker langs deler av veggnettet. Involveerte etater på fylkeskommunalt og kommunalt nivå bør sammen vurdere alle 'trevegene' i distriktet under ett. En slik vurdering er nødvendig for å finne fremtidige konfliktstrekkningar og for å jobbe fram en langsiktig plan over hvilke alier som skal og hvilke som ikke skal bevares. Det bør også framgå av planen hvordan trærne skal bevares og hvilke som eventuelt skal erstattes med nye trær. En slik framgangsmåte vil bedre sikre de ulike etatenes interesser og ansvarsfelt sammenlignet med diskusjoner og konflikter over enkeltsaker.

Trær og buskas

Figuur 28.10
Eksempelende naturlig vegetasjon er en ressurs i prekeleggene. Ved å ta vare på vegetasjonsarealer f.eks. i plankefles kryss vil arealene som må istandsettes og vedlikeholdes bli mindre.
For å skjule sår etter inngrep eller stygge konstruksjoner bør det nyttes vegetasjon mest mulig lik den som naturlig finnes i omgivelsene. Det kan være gran, furu, bjørk, selje, osp, or m.m. Det bør nyttes små, unge planter. Hvis det er mulig kan planter hentes fra landskapet rundt og plantes inn i anlegget. Å nytte fremmed vegetasjon som skiller seg ut, kan negativt resultere i at inngrepet framheves framfor å skjules.

Trær og buskas bør også brukes på de fleste rasteplasser, ferjekaiers og andre serviceanlegg, og hvor de reisende stopper eller hvor de gående oppholder seg. Beplantning bør på slike anlegg ha en noe høyere visuell standard enn vegetasjon som skal skjule stygge sår i landskapet. Dette kan også gjelde i kryssområder.

Ikke alle landskap har høyere vegetasjon. I slike landskap bør det vanligvis ikke plantes trær og buskas i forbindelse med veganlegg.

Avstand og sikt
Trær skal normalt ikke plantes slik at det blir behov for oppsetting av rekkrverk. Trær må plantes i en sikkerhetsavstand fra vegen avhengig av vegens trafikkmengde og fart. Sikkerhetsavstandene er oppgitt i del B for de ulike standardklasser.

Buskas og trær skal ikke hindre nødvenlig sikt i kurver og kryss. Enkeltstående, høystammede trær kan plasseres i siktterkantene.
Avstand og sikt
Sikttrekanter, trafikkøyer og siktsoner i kurver kan tilsås med gress. Gresset må aldri bli høyere enn 0,5 m i frisiktområder.

Grøfter, normalt helt inn til asfaltkanten, bør tilsås med gress og eventuelt blomstrende urter.

Mellom vegen og høyere vegetasjon lengre ut i sideterrenget bør det være en sone med gress evt. blomstrende urter.

Middels tett bebygde områder
Middels tett bebygde områder er områder mellom den tette, urbane byen og det spredt bebygde naturlandskapet. Utenom selve sentrumsgatene består norske byer og tettsteder i alt vesentlig av middels tett bebygde områder. Landskapsmessig er områdetypen svært sammensatt.

Den høye hovedvegstandarden i slike områder og tilhørende nett av planskilt kryss, medfører store restarealer som skal ivaretas. Et enkelt planskilt kryss kan resultere i 10-20 da. med restarealer. Hvis restarealene ikke skal bebygges skal eksisterende vegetasjon på arealene bevares og/eller ny vegetasjon etableres.
Mellom trafikerte hovedveger og bebygde områder bør det avsettes plass til en buffersone med vegetation. Denne grønne buffersonen er nødvendig for å reducere miljølemper som støy-, luft- og visuell forurensing.

Svært ofte ligger middels tett bebygde områder på tidligere dyrket mark. Dette gjenspeiles i relativt flate arealer fattig på høyere vegetation. Ved planlegging og bygging av veger i slike områder bør det legges vekt på å tilføre områdene høyere vegetation.

For å kunne ivareta de store arealmengdene innenfor akseptable kostnader kombinert med behovet for høyere vegetation, er bevaring av eksisterende vegetation og bruk av masseplantinger en egnet framgangsmåte i middels tett bebygde områder.

Bevaring av vegetation

Eksisterende vegetation skal i utgangspunktet bevares og må dermed ligne urørt gjennom anleggstiden. Restarealet i middels tett bebygde områder er som regel store, særlig i kryssområder. Dersom mest mulig av disse arealene får ligge urørt, blir det mindre arealer som må istandsettes med vegetation og senere vedlikeholdes. Høyere vegetation i et ellers åpent nyanlegg har stor betydning i påvente av at den nyplantede vegetationen vokser opp.
Vegetasjon som skal bevares må gjøres inn før anleggsstart. Beter kan være nødvendig avhengig av hvor utsatt arealet ligger, landskapsverdi og størrelse.

Det er ingen nedre grense for hvor lite vegetasjonsareal det er mulig å bevare. Forutsetningen er at vanntilgangen ikke reduseres vesentlig.

Store enkelttrær og trekker skal normalt bevares (se avsnitt "Bevaring av trær" side 280). Flytting eller justering av traséen slik at trærne blir stående i midtdeler eller mellom kjøreveg og gang-/sykkelveg er mulige løsninger. Hvis trærne likevel besluttes fjernet skal de normalt erstattes med nye trær. De nye trærne skal så langt det er mulig, være av samme størrelse som dem de erstatter.

Trær og busker

Trær og busker nyttes i masseplantingar. Massplanting kan ved utforming og plantevalg gis et estetisk uttrykk mot det naturlige eller mot det urbant parkmessige. Veganleggets lokale omgivelser bør være avgjørende for valg av estetisk karakter på masseplantingen i veganlegget.

Sammenhengende, tett vegetasjon (min. 2,5 m høy) kan redusere støvforurensning fra veg til de nærmeste omgivelser. Vegetasjon reduserer nedsmussing av omgivelsene. Vegetasjon i belter på min. 50 m kan redusere vegtrafikkstøy. Smalere belter som skjuler støykilden visuelt, kan ha psykologisk støydempende effekt.

Avstand og sikt

Trær skal normalt ikke plantes slik at det blir behov for oppsetting av rekkrverk. Trær skal plantes i en sikkerhetsavstand fra vegen. Sikkerhetsavstandene er gitt i del B under de ulike standardklasser.

Busker og trær skal ikke hindre nødvendig sikt i kurver og kryss. Enkeltstående, oppstammede trær kan plasseres i sikt-trekanter.

Der det er plass, skal busker og trær normalt plantes i en avstand fra asfaltkanten som tilsvarer 1-4 klapbredsred av vedlikeholdsdistriktets utstyr for kantklipping.

Det vil normalt si fra 1-4,5 m. Avstanden medfører mindre vegtrafikkforurensninger for plantene og dermed bedre vekst og trivsel og enklere vedlikehold. Profilet gir også et åpnere og mer oversiktlig trafikk-bilde.
Der det plantes helt inn til vegen, må det velges plantearter og avstand til asfaltkant/kantstein som sikrer at ferdig utvokste greiner ikke stikker ut i vegbanen. Artene må også tåle brøytekanter og vegtrafikkforurensning som er adskillig større nær vegbanen.

Gress og blomstrende urter

Arealer mellom plantefeltene og mellom asfaltkant og plantefelt bør være gresskledd.

Frøblanding og framgangsmåte ved etablering som for spredt bebygde områder.

Enkelte steder kan frø av kraftige og noe kultiverte blomstrende stauder som lupiner brukes i gressfrøblandinger. Andre blomstrende urter som presteekrage og rødkløver, kan også nyttes.

Trafikkøyer og midtdelere bør ha gressdekke. Det nyttes samme frøblanding og framgangsmåte ved etablering som for tett by.

Ulike typer av gressarmeringsdekke har vist seg å fungere dårlig, og kan derfor ikke anbefales.
29. TILTAK MOT VEGTRAFFIKKSTØY

Innledning

De tiltak som er til rådighet for å dempe støyen, vil avhenge av hvor i planprosessen det griper inn. De beste løsningene som gir minst skadevirkninger på andre miljøfaktorer, oppnås ved koordinert utbygging av nye områder og/eller nye vefer. Et godt resultat krever at veg og omgivelser ses i sammenheng. Dette gjelder ikke bare ved bygging av ny veg, men også ved utvidelse av veg og miljøforbedringer langs veg.

b) Planlegging av boliger, skoler og annen støyomfintlig bebyggelse inntil eksisterende vefer.

c) Arealplanlegging som omfatter samtidig planlegging av vefer, boliger, skoler m.v.

Retningslinjene danner også grunnlag for vurdering av støymessige konsekvenser ved trafikksaneringsplaner og ved utbedring av eksisterende vefer som ikke medfører regulæringsbehandling.

Retningslinjer

Retningslinjer for vegtrafikkstøy til bruk ved arealplanlegging er fastlagt av Miljøverndepartmentet i Rundskriv T-8/79. Retningslinjene skal legges til grunn ved planlegging av vefer med hjemmel i plan og bygningsloven og vegloven (NA-rundskriv nr. 82/79 Plan).

I følgende situasjoner skal retningslinjene benyttet:

a) Planlegging av nye vefer og utvidelse av eksisterende vefer i nærheten av støyomfintlige områder (boligområder, frivområder, skoler, helseinstitusjoner m.v.)

b) Planlegging av boliger, skoler og annen støyomfintlig bebyggelse inntil eksisterende vefer.

c) Arealplanlegging som omfatter samtidig planlegging av vefer, boliger, skoler m.v.

Retningslinjene danner også grunnlag for vurdering av støymessige konsekvenser ved trafikksaneringsplaner og ved utbedring av eksisterende vefer som ikke medfører regulæringsbehandling.

Generelt om støytiltak

Aktuelle situasjoner for planlegging av støydempingstiltak

a) Eksisterende veg og eksisterende bebyggelse

b) Utvidelse av veg og eksisterende bebyggelse

c) Ny bebyggelse og eksisterende veg

d) Ny veg og eksisterende bebyggelse

e) Ny veg og ny bebyggelse
Planleggingstilfelles e) gir muligheter for en god løsning. Høye krav bør derfor stilles til et godt helhetsmiljø. Planleggingstilfellene a) til d) innebærer ingrep i det eksisterende miljø, og mulighetene for gode løsninger avhenger ofte av en avveining mellom støynivå, estetikk, barriere, arealbruk, teknikk/økonomi og gjenomførbarhet.

Oversikt over virkemidler

a) AREALPLANLEGGING

Det er i særlig grad i forbindelse med arealplanlegging vi kan skape gode løsninger.

Herunder kan nevnes:

Plan for bebyggelse langs trafikkerte veger:
- Lokalisering av virksomheter
- Plassering av støyomfintlige funksjoner
- Bruksendring av støybelastede bygninger og arealer
- Endring av leiligheters planløsning
- Sanering av støyomfintlig bebyggelse

Vegplanlegging:
- Utbygging av avlastningsveger
- Veg i tunnel
- Innbygging av veg (overbygg)

b) TRAFIKKREGULÆRENDE TILTAK

Følgende tiltak er aktuelle:
- Trafikkdifferensiering
- Trafikksanering
• Avlastningsveger
• Fartsgrenser
• Restriksjoner for tungtransport
• Restriksjoner for natt-trafikk
• Jevn flyt i trafikken

c) KJØRETOYET
En reduksjon av støyutstrålingen fra kjø-
retoyet (emisjonsnivå) vil redusere det
totale støyvå. I særlig grad gjelder dette
støy fra tunge kjøretøyer.

d) VEGDEKKE
• Drenerende asfalt
• Poroelastiske vegdekker
• Bildekk

e) TRAFIKKPOLITISKE TILTAK
• Restriksjoner på bilbruk
• Tilretteleggelse for kollektivtrafikk

f) SPESIELLE TILTAK MOT
STØYUTBREDELSE
Disse løsningene kan i mange tilfeller,
særlig ved svært høye støynivåer, betrak-
tes som nødlosninger i påvente av mer
langsiktige bedre løsninger:
• Skjerm og voll
• Fasadeisolering
Arealplanlegging

Generelt
Ved planlegging av ny veg og ny bebyggelse på jomfruelig mark er alle muligheter til stede for et godt resultat. Svært ofte er imidlertid de største støy-problemmene knyttet til byer og tettsteder hvor begrensningene og avhengighetene er mange. I mange tilfeller må vi forsone oss med kompromissløsninger. Gode helhetsløsninger kan likevel oppnås hvis man vurderer miljøkonsekvensene tidlig i planleggingen og tar hensyn til disse gjennom planprosessen.

Vegens omgivelser
Alle veger som forårsaker miljøproblemer for omgivelsene kan ikke legges om. Dette er ikke praktisk gjennomførbart og hel- ler ikke hensiktsmessig. Det er derfor ofte nødvendig å vurdere hvordan omgivelsene kan harmonisere med vegen. Støy-omfintlig bebyggelse inntil en svært trafikkert veg utsettes også for andre miljøproblemer som forurensning, ulykker, barriere etc. Det må derfor vurderes hva slags type bebyggelse som kan harmonisere med den trafikkerte vegen eller om omgivelsene skal endre karakter.

Vegers utforming

Linjeføring
Når ny veg planlegges, skal støy være en faktor ved valg av vertikal og horisontal linjeføring. Linjeføringen har store konsekvenser for hvor mye de omkringliggende områder blir belastet med støy.
a) HORIZONTALTRASÉ

I henhold til Nordisk beregningsmetode for vegtrafikkstøy, vet en at:

- Støyivået avtar med avstanden fra vegen med 3 dBA i ekvivalent (gjennomsnittlig) nivå pr. avstandsfordobling, 6 dBA i maksimalnivå. Vegen bør derfor legges i tilstrekkelig avstand fra støyemfintlig bebyggelse og områder.

- Brytes støystrålen mellom kilden og mottaker, vil støyivået reduseres fra 5 dBA og oppover. Naturlig skjerming i terreng, massedeponering, forhøyninger og vegetasjonsbelter bør utnyttes.

- Et vegetasjonsbelte med varierende vegetasjon for å gi tett belte må være på min 50 m for å gi tilsvarende støydempende effekt som en skjerm.

- Ved økt hastighet øker støyivået. En økning fra 50 km/t til 80 km/t gir en økning i det ekvivalente støyivået på 5 dBA.

b) VERTIKALTREASÉ

Når veglinjen ligger høyt i forhold til terrænet, vil det gi stor støyspreddning og er i utgangspunktet uønsket. I kombinasjon med en naturlig lav avskjerming ved vegkant (lav voll e.l.), kan støyutstrålingen fra trafikken dempes betraktelig.

Ved en nedsetning av vegen i forhold til veg i flatt terreng, vil skjæringsskråningsvirke som en naturlig avskjerming.
Effekten er avhengig av hvor god avskjer-
ming skjæringen gir dvs. avstanden fra
skjæringstopp til mottaker og mottakers
høyde over terreng. Ved skjæring i fjell
eller ved støttemur kan refleksjon øke
støynivået på motsatt side. Dette kan
avhjelpes ved en utforming med tanke på
skjæring, absorpsjon og spredning av
trafikkstøy.

Støyen øker med stigningen avhengig av
andel tunga kjøretøy. En slakere stigning
på vegen vil redusere støynivået betyde-
lig ved stor andel tunga kjøretøyer.

Kryss

Kryssområder gir en mindre endring i det
ekvivalente støynivå. Endring i frekven-
ne er imidlertid betydelig. Dette kan der-
for oppleves som en forverring av støy-
situasjonen. Jevn flyt med minst mulig
akselerasjon og retardasjon vil gi de
minste forandringene i frekvensområdene
og dermed den minste opplevde for-
andring i støynivå.

Ved kryss vil bebyggelsens kunne bli
utsatt for vegtrafikkstøy fra to sider og i
270 graders vinkel. Det er vanskelig å få
til en god avskjerming av en støykilde med
stor utbredelse. Dette bør vurderes ved
kryssplanningen.

Vegdekk

Motorstøyen er mest dominerende ved
hastigheter under 50 km/t, mens rullest-
øyen, dvs. anslag mellom bildekk og
Vegdekket dominerer ved de høyere hastigheter. Ved bruk av såkalte støysvake vegdekker vil effekten følgelig bli størst ved høyere hastigheter hvor rullestøyen kan reduseres relativt mye.

Det er i dag to typer støysvake dekker:

- Drenerende asfalt kan gi opptil 5dBA (total)reduksjon. Dette krever en spesielt støysvak dekketype med åpen struktur.
- Poroelastisk dekke kan muligens gi en demping på 5dBA i rullestøy og 3dBA i motorstøy.

Begge dekketyper er under utprøving og videreutvikling er nødvendig rent vegteknisk.

Voller og skjermer

Generelt

Skjermer og voller vil kunne nyttes i enkelte situasjoner hvis det ikke er mulig å oppnå tilfredsstillende løsninger ved andre tiltak som nevnt under "Generelt om støytiltak". En voll er en oppfylling av terrenget. En voll er et element som primært bør nyttes i mindre tett og spredt bebyggelse, mens den ikke hører hjemme i tett by.

Skjerm og voll skal i første rekke dempe støyten utendørs og spesielt dekke opp det området som blir benyttet som oppholdsareal utendørs.
Skjerm og voll kan i flere tilfeller redusere støy innendørs, men støydempingen innendørs vil bli noe lavere enn utendørs fordi en skjerm i første rekke demper de høye frekvensene.

Det er viktig at det foretas et valg av hva som skal skjermes og hvilken effekt man forventer. Et boligområde nær ved høyt trafikerte veier med høy hastighet (>70 km/t) og som dermed får meget høye støyinntak (over 75 dBA), vil sjelden kunne egne seg som boligområde ut fra støyhensyn. En skjerming av slike områder med frittstående støyekrav vil ikke kunne gi akseptable støyinntak. En skjermin av et slikt område bør derfor kun være av midlertidig art i påvente av om- disponering, innløsning, omregulering e.l.

Støydempende effekt

En støyekrav eller støyvoll skal i utgangspunktet gi størst mulig effektiv demping (h eff) for å dempe både bebyg- gelse og uteområde. I mange tilfeller vil en skjerm bare dempe støyinntak utendørs dvs. oppholdsareal og ikke bebyggelsen. Spesielt vil annen etasje, eller høyere eta- sjer i en bygning få liten eller ingen effekt av en skjerm.

h eff. bør være større enn 0, sett fra mottaker. Når h eff. er større enn 2-3 m vil effekten ved å øke høyden relativt sett bli mindre.

Mottaker som befinner seg lavere enn vegbanen, vil bli skjermet bedre enn mottaker som befinner seg høyere enn vegbanen med støyekrav i samme høy- de. Avstanden fra støyekravene har også betydning for skjerminningseffekten.

Hvis h eff. er mindre enn 0, bør skjerm eller voll ikke oppføres. Hvis det likevel er ønskelig med avskjerming mot vegen bør gjerde eller beplantning kunne gi den ønskede forbedring.

En støysskjerm vil i beste fall kunne dempe vegtrafikkstøy 10-12 dBA, det vil si en halvering av lydinntrykket. En skjerm eller voll vil derfor alene ikke kunne gi et godt resultat hvis støyinmatet i utgangspunktet er over 75 dBA. I slike tilfeller bør derfor skjerm ikke brukes som permanent løsning.

Refleksjoner fra skjerm og andre reflekterende flater bør i størst mulig grad unngås. Refleksjon kan delvis avhjelpes ved bruk av støyabsorberende materialer.

Prinsipper for valg av type skjerm og voll

En støysskjerm er i prinsippet et tett gjerde. I vår byggeskikk har vi lange tradisjoner i å bygge gjerder rundt og ved bolighus. Disse tradisjonene bør beholdes ved oppsetting av støysskjerm. En støysskjerm må følgelig utformes som en del av omgivelsene og i mindre grad som en del av vegen. Lang, sammenhengende, ensartet støysskjerm som følger vegen bør unngås.
En støyskjerm kan tilpasses vegen når bebyggelsen ikke ligger nær veg. Det er da viktig at skjermen tilpasses som en del av både veg og landskap/vegetasjon.

En skjerm eller voll bør ikke avsluttes bratt, men få en naturlig utforming.

Hovedprinsipper for valg av skjerm/voll:

1. **OMRÅDESKJERM**: Avskjerming av et område (ikke randbebyggelse) som ikke tar del i vegens funksjon. Skjermen skal ikke være en del av vegen, men av området det skjermer. I noe avstand fra veg bør primært være voll, sekundært skjerm (områdeskjerm) tilpasset veg og landskap/vegetasjon. Områdeskjerming forutsetter at skjermen demper støy for et område bestående av minst 5 bolighus i relativ tett klyng. Randbebyggelse hører inn under punkt 2.

2. **TETT GJERDE** er avskjerming av et uteområde (hage, park osv.) hvor området og vegen tar del i hverandres funksjon.

3. LOKAL SKJERM. Løsningen innebærer lokal avskjerming av oppholdsnaert uteområde (sitteplass utendørs).

Denne skjermen vil være knyttet til bygningen som ethvert annet utbygg. En lokal skjerm kan også være løsrevet fra huset hvis det gir en mer gunstig effekt.

Fasadeisolering må ofte vurderes i tillegg til skjerming. Figur 29.9 viser hvilken type skjerming som bør velges avhengig av type bebyggelse og type veg.

Prinsipper for utforming av voll og skjerm

a. LENGDE/HØYDEFORHOLD

En skjerm er et byggverk og må tilpasses natur og bebyggelse for å unngå at vi skaper et nytt miljøproblem. De akustiske krav som stillles til skjermens høyde/ lengdeforhold vil derfor ikke alene være avgjørende for skjermens utforming. En skjerm eller voll må tilpasses om- givelsene. Det kan derfor ikke gis entydige mål for hvor lang eller høy en skjerm eller voll kan være. En skjerm bør imidlertid ikke være høyere enn 3 m på lengre strekning. Normalt bør heyden ikke overstige 2,5 m. Hvis det er behov for høyere skjerm må andre støyreducerende virkemidler benyttes (jfr. "Oversikt over virkemidler", s. 294. En skjerm kan imidlertid være høy (4-5 m) over en meget kort strekning (10-15 m) uten at det vil virke negativt på resultatet estetisk sett. Skjermhøyden må dessuten sees i rela- sjon til lengden, bebyggelsen, landskap og vegetasjon.

![Figur 29.13](image)

Figur 29.13
Lokal skjerm.

<table>
<thead>
<tr>
<th>SPREDE</th>
<th>MIDDLES TETT</th>
<th>TETT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVEDVEG</td>
<td>1, 3</td>
<td>1, 3</td>
</tr>
<tr>
<td>SAMLEVEG</td>
<td>2a, 3</td>
<td>2a, 3</td>
</tr>
<tr>
<td>ADKOMSTVEG</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

![Figur 29.14](image)

Figur 29.14
Valg av skjermingstype.

![Figur 29.15](image)

Figur 29.15
Skjermhøyde.
Av hensyn til opplevelsen langs vegen bør en skjerms sammenhengende lengde ikke overstige 1 km. Langs vegens totale lengde bør det ikke være skjerm langs mer enn 1/4 av vegstrekningen. Det er behov for variasjon langs en veg.

For ikke å skape en ensformig monoton vegg, må det avsettes plass før variasjoner. Normalt bør det avsettes et 5m belte ved bruk av områdeskjerm utenfor den nødvendige avstand fra veg, til rom for skjermvariasjoner. Denne avstanden kan reduseres til min. 3m i spesielle tilfeller. I tilknytning til f.eks. reguleringsplaner, hovedplaner el.l. hvor skjerm kan komme til anvendelse, bør det legges inn et belte på min. 5m som angir skjermplassering. Figuren gir en indikasjon på høyde/lengdeforholdet. Det må være rom for variasjoner. En skjerm må tilpasses bakenforliggende bebyggelse eller naturformasjon. Høyden vil dessuten være avhengig av veg/gaterommet og trafikkfarten.

b. MATERIALER OG FARGEVALG

Materialet i skjermer må tilpasses bebyggelse og natur/vegetasjon.

Tegl og betong er mest egnede bynære områder (tett by) hvor dette materialet i stor grad dominéret.

Tre er lettere å få tilpasset i spredt og middels tett bebyggelse. Tre kan også være aktuelt i tett by hvis bebyggelsen er i tre. Tre bør trykkimpregneres.

Aluminium, plastbelagt stål el.l. kan i spesielle tilfeller også være aktuelt. Dette materialet vil også avhenge av bebyggelsen, og kan nyttes hvis fargen tilpasses.
Glass eller plast kan nyttes som skjermens øvre deler hvis det er ønskelig å få inn mer lys uten å måtte redusere skjermingseffekten. Disse materialene egner seg best i byområder.

Fargen må tilpasses omgivelsene. En områdeskjerm bør tilpasses terreng eller bebyggelse avhengig av hva som gir det mest dominerende trekk. Et tett gjerde bør få samme farge som tilhørende bebyggelse. Lokalskjerm bør få farge til passet bebyggelsen.

c. SIKKERHETSMESSEIGE HENSYN

Siktrør langs veglinja og krav til sikttrekanter i kryss skal overholdes.

Skyggevirkning av skjerm kan gi glatt veg. Dette må vurderes ved oppsetting av skjerm.

d. VEDLIKEHOLDSMESSEIGE HENSYN

Det bør settes av nødvendig areal til snoøpplag mellom veg og skjerm. Normalavstandene oppgitt i tabellen under punkt a) tilfredsstiller disse kravene, bortsett fra i tett by. Her vil det som regel være nødvendig å kjøre bort snø.

Rekkverk for å unngå mekaniske skader på skjerm er aktuelt hvis skjermen kommer nær veg.

Figur 29.17
Høyder og lengder for forskjellige skjermtyper (veiledende).

Figur 29.18
Krav til vegetasjonsbelte.
Krav til renhold vil avhenge av avstanden til vegen. Slitasje som følge av mekanisk påvirkning, f.eks. fra snøbøyleutstyr, vil også avta med økende avstand. Det må være mulig å kørme til skjermen for vanlig vedlikehold både fra veg og hussiden.

e. PLASSHENSYN

Ved bruk av høy vegetasjon (>5 m) kan skjermen bygges høyere enn vanlig (5-6 m).

Teknisk utforming av frittstående skjerm
Fra et akustisk synspunkt vil normalt 1" trevegg være tilstrekkelig. Vind og brøytetrykk på stolper og spikerslag vil derfor i de fleste tilfeller være dimensjonerende.

Skjermer skal beregnes for å tåle egenlast og horisontal belastning. I tetbebyggelse i ikke værharde strøk settes den horisontale lasten til 0,50 kN/m². I tetbebyggelse i værharde strøk benyttes 0,67 kN/m². Utenfor tetbebyggelse økes lastene med 25%. Lastene inkluderer vind- og snølaste som angitt i NS 3052.
En skjerm må være absolutt tett og slutte godt til terreng og til eventuelle andre begrensningsflater. Åpninger reduserer støydempingseffekten. Dempingseffekten for maksimalnivå kan i verste fall bli redusert til null.

Skjermer tett inntil veg må tåle den mekaniske påvirkning fra vedlikehold og ha en overflate som tåler rengjøring. Sær- lig for absorberende skjermer er det viktig med rengjøring slik at den lydabsorberende evnen ikke reduseres.

Skjermer av tre må settes opp med tanke på at tre er et levende materiale som beveger seg. Figur 29.20 viser utførelse som sikrer den tiltenkte akustiske effekt.

Teknisk utforming av voll

Oppbygging og utforming krever relativt store arealer. Vollens bredde bestemmes av høyde og hellingsgrad.

De geotekniske forhold må vurderes slik at det ikke oppstår setninger og utgildning. En voll må umiddelbart plantes til, også for å unngå erosjon og utvasking. Der plassen er begrenset, kan voll med spesiell oppbygging benyttes, f.eks. halv voll med mur på en side.
Fasadeisolering

Generelt
Lyd trenger inn i bygninger gjennom:
- Luftepipper, piper, avtrekk
- Ventilasjonskanaler
- Takkonstruksjoner
- Vinduskonstruksjoner
- Veggkonstruksjoner

Ved fasadeutbedring mot lyd må alle faktorene sjekkes, men vanligvis er det vinduene og ventilasjonskanalene som er de svake punkt. I trehus vil også veggen kunne være et svakt punkt.

Arkitektoniske hensyn
En fasadeutbedring av en bygning for å redusere lyd gjennomgangen, vil i mange tilfeller føre til en forandring av huset. Nye vinduer settes inn og veggen isoleres utvendig eller innvendig. Det er viktig at disse forandringene ikke skader bygningens arkitektoniske trekk.

I henhold til plan- og bygningsloven skal alle fasadeendringer meldes til bygningsrådet. Bare dersom gamle vinduer utbedres, eller det gamle vinduet erstattes med et riktig kopiert vindu, kan fornyelsen skje uten byggemelding.
Veggisolering

Yttervegg kan utbedres for å oppnå bedre lydisolering på følgende måter:

1. Etterisolering med mineralull i vegger uten isolasjon

2. Innvendig utlektning med gips eller sponplater og 50-100 mm mineralull i hullrommet

3. Utvendig utlektning med 50-100 mm mineralull, med gipsplate som diffusjonssperre mellom panel og mineralull

Figuren viser lydstrømengangen gjennom forskjellige typer vegger før og etter de ovennevnte tiltakene.

Vindusutbedning

Lydstrømengangen gjennom et vindus skjer flere veier. En utbedring av eksisterende vindu kan ofte gi stor forbedring. Hovedprinsipper for å reducere lydstrømengangen i eksisterende vinduer er:

1. Tetting mellom vegg og karm med mineralull og elastisk fugemasse

2. Tetting mellom karm og innerste ramme med tettingslist

3. Montering av nytt innvendig varevindu

4. Innsetting av nytt og bedre lydisolerende glass i eksisterende varevindu/innervindu

<table>
<thead>
<tr>
<th>Ytterveggstype</th>
<th>R_A før tiltak (dBA)</th>
<th>R_A etter tiltak (dBA alt. 1,2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laftet hus</td>
<td>Ca 30</td>
<td>Ca 35</td>
</tr>
<tr>
<td>Reisperr av ployd plank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bindingsverk, 4 lag papp og panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bindingsverk av myre type, 100mm mineralull</td>
<td>Ca 35</td>
<td>Ca 41</td>
</tr>
<tr>
<td>Tek/loft-frittbeværende takstoler, rundt 50-200 mm mineralull. Hori-sontalskådare</td>
<td>Ca 30-35</td>
<td>Ca 40</td>
</tr>
</tbody>
</table>

Figur 29.24

Lydreduksjonstall R_A for forskjellige typer vegger.
5. Øke avstanden mellom eksisterende glass og samtidig bytte glassene til et med bedre lydisolering

Tiltak 1 og 2 må alltid gjennomføres.

Ved utskifting av vindu til spesielle lydvinduer, er det viktig å velge det vinduet som gir den ønskede effekt. Det er tre hovedtyper lydvinduer på markedet (se figurene).

Lydisolerende vinduer skiller seg fra vanlige vinduer på følgende måter:

- Flere sett tettetiliser
- Større glassavstander
- Tykkere glass
- Sammensatte glass eller laminerte glass
- Grovere hengsler, rammer o.l.

En egen håndbok om fasadeisolering mot vegtrafikkstøy er under utarbeidelse.
30. Bruer
- Tverrprofil for bruer 312
- Linjefering for bruer 315

31. Tunneler
- Tunnelutforming 317
- Tunnelklasser 317
- Dimensjoneringsår 318
- Tverrsnitt 318
- Tunnelprofiler 318
- Utforming under vegbanenivå 323
- Rømning 324
- Havariommer og snurisjer 324
- Møteplasser 326
- Gang- og sykkeltrafikk 326
- Linjefering 327
- Vegkryss i og utenfor tunneler 331
- Trafikkskilt og vegoppmerking 336
- Sikkerhet 338
- Sikkerhetsutrustning og sikkerhetsliltak 340
- Øvrig trafikkregulering og overvåkingsutstyr 346
- Belysning 348
- Ventilasjon 353
- Miljø 362
- Forurensning 371
- Vurdering og beregning av luftforurensning fra vegtunneler 372
- Begrensningsene i nomogrammene 375
- Forklargning på bruk av nomogrammene 375
- Støyforhold nær tunnelåpninger 377

32. Kabler og ledninger
- Generelt 379
- Forholdet mellom offentlige veger og kabel-/ledningsanlegg 380
- Samarbeid veg-/reguleringsetet og kabel-/ledningsetat 381
- Krav til varslernturiner 382
- Kartverk 382
- Bebyggelses-/reguleringsplan 382
- Disponering av tverrprofil 383
- Gang-/sykkelveger 384
- Gater og vejer uten fortak 384
- Gater og vejer med fortak 385
- Gater og vejer med separat gang-/sykkelveg 385
- Det overordnede vegnettet 385
- Varmeakabiler i fortak 386
- Kumplassering 386
- Masteplussering 386
- Kryssing av veg/gate 387
- Krav til kryssingsprinsipp 387
- Utforing - Vann- og avløpsledninger 389
- Kablier 389
- Fellesanlegg for elektriske kabiler og vann- og avløpsledninger 389
- Stikkledninger (vann og avløp) 390
- Kumløkk og rammer 390
- Utsetting og innmåling 390
- Oppgraving og gjenfylling 390
- Arbeidsvarsling 390
30. BRUER

Utforming og dimensjonering av bruer er beskrevet i håndbok 100, Bruprosjektering. Håndbok 100 inneholder normaler for forskjellige typer vegbruer, gang/- sykkelvegbruer og kulverter med spennvidd opp til 35 m. Bruer med større spennvidder må prosjekteres særskilt.

Tverrprofil for bruer

Valg av tverrprofil for brua foretas ut fra vegens standardklasse, ÅDT, bruas lengde og eventuell gang-/sykkeltrafikk.

Brua skal minst ha samme brede på kjørebanen som tilstøtende veg. Bredden av gang/sykkelveg eller fortøy over brua bør tilpasses tilstøtende gang/sykkelveg eller fortøy.

Bruareal skal generelt regnes som kostbart terreng. På lange bruer (totallengde >40 m) kan skulderbredden halveres, men skal dog være minst 0,5 m mot rekkverk og 0,25 m mot kantstein. På korte bruer (totallengde <40 m) kan skulderbredden likevel være lik skulderbredden på tilstøtende veg.

På bruer med ensidig tverrfall kan en gi skulder samme helling som kjørebanen. Begrunnelsen for dette er at bruer ofte har smalere skulder enn tilstøtende veg, snøoppplagringen blir mindre, og en får tidligere og raskere snøsmelting.

På oversikten over tverrprofiler er følgende betegnelser brukt:
K = Bredde av kjørebane
S = Bredde av skulder
GS = Bredde av gang-/sykkelveg
F = Bredde av fortav

Alternativ 1 brukes for
- Korte bruer (total lengde <40 m) med liten gang-/sykkeltrafikk
- Bruer der gang-/sykkeltrafikken går på egen bru
- Motorvegbruer

Alternativ 2 og 2a brukes for lange bruer (total lengde >40 m) med liten gang-/sykkeltrafikk. F=2 m.

Alternativ 3 brukes for alle bru lengder. GS=2, 2.5 eller 3 m. Gang-/sykkel veg kan være tosidig.

Alternativ 4 brukes for korte bruer på enfelt vegger.

Alternativ 5 brukes for lange enfelt bruer.

Lange enfelt bruer med liten gang-/sykkeltrafikk og ADT opp til 300 kjøretøyer kan betraktes som unntakstilfeller der spesialløsninger må kunne aksepteres. Eventuelle møteplasser bygges utenfor bruene. Bredden er valgt slik at to personbiler kan passere hverandre, mens tunge kjøretøyer er forhindret fra dette. Bruene beregnes for ett lastfelt.

Gang-/sykkelbruer bør utformes som vist. De kan i unntakstilfeller ha større bredde.
Linjeføring for bruer

Bruas linjeføring bør innordne seg i linjeføringen på tilstøtende veg. For større bruer kan det imidlertid være riktig å fastlegge geometrien mer ut fra kryssingsvinkel og brulengde. Større kryssingsvinkel enn 45 grader bør unngås.

Bru i høybrekk bør ligge på rettlinje eller i ensrettet horisontalkurve. Vende kurve midt på høybrekken gir ofte dårlig optisk ledning.

Ved flytebruer blir det en brå stigningsendring ved overgangen til brua. Denne må skiltes med farekilt og fartsreduksjon, og bør ikke være på mer enn 4%.

De forskjellige brutyper gir forovrig begrensninger i hvilken linjeføring som kan tillates.

Figur 30.2
Bredde for alternativer 4 og 5, samt gang-/sykkelbru.
31. TUNNELER

Tunnelutføring

Generelt
Tunnelene skiller seg fra veg i dagen blant annet gjennom forhold som:

- Ingen sideaktivitet
- Andre forhold vinterstid
- Jevne lysforhold over døgnet og året, bortsett fra i inngangssonen.
- Vanskelig å bedømme stigning og fall
- Andre forhold for sikkerhet, rednings- tjeneste m.v.

Dette er forhold som gjør at flere utformingselementer må være annerledes enn for veg i dagen.

Krav til standard øker med økende trafikk- mengde og tunnelengde. Tunnelene er derfor delt inn i klasser som blir bestemmende for geometrisk kvalitet og utrustning.

Tunnelklasser

Med utgangspunkt i ÅDT (eller største timetrafikk ved ujetn trafikfordeling over døgn/år) og tunnelengde deles tunnel- ene inn i fem klasser. Valg av klasse skjer etter en vurdering av trafikkmengde og tunnelengde. Tunnelklassene er utgangspunktet for å bestemme antall tunneløp, avstand mellom og utforming av snu- nisjer, behov for havarilommer, og sikkerhetsutrustning. Figurer angir også det tunnelprofi let som normalt skal benyttes i de ulike klasser.

Dersom rømning lettvint kan skje via kjør- bart tverrslag ut av tunnelen, settes tun- nellengden inn i figuren som største avstand mellom tverrslag og tunnel- åpning.

Figur 31.1
Tunnelklasser.
I bratte tunneler kan det bli nødvendig å velge et annet tunnelprofil enn angitt i figur 31.1. Se avsnitt om "Forbikjøringsfelt" på stamveger benyttes ikke mindre tverrsnitt enn T8,5.

Når det gjelder sikkerhetsutrustning henvises til side 339

Dimensjoneringsår

For linjeføring og andre standardelementer som ikke kan utbedres over tid, benyttes den ÅDT som forventes 20 år etter åpningen av tunnelen.

Ved vurdering av sikkerhetsutstyr og teknisk utstyr forøvrig benyttes den ÅDT som forventes 10 år etter åpningen, fordi det er relativt enkelt å forbedre tunnelen senere når behovet for tilleggsutrustning melder seg.

Tverrsnitt

Tunnelutveksttet skal gi tilstrekkelig plass til at typekjøretøy kan passere hverandre med tilstrekkelig klaring, samt til nødvendig vegutstyr og teknisk utstyr. Tverrsnittet velges i utgangspunktet i henhold til vegbredden for veg i dagen. Tunneler klassifiseres som "kostbart terrenge". Skulderbredden kan derfor reduseres gjennom tunelen. Ved korte tunneler (under 500 m) vil dette virke unatural. Vegbredden kan da føres uendret gjennom tunelen.

Tunnelprofiler

Tunnelprofil T12-T8 utformes sirkulært over kjørebanenivå. Tunnelprofil T5 og T4 utformes med rette vegger. Fri høyde i tunneler skal normalt være 4,6 m. Fri høyde kan reduseres til 4,1m på sekundære vegger.
Tunnelene betegnes etter bredder i kjørebane-nivå. En tunnel med kjørebane-bredder = 6 m og skuldre = 2 x 1 m blir totalt 8 m. Tunnelen betegnes da T8.

Følgende tunnelprofil benyttes:

TUNNELPROFIL T12 brukes i de tilfeller det er behov for tre felt på veier i tunnelklasse E eller D.

TUNNELPROFIL T11 brukes når det er behov for tre kjørefelt i de øvrige tunnelklassene. Profiliet gir også rom for to kjørefelt og en gang- og sykkelbane. Se figur 31.18.

TUNNELPROFIL T10 kan brukes for korte tunneler (< 500 m) og med bruksområde forøvrig som T9.
TUNNELPROFIL T9 brukes for tunneler med tovegstrafikk i tunnelklasse D, og for hvert løp for tunneler i tunnelklasse E.

TUNNELPROFIL T8,5 brukes for tunneler med tovegstrafikk på stamveger i stedet for T8.

TUNNELPROFIL T8 brukes for tunneler med tovegstrafikk i tunnelklassene C, B og A. Profilen kan også brukes i tunnelklasse D dersom det bygges to løp.

TUNNELPROFIL T5 brukes på enfeltsveg i tunnelklasse A ved ÅDT < 300 kjt. I T5 benyttes ikke kantstein som kjørebaneav-grensning.
TUNNELPROFIL T4 brukes for gang- og sykkelveger. Fri høyde er normalt 3 m.

<table>
<thead>
<tr>
<th>Profil</th>
<th>Total bredde m</th>
<th>Kjørebane bredde m</th>
<th>Fri høyde m</th>
<th>Senyorhøyde a m</th>
<th>Radius R m</th>
<th>Areal F m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10</td>
<td>10,0</td>
<td>7,0</td>
<td>4,6</td>
<td>1,05</td>
<td>5,13</td>
<td>52,03</td>
</tr>
<tr>
<td>T9</td>
<td>9,0</td>
<td>7,0</td>
<td>4,6</td>
<td>1,53</td>
<td>4,79</td>
<td>50,45</td>
</tr>
<tr>
<td>T8,5</td>
<td>8,5</td>
<td>6,5</td>
<td>4,6</td>
<td>1,62</td>
<td>4,55</td>
<td>46,90</td>
</tr>
<tr>
<td>T8</td>
<td>8,0</td>
<td>6,0</td>
<td>4,6</td>
<td>1,64</td>
<td>4,36</td>
<td>43,78</td>
</tr>
<tr>
<td>T5</td>
<td>5,0</td>
<td>4,0</td>
<td>4,6</td>
<td>2,16</td>
<td>3,31</td>
<td>25,62</td>
</tr>
<tr>
<td>T4</td>
<td>4,0</td>
<td>3,0</td>
<td>3,0</td>
<td>1,33</td>
<td>2,40</td>
<td>13,63</td>
</tr>
</tbody>
</table>

Figur 31.9
Tunnelprofil T4.

<table>
<thead>
<tr>
<th>Profil</th>
<th>Senyor høyde a m</th>
<th>Samlet avstånd b m</th>
<th>Radius R m</th>
<th>Areal F m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>0,44</td>
<td>2,0</td>
<td>7,0</td>
<td>63,78</td>
</tr>
<tr>
<td>T12</td>
<td>1,31</td>
<td>3,0</td>
<td>8,0</td>
<td>70,73</td>
</tr>
</tbody>
</table>

Figur 31.10
Dimensjoner for tunnelprofiler ved ensidig tverrfall. Oppgitt areal gjelder over kjørebane.

321
I beregningen er det lagt til 0,2 m i høyde utover 4,6 m. Dette for å gi ekstra klaring for senere justering av vegdekke (0,1 m) og for å ivareta normale toleranser for vegoverbygning og platehvelv/utstøping (0,1 m). Hvis de aktuelle toleransene avvikler fra dette skal senterhøyden korrigeres. Se figur 31.10.

Ved ensidig tverfall dresies profilom senter vegbane. Figur 31.10 gjelder derfor uavhengig av tverrfallets størrelse.

Takfall benyttes normalt ikke i tunnel.

Fri høyde måles i kjørebanebant, midt på kantlinjen og vinkelrett på vegbanen. Sidearealet utføres normalt med asfalt eller betongdekke og med flåning 5% mot kjørebanken. Det benyttes lav ikkeavvisende kantstein plassert 0,25 m fra kjørebanebant.

For profiler uten kantstein asfalteres normalt til 0,25 m utenfor kjørebanebant.

Tunnelprofileen vil normalt gi rom for tekniske installasjoner som veglys og ventilasjonsvifter. Klaring mot trafikkrommet skal være min. 0,1 m for all teknisk utrustning inklusive skilt. Trafikkskilt på tunnelvegg eller i tak kan gi behov for lokale utvidelser av profilen.

Betongtunnel kan ha et rektangulært profil. For å redusere høyden av betongtunneler kan teknisk utrustning f.eks. lys, ventilasjonsutstyr og skilt plasseres over fortøy/skulder. Det kan da bli nødvendig å øke skulderbredden.
I figur 31.13 er det vist sammenheng mellom normalprofil og teoretisk sprengningsprofil.

Utforming under vegbanenivå

Teoretisk sprengningsprofil i tunnelsålen bestemmes av overbygningstykkel og tverrfall.

Den råsprengte sålen skal ha tverrfall på minst 5% mot hovedgrøft.

Figur 31.13
Sammenheng mellom normalprofil og teoretisk sprengningsprofil.
Rømning
Mulighet for å rømme tunnelen skal vurderes i de ulike tunnelklasser. Rømningsmulighet kan ivaretas på to måter:

- I tunneler med tovegstrafikk varsles trafikantene, de snur i tunnelen og kjører ut igjen. Det anlegges tydelige merke- de snunisjer
- I tunneler med to parallle løp ivaretas rømningen ved tverrforbinder deler mellom tunnelløpene.

I tunneler med to løp forutsettes det at rømning av tunnelen skjer via tverrforbindelser mellom løpene. Disse plasseres for hver 250 m mellom løpene.

Behov for kjørbare tverrforbindelser vurderes spesielt. I de fleste tilfeller vil en avstand på 1 - 2 km være tilstrekkelig.

Gangbare tverrforbindelser bygges som T4 og kjørbare tverrforbindelser som T5.

Havarilommer og snunisjer
Havarilommer skal muliggjøre parkering utenfor kjørebanen ved nødstopp. Lommene kan også brukes for å gi plass til teknisk utstyr.

Havarilommer/snunisjer skal belyses særskilt slik at de visuelle skiller seg ut fra tunnell for øvrig.

I tovegstunneler anlegges det snunisjer. Havarilommer vil fungere som snunisjer for personbiler. Snunisjer for ST utformes som vist på figuren.
I trefelts tunneler kan en personbil snu i kjørebanen. Snunisjer for større kjøretøy anlegges som angitt nedenfor.

Normalavstand for havarirommer og snunisjer fremgår av figur 31.16.

Plassering skal tilpasses lokale forhold (eks. fjellforhold, muligheter for kombinasjonsløsninger etc.). Havarirommer eller snunisjer skal ikke plasses i eller i forlengelsen av ytterkurve eller i inngangsonen.

De gitte avstandene for havarirommer gjelder for tunnelen under ett. I tunneler med toveis trafikk skal havarirommene normalt plasseres vekselvis på høyre og venstre side.

<table>
<thead>
<tr>
<th>Tunnel-</th>
<th>Normalavstand</th>
<th>Normalavstand</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>klasse</td>
<td>havariromme</td>
<td>snunisje for ST</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>500-1000 m</td>
<td>1000-2000 m</td>
<td>Tunneler med to løp. Snunisje erstattes av kjørbar gjennomgang</td>
</tr>
<tr>
<td>D</td>
<td>260 m</td>
<td>1000-2000 m</td>
<td>Annenfor havariromme dimensjoneres for ST</td>
</tr>
<tr>
<td>C</td>
<td>500 m</td>
<td>1000-2000 m</td>
<td>Annenfor havariromme dimensjoneres for ST</td>
</tr>
<tr>
<td>B</td>
<td>500 m</td>
<td>1000-2000 m</td>
<td>Ikke krav om havariromme for ST</td>
</tr>
<tr>
<td>A</td>
<td>–</td>
<td>–</td>
<td>Ikke krav om havariromme, eller snunisje</td>
</tr>
</tbody>
</table>

Figur 31.16
Oversikt over plassering av havarirommer og snunisjer.

Figur 31.17
Eksempel på plassering av havarirommer og snunisjer for tunnel i tunnelklasse B. Det er behov for 6 havarirommer for P med avstand ca. 500 m og to snunisjer for ST.
Møteplasser
I enfeltstunneler med tovegstrafikk skal det anleggets møteplasser. Avstanden mellom møteplassene skal være slik at bilføreren kan se fra en møteplass til den neste, men ikke lenger enn 200-300 m.

Møteplasser utformes som havarilomme for ST, se figur 3.14.

Gang- og sykkeltrafikk
Det kan bli nødvendig å tillate gang- og sykkeltrafikk i tunneler når det ikke finnes gode alternative ruter. Tunnelen bør i så fall ikke være lenger enn 4 km. Det stilles spesielle krav til belysning og ventilasjon.

Fri høyde over gang- og sykkelareal skal være min. 3,0 m.

Tunnelprofil T11 er utformet slik at en gang- og sykkelbane, adskilt fra biltrafikk med betongrekkverk, får plass sammen med en tofelts kjøreveg.

Ved liten fotgjengertrafikk i korte tunneler, kan smalere fortaw brukes f.eks. med høy kantstein. Fartgrensen forutsettes å være lav.

Der separat gang- og sykkelveg føres i egen tunnel brukes profil T4.
Linjeføring

Generelt
Kravene til linjeføring i tunneler avviker fra veg i dagen på grunn av spesielle kjøreforhold.

Dimensjonerende fart
I tunneler blir minste horisontalkurve bestemt av siktforholdene. Kjøredynamisk kan derfor kurvene trafikkeres med større fart enn den dimensjonerende. Dersom tunnelen er lang (> 2,5 km) bør dimensjonerende fart settes til minst 80 km/t.

<table>
<thead>
<tr>
<th>Dim fart i km/t</th>
<th>ÅDT 0 - 1500 Stigningsgrad s</th>
<th>ÅDT 1500 - 5000 Stigningsgrad s</th>
<th>ÅDT >5000 Stigningsgrad s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+8 - +10%</td>
<td>+7 - +7%</td>
<td>+8 - +10%</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
<td>79</td>
<td>88</td>
</tr>
<tr>
<td>70</td>
<td>94</td>
<td>103</td>
<td>116</td>
</tr>
<tr>
<td>80</td>
<td>119</td>
<td>131</td>
<td>149</td>
</tr>
<tr>
<td>90</td>
<td>146</td>
<td>164</td>
<td>189</td>
</tr>
<tr>
<td>100</td>
<td>178</td>
<td>201</td>
<td>234</td>
</tr>
<tr>
<td>110</td>
<td>215</td>
<td>244</td>
<td>268</td>
</tr>
<tr>
<td>120</td>
<td>255</td>
<td>293</td>
<td>350</td>
</tr>
</tbody>
</table>

Figur 31.19
Krav til stoppsikt Ls i m for ulik stigningsgrad, ÅDT og dimensjonerende fart.
Dersom tunnelen også er brattere enn 6% i en lengde av minst 1 km, skal dimensjonerende fart settes til minst 80 km/t, hvis det ikke settes iverk spesielle tiltak for å kontrollere fartsnivået.

For kortere tunneler, og for tunneler i byområder, kan det velges en dimensjonerende fart som er tilpasset den vegstrekning tunnelen blir en del av.

Sikkerhetsmessige konsekvenser av eventuelle fartsoverskridelser i tunnelen skal vurderes.

Horisontalkurvatur

Siktforholdene vil bestemme minste horisontalkurve.

Horisontalkurveradius finnes av formelen:

\[R = \frac{LS^2}{8B} \]

- \(LS \) = siktlinjens lengde i m (stoppunkt)
- \(B \) = avstand fra bilførerens øye til tunnelveggen

I tovegs tunneler regnes øypepunktet å ligge 1,1 m over kjørebanen og i en avstand 1 m fra vegens midtlinje.

I venstrekurve i envegstunneler legges øypepunktet 1 m fra kantlinjen.

Krav til breddeøkning er som for veg i dagen.

Breddøkning tas ensidig uten endring av radius for tunnelveggen.
Vertikalkurvatur

Største stigning for tunneler med tovegs trafikk er i utgangspunktet den samme som for veg i dagen. Dersom stigningens lengde blir større enn 1 km, gjelder verdiene i figur 31.21.

Dersom det anlegges forbikjøringsfelt, kan verdiene i figur 31.21 økes med 1%.

Tunneler av lokal karakter og med små trafikkmengder kan bygges med stigning opp til 10%. Dette skal avklares med Vegdirektoratet i hvert enkelt tilfelle.

Dersom tunnelen bygges med 2 x 2 felt, blir største stigning som vist i figur 31.22.

ÅDT-verdiene gjelder begge tunnelløp samlet. Verdiene i parentes benyttes dersom stigningens lengde blir større enn 1 km.

ÅDT-verdiene i figurene 31.21 og 31.22 gjelder vegstrekninger med en normal trafikkfordeling over året og med en tungtraffikkandel i området fra 10 til 15%.

I bynære områder med typiske morgen- og ettermiddagsrush, hvor tungtraffikkandel i maks. tiden er < 7%, kan ÅDT-verdiene i tabellene ovenfor økes med 25%.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>0 – 1500</th>
<th>> 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÅKS.STIGN.</td>
<td>8%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Figur 31.21
Tilatt stigningsgrad for tunneler med tovegs trafikk.

<table>
<thead>
<tr>
<th>ÅDT</th>
<th>< 15000</th>
<th>15 – 25000</th>
<th>> 25 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÅKS. STIGN.</td>
<td>8% (7%)</td>
<td>7% (6%)</td>
<td>6%</td>
</tr>
</tbody>
</table>

Figur 31.22
Tilatt stigningsgrad for tunneler med ensrettet trafikk. Verdi i () for stigningslengde > 1 km.
Forbikjøringsfelt

Behovet for forbikjøringsfelt skal i utgangspunktet vurderes som for veg i dagen.

I stigninger som er lengre enn 1 km og brattere enn 6%, skal et eget forbikjøringsfelt anlegges når ÅDT blir større enn 3000.

Feltet begynner der fartsdifferansen mellom tungt og lett kjøretøy blir 15 km/t eller større.

I lange tunneler (stigning lenger enn 1 km) skal 2 x 2 felt anlegges når ÅDT blir større enn 5000 og tunnelen er brattere enn 6%.

I bynære områder med typiske morgen- og ettermiddagstrafikk, hvor tungtrafikkandel i maks. timen er <7%, gjelder kravet om 2 x 2 felt først i tunnelklasse D for lange og bratte tunneler.

Vertikalkurveradius

For tunneler vil normalt radius i lavbrekk være av største interesse.

Anbefalt vertikalkurveradius i forhold til dimensjonerende fart er vist i figuren.

I slake lavbrekkskurver vil bilførere ha vansker med å oppfatte overgang mellom fall og stigning. Dette kan bety ufrivillig fartsreduksjon som gir redusert trafikkavvikling og fare for ulykker ved påkjøring bakfra.

Radius i høybrekk dimensjoneres som for veg i dagen.

Overgang fra fall til stigning kan markeres med fareskilt nr. 104 Bratt bakke, eller med horisontal merking på tunnelveggen.

<table>
<thead>
<tr>
<th>Grading med</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1, S1</td>
<td>240</td>
<td>420</td>
<td>650</td>
<td>930</td>
<td>1270</td>
<td>1650</td>
<td>2090</td>
<td>2580</td>
</tr>
<tr>
<td>H2, S2</td>
<td>140</td>
<td>250</td>
<td>390</td>
<td>560</td>
<td>760</td>
<td>990</td>
<td>1250</td>
<td>1550</td>
</tr>
<tr>
<td>H3, S3, A1</td>
<td>100</td>
<td>180</td>
<td>280</td>
<td>400</td>
<td>550</td>
<td>710</td>
<td>900</td>
<td>1110</td>
</tr>
</tbody>
</table>

Figur 31.23
Minste tillatte radius i lavbrekk.
Vegkryss i og utenfor tunneler

Generelt
Vegkryss i tunnel bør helst unngås. Det kan likevel være bedre med et godt utformet kryss inne i fjellet enn et dårlig kryss umiddelbart utenfor tunnelåpningen.

Kryss utenfor tunnelåpningen
Når vegen gjennom tunnelen er forkjørs veg, skal plankryss (X-kryss og T-kryss regulert med vikeplikt) ikke anlegges nærmere tunnelåpningen enn 2 x stoppsikt (LS). (Se figur 31.19).

I toplankryss ved tunnelmunning skal ingen feltlengder være kortere enn angitt i kapittel 18 Vegkryss. Påkjøringsramper skal være avsluttet før tunnelåpning.

Direkteført avkjøringsrampe må ikke starte nærere etter tunnelåpning enn stoppsikt. Parallelleført fartssredsionsfelt kan starte med overgangsstrekning ved tunnelåpning, men kan også i sin helhet legges inn i tunnelen. I så fall må det legges inn en ekstra lengde på 50 m utenfor tunnelen. Ved slikt fartssendringsfelt inn i tunnelen skal det benyttes vegvisningsskilt over kjørebanen.

<table>
<thead>
<tr>
<th>DIM. FART</th>
<th>70-80</th>
<th>90-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>L2</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

Figur 31.24
Krav til retardasjonsfelt ved tunnelmunning.

<table>
<thead>
<tr>
<th>DIM. FART</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>80</td>
<td>110</td>
<td>140</td>
<td>175</td>
</tr>
<tr>
<td>L2</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Figur 31.25
Krav til aksellerasjonsfelt ved tunnelmunning og i tunnel.
Kryss i tunnel, generelt

Kryss i tunnel gir ofte store fjellrom. Det skal derfor alltid gjennomføres bergmekaniske vurderinger for å klarlegge om nødvendige breddeutvidelser er mulige.

Av lystekniske årsaker skal ingen del av vegkryss i tunnel (breddeutvidelse eller ramper) plasseres nærmere tunnelåpning enn en lengde tilsvarende belysningskra-venes Inngangssone + Overgangssone I, + 50% av Overgangssone II (unntatt fartsreduksjonsfelt). I kryssområdet og på strekninger med mye kjørefeltsskifte i forbindelse med kryss, skal det være et midlere luminansnivå på minimum 3 cd/m².

Ventilasjonsforholdene i tunnelen kompliseres av kryss. Det er derfor viktig å undersøke strømningstekniske forhold og ventilasjonsoppløgg allerede i en tidlig planfase.

Av sikkerhetsmessige og ventilasjonsmessige grunner skal kryss i tunnel dimensjoneres for lavere trafikkmengder enn tilsvarende kryss i dagen. Forholdet dimensjonerende trafikk/beregnet kapasitet (v/k) skal ikke overstige 0,75 i maksimalt belastet time. Det skal også unngås at kapasitetsproblemer i kryss utenfor tunnelen medfører hyppige kødannelser i tunnelen.

X-kryss eller signalregulerte kryss skal ikke benyttes i tunnel.

Kryss i fjell skal alltid godkjennes av Vegdirektoratet.

Behov for støtpute, f.eks. energiasorberende rek公共werk, skal vurderes ved kryss i tunnel og ved avramper.
T-kryss

T-kryss kan benyttes når ÅDT på gjennomgående veg er lavere enn 1500, og ÅDT på sideveg er lavere enn 300.

Sideveg pålegges vikeplikt med full stopp (skilt 204). Det må foretas en utvidelse av tunnelen slik at krav til fri sikt ved full stopp er tilfredsstilt (4 m inn fra kjørepakett i sideveg, innsvingssikt langs gjennomgående veg).

Ved så lave trafikkmengder vil det vanligvis ikke være behov for venstresvingefelt. I tunneler med fartsnivå 80 km/t eller høyere bør likevel ekstra breddeutvidelse i form av kanaliseret kryss e.l. vurderes av sikkerhetsmessige årsaker, og for å markere kryssets beliggenhet.

T-kryss må ikke anlegges på strekning med forbikjøringsfelt.

3-armet minirundkjøring

3-armet minirundkjøring forutsetter 120 graders vinkel mellom vegarmene, og bare oppmerket sentraløy med 1,5 m diameter. Med disse forutsetninger vil frisktsonen (10 x 50 m) falle sammen med breddeutvidelse inn mot krysset. Med v/kforhold på maks. 0,75 i størst belastede vegarm, vil minirundkjøring vanligvis kunne avvikle en samlet ÅDT på de tre vegarmene på opp til 15 000.

Stor rundkjøring, 3- eller 4-armet

Der 3-armet minirundkjøring ikke kan benyttes, kan stor rundkjøring i stedet utformes med fjellstabbe i sentraløya. Ut fra krav til sikt og fjellstabilitet vil en fjellstabbe med diameter på ca.18 m vanligvis være den gunstigste løsningen.
Rundt fjellstabbene skal det være et frisiktareaal med en bredde på ca. 4,0 m. Bred-
den på kjørearealet i rundkjøringen bør
være 10 m, slik at ytre diameter for rund-
kjøringen blir ca. 46 m. Ved 3-armet rund-
kjøring med ca. 120° vinkel mellom arme-
ne kan diameteren reduseres noe.

Krav til fri sikt skal være at det fra et punkt
10 m bak vikelinjen i hver tilført er fri sikt
på 50 m (1,25 LS for 50 km/t) til venstre
langs sirkulasjonsarealet og inn i foregå-
ende tilført. Ekstra areal pga. frisiktoner
kan benyttes som nødromme og adkomst
til nødtелефon og teknisk utstyr.

Med krav til maks. v/k-forhold for størst
belastede tilført på 0,75 i dimensjoner-
ende time vil en slik rundkjøring kunne
avvikle en samlet ADT på over 20 000.

Toplankryss

Ved større trafikkmengder bør løsninger
med kryssing i ulike plan benyttes. Slike
løsninger er ofte lette å tilpasse i fjell.

Kryssing i fjell bør foretrekkes. Hvis dette
ikke er mulig benyttes støpt plate.

Avkjøringsrampe med liten trafikk kan
utføres som direkteført rampe med
overgang til kurve med R > 50 m. Ved
mindre kurveradius eller store trafikk-
mengder bør parallellførte felt for farts-
reduksjon benyttes.

Påkjøringsrampe skal avsluttes med
parallellførte felt for fartsøkning. Dette feltet
skal være minst 50 m lengre enn tilsvar-
ende felt på veg i dagen, fordi sittforhol-
dene fra rampen er større ved kryss i
fjell.
Ramper i fjell skal gis en breddeutvidelse i innerkurve for å tilfredsstille kravene til frisikt i kurve. Om mulig bør ramper ikke ha krappe kurver enn \(R = 50 \text{ m} \).

Ved planlegging av toppankyss i fjell skal det legges stor vekt på å finne løsninger som reduserer behovet for feltskifte (veksling) inne i tunnelen.

Dersom påkjøringsramper har større trafikk enn ca. 1200 kj/time i dimensjonerende time, bør det vurderes om rampen bør føres videre som eget felt. Eget felt for avkjørende trafikk bør vurderes dersom det er stor fare for kødannelse på avkjøringsrampen.

Der trafikken på gjennomgående felt og ramper i tunnel er så stor at det ofte kan ventes kødannelser, bør tiftartskontroll vurderes for å få kødannelser foran tunnelen i stedet forinne i tunnelen.
Trafikkskilt og vegoppmerkning

Skilting i tunneler

Vegsystemet bør utformes slik at behovet for skilting inne i tunnelene blir minst mulig. Det kan likevel bli aktuelt å sette opp skilt inne i tunnelen i følgende tilfeller:

- Spesielt krøpe kurver må skiltes med fareskilt, merkevandringsskilt og eventuelt skilt for forbikjøringsforbud.
- Start og avslutning av forbikjøringsfelt inne i tunneelen må skiltes med skilt som regulerer bruen av kjørefelt (skilt 532 eller 534 og 538).
- Vegkryss umiddelbart utenfor tunnelåpning eller inne i tunnelen krever vegvisningsskilt og eventuelt vikepliktsskilt (202), stoppskilt (204), skilt for fartsøyningsfelt (531) eller feltaddisjon (536).
- Snuvisjoner.
- Avstandsskilt i svært lange tunneler.

Skilting krever ofte utvidelse av tunnelprofilet. Skiltbrukken må derfor avklares i en tidlig planfase.

Vegvisningsskilt vil kreve stor breddeutvidelse, og slike skilt bør derfor vanligvis plasseres over kjørebanen. Dette er det vanligvis plass til i fjelltunneler, mens det kan være svært kostbart i betongtunneler. Antall tekstlinjer bør reduseres til et minimum. Overhengende skilts virkning på ventilasjonsanlegg og beelysning må vurderes spesielt. Skiltstørrelsen kan reduseres noe i tunnel, men ikke under minste størrelse for standardskilt eller teksthøyde 210 mm for vegvisningsskilt.
I belyste tunneler skal alle skilt unntatt
merkingsskilt være innvendig belyste.

Vegoppsmerking og visuell føring

Nærermere regler for bruk og utforming av
trafikkskilt er gitt i håndbok 050 "Skiltnorm-
aler". Dessuten er skilting av tunneler
beskrevet i håndbok 021 "Tunnelnor-
maler".

Kantlinjen plasseres som vist på figur
31.11. Merking av kantlinje skal utføres
innenfor en toleranse på ±20 mm.
Nærermere bestemmelser er gitt i håndbok
050 "Skiltnormaler".

For å bedre den visuelle føringen i ube-
lyste tunneler og tunneler med lavt belys-
ingsnivå kan skilt 914 Tunnelmarkering
benyttes. Skiltene er fortrinnsvis aktuelle i
innangassonnene. Skiltene krever omfatt-
tende renhold.

Et annet tiltak for å markere tunnelens
visuelle føringer er å maler tunnelveggene i
lys farge. Malingen bør påføres i en høy-
de på 3,0 - 4,0 m. Lyse vegger vil også
bedre effekten av belysningen.

Figur 31.30
Skilt 914, Tunnelmarkering.
Sikkerhet

Generelt
Tunnelklassene er utgangspunkt for valg av sikkerhetsutrustning. Tunnelklassene fremgår av figuren. (Se også side 317).

Tunneler med lengde mellom 250 - 500 m plasseres en tunnelklasse lavere enn hva dimensjoneringen ÅDT gir. For tunneler som er kortere enn 250 m stilles ingen krav til sikkerhetsutrustning.

I figuren er det angitt krav til utstyr i tunnelen. Kravene anses som et minimum. En fylt sirkel betyr at angitt utstyr skal installeres. En åpen sirkel betyr at angitt utstyr bør vurderes.

For valg av sikkerhetsutrustning i tunneler med to løp og ensrettet trafikk benyttes trafikkmengden i hvert tunnelløp ved bestemmelse av tunnelklasse.

Trafikkregulerings- og overvåkingsutstyr benyttes i tillegg til ordinær trafikkskilting.

Ved utbedring av eksisterende tunneler bør de samme krav til sikkerhetsutrustning følges.
Sikkerhetsutrustning i tunneler

<table>
<thead>
<tr>
<th>Utrustning</th>
<th>Tunnellklasser A B C D E</th>
<th>Merknader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramningslys</td>
<td>0 0 0 0 0</td>
<td>Ca. 50 m avstand</td>
</tr>
<tr>
<td>Brannslukningsapparat</td>
<td>0 0 0 0 0</td>
<td>Klasse A, B: For hver ca. 250 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klasse C, D: For hver ca. 125 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klasse E: For hver ca. 50 m</td>
</tr>
<tr>
<td>Brannhydrant</td>
<td>0 0 0 0 0</td>
<td>Vurderes i samarbeid med lokalt brannvesen</td>
</tr>
<tr>
<td>Nødtelefon</td>
<td>0 0 0 0 0</td>
<td>Klasse B: For hver ca. 500 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klasse C, D: For hver ca. 250 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klasse E: For hver ca. 100 m</td>
</tr>
<tr>
<td>Nødskilt</td>
<td>0 0 0 0 0</td>
<td>Skilt som viser nærmeste utgang/nedgang Plasseres ved brannslukningsapparatene</td>
</tr>
<tr>
<td>Lyssignal før innkjøringen (rød: blink)</td>
<td>0 0 0 0 0</td>
<td>Styres av CO-måler eller av tunnelbetjeningen</td>
</tr>
<tr>
<td>Bommer for stenging (manuelle)</td>
<td>0 0 0 0 0</td>
<td>Automatiske bommer vurderes ved ÅDT over 10000</td>
</tr>
<tr>
<td>Variable tekstskilt</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>TV-overvåking</td>
<td>0 0 0 0 0</td>
<td>Vurderes spesielt</td>
</tr>
<tr>
<td>Radiosamband</td>
<td>0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Mobiltelefon</td>
<td>0 0 0 0 0 0</td>
<td>Avklares med Televerket</td>
</tr>
<tr>
<td>Nødstømforsyning</td>
<td>0 0 0 0 0 0</td>
<td>Vurderes spesielt</td>
</tr>
<tr>
<td>Kontroll av kjøretøyhøyder</td>
<td>0 0 0 0 0 0</td>
<td>Brukes i klasse A-D ved fri høyde lavere enn 4,6 m</td>
</tr>
</tbody>
</table>

- Krav
- Vurderes

Figur 31.31
Sikkerhetsutrustning i tunneler.
Sikkerhetsutrustning og sikkerhetsstiltak

Rømningslys
Rømning ivaretas ved nødutganger, tverrforbindelser eller snumulighet i tunnelen.

Rømningslys brukes for å vise trafikante-ne mot utgangen i røykfyte tunneler. Lysene tennes automatisk eller manuelt i et branntilfelle. Lysene (ca. 40 W, hvitt lys) monteres i høyde ca. 1,0 m over kjørebaren, på én side og med avstand ca. 50 m. Lysene skal virke i min. 30 minutter.

Brannslokningsapparat
Apparatene skal min. være på 6 kg ABE III. De skal være skiltet med skilt 606 Brannslokningsapparat. Når et apparat fjernes, skal signal om dette gis til bemannet sentral, politi, brannvesen o.l.

Brannhydrant
Brannhydranter skal vurderes i samarbeid med lokalt brannvesen.

Løsningen er først og fremst aktuell der vannledning kan føres fram uten store kostnader.

Tankvogn med tilstrekkelig kapasitet i tunnelens nærhet vil kunne være et alternativ.

Manuell brannvarsler skal ikke installeres.

Sprinkleranlegg er lite egnet i vegtunneler og anbefales ikke brukt.
Nødtelefon

Nødtelefoner skal være av en type som gir ringesignal når røret løftes. Nødtelefon skal gi kontakt med bemannet sentral, politi, brannvesen el. Telefonene skal være koblet slik at det er mulig å se hvilken telefon det ringes fra. Når tunnelens ÅDT overstiger ca. 1500, bør telefonene monteres i nisjer med hette. Ved ÅDT større enn 2500 skal telefonene monteres i støvrett kiosk. Utforming av telefoni nisse er vist i figuren. Nødtelefon skal markeres med skilt 605 Nødtelefon.

Nødtelefoner skal brukes i stedet for alarmknapper eller lignende.

Nødskilt

Til markering av nødtelefon, brannslokningsapparat og eventuelt førstehjelpsutstyr skal ordinære trafikkskilt benyttes. For å markere retning til utgang brukes "Utgang/Exit-skilt" i grønt og hvitt, format ca. 35 x 20 cm.

For å markere nødutganger (f.eks. tverrforbindelse mellom parallele tunneler), brukes symbol for nødutgang (mann som løper fra flammer, hvite symboler på grønn bunn, format minimum 40 x 40 cm).

Utgang/Exit-skiltet settes parallelt med tunnelveggen og skal ikke være belyst, men bør være i selvlysende materiale. De andre skiltene settes opp vinkelrett på kjøreretningen, og skal være innvendig belyste.

Figur 31.32 Utforming og plassering av telefoni kiosk i nisse.

Figur 31.33 Utgang/Exit og nødutgangsskilt.
Lyssignal
Når tunnelen stenges for trafikk pga. høyt gassinnhold, trafikkulykke eller andre spesielle årsaker, skal rødt vekselblinkanlegg benyttes, både ved tunnelmunning og eventuelt ved snusisjer.

Vekselblinkanlegg skal godkjennes av Vegdirektoratet. Planer bør sendes Vegdirektoratet i god tid før signalutstyr bestilles.

Bommer
Bommer monteres ved alle vegtunneler i tunnelklasse B-E slik at vegvesen, politi etc. kan sperre tunnelen raskt uten medbrakt sperreutstyr. Bomarmen skal være så lang at den sperrer det/de aktuelle felt, men slik at det er mulig å kjøre ut av tunnelen.

På veger med ÅDT >10000 bør automatiske bommer vurderes.

Variable tekstskilt
I tillegg til variabel underskilt på vekselblinkanlegg, skal det ved tunneler som relativt ofte må påregne stengninger monteres variable informasjonsskilt (eller radioanlegg) som kan varsle trafikantene om grunnen til stengning, og eventuelt forventet varighet.

Variable skilt kan også benyttes for å dirigere trafikken til omkjøringsruter.

TV-overvåking
TV-overvåking er bare aktuelt for tunneler i tunnelklasse D og E. TV-overvåking kre-
ver fast bemannet overvåkingssentral, og bør bare benyttes i tunneler med høy kapasitetsutnyttelse store deler av dagen.

Radiosamband
Generelt gjelder at vegvesenet bekoster en “grunnutrustning” som omfatter et antenneanlegg, normalt bestående av en utstrålende antennekabel, et antall radiostasjoner og nødvendig utstyr for å koble sammen de forskjellige radiostasjonene.

Utstyret skal dekke sambandsbehovet internt i tunnelen, og eventuelt tilpasning til eksisterende samband i det fri må avklares for hvert tunnelanlegg.

Vegvesenet har driftsansvaret, og betaler driftsutgifter for det materiell som bekostes av vegvesenet og/eller tunnelanlegget.

Omfang av radiokanaler/radiostasjoner som bekostes av vegvesenet
I tunnelklasse C etableres radiostasjoner for:

- Kringkasting, NRK program P1 og P2.
- Vegvesenets VHF-samband
- Tofrekvent redningskanal

I tunnelklasse D og E etableres samme utrustning som i klasse C, og i tillegg radiostasjoner for:

- Brannvesenets eget VHF-samband
- Politiets eget VHF-samband
- Helsevesenets/ambulansenes eget VHF-samband
Utstyr for kringkasting skal være forberedt for å gi meldinger direkte til trafikant-ter i tunnelen.

Den tofrekvente redningskanalen er en felles kanal for redningsetatene, brannvesen, politi og helsevesen. Kanalen gir mulighet for samband mellom etatenes enheter inne i tunnelen.

De enkelte etatene skal selv være ansvarlige overfor konsesjonsmyndighetene for sin del av sambandssystemet i tunnelen. For eventuelt sammenkobling av VHF-sambandene i tunnelen med radiosystemer i det fri, skal de enkelte brukere selv være ansvarlige for å etablere det "styre-samband" som ansees nødvendig.

I denne sammenheng er redningskanalen definert som en av politiets kanaler.

Leie av telesliner til slikt formål er den enkelte brukers ansvar.

Vegvesenet kan eventuelt via egne linjer knytte sammen tunneler som ligger i nærheten av hverandre.

Radioutstyr

Det skal benyttes typegodkjent radiomateriell. Radioene skal tilpasses de enkelte radiosystemene med hensyn til frekvens, linjettiknytning, nøklingssystem og f.eks. start av gjennomsnakksløsningen på VHF-sambandene.

Vegdirektoratet utarbeider detaljerte systemløsninger for de enkelte tunnelanlegg, og med eventuell tilpasning til Televerkets ønske om innkobling av deres tjenester, f.eks. mobiltelefon.
Alt radioutstyr skal plasseres i egnede rom, med bl.a. oppvarming.

Radioutstyret som vegvesenet bekoster, tilknyttes nødstrømsanlegg med kapasitet for minimum 1 times kontinuerlig drift.

Antenneanlegg
Som felles antenneanlegg benyttes normalt en utstrålende antennekabel, som dimensjoneres etter sambandssystemets systemløsning, frekvens og tunnelens lengde. Antennekabelen monteres i hele tunnelens lengde med unntak av ca. 25 m i hver ende. Kabelen monteres med en minstearstand på 150 mm til andre kabler, kabelbru og andre jernkonstruksjoner.

Det kan benyttes opphengsarmatur som festes på siden av kabelbru, direkte på opphengsboltenne når disse er tilstrekkelig lange, eller antennekabelen kan festes til en egen wire som strekkes mellom boltenne.

Avstanden mellom opphengsfestene er avhengig av kabeltype, men bør være mellom 6-9 m. Leverandørens spesifikasjon til strekkraft og minste tillatte bøyering radius skal overholdes. Skjøter skal utføres fagmessig og det skal benyttes krympestrømpe over skjøteplugger slik at alle skjøter blir vanntette.

Mobiltelefon
De enkelte teleområder avgjør om dekning for mobiltelefon skal etableres i tunnelene. Kostnader og valg av systemløsning blir ivaretatt av Televerket. Driften av slike anlegg er tillagt Televerket.
Nødstrømsforsyning

Egen nødstrømsforsyning er normalt ikke påkrevd. Vanligvis vil det gi tilstrekkelig sikring med separat strømforsyning fra begge tunnelmunninger. Batterier eller diesellaggregat som sikrer strøm til nødutrustning, pumper etc. vil være nødvendige i spesielle tilfeller (høytrafikk tunneler, undersjøiske tunneler e.l.).

Hvis det installeres batterier som sikring mot brudd i strømforsyningen har erfaring vist at disse må være garantert for minimum 8 års levetid ved antatt 20 innkoblinger på 60 minutter årlig.

Kontroll av kjøretøyhøyde

Tunneler med fri høyde lavere enn 4,6 m bør sikres med et fysisk høydehindere før eller i tunnelåpningen. Hinder bør også monteres når teknisk utrustning er montert lavere enn 4,7 m.

Høydehindere utføres så solid at alle kjøretøy som berører hindret, vil registre dette, men ikke slik at last o.l. rives av kjøretøyet med fare for skade på andre kjøretøy. Dersom det er fare for hyppige skader på vifter o.l. kan hindret bygges mer solid. Vegvesenet vil ikke være erstatningspliktig dersom de ordinære regler for skilting av slike hindre er fulgt.

Umiddelbart før eller etter hinderet bør det være plass for å kjøre til side for kjøretøy som må stoppe.

For tunneler med målt lavere fri høyde enn 4,6 m bør det vurderes om høydehindret skal kunne fjernes slik at sentrisk kjøring med høyere last skal være mulig i spesielle tilfeller. I så fall må tunnelen sperres for trafikk i motsatt retning.

Foran tunneler i klasse E med fri høyde lavere enn 4,6 m skal utstyr for automatisk høytedetektering monteres. Kjøretøyhøyde registreres ved hjelp av fotocelle e.l. og føreren varsles med variable skilt.

Slik utstyr kan sløyfes dersom bruer eller andre konstruksjoner har den nødvendige avvisende effekt foran tunnelåpningen.

Øvrig trafikkregulering og overvåkingsutstyr

Kjørefeltssignal

Kjørefeltssignal skal bare benyttes i enveggskjørte tunneler som relativt hyppig (minimum 12 ganger pr. år) benyttes til tovegstrafikk i forbindelse med vedlikeholdsarbeid, vegstengninger e.l., eller i tovegsregulerte tunneler som daglig planlegges brukt med to felt i samme retning i forbindelse med reversering av kjørefelt e.l.

Kjørefeltssignal skal godkjennes av Veggdirektoratet, kfr. Håndbok 050.

Trafikkstilling, kødelektor

I tunneler med ventilasjonsanlegg kan unntaksvis teleutstyr benyttes for styring av viftene. Viftene kobles da inn når trafikkmengden når en viss størrelse, det vil si når det eventuelt er målt for dårlig luftkvalitet i tunnelen. Detektorene utformes vanligvis som sløyfedetektører nedfrest i kjørebanen.

Sløyfedetektør kan benyttes til å måle fart og for å registrere stillestående kø i tunnelen. Dette kan være aktuelt for å varsle kø med skilt (unngå ulykker ved påkjøring
bakfra), eller for å stenge tunnelen for å unngå lang ventetid i kør inne i tunnelen (ventilasjonsproblemer, klaustrofobi).

Køvarelsing/variabel fartsgrense/tillfarts- kontroll
Disse tiltakene kan være aktuelle i bytun- neler hvor det ofte kan oppstå kø. Bruk av slike virkemidler skal alltid vurderes i samråd med Vegdirektoratet.

Kuldeportanlegg
I lavtraffikkerte anlegg med kuldeporter skal det benyttes lyssignal med trellyshode.

Anlegget skal godkjennes av Vegdirek- toratet.

Brannsikring
Det bør tidlig tas kontakt med det lokale brannvesenet for å få oversikt over om den eksisterende lokale beredskap er tilstrekkelig, eller om den må oppgraderes som følje av tunnelen.

I tillegg til sikringstitlak som følger av dimensjonerende tunnelklasse, gjelder spesielle materialkrav og krav til et utar- beidet beredskapsopplegg. De deler av tunnelens tekniske utstyr som forutsettes å fungere i en brannsituasjon og dens krav til beredskap, styring og lignende, skal kunne motstå en temperaturutvikling tilsvarende en ISO-brann av varighet 10 min i tunnelklasse A, B og C, 20 min i tun- nelklasse D og 30 min i tunnelklasse E.

Kabler for kraftforsyning og styring bør fortrinnsvis ligge nedgravd.

For bruk av PE-skum i vegtunneler gjelder egne retningslinjer.

Beredskapsplan
Det skal utarbeides beredskapsplaner for alle vegtunneler i tunnelklasse A til E. For tunneler med lengde 250-500 m bør det utarbeides en forenklet beredskapsplan.

En beredskapsplan er i prinsippet en avtale mellom tunnelens driftsansvarlige, politiet, brannvesenet og ambulanse personell om hva som skal gjøres om det oppstår uhell eller ulykker i tunnelen.

Beredskapsplanen skal bygges opp over tre hoveddeler:
- beskrivelse av tunnelen og dens utstyr
- en risikoanalyse
- en beskrivelse av innsatsen

Planen skal gi en redegjørelse for uhell og ulykker som er vurdert og tiltak som skal gjennomføres for å sikre personer samt gjøre tunnelen driftsklar etter uhell, bilbrann etc. Den gir videre instruks til alle impliserede parter om hvordan de skal forholde seg ved melding om uhell. Ansvarlig for drift av tunnelene er normalt vegvesenet. Politiet vil være ansvarlig for skadestedsledelse og brannvesenet er innsatsstyrke ved større uhell med fare for personer, brann, farlig gods etc. Vegvesenets tar initiativ til øvelser med de nevnte etater.

En vegtunnel er å betrakte som et § 22 objekt i h.t. Lov av 5. juni 1987 om brann- vern m.v.

Beredskapsplanens omfang og innhold vil avhenge av hvilken tunnelklasse som gjelder for tunnelen.
Innhold i en beredskapsplan skal normalt være som følger:

1. Beskrivelse av tunnelen.
 • Tunnelens beliggenhet.
 • Utoverning
 • Omkjøringsrutet.
 • Teknisk utstyr
 • Sikringsutstyr installert i tunnelen
 • Trafikktaknik utstyr lagret ved tunnelen
 • Regler for transport av farlig gods

Det er viktig å få frem hvordan eventuelle betjeningspaneler er lokalisert, om noen må låses opp og hvordan ting fungerer. Tegninger og planer bør vedlegges. Der som det er innført spesielle regler for frakt av farlig gods i tunnelen, skal det tas inn i planen.

2. Risikoanalyse.
 • Forventede hendelser

Sannsynligheten for havarier, ulykker og branner må beregnes. Dette kan gjøres ved hjelp av en spesiell EDB-modell eller på basis av erfaring fra tilsvarende tunneler.

3. Innsats.
 • Tiltak ved driftsstans
 • Tiltak ved havari
 • Tiltak ved trafikkulykke
 • Tiltak ved bilbrann
 • Andre hendelser
 • Bemannings

Her beskrives de mannskaper som kan inntalles når noe skjer i tunneler, og det materiell som det kan trekkes på. Det er viktig å oppgi korrekte telefonomr. Telefoon til ekstra innsatsstyrker som trekkes inn ved store eller kompliserte uhell, må også tas med.

Det er også viktig å vurdere tidsaspekt og angrepsveier, hvor lang tid det vil ta før brann, politi og ambulanse kommer frem, og hvorvidt de kan komme gjennom begge portaler.

Aksjonplaner for de hendelser/uhell som kan forekomme, bør utarbeides.

Belysning

Generelt

Vegtsunneler skal belyses av hensyn til trafikk sikkerhet, trygghet og trafikkavvikling.

Unntatt er rette tunneler kortere enn 100 m.

Lysforhold utenfor tunnel - adaptsjonsluminansen

Adaptsjonsluminansen utenfor tunnelen er dimensjonerende for belysningsnivåene (luminansnivåene) inne i tunnelen. Adaptsjonsluminansen som skal benyttes ved dimensjonerings av tunnelbelysningen defineres som den midlere luminansen i et synsfelt som utgjør 20° fra bilførerens øye, med synsretning mot et punkt i 1/4 høyde av tunnelåpningen og en avstand som angitt i figuren.

Av økonomiske årsaker skal det ikke regnes med adaptsjonsluminansens høyere enn 10 000 cd/m². Det skal heller ikke regnes med lavere verdier enn 1 000 cd/m².
Når en belyst tunnel ligger på en ubelyst veg, må overgangssoner tilfredsstille de regler som gjelder for veglys utenfor tunneler.

Det luminansnivå en bilfører er adaptert til ved innkjøringen til en tunnel bestemmer hvilket luminansnivå tunnelens innkjøringssoner må ha for at kjøring inn i tunnelen skal kunne skje på en sikker måte.

Det foreligger nå metode for å beregne ekvivalent sløringsluminans fra feltet omkring det sentrale 20° feltet. På basis beregnet ekvivalent sløringsluminans bestemmes adaptasjonsluminansen. Nødvendig luminansnivå i innkjøringssonen er proporsjonalt med sløringsluminansen.

Metoden kan nyttes for å se virkningen av en del tiltak i forbindelse med anlegg som allerede er bygd. Enkle tiltak som planter av trær og busker og maling av utvendige deler av betongportalen med en mørk farge reduserer hver for seg nødvendig luminansnivå med ca. 5-7 %.

Vegdekket utenfor tunnelen bør være meget mørkt i en lengde av 100-150 m, avhengig av fartsgrensen på stedet. Lyst vegdekke bør ikke brukes på denne strekningen. Overgang til mørkt vegdekke reduserer nødvendig luminansnivå med 12-27%.

Ulike former for anleggsmessige tiltak i forbindelse med portalen kan således redusere adaptasjonsluminansen. Dette fører til redusert lysbehov i inngangssoner og følgelig rimeligere belysning.

<table>
<thead>
<tr>
<th>Fartsgrense, km/t</th>
<th>Avstand fra tunnelåpning til målepunkt for adaptasjonsluminans i m</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>130</td>
</tr>
</tbody>
</table>

Figur 31.36
Avstand fra tunnelåpning til målepunkt for adaptasjonsluminans.

349
Belysning i tunnel

Luminansforløp i tunnel - soneinndeling
Lysteknisk sett deles en tunnel i inn-
gangssone, overgangssone og indre
sone.

Øyets tilpassing (adaptasjon) er tidsav-
hengig. Den gradvis nedgangen i lumi-
nans som kan tillates for å opprettholde
tilfredsstillende synsforhold, er derfor
avhengig av kjørefarten. Figur 31.37 viser
skjematisk belysningssonene i en tunnel.
Figur 31.38 angir luminansnivået i prosent
av adaptasjonsluminansen for hver sone
som funksjon av fartsgrense og trafikk-
mengde.

<table>
<thead>
<tr>
<th>Sone</th>
<th>ÅDT pr. løp 4000-8000</th>
<th>ÅDT pr. løp 8000-20 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 km/t</td>
<td>80 km/t</td>
</tr>
<tr>
<td>Inngangssone I</td>
<td>1,5%</td>
<td>3,0%</td>
</tr>
<tr>
<td>Overgangssone I</td>
<td>0,3%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Overgangssone II</td>
<td>0,06%</td>
<td>0,12%</td>
</tr>
<tr>
<td>Indre sone-nattlys</td>
<td>2 cd/m²</td>
<td>2 cd/m²</td>
</tr>
</tbody>
</table>

Figur 31.38
Minste midlere luminans om dagen uttrykt som prosent av adaptasjonsluminans.
Luminansnivået skal tilfredsstilles for hver sone i full lengde.
Beregne midlere luminansverdi skal være driftsverdi (lik 75% av nyverdi).
Den totale midlere luminansjevnhet skal være
\[U_0 = \frac{L_{\text{min}}}{L_{\text{mid}}} \geq 0.4 \]
Beregnings foretas som angitt av CIE
Hvis nedtrapping i lysnivå fra overgangssone II til indre sone blir større enn 5 : 1, må det lages en nedtrapping med en overgangssone III med samme lengde som overgangssone II.

Lysfordelingen må være slik at lyse tunnelvegger blir belyst i ca. 1,5 meters høyde over kjørebanen.

Om natten skal hele tunnelen ha et luminansnivå på 2 cd/m². Siden tidsrommet fra dagslyset til nattmørke er relativt langt, må tunnelbelysningen automatisk tilpasse seg belysningen utenfor.

I tunneler hvor gående og syklende kan ferdes, skal luminansnivået være 2 cd/m² selv om ÅDT er mindre enn 4000. Det vil normalt ikke være behov for å heve lysnivået i avslutningssonen i envegskjørte tunneler. Der lad solsølending forventes å kunne bli et problem, må geometrisk avskjerming, beplantning e.l. vurderes.

Figur 31.39
Lengde på inngang- og overgangssoner.

<table>
<thead>
<tr>
<th>Fartsgrense (km/t)</th>
<th>Inngangssones lengde (m)</th>
<th>Overgangssonens lengde</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>90</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>
Lavtrafikkerte tunneler
Tunneler med ÅDT lavere enn 4000 be- lyses med 35W lavtrykk natriumlamper (Na-L) plassert i en avstand på 25 m. Når minst 4 armaturer sees samtidig, vil de bidra til den visuelle føringen. Forutset- ningen for en god visuell føring er at armaturene har dyptrukket skjerm.

Normalt vil det være behov for noe for- sterkning av belysningen i tunnelens inn- gangssoner. Dette kan gjøres ved å redu- sere avstanden mellom 35W NaL lampe- ne til 10 m over en lengde på 50 m. Den- ne belysningen kan være uendret over døgnet.

Hvis tunnelen ligger slik at innkjørings- forholdene til tider kan bli vanskelige, bør forsterkningen i inngangssoner utføres med 4 stk. 250W høytrykk natriumlamper (NaH) lamper med avstand 15 meter i stedet for en fortetting av NaL lamper. Disse lampene (NaH) bør kun være tent når forholdene utenfor tunnelen er slik at det er behov for ekstra belysning.

For ytterligere bedring av visuell føring gjennom tunneler som belyses etter en slik standard bør skilt 914 Tunnelmarke- ring benyttes.

Høytrafikkerte tunneler
(ÅDT >20000)
Høytrafikkerte tunneler kan ha et lumi- nansnivå på 4 - 6 cd/m² i indre sone. 6 cd/m² er bare aktuelt der trafikkmiljøet er særskilt krevende, f.eks. i tunnel med rampetilslutninger og sterk belastede veiktingsstrøkninger. Oftest oppnår det bedre synsforklaring ved å bedre jevnheten, f.eks. ved å benytte lysrør, enn ved å øke luminansnivået. I tunnelløp med 3 eller flere kjørefelt bør det benyttes lysanlegg som gir tilfredsstillende kontrast mellom kjørefeiltoppmerking og vegdekket.

Armaturavstand
Ved ugunstige kombinasjon av kjørehastig- het og armaturavstand i lengderetningen kan det oppstå filmering for den kjørende. For relativt korte soner fører dette ikke til problemer. Ved meget lange tunneler kan det oppstå ubehagsvirkninger. Disse er imidlertid meget små ved aktuelle kjøre- hastigheter når armaturavstanden er stør- re enn ca. 9 m eller mindre enn 0,9 m.

For belysningssoner hvor kjøretiden er mindre enn 2 min, kan en se bort fra ubeh- hagsvirkninger fra filmring.

Armaturen
Armaturen skal ha solid utførelse i koro- rsjonssbestandig materiale. Armaturen skal tilfredsstille kravene for klasse IP55 (støvsikker og spyresikker utførelse) i hen- hold til Forskrifter for elektriske anlegg.

Hvis høytrykkspipning benyttes til rengjør- ing, må det settes krav til minste avstand avhengig av det trykk som benyttes.

Armaturene skal være enkle å vedlike- holde og hensiktsmessige ved skifting av lyskilder. Utskiftbar optikk anses fordel- aktig.

Garantitiden for belysningstillegg skal være 2 år.

Nødlys kan arrangeres ved at hver fjerde eller femte armatur lyser ca. 2 timer når strømmen faller ut. Dette ordnes med bat- terier eller nødaggenset. Nødlys bør være montert i alle tunneler som har belysning.
Ventilasjon

Krav til atmosfæren i tunneler

Generelt
Ventilasjonsanlegg skal dimensjoneres for forventet trafikk 10 år etter åpningsåret.

Med den normale sammensetning av gassene i eksosen er det bare nødvendig å sette grenser for tillatt konsentrasjon av karbonmonoksid (CO-gass) og nitrogendioksid (NO₂-gass). Konsentrasjonen av de øvrige giftige gassene byr ikke på helsemessige faremønster hvis en sikrer tilstrekkelig uttynnning av CO- og NO₂-gassen.

Helsemyndighetene vurderer for tiden en endring av grenseverdiene for CO og NO₂ i vegtunneler.

GRENSEVERDI FOR KARBONMONOKSID
For beregning av ventilasjonsbehov benyttes Cₚ₀ = 200 ppm.

Tillatt CO-konsentrasjoner i tunneler som funksjon av hvor man befinner seg i tunnelen er gitt i figur 31.40.

Det er knyttet følgende forutsetninger til de gitte grenseverdier:

1) Ved drift skal konsentrasjonen 100 ppm bare nås unntakvis midt i tunnelen og må ikke overskrider selv ved ugunstige trafikkforhold. Hvis CO-måler plassert i 1/2 L registrerer 100 ppm i mer enn 15 min, skal tunnelen stenges for trafikk.

2) Ved normal trafikk skal CO-innholdet i luften være vesentlig lavere. Dette

![Diagram](image)

Figur 31.40
Grenseverdi for CO i tunneler. Bakgrunnskonsentrasjon varierer fra sted til sted.
oppnås ved å styre ventilasjonsanlegget slik at ventilatorene kobles inn i grupper og trinnvis. F.eks. starter første trinn ved 25-50 ppm, annet trinn ved 75 ppm og alle tre ved 100 ppm. Dette gjelder for styring fra CO-måler i 1/2 L.

<table>
<thead>
<tr>
<th>Entydighet</th>
<th>Grenseverdi for CO i tunneler åpne for gående og sykliende</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 km</td>
<td>100 ppm</td>
</tr>
<tr>
<td>1 - 4 km</td>
<td>25 ppm</td>
</tr>
</tbody>
</table>

Figur 31.41
Grenseverdi for CO i tunneler åpne for gående og sykliende.

GRENSEVERDIER FOR KARBONMONOKSID I TUNNELER SOM ER ÅPNE FOR GÅENDE OG SYKLENE
For tunneler som er åpne for gående og sykliende gjelder følgende grenseverdier for karbonmonoksid:

I tunneler som er lengre enn 4 km må gående og sykliende kun unntaksvis slippes igjenom. Alternativ fremkomstmulighet må da vurderes.

GRENSEVERDIER FOR NITROGENDIOKSYD
For beregning av ventilasjonsbehov benyttes \(C_{NOX} = 15 \) ppm.

Tillatt NO₂-konsentrasjon som funksjon av hvor man befinner seg i tunnelen, er gitt i figur 31.42.

Nitrogenoksid (NO) dannes ved forbrenning i bilmotor. Denne gassen blir omdannet til nitrogenodioksid (NO₂) ved oksidasjon i luften. Det antas at andelen av NO₂ er 10% av NO (NOₓ er fellesbetegnelse for nitrogenoksidene og består hovedsaklig av NO og NO₂).

Dersom NO₂-konsentrasjonen overstiger 0,75 ppm i mer enn 15 min målt i 1/2 L, skal tunnelen stenges for trafikk.

Grenseverdien gjelder uavhengig av om tunnelen har gang- og sykkeltrafikk.
GRENSEVERDI FOR TILLATT SIKTFORURENSNING
Grenseverdien for tillatt siktforurensning
$C_{sikt} = 1.5 \text{ mg/m}^3$

Ved siktproblemer vil et bedre og mer systematisk renhold av tunnelen gi positive resultater.

GRENSEVERDI FOR TILLATT LUFTHASTIGHET
Luft hastigheten skal i envegskjørte tunneler ikke overstige 10 m/s og i tovegskjørte tunneler ikke overstige 7 m/s. Ved brann og røykutvikling skal luft hastigheten i tunnelen kunne reduseres til 2 m/s.

Ventilasjonssystemer
Vegtunneler kan ventileres etter tre forskjellige hovedprinsipper (se figur 31.43, 31.44 og 31.45):
- Langslufting, ev. med ventilasjonstårn/tverrslag
- Halvtverrlufting
- Tverrlufting

Figur 31.43
Langslufting.

Figur 31.44
Tverrlufting.

Figur 31.45
Halvtverrlufting.
Mekanisk ventilasjon

GENERELT
Mekanisk langsventing baseres hovedsaklig på bruk av impulsventilatorer. I lange eller sterkt trafikkerte tunneler eller hvor bestemte forurensningskrav gjøres gjeldende i områdene rundt tunnelåpningene, vil ventilasjon ved hjelp av ventilasjonstårn være aktuelt. Selv om det bygges ventilasjonstårn, vil det ofte være nødvendig å installere impulsventilatorer for å oppnå kontroll med luftmassene i tunnelen.

IMPULSVENTILATORER
Ventilatorene vil normalt bli montert i tunnelnoks, en og en eller flere sammen hvis plassforholdene tillater det. Avstanden mellom ventilatorene i tunnelens lengde- retning bør være så stor at det oppnas stabil og jevn hastighetsprofil mellom hver vifte ev. vittegruppe. Ca.70-80 m vil normalt være tilstrøkkelig avstand.

I tilfelle brann med røykutvikling i tunnelen bør brannstedet kunne luftes ut mot den nærmeste tunnelåpningen, slik at ikke mesteavdel av tunnelen blir røykfelt. Det kreves derfor at impulsventilatorene skal være reverserbare.

I tunneler med trafikk i én kjøreretning, vil ventilasjonsretningen normalt være den samme som trafikkretningen. Behovet for reversible impulsventilatorer i slike tunneler må derfor vurderes spesielt.

VENTILATORER Plassert i Ventila- sjonstårn Ellers Tverrslag
Ved å dele en tunnel opp i flere ventilasjonssavsnitt ved hjelp av sjakter eller tverrslag skapes det muligheten til å forny luften i et langsuttingssystem. Anlegg av ventilasjonstårn og tverrslag fører imidlertid til at luftbevegelsene gjennom tunne- len blir mer komplisert, og krever detaljer- te beregninger og planlægging, tilpasset det konkrete anlegget.

Korrosjonsbeskyttelse av teknisk utrustning
Atmosfæren i tunnelen er korrosiv. Dette skyldes kondenseringen av vann fra varm, fuktig luft. Dette vannet kan være svakt surt på grunn av at det inneholder salpetersyrlig og salpetersyre, som skyl- des nitrøse gasser i eksosen. Utstyret skal derfor korrosjonsbeskyttes.

Generelt gjelder at alt stål skal være varmforzinket. Dette utføres etter at de enkelte deler er ferdig bearbeidet i verktøyet. Beleggstytkelsen skal være 400 - 500 g/m² (56 - 70 my). Etter sammenmontasje men før montering i tunnelen, skal alle stålplater gis en ytterligere korrosjons- beskyttelse som består av et lag primer med tykkelse ca. 60 my, og et lag epoxybasert måling med tykkelse ca. 60 my påført med høytrykkssprøyte.

Alternativt kan annen korrosjonsbeskyttelse velges. Den skal da minst være like- verdig med den behandlingen som er beskrevet ovenfor.

For undersjøiske tunneler må korrosjons- beskyttelse vurderes spesielt.

Beregning av luftbehand
Dersom trafikkens fordeling på de to kjøreretningene ikke er kjent, antas 2/3 å kjøre i stigning.
CO-PRODUKSJON
Beregningsmodell for CO-produksjon fra biltrafikken:

\[Q_{oCO} = q_{oCO} \cdot M \cdot k_{hh} \cdot k_s \cdot k_f \cdot L \]

\[Q_{oCO} \quad \text{totalt produserte CO-mengder,} \]
\[m^3/t \]

\[q_{oCO} \quad \text{basisverdi, CO-produksjon pr.} \]
\[\text{bil, } m^3/km.kjt \]

Basisverdi for CO-produksjon, \(q_{oCO} \) settes lik 0,013 \(m^3/km.kjt \) ved kjøring på horisontal veg og fart 60 km/t.

Ved tomgangskjøring kan det regnes med en midlere CO-produksjon på 0,5 \(m^3/h.kjt \). Denne verdien tilsvarer et bensinforbruk på ca. 1 liter pr. time og 6% CO i eksosgassen.

\[M \quad \text{trafikkmengde, } kjt/t \]

\[k_{hh} \quad \text{korreksjonsfaktor for høyde over havet i figur 31.38} \]

\[k_s \quad \text{korreksjonsfaktor for kjøring i stigning i figur 31.39} \]

\[k_f \quad \text{korreksjonsfaktor for kjøring med redusert fart i figur 31.40} \]

\[L \quad \text{tunnelengde i km} \]

Friskluftbehovet \(Q_{oLuft} \) finnes på grunnlag av produserte CO-mengder \((Q_{oCO}) \), og til- latt CO-konsentrasjon i tunnel \(C_{CO} \) (ppm) finnes fra figur 31.40.
Figur 31.46
Korreksjonsfaktor for høyde over havet, k_{hh}.

<table>
<thead>
<tr>
<th>Høyde over havet i m</th>
<th>400</th>
<th>800</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{hh}</td>
<td>1,25</td>
<td>1,60</td>
<td>2,00</td>
</tr>
</tbody>
</table>

Figur 31.47
Korreksjonsfaktor for kjøring med fall eller i stigning, k_s.

<table>
<thead>
<tr>
<th>Fall i %</th>
<th>4</th>
<th>2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stigning i %</td>
<td>0,85</td>
<td>0,95</td>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
</tbody>
</table>

(Dette er en oversettelse av tekst som var opprinnelig i norsk. Den gir en forklaring til friskluftbehovet som forutsetter normaltrykk (760 mmHg) og temperatur på 0°C og regnes til friskluftbehovet ved ugünstigaste atmosfæriske forhold ved dimensjonerende trafikkbelastning.

\[Q_{luft} = \frac{Q_{o2}}{C_{oo}} \cdot 10^6 \ m^3/t \]

\[P_o = \text{normaltrykk 760 mmHg} \]

\[P = \text{aktuelt trykk} \]

\[T_o = \text{normaltemperatur 273K} \]

\[T_t = \text{aktuellmiddellufttemperaturen i tunnel, K} \]

Trafikkmengden, M

<table>
<thead>
<tr>
<th>Trafikkfart km/t</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70 og 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_f</td>
<td>6,3</td>
<td>3,5</td>
<td>2,0</td>
<td>1,5</td>
<td>1,2</td>
<td>1,1</td>
<td>0,9</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Figur 31.48
Korreksjonsfaktor for kjøring med redusert fart k_f.

358
Siktreduserende forurensning

\[P_{\text{sikt}} = P_{\text{sikt}} (M_t + 0,08 M_l) k_{hh} \cdot k_s \cdot L \]

\[P_{\text{sikt}} = \text{produserte mengder sot i tunnelen, mg/t} \]

\[P_{\text{sikt}} = \text{basisverdi for sotproduksjon fra tunge kjøretøy 750 mg/kjt.km} \]

\[M_t = \text{trafikk mengde, tunge kjøretøy, kjt/t} \]

\[M_l = \text{trafikk mengde, lette kjøretøy, kjt/t. Det regnes med at et lett kjøretøy gir 8% av den siktforurensning som et tungt kjøretøy gir} \]

\[k_{hh} = \text{korreksjonsfaktor for høyde over havet, når tunnelen ligger mer enn 400 m over havet, i figur 31.49} \]

\[k_s = \text{korreksjonsfaktor for stigning i stigninger, i figur 31.50. Ved fall benyttes } k_s = 0,5. \]

\[L = \text{tunnellengde i km} \]

Friskluftbehovet for uttynning av siktreduserende forurensninger:

\[Q_{\text{kluft}} = \frac{P_{\text{sikt}}}{C_{\text{sikt}}} \text{ m}^3/\text{t} \]
NOx-produksjon

Beregningsmodell for produksjon av nitrose gasser (NOx):

$$Q_{NOx} = q_{NOx} (M_t + k_t \cdot M_l) \cdot k_s \cdot L$$

q_{NOx} = basisverdi for personbil, $1.3 \cdot 10^{-3}$ m³/km · kJ

M_l = trafikkmengde, lette kjøretøy, kJ/t

M_t = trafikkmengde, tunge kjøretøy, kJ/t

k_s = korreksjonsfaktor for kjøring i stigning, se i figur 31.51

k_t = korreksjonsfaktor for tunge kjøretøy, se i figur 31.52

Konsentrasjonen av de nitrose gassene finnes av:

$$C_{NOx} = \frac{Q_{NOx}}{Q_{luft}}$$

Q_{luft} er nødvendig friskluftmengde for uttynning av CO-gass eller siktforurensninger i tunnelen.

Dersom ikke trafikkens fordeling på de to kjøretørsningene er kjent, antas 2/3 å kjøre i stigning.
Beregning av nødvendig skyvkraft ved langsutføring

Figur 31.43 viser eksempel på virkemåter ved langsutføring. Et slitt system kan bygges med eller uten ventilasjonstårn/tverrs-lag. Luftstrømmen kan regnes som rør-strømnings, og det kan settes opp enkle ligninger for luftbevegelsen gjennom tunnelen.

De kreftene som forårsaker ventilasjon i en tunnel kan inngår i tre:
- meteorologiske ventilasjonskrefter
- stempelfløy fra kjøretøy
- mekaniske ventilasjonskrefter

Ventilasjon som skyldes meteorologiske krefter og stempelfløy fra kjøretøy betegnes som naturlig ventilasjon.

Naturlig ventilasjon
De meteorologiske ventilasjonskreftene er ofte ustabile, og det kan være vanskelig å forutse styrke og fordeling av de ulike bidragene. Dette gjelder spesielt for vindkrefter og innvirkning fra klimaskifter. Temperaturkreftene kan være noe mer stabile og lettere å få oversikt over. Måling av naturlig trekk anbefales der dette er mulig.

Stempelfløy fra kjøretøy
Når bilere trafikkerer en tunnel med en fart som er forskjellig fra luft hastigheten i tunnelen, vil de utøve et trykk (skyvekraft) mot luftmassene i tunnelen.

Beregning av trykktapet gjennom tunnlen:

\[
\Delta p = \frac{q}{2} \left(i + \lambda \frac{L}{D} + 1\right) u^2 + pl \frac{du}{dt}
\]

\[
\Delta p = \text{trykktapet gjennom tunnelen, N/m}^2
\]
\[
q = \text{luftens tetthet, kg/m}^3
\]
\[
i = \text{innløpstat}
\]
\[
\lambda = \text{koeffisient for strømningsstat.}
\]
\[
\text{Varierer fra 0,025 ved utstøpt tunnel til 0,05 ved råsprengt tunnel}
\]
\[
L = \text{tunnellengde i m}
\]
\[
D = \text{hydraulisk diameter, m (D = 4A/O)}
\]
\[
u = \text{beregnet nødvendig luft hastighet, m/s}
\]

Tapsledet (friksjonsledet) vil oftest være dominerende i denne ligningen. Akselerasjonsledet vil mest virke som utjevnning av luft hastigheten. I praksis kan det antas at Luftstrømmen er stasjonær og ligningen kan forenkles til:

\[
\Delta p = \frac{q}{2} \left(i + \lambda \frac{L}{D} + 1\right) u^2
\]

Singulærtap i forbindelse med strømningshastigheten gjennom tunnelen kan uttrykkes som funksjon av hastigheten i tunnelen.

\[
\Delta P_{\text{sing}} = \frac{q}{k \cdot 2} \cdot u^2
\]

Faktoren k er avhengig av geometriske forhold og finnes i håndbøker.
Meteorologiske ventilasjonskretser

Forutsetningen for denne effekten er at tunnelåpningene (evt. tverrslag og sjaktåpninger) ligger i ulik høyde og at det er en temperaturforskjell mellom luften i og utenfor tunnelen. Trykkdifferansen mellom tunnelåpningene blir:

\[
\Delta p_t = q \cdot \frac{\Delta T}{T_t} \cdot \Delta H \quad (N/m^2)
\]

hvor

- \(T_t \) = midlere lufttemperatur i tunnelen, K
- \(q \) = luftens spesifikk vekt ved nedre innslag, N/m²
- \(\Delta T \) = differansen mellom midlere lufttemperatur i tunnelen og lufttemperatur ved nedre tunnelåpning, K
- \(\Delta H \) = høydeforskjell mellom tunnelåpningene ev. mellom tunnelåpning og sjaktåpninger, m

Trykkgradienten er rettet mot den høyeste av geo- eller lufttemperaturen. Når temperaturene er like, oppstår det labile tilstander. Dette er ofte tilfelle vår og høst.

Stempeleffekt fra kjøretøy

Den kraven som bilene utøver på luften i tunnelen (luftmotstanden), uttrykkes som:

\[
P_F = \frac{q}{2} \cdot \frac{i_F \cdot A_F}{\left(1 - \frac{A_F}{A_T}\right)^2} \left| N^+ (V_t - u)^2 - N^- (V_t + u)^2 \right|
\]

- \(P_F \) = "stempelkraft", N
- \(q \) = luftens tetthet, kg/m³
- \(A_T \) = tunneltverrsnitt, m²
- \(A_F \) = biltvverrsnitt
 - personbiler: \(A_F = 2m^2 \)
 - lastebiler og busser: \(A_F = 6m^2 \)
- \(i_F \) = formfaktor for å finne effektiv motstandsflaue
 - personbiler: 0,5
 - lastebiler og busser: 1,0 - 1,7
- \(N^+, N^- \) = antall biler inn i tunnelen på et gitt tidspunkt i dimensjonerende time som kjører med dimensjonerende fart, med (+) og mot (-) luftstrømmen
- \(V_t \) = trafikkfart, m/sek
- \(u \) = lufthastighet, m/sek

Tunneler med envegstrafikk

For envegstraffikkerte tunneler kan formelen for den kraft som bilene utøver på luften i tunnelen, forenkles til:

\[
P_F = \frac{q}{2} \cdot \frac{i_F \cdot A_F}{\left(1 - \frac{A_F}{A_T}\right)^2} \left(N^+ (V_r - u) - N^- (V_r + u) \right)
\]

Miljø

Utforming av forskjæring og tunnelportal

Generelt

Fjellskjæringer og tunnelportaler avvikter fra naturlandskapet både i form og farge. Dette vil derfor fremre som sår og fremmedelementer som kan gi en negativ visuell opplevelse både fra vegen og fra omgivelsene.
Forskjæring, og tunnelportal skal i størst mulig grad utformes som en naturlig del av det landskapsrommet den er i. Grunnlaget for å lage en estetisk portal legges ved å begrense skjæringene inn mot tunnelen. Dette gjelder både for tunneler i naturlandskapet og for bytunneler. Formen på portalen må harmonere både med landskapets linjer og med tunnellutvendig.

Tunneler kan bygges uten betongportalr der det ikke er vannproblemer eller fare for nedfall av stein og is.

Tunnelportalen funksjon

- Portalen skal formidle overgangen fra landskapsrommets åpenhet til tunnelen med kunstig belysning.
- Portalen skal gis en riktig estetisk form, tilpasset omgivelsene. Det skal også legges vekt på sikkerhet og lysforhold ved utformingen.
- Portalen skal skjerme vegen mot nedfall av stein og blokker, samt sikre mot is og vann.

Prinsipper for utforming av tunnelportal

Prinsippene gjelder både i naturlandskap og bylandskap.

Ved plassering av tunnelpåhugg vil landskapets hovedform være avgjørende for resultatet.

Tunnelpåhugg i stigende terreng vil normalt gi den beste mulighet for terrengtilpasning. Kommer tunnelen rett inn på terrengformasjonen, bør både påhugget og portalen gis en rett form. Tilsvarende gis
både påhugget og portalen en skrå form når vegen kommer skrått inn.

Ved utforming av dagsoneanlegg i dalside skal fjernvirkning av ingrepet vurderes spesielt.

Portalområde i stigende terreng
I naturlandskapet vil en myk form som regel være riktig. En portal som heller bakover og er formet som en trakt gir inntrykk av en romslig tunnel.

- Råsprengt åpning (påhugg uten betongportal).
 Denne løsningen kan benyttes når fjellet er tørt og stabilt og hvor overflatevannet ikke vil skape problemer. Egner seg fortrinnsvis for veger med liten trafikk og hvor påhugget er eksisterende fjelloverflate.

- Rett avskåret portal (uten bord eller frontmur).
 Kan benyttes der fjellet er så godt at støtpute ikke er påkrevd, men hvor man ønsker utstøpning i tunnelåpningen. Løsningen er aktuell for korte portaler.

- Rett eller skrått avskåret portal med betongbord.

Portalområde i flatt og fallende terreng
Ved portaler i flatt terreng skal det vurderes hvor langt frem portalen skal trekkes avhengig av omgivelsene.

• Ikke overbygd portalområde: Nedrampingen vil fortone seg som et langstrakt hull i bakken, men vil synes lite fra siden. "Kleften" som oppstår vil kunne forsterke støyproblemet.

• Delvis overbygd portalområde: Åpningen vil bli synlig i gatebildet, men vil likevel ikke markere seg som et vertikalt dominerende element.

Figur 31.56
Rett avskåret portal.

Figur 31.57
Skrått avskåret portal.

Figur 31.58
Tunnelportaler i flatt terreng.
Spesielle forhold for tunneler i tett og middels tett bebyggelse.
Forhold som må vurderes er:

1. Eksisterende og planlagt bebyggelse og konstruksjoner som prenisser for formgivningen.

2. Eksisterende og ny vegetasjon

Behandling av sidearealene inn mot portalåpningen spiller en stor rolle. Sidearealet skal gi et rolig og oversiktlig bilde. Trafikantenes oppmerksomhet skal rettes mot tunnelåpningen, samtidig som portalområdet skal ha en estetisk form.

I en bymessig situasjon skal portalen ha en visikt arkitektonisk utforming som har sammenheng med byrommet for øvrig.

Sidenvingene i en nedramping bør ikke legges høyere enn 1 m over bakken der fotgjengere skal kunne opprive byrommet. I stedet for å bruke lukkede stepte vanger kan rekkenvek som er tilpasset gaterommets arkitektur, i form og farge benyttes.

I større trafikklundskaper vil beplantning være med på å dele landskapet i mindre landskapsrom som vil gi et roligere og mer harmonisk inntrykk.
Sikkerhet
Portalen skal utformes slik at den medvirker til å redusere ulykkene ved å lede trafikantene inn i tunnelen på en naturlig måte.
Som hovedregel skal portalen gis en form som i seg selv gjør rekkverk unødvendig, både innenfor og utenfor tunnelåpningen.

Der det benyttes vegrekkverk i tilknytning til portalen skal lengden være minst som gitt i figuren.

Arkitektonisk vil betongrekkverk være å foretrekke i forbindelse med betongportaler. Ofte vil det også være riktig å avslutte rekkverket like langt framme på begge sider.

Rekkverk utenfor tunnelåpningen skal festes forsvarlig til portalen slik at rekkverket ikke brytes ved en påkjørsel.

Brukes et stålskinnerekkverk, skal stolpeavstanden fortettes inn mot betongkonstruksjonen.

Overgangen mellom portalen og tunnelveggen skal utformes skrå i forhold til retningen på vegbanen.

Blending/solskjerming
For tunneler der lav sol kan føre til blending kan portalen brukes som solskjerm. Dette er imidlertid vanskelig å få pent fordi portalen kan bli unaturlig høy.

Membran/støtpute
For å beskytte portalen mot mekanisk skade ved f.eks. steinprang må betonghvelvet dekkes til. Dette kan skje ved hjelp av sandpute, jernbanesviller, eller trykkimpregnerte stokker. Hvis portalen blir sett fra siden i nærvirkning, er sand eller jord som tilsåes å foretrekke.

Vegutstyr i forbindelse med portalen
Generelt
I vegutstyrret kan følgende inngå:

- skilt og skiltgalger/portaler
- belysning
- støyskjermer, sikringsgjerder, rekkverk
- New Jersey elementer, betong
- rekkverk
- kantstein, vegmerking

I området foran en tunnel stilles helt spesielle krav til estetikk og orden. Mengden av utstyr skal reduseres til et minimum.
Skilt og skiltgalger
I tilknytning til tunnelåpningen er det som regel behov for skilt og andre innretninger. Av hensyn til sikkerhet og landskapsarkitektur skal slikt utstyr plasseres i god avstand fra portalen eller inne i tunnelen.

Generelt skal det legges vekt på følgende:
- ensartet utforming
- unngå unødige skilt
- skilt og utstyr plasseres lengst mulig fra portalen. Skiltgalger foran portal bør unngås.

Belysning
I dagsonen stilles det spesielle krav til belysningsstyrke og fordeling. Se kapittelen om Belysning.

Ut fra estetiske forhold bør gult lys unngås i innkjøringssonen. Det stilles også krav til masteplassering utenfor tunnelen.

Portalen er et sted hvor en regelmessig masterække brytes. Den siste masten bør derfor ikke plasseres nærmere portalen enn halvparten av den normale masteavstand.

Forøvrig gjelder de samme estetiske prinsipper for vegbelysning som for vegbelysning.

Støyskjerm
I tett og middels tett bebyggelse vil det ofte være nødvendig med støyskjerming.

Støyskjerming skal tilpasses portalen og omgivelsene når det gjelder materialbruk, formuttrykk og farge.

Figur 31.62
Masteplassering ved portal.
Sikringsgjørder og rekkverk

Vegetasjon
Bevaring av eksisterende vegetasjon er spesielt viktig ved etablering av tunnelpåhugg. I tillegg skal behovet for ny vegetasjon vurderes.

Vegetasjon benyttes landskapsarkitektonisk for å dele opp landskapsrommet og som bindeledd mot omgivelsene. Vegetasjon benyttes også som solskjerm for å redusere blending.

Ny vegetasjon skal etableres slik at den inngår som en naturlig del av landskapet for øvrig.

Ved tunnelåpninger vil det ofte være trekk og urolig luft. Det skal derfor velges arter tilpasset lokalklimaet.

Farge
Bruk av farge kan benyttes for å understreke portalens arkitektur.

I naturlandskapet bør fargevalg harmonere med naturens egne farger. I by- og tettbebyggelse vil ofte nærliggende bebyggelse være bestemmende.
Forurensning

Saksbehandling
I vegtunneler vil ventilasjonsløsningen være av avgjørende betydning for mengden av utslipp og utslippssted. Det skal utføres en konsekvensanalyse hvor de forurensningsmessige virkningene knyttes til forutsetninger om hvordan tunnelen skal ventiles, herunder plassering av eventuelle ventilasjonstårn m.v.

Plassering og utforming av tunnelmunning og eventuelle ventilasjonstårn krever avklaring gjennom plan (reguleringspliktig tiltak). Eventuelle ventilasjonstårn må bygges med etter plan- og bygningsloven §84.

Forurensningsloven er foreløpig ikke satt i verk for forurensning fra transport, kfr. lovens §5, første ledd. En konsekvens av dette er at tunneler, herunder ventilasjonsanlegg, ikke skal behandles etter forurensningslovens kapittel 3, som har egne bestemmelser om tillatelse til virksomhet som kan volde forurensning.

Fortolkningen av forholdet til forurensningsloven bygger imidlertid på at forurensningsmessige virkninger og tiltak mot disse er utredet og vurdert under planleggingen av tunnelen.

Forurensninger
Nødendig friskluftmengde for tunnelen beregnes på grunnlag av grenseverdier for CO, NO₂ og Sot (sikteforurensning) gitt i kapittel om Ventilasjon. Ut fra beregnet forurensningskonsentrasjon i utslippet fra tunnelen kan graden av forurensning på
de nærmeste omgivelsene. Med grad av forurensning menes en sammenligning basert på forurensningsnivå og anbefalte grenseverdier for luftkvalitet utenfor tunnelen.

Anbefalte grenseverdier for luftkvalitetet utenfor tunnel

Anbefalte grenseverdier angir en øvre grense for forurensningsnivået som ikke bør overskrides dersom man vil opprettholde en viss sikkerhet mot uheldige virkninger av forurensningen.

I 1982 ga Statens Forurensningsstilsyn ut rapporten "Luftforurensning - virkninger på helse og miljø" (SFT-rapport nr. 38). Grenseverdier for CO og NO₂ som er anbefalt i denne rapporten er gjengitt i figurer. Ved valg av anbefalte grenseverdier er det benyttet en sikkerhetsfaktor på mellom 2 og 5 for de ulike forurensningskomponenter. Dette betyr at man må opp i 2-5 ganger høyere eksponeringsnivåer enn de angitte grenseverdier før det er konstatert skadelige effekter.

Vurdering og beregning av luftforurensing fra vegtunneler

Utslipp gjennom tunnelåpning

En forenklet metode for spredningsberegninger for vegtunneler er gitt i det etterfølgende.

Metoden er empirisk, basert blant annet på målinger fra spredning av sporstoff utenfor munninger og atmosfæriske
spredningsmodeller tilpasset spredning av utslipp ved bakken. Beregningsmetoden er presentert som nomogrammer.

For å beskrive forurensningene ut av tunnellåpningen deles denne i to faser: jetfase og røykfase. I jetfasen er det i første rekke luftfartshastigheten ut av åpningen \((V_t)\) som er avgjørende, mens i røykfaset er det atmosfæreforholdene (bl.a. typisk vindfartshastighet, \(U\)) som er viktigst. Dette er skjematiskt fremstilt i figurene. Metoden er empirisk, slik at de valgte parametre er avhengig av representative målinger. Overgangen fra jetfase til røykfase er svært komplisert og er valgt etter skjønn.

For å kunne beregne forurensningskonsentrasjonen best mulig i bestemte punkter utenfor tunnelportalen, må en skaffe seg data om atmosfæreforholdene (vind, stabilitet, etc.) i området. Disse dataene kan en best skaffe seg ved å utføre målinger over lengre tid. Målingene må dekke vinterforhold fordi forurensningene da vanligvis er størst. I tillegg er det nødvendig å vurdere bakgrunnskonsentrasjonen i området.

Topografien sammen med utformingen av portalene ved tunnelmunningene kan også ha stor betydning for spredningsforløpet.
Figur 31.67
Nomogrammer til bruk ved spredningsberegninger
Begrensninger i nomogrammene

- Tunneltverrsnitt $A = 48 \text{ m}^2$
- Nomogrammene gjelder kun for karbonmonoksid (CO)
- Nomogrammene må ikke benyttes for $U < 1 \text{ m/s}$ og $V_1 > 8 \text{ m/s}$

Forøvrig vises til NILU rapport OR 27/82 for fullstendig beskrivelse.

Forklaring på bruk av nomogrammene

Det er laget nomogrammer for tre ulike vindhastigheter ($U = 1,2$ og 5 m/s)

De enkelte nomogrammene viser C/C_t som funksjon av avstanden fra tunnelåpningen for $V_1 = 1, 2, 3, 4, 5$ og 8 m/s.

Nomogrammene til venstre viser C/C_t i området $0 - 1,0$.

Nomogrammene til høyre viser C/C_t i området $0-0,1$ (dvs. $10 \times$ forstørret)

Dersom U og V_1 ikke har eksakte verdier, skal den nærmeste kurve som overestimerer konsentrasjøen benyttes:

Det vil si at man benytter:

- Kurvesettet for den største U mindre enn den virkelige
- Kurvesettet for den minste V_1 større enn den virkelige.

Eksempel

Utslipphastighet (beregnet nødvendig luftahastighet i tunnel)

$$V_1 = 3,0 \text{ m/s}$$

Utslippskonsentrasjon tunnel

$$C_t = 200 \text{ ppm}$$

Grenseverdi uteluft (1-times norm)

$$C = 21 \text{ ppm}$$

Typisk vindhastighet (utenfor tunnel)

$$U = 1,0 \text{ m/s}$$

Ønsker å finne i hvor stor avstand fra tunnelåpningen en må regne med å få overskridelse av grenseverdien (21 ppm).

Forholdet

$$\frac{C}{C_t} = \frac{21}{200} = 0,1$$

Avstand i meter finnes av figur 31.67.

Utslipp gjennom ventilasjonsstørr

Dersom det er vanskelig å oppnå de anbefalte grenseverdiene ved utlufting gjennom tunnelåpning, er utlufting gjenom ventilasjonsstør et alternativ.

Spredning av utslippet fra ventilasjonsstør beregnes ved hjelp av de spredningsmodeller som benyttes for piper/skorsteiner.
• Tårnarealet bestemmes av den luftmengde tårnet skal betjene.
• Tårnhøyden bestemmes av hvordan de beregnede bakkekonstruksjoner og konsentrasjonene ved eventuelle nærliggende bygninger, ligger i forhold til grenseverdier for luftkvalitet.

Ventilasjonsluftens jetstrøm rettes vertikalt oppover. Dette innebærer at forurensningene blir tynnet ut før de når bakken.

Rensing av tunelluft
Det finnes idag utstyr som gjør det mulig å rene tunelluft for partikulære forurensninger, støv og sot.

Valg av utstyr og løsninger må tilpasses i hvert enkelt tilfelle.

For tunneler som ventileres via ventilasjonstårn, kan det være aktuelt å plassere reseutstyret i tilknytning til tårnet. Denne løsningen vil redusere utslippet til det ytre miljø.

Renseutstyret kan også plasseres med jevne mellomrom inne i selve tunnelen. Denne løsning vil både bedre sikteforholdene i tunnelen og redusere utslippet til det ytre miljø.
Støyforhold nær tunnelåpninger

I nærheten av tunnelåpninger bestemmes støyforholdene av to hovedbidrag som vist i figur 31.68. Det første, og ofte dominerende, bidraget skapes av trafikken på den delen av vegen som ligger utenfor tunnelen (A). Det andre bidraget (B), som kommer av lydavstråling fra tunnelåpningen, er bare viktig når avstanden fra åpningen er mindre enn ca. 60 meter.

B-bidraget skapes av kjøretøy i og rett innenfor tunnelåpningen.

Så lenge et kjøretøy er inne i tunnelen blir støynivået forsterket ved at lydbølgene reflekteres fra tunnelvegger, tak og vegbane. Lyden kan stort sett bare "unnslipp" ut gjennom åpningen og innover i tunnelen. Når kjøretøyet kommer ut av tunnelen fordeles lydenergien i alle retninger, og lydintervall nær kjøretøyet blir vestentlig redusert.

Er en primært interessert i det gjennomsnittlige støynivået (døgnekvivalent støynivå, dBA), fordeles lydbidrag A omtrent likt i alle retninger vinkelrett på kjøretøynings, mens B kanaliseres i tunnel-retningen. Bidraget B kommer fra et relativt begrenset området, mens bidrag A gjennom kjørt øy rett inneh for tunnelåpningen kan skapt av lengre vegstrekkning. Men den forsterkede lydavstrålingen fra et kjøretøy rett innenfor tunnelåpningen betyr at tunnelbidraget likevel vil være viktig.
Forholdet mellom de to delbidragene modifiseres av terrengutforming, avskjer-
ming, markforhold osv. Utformingen av
tunnelværsnittet har liten betydning. Deri-
mot er åpningsareal og utforming av tun-
nelåpning utslagsgivende, også i bestre-
belsene på å unngå den brå endringen i
støynivå ved kjøretøypasserer som er så
utslagsgivende for den subjektive vurde-
ringen av tunnelbidraget.

Tunnelbidraget kan reduseres vesentlig
ved bruk av lydabsorberende materialer
på vegger og tak rett innenfor åpningen.
Støy fra vegbanen utenfor kan reduseres
bl.a. ved avskjerming. Det vil ofte være
behov for skjermingstiltak der det er nød-
vendig å ta hensyn til refleksjonsbidraget
fra motsatt vegside.

En beregningsmetode for støy fra tunnel-
åpninger og anbefaling om tiltak er under
utvikling av Vegdirektoratet.
32. KABLER OG LEDNINGER

Generelt

De generelle retningslinjer i dette kapittel vil være mest aktuelle i standardklassene A2 og S2, adkomst- og samleveg i middels tett bebyggelse, men bør være utgangspunktet for de spesialløsninger som er nødvendig ved andre standardklasser.

Med kabler og ledninger forstås tekniske anlegg som omfatter vann- og avløpsledninger, fjernvarme, el-, tele- og TV-kabler. Dette inkluderer kabler og ledninger som er nødvendig for vegens funksjon.

Prinsipper for plassering av kabel- og ledningsanlegg

Ved kryssing av offentlig veg skal lavspenningsluftstrekk og øvrige luftstrekk, unntatt høyspent, ha en høyde på minst 5,0 m over kjørebanen i ugünstigste tilfel-

le. For kryssing av veg med høyspen-
ningsluftstrekk har Norges Vassdrags- og Energiwerk utarbeidet spesielle bestem-
melser.

Hovedregelen er at elektriske kabler, både høyspent og lavspent, skal ha en overdekning på min. 0,5 m. Under spesielle forutsetninger kan imidlertid overdek-
ningen reduseres. Dette gjelder i første rekke for lavspent. F.eks. kan belysnings-
kabler i fortøy legges med en overdek-
ning på 0,2 m uten spesiell beskyttelse. Med så liten overdekning må imidlertid faren for skade på kabelen som følge av bl.a. generelt vedlikehold vurderes nøye. Muligheten til å redusere overdekningen for forskjellige typer kabler gjør det viktig også å differensiere mellom kabeltyper når plasseringen skal fastsettes.

Tilsvarande forhold vil også kunne gjelde vann- og avløpsanlegg der topografi, grunnforhold, dimensions, frostbelastning og frostsikringsmetode vil være bestem-
mende for overdekning og arealbehov.

Videre vil utførelsen av vann- og avløps-
nettet være bestemmende for plasser-
ningen.

Det stilles forskjellig krav til de tekniske anlegg i grunnen. I tillegg til primær mekanisk beskyttelse av anleggene kan det være en rekke sekundære effekter en ønsker å oppnå, f.eks. gunstige avkjølingstilstand, frostsikring av ledningene, magasinering av overvann o.l. Dette er forhold som også kan bidra til å fastlegge plasseringen av anleggene i forhold til vegbanen.
Forholdet mellom offentlige veger og kabel-/ledningsanlegg

Forholdet mellom offentlige veger og kabel-/ledningsanlegg av ulike slag, er regulert gjennom Vegloven av 21. juni 1963. Den angir at kabel- og ledningsanlegg ikke uten tillatelse må legges over, under, langs eller nærmere offentlig veg enn 3 m fra vegkant, eller eventuelt i større avstand i henhold til §32. Reglene i §32, første ledd, gjelder også dersom det i annen lov er gitt anledning til å føre kabler og ledninger over, under eller langs offentlig veg.

Tillatelse etter §32, gis av vegsjefen for riks- og fylkesveger og av formannskapet for kommunale veger. Når det gjelder riks- eller fylkesveg som holdes vedlike av kommunen, kan vegsjefen overlate til formannskapet å gi tillatelse. Formannskapet kan overlate avgjørelsen til særskilt utvalg eller kommunal tjenestemann, jfr. §9 i Vegloven.

Samarbeid veg-/reguleringsetat og kabel-/ledningsetat

Samarbeidet må starte opp i en tidlig planfase, og fortsette under anleggs- og vedlikeholdsperioden, for at de enkelte etaters interesser skal bli ivaretatt på en teknisk og økonomisk forsvarlig måte.

Det bør utarbeides en samlet vurdering av framtidsigens behov for de enkelte etaters anlegg.

Totalkostnadene må forsøkes redusert ved at;

- utforming av vegens tværoffring og linjeføring tar rimelig hensyn til etatens behov,
- de trafikk- og anleggstekniske ulemper ved oppgravinger reduseres,
- etatens framdriftsplaner koordineres
- planene for nye kabel- og ledningsanlegg såvidt mulig tilpasses foreliggende reguleringselementer, evt. planforslag.

For å sikre at de enkelte etater skal kunne ivareta sine interesser, bør følgende rutiner følges:

- Vegvesen, energiverk, gassverk, televerk og vann- og kloakkvesen skal, når planer om ny veg, kabel- og/eller ledningsarbeid utarbeides, oversende disse til de øvrige etater.
- Vegmyndighetene oversender ved utgangen av hvert år neste års planer for legging av fast dekke til de øvrige kabel- og ledningsetater. Disse etater kan da foreta eventuelle reparasjoner/utbedringer før dekkearbeidene starter opp.
- Vegmyndighetene bekjentgjør legging av fast dekke i lokale aviser, eller på annen måte, minst to måneder før arbeidet skal ta til. Grunneiere langs den aktuelle veg har da en mulighet for å utbedre/repere egne anlegg før nytt dekke blir lagt.
- For graving i veg eller gate som nylig er opparbeidet eller reparert og som har en ÅDT over 3000, settes det en sperrefrist på 3 år. Nyanlegg eller omlegging av kabel- eller ledningsanlegg som medfører oppgravning i denne perioden, vil normalt ikke bli tillatt.
Krav til varslingsrutiner
For å sikre at de enkelte etater skal kunne ivareta sine interesser, skal det søkes om tillatelse hos den aktuelle vegholder.

Før noen gruearbeider startes opp, skal etatene varsles skriftlig for påvisning av kabler og ledninger. Dette gjelder også ved f.eks. grunnboring og nedsetting av gjerdestolper.

Kartverk
Det må legges vekt på å etablere et tidsmessig og nøyaktig kartverk for kabel- og ledningsanleggene.

Innen de enkelte kommuner bør følgende søkes gjennomført:

- Samme målestokk for de enkelte etaters kartverk
- Innmåling av anleggene på basis av koordinater, eventuelt utmålt fra gitte punkter
- Inntegning av anleggene på transparenter med koordinatnett - "mastery" - som fotograferes med ajourførte kartgrunnlag.

Oppmålings- og registreringsarbeid som i dag ligger under de enkelte etater, må på sikt ytterligere samordnes for å lete planleggingsarbeidet, samt sikre en ensartet registreringsmetodikk.

Bebyggelses-/reguleringssplan
Tekniske anlegg og veier i boligområder fastlegges delvis via bebyggelses-/reguleringsplan. Rent kostnadsmessig må det derfor legges stor vekt på at lm veg, m² asfalt, m² sprengning/fylling, lm grøft, lm ledninger etc. blir minst mulig. Dette kan oppnås ved bl.a.:

- Benytte nøktern vegstandard
- Minst mulig hovedledninger i området
- Valg av gunstige lednings- og kabeltraséer
- God tilpassing av veier og hus i terrenget

Optimal teknisk og økonomisk plassering av tekniske anlegg (VA, - fjernvarme, el, tele, TV) i terrenget vil være avhengig av en rekke forhold. Sekundærledningsnettet for ledninger og kabler kan ligge mellom og under hus, mens hovedledninger og høyspentkabler følger samlevagen.

Gangvegsystemet i et boligområde vil ofte være snarveier mellom adkomstveger eller mellom adkomstveger og samlevager. Dette bør bevisst utnyttes når gunstige traséer for hovedledninger og høyspentkabler skal fastlegges.

Ved å fjerne VA-ledningene (sekundærledninger) fra adkomstvegane, vil det være lettere å legge adkomstvegane i terrenget og å dimensjonere disse for lav hastighet.
Samtidig vil det i kupert og skrående terreng være vanskelig å oppnå en tosidig utnyttelse av VA-ledninger som er plassert i tilknytning til vegen. Krav til fall vil føre til urimelige dybder for sekundær- og stikkledningsnettet. En tosidig utnyttelse bør rent økonomisk være en forutsetning for å plassere VA-ledninger (sekundærrnettet) i vegen. Gatelyskabelen følger normalt adkomstvegene.

Disponering av tverrprofilet

Figur 32.1
Prinsippskisse for kabel og ledningsanlegg i boligområde.

383
På skissene er det avsatt plass for sandfang, bredde 1,00-1,30 m. Ledningstrasse kan delvis legges inn på dette området. Langs reguleringsslinjen skal det normalt holdes en 0,60 m bred sone fri for kabler og ledninger. Unntatt er kabler som er nødvendige for vegens funksjon.

Kablene bør generelt ikke spres for mye, men konsentreres til avgrensete områder.

Gang-/sykkelveger

Kabler plasseres normalt i gang-/sykkelvegen, mens ledninger delvis plasseres under gang-/sykkelvegen og delvis under skulder og snølågringsarealet. I ledningsgrøften på skissen til venstre er det antatt plassert en 200 mm vann-, en 300 mm spillvann- og en 400 mm overvannsledning.

Gater og veger uten fortau

Vann- og avløpsledninger plasseres normalt på den ene side av kjørebanen og kabler på den andre siden.
Gater og veger med fortau
Kabler ogledninger skal primært plasieres under fortau. Når plassen er begrenset, plasseres ledningene i kjørebanen og kablene i fortau/gangbane. Hvis plassen i fortau/gangbane ikke er tilstrekkelig for kabelanleggene, plasseres disse normalt på motsatt side av kjørebanen som ledningene.

Gater og veger med separat gang-/sykkelveg
Vann- og avløpsledning plasseres i gang/sykkelveg. kabler plasseres i trafikkdeler, eventuelt grøft.

Det overordnede vegnettet
På hovedveger skal kjørebanen og skuldrene normalt være fri for langsgående kabler og ledninger. Unntatt er kabler og ledninger i tilknytning til veg- og trafikk-tekniske tiltak.
Varmekabler i fortau

Varmekablene i fortau bør ikke ligge nærmere kantsteinen enn 50-70 cm. Kablere bør føres helt frem til sluk for å unngå vannoppsamling i overgangen kabler-likne kabler. Varmekabler i fortau er vist på figuren.

Kumplassering

Ved kumplassering i kryssområder må det tas hensyn til trafikkens framkommelighet ved eventuell reparasjon eller etter-syn av kummene.

Kummer med brannventiler skal plasere i brøytet område.

Masteplassering

Oppsetting av master innvirker på dispo-neringen av vegens tværprofil. Trafikksikkerhet og vedlikehold bør vurderes ved plassering av master. På figurene som viser masteplassering er 60 cm ved reguleringslinjen disponibelt til master med fundamenten. Plassering av veglysmaste-ner foretas som beskrevet under kapitlene vegbelysning og vegrekkverk.

<table>
<thead>
<tr>
<th>Mastetype</th>
<th>Plassering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegbelysning</td>
<td>Reguleringslinje/gjerdelinje evt. i trafikkdeler</td>
</tr>
<tr>
<td>Vanlig luftstrek (strøm og tele)</td>
<td>Reguleringslinje/gjerdelinje</td>
</tr>
</tbody>
</table>

Figur 32.8

Plassering av master.
Kryssing av veg/gate

Bruk av trekknr som omfylles med finpukk, gjør også kablene mer i stand til å tåle mekaniske belastninger selv med reduserte overdekninger.

Ved nyanlegg eller utbedring av eksisterende veger bør det fremtidige behov for kryssing med kabler og ledninger, samt kryssingspunktene lokalisering vurderes.

Krav til kryssingsprinsipp

På veger med høy fartsnivå ($V_T > 60$ km/t) eller høy trafikkbelastning vil det normalt ikke bli gitt adgang til oppgraving. Dette må det tas hensyn til ved prosjektering av nye kabel- og ledningsanlegg.
<table>
<thead>
<tr>
<th>Vegtype</th>
<th>Nyanlegg av veg</th>
<th>Eksisterende veg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kabler</td>
<td>Reparasjon, omlegging og nyanlegg</td>
</tr>
<tr>
<td></td>
<td>Ledninger</td>
<td>Kabler</td>
</tr>
<tr>
<td>Hovedveg</td>
<td>Kabelkanal/</td>
<td>Boring, trykking av rør, evt. oppgraving ved trafikkomlægging eller nattarbeid</td>
</tr>
<tr>
<td></td>
<td>Trekkrør</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lukket kanal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eller varerør</td>
<td></td>
</tr>
<tr>
<td>Samleveg</td>
<td>Trekkrør</td>
<td>Boring, oppgraving samt nedlegging av ekstra rør</td>
</tr>
<tr>
<td></td>
<td>Ikke spesielle krav</td>
<td></td>
</tr>
<tr>
<td>Adkomstveg</td>
<td>Trekkrør</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ikke spesielle krav</td>
<td></td>
</tr>
<tr>
<td>Gang-/</td>
<td>Ikke spesielle krav</td>
<td></td>
</tr>
<tr>
<td>sykkelveg</td>
<td>Ikke spesielle krav</td>
<td></td>
</tr>
</tbody>
</table>

*) Ved graving i asfaltet veg/gate skal det benyttes østettskjærer

Figur 32.9
Krav til kryssingsprinsipp for kabler og ledninger, type og utførelse.

Antall kryssingspunkter må være tærrest mulig. Spesielt i hovedveger og samleveger bør kryssingen skje vinkelrett på veggen og fortrinnsvis ved vegkryss. I de tilfeller hvor det foretas oppgraver i eksisterende veg, i forbindelse med reparasjoner, utskiftinger, omlegginger etc., skal forholdene legges til rette for at framtidige gravearbeider skal unngås. Spesielt gjelder dette hvor det er naturlig å forvente ytterligere framføring av kabler og ledninger. Se forøvrig figuren.

Ved større reparasjonsarbeider/omlegginger kan det bli satt krav som for nyanlegg av veg.
Utførelse

Vann- og avløpsledninger
Plasseringen av de enkelte ledninger og oppbyggingen av grøftetverrsnittet i ledningssonen utføres etter ledningsetatens leggebeskrivelser. Grøftetverrsnitt og leggebeskrivelse skal forelegges vegetaten.

Nødvendig grøftebredde avhenger av antallet og dimensjonene på rørene, samt ledningsetatens krav til innbyrdes avstand mellom rørene og avstand rør-/grøfteside.

Av figurene 32.2-7 framgår det hvordan de enkelte deler av vegens tverrprofil er disponert. Normalt gis ledningene rettlinjet føringer mellom kumene. På svingete veg medfører dette redusert plass for andre installasjoner og kortere maksimalavstand mellom kumene. Det vil derfor være anledning til å legge ledningstråden delvis inn på det området som er reservert for sandfang etc. Det må påses at ledningstråden ikke kommer i konflikt med eksisterende eller framtidige sandfang. Maks tillatt vinkelavvik i roskjøtene kan også utnyttes til å legge ledningene i kurve.

Kabler
Plassering av de enkelte kabler og oppbyggingen av grøftetverrsnittet i kabelsonen utføres etter kabeletatens leggebeskrivelser. Grøftetverrsnitt og leggebeskrivelse skal forelegges vegetaten. Kablene skal i hovedregelen ligge med minst 0,5 m overdekning. Ved bruk av kabelkanaler må faren for ujevne setninger på kjørebanen søkes redusert ved å bruke avlastningsplater eller økt overdekning.

Fellesanlegg for elektriske kabler og vann- og avløpsledninger
Den tekniske utviklingen med økende antall og flere varianter av underjordiske anlegg, medfører at anleggenes vitale betydning og brukernes krav blir stadig større. Tettere utbygging av byenes sentrumområde forårsaker at nettet må ombygges, utvides, forlenges eller fornyes. I tillegg til utvidelser av tradisjonelle anlegg skal det skaffes plass for nye typer framføringer som f.eks. overvannsledninger, TV-kabler, trafikksignalkabler av forskjellig art og anlegg for oppvarming av gate, fortog m.m. Spesielt i sentrumsgatene fører dette til alvorlige plassproblemer, trafikkvansker, ulemper for brukere og ikke minst høye anleggs- og driftsomkostninger. Gjentatte oppgravinger er også til stor sjansen for beboerne og næringsdrivende i nærhøy.

Ved prosjektering av nyanlegg i sentrumsområdene må derfor etatene vurdere mulighetene av å benytte fellesanlegg, enten i form av kanaler eller tunneler.

Under spesielle forhold kan det være ønskelig eller nødvendig å redusere arealbehov og anleggskostnader ved å benytte felles grøtt for kabel- og ledningsanleggene.
Ved grøftanlegg i godt fjell kan kravet til horisontal avstand på 2 m mellom etatene anlegg reduseres til et minimum ved å legge kablene på en hyle i ledningsgrøften. Det forutsettes da at ledningsgrøften kan graves opp uten at det oppstår fare for utrasing av kablene.

Stikkledninger (vann og avløp)

Omlegging eller fornyelse av stikkledninger skal forøkes koordinert med omlegging av hovedledninger for vann og avløp eller større vegarbeider, og omvendt.

Ved vegutvidelse skal eksisterende stoppekran flyttes utenfor veggrunnen.

Kumlokk og rammer

Runde kumlokk og rammer skal være utført etter Norsk Standard og beregnet for en prøvelast 400 kN (40 Mp). Hvis ikke spesielle forhold tilsier noe annet, skal det benyttes flytende kumrammer.

Firkantede kumlokk skal være beregnet for en hjulast 250 kN (25 Mp).

Utsetting og innmåling

Oppgraving og gjenfylling

Oppgraving og gjenfylling av grøtteprofi net skal foretas i henhold til Vegdirektoratets og andre vegmyndigheters forskrifter og retningslinjer for graving av grøfter i offentlig veg, samt Statens forurensings tilsyns retningslinjer og Arbeidstilsynets veiledning ved graving og avstivning av grøfter.

For kostnadsdeling mellom forskjellige etater/ledningseiere vises det til gjeldene retningslinjer/forskrifter samt vegvesenets skjema 066.

Arbeidsvarsling

Det er meget viktig at Statens Vegvesens normaler for arbeidsvarsling benyttes i forbindelse med gravingsarbeider på trafikert veg.
VEDLEGG

Begrep

adaptasjon
adaptasjonstilstand
adkomstfunksjon
adkomstveg, adkomstgate
adskillelse
akselerasjonsfelt
avbøying
avkjøringsnese
avkjører
avkjøresfri veg
avkjørselsregulert veg
avskjæringsmast
bebyggelse, middels tett
bebyggelse, spredt
bebyggelse, tett

Definisjon

øyets evne til å tilpasse seg endring i lysforholdene
den luminas øyet er tilpasset. Benyttes særlig som et mål på lysforholdene utenfor tunnelåpninger
den funksjon vegen har for å gi adkomst til til-
liggende areal til vegen
veg, gate som gir adkomst til tilstøtende eiendom-
mer og hvor det er tillatt med avkjørsler til disse
inndeling av et vegsystem slik at ulike trafikant-
kategorier får egne veger
fartsøkningsfelt langs kjørebanen hvor kjøretøyene
akselerer og innpasser seg i primæroegens trafikk-
strøm.
den sideforskyvning et kjøretøy blir utsatt for ved
ejering gjennom en rundkjøring
malt dele mellom gjennomgående kjørefelt og høyre-
svingefelt/avkjørselsrampe
kjøber tilknytning til vegnettet for en eiendom eller et
begrenset antall eiendommer
veg uten direkte avkjørsler til tilliggende eiendommer
langs vegen
vegtype hvor avkjørsler i begrenset antall er tillatt, og
hvor disse er lagt opp etter en samlet avkjørselsplan
lysmast som er konstruert slik at den brytes av ved
påkjøring. Som regel er det et "svakt" ledd like over
fundamentet
områder hvor det i gjennomsnitt er mellom 50 og
100 meter mellom husene. Strekninger med 60 km/t i
fartgrense vil ofte tilsvare middels tett bebyggelse
strekenings med liten sideaktivitet til vegen, mer enn
200 meter mellom husene
et sted hvor det bor mer enn 200 mennesker og der
det er mindre enn 50 meter mellom husene
<table>
<thead>
<tr>
<th>Begrep</th>
<th>Definisjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>belastningsgrad</td>
<td>forholdet mellom trafikkbelastning og kapasitet knyttet til et kryss eller en vegstrekning</td>
</tr>
<tr>
<td>belysningsstyrke</td>
<td>forholdet mellom lyset (lysfluksen) målt i lumen som faller på en flate og flatens størrelse i m². Enheten for belysningsstyrke er lux. Belysningsstyrke kalles også for luminans</td>
</tr>
<tr>
<td>belysningsstyrke, halvromlig</td>
<td>forholdet mellom lyset som faller på en oppadvendt halvkule og areal av halvkulens</td>
</tr>
<tr>
<td>belysningsstyrke, horisontal</td>
<td>forholdet mellom lyset som faller på en horisontal flate (f.eks. vegbanen) og flatens area!</td>
</tr>
<tr>
<td>beredskapsplan</td>
<td>plan som samordner innsats fra utrykningsetater ved ulike hendelser i tunnel</td>
</tr>
<tr>
<td>biloppstilingsplass</td>
<td>oppmerket oppstilingsplass for et motorkjøretøy</td>
</tr>
<tr>
<td>blandet trafikk</td>
<td>ulike trafikanttyper (motorisert og ikke-motorisert trafikk) som fordøs på samme vegareal</td>
</tr>
<tr>
<td>blending</td>
<td>reduksjon av øyets kontrastfølsomhet</td>
</tr>
<tr>
<td>blindveg</td>
<td>veg hvor det ikke er gjennomkjøringsmulighet</td>
</tr>
<tr>
<td>blokkområde</td>
<td>område hvor det i stor grad er boligblokker</td>
</tr>
<tr>
<td>boligavkjørsel</td>
<td>avkjørsel til områder hvor boligfunksjon er dominerende</td>
</tr>
<tr>
<td>boligområde</td>
<td>område hvor arealene i det vesentligste er knyttet til boligfunksjon</td>
</tr>
<tr>
<td>boligveg</td>
<td>veg som gir adkomst til boliger</td>
</tr>
<tr>
<td>bredde, fri</td>
<td>bredde som er til disposisjon for kjøretøy, f.eks. mellem sidehindre</td>
</tr>
<tr>
<td>breddeutvidelse</td>
<td>utvidelse av kjørebanen i forbindelse med kurver</td>
</tr>
<tr>
<td>bru</td>
<td>byggverk uten overliggende fylling som fører vegen over en fri åpning på minst 2,5 m</td>
</tr>
<tr>
<td>bru, kort</td>
<td>bruer med total lengde under 40 m</td>
</tr>
<tr>
<td>bru, lang</td>
<td>bruer med total lengde over 40 m</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>bussholdeplass</td>
<td>sted på vegen, vanligvis oppmerket (og med logo), hvor bussen stopper til fastsatt ankomst- og avgangstider</td>
</tr>
<tr>
<td>busslomme</td>
<td>bussholdeplass i utvidelse langs kjørbaneen reserved for buss. Busslommer kan ligge i direkte kontakt med kjørbaneanen eller adskilt fra denne med en trafikkdelel</td>
</tr>
<tr>
<td>busstopp</td>
<td>sted ved vegen hvor bussen bare stopper på signal</td>
</tr>
<tr>
<td>byggegrense</td>
<td>fastlagt grense for tilatt bebyggelse etter reguleringsplan eller vegloven</td>
</tr>
<tr>
<td>byområde</td>
<td>område hvor arealutnyttelsen er typisk bymessig, kvartalsstruktur</td>
</tr>
<tr>
<td>deformasjonsmast</td>
<td>lysmast som er konstruert slik at den ved påkjørsel blir myk, gir etter men fortblir forankret til fundament</td>
</tr>
<tr>
<td>dekkebredde</td>
<td>ved veg med fast dekke er dekkebredden avstanden mellom kantene av dekket. Ved grusveg er dekkebredden lik kjørebanebredden. På veg med midttaler måles dekkebredden for hver side av midttaleren</td>
</tr>
<tr>
<td>dekkekant</td>
<td>kant av vegdekke. Ved grusveg settes dekkekant lik kjørebanekekt</td>
</tr>
<tr>
<td>dekkeklasse</td>
<td>klassifisering av et vegdekket utfra lystekniske forhold</td>
</tr>
<tr>
<td>differensiering</td>
<td>inndeling av vegnettet etter vegens funksjon, slik at trafikkstremmene blir mest mulig ensartet</td>
</tr>
<tr>
<td>dimensjonerende fart</td>
<td>den fart som legges til grunn for vegens geometriske utforming</td>
</tr>
<tr>
<td>dimensjonerende kjøremåte</td>
<td>beskriver den frihet et kjøretøy vil ha ved trafikering av vegnett. Se kjøremåte A og B</td>
</tr>
<tr>
<td>dimensjonerende kjøretøy</td>
<td>representativt kjøretøy med dimensjoner som er typiske for den gruppe det representerer</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>drenering, lukket</td>
<td>lukket system for samling og bortledning av vann</td>
</tr>
<tr>
<td>drensgrøft</td>
<td>grøft med drensledning som er fyldt med filtermateriale som inngår i et lukket dreneringssystem</td>
</tr>
<tr>
<td>driftsavkjørsel</td>
<td>avkjørsel til områder med stedbundet aktivitet, f.eks. jordbruk og skogbruk</td>
</tr>
<tr>
<td>dråpe</td>
<td>dråpeformet trafikkøy i sekundærøy</td>
</tr>
<tr>
<td>eggkurve</td>
<td>klootilde mellom to sirkler hvor den ene sirkelen i sin helhet ligger innenfor den andre, og hvor sentrene ikke er sammenfallende</td>
</tr>
<tr>
<td>enfelts veg</td>
<td>veg med bare ett kjørefelt bestemt for trafikk i begge retninger</td>
</tr>
<tr>
<td>envegskjøring</td>
<td>trafikkregulering som innebærer at det i en veg eller gate bare tillates trafikk i en kjøreretning</td>
</tr>
<tr>
<td>erosjon</td>
<td>utgravning (silasje) forårsaket av naturen</td>
</tr>
<tr>
<td>fall, resulterende</td>
<td>resultanten av lengdefall og tverrfall. Kan beregnes som hypotenusa i en trekant der vegens lengdefall og tverrfall er framstilt som kAtAter</td>
</tr>
<tr>
<td>fanggrøft</td>
<td>utvidelse av grøft i fjellskjøring for å gi plass for nedfall av småstein</td>
</tr>
<tr>
<td>faremoment</td>
<td>et punkt i tverrprofil som vil være farlig å kjøre på, eventuelt kjøre utover. F.eks. høye fjellinger</td>
</tr>
<tr>
<td>fartsgrense</td>
<td>høyeste (eller laveste) tillatte fart på en vegstrekning</td>
</tr>
<tr>
<td>fartsnivå</td>
<td>representativ verdi for fart langs en vegstrekning eller i et snitt på vegen. Aktuelt nivå kan være 85% fra til</td>
</tr>
<tr>
<td>fartsprofil</td>
<td>grafisk framstilling av fartsnivå langs en veglinje</td>
</tr>
<tr>
<td>fasadeisolerer</td>
<td>tiltak for å redusere støynivå i stayutsatte boliger langs en trafikkåre. Tiltakene er knyttet til bedre isolering av boligene</td>
</tr>
<tr>
<td>fasadelinje</td>
<td>linje som angir forkant av hus langs en veg eller gate</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>faseplan</td>
<td>oversikt over hvilke trafikkstrømmer i et vegkryss som kan få grønt lys samtidig og i hvilken rækkefølge trafikkstrømmene avvikles</td>
</tr>
<tr>
<td>fellesareal</td>
<td>areal som er utformet slik at arealet kan brukes både til opphold, lek og trafikk. Slike areaal er knyttet til boligveger og er utformet slik at biltrafikken avvikles med fart lavere enn 15 knvt</td>
</tr>
<tr>
<td>fellesavkjørsel</td>
<td>felles avkjørsel til flere aktiviteter som er lokalisert langs en veg</td>
</tr>
<tr>
<td>feltbredde</td>
<td>bredde av kjørefelt</td>
</tr>
<tr>
<td>ferdelsbredde (på fortjau)</td>
<td>den fri bredde som er tilgjengelig for avvikling av trafikk på en trafikkåre separat</td>
</tr>
<tr>
<td>filterfelt</td>
<td>separat svingfelt utenom plankryss. Anlegges gjerne for åprioritere overordnede trafikkstrømmer i rundkjøringen hvor det kan bli kapasitetsproblem</td>
</tr>
<tr>
<td>firefelts veg</td>
<td>veg/gate med fire gjennomgående kjørefelt</td>
</tr>
<tr>
<td>fjerfelts veg</td>
<td>veg med flere enn to gjennomgående kjørefelt i hver retning, med eller uten fysisk skille mellom kjørefelt bestemt for trafikk i motsatt kjøreretning</td>
</tr>
<tr>
<td>flettestrekning</td>
<td>strekning hvor vegen innsnevres med ett kjørefelt. Over denne strekning må trafikken i de to felt som går over i ett felt tilpasses hvorandre med fletting</td>
</tr>
<tr>
<td>fletting</td>
<td>to kjørefelt føres sammen til ett med gjensidig tilpasning i samvar med trafikkreglenes bestemmelser</td>
</tr>
<tr>
<td>forbikjøringsfelt</td>
<td>ekstra kjørefelt for forbikjøring, f eks. i stigninger</td>
</tr>
<tr>
<td>forbikjøringsssikt</td>
<td>minste sikt en motorvognfører må ha framover en veg mot møtende trafikk i det øyeblikk han ønsker å begynne en forøvrig og trygg forbikjøring av et annet kjøretøy</td>
</tr>
<tr>
<td>forhave</td>
<td>grøntarealet mellom bebyggelse i et byområde og fortuuet</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>forkjøreskryss</td>
<td>kryss hvor den ene eller flere av tillartene er pålagt vikeplikt ved trafikksett</td>
</tr>
<tr>
<td>forkjørerveg</td>
<td>veg hvor kryssende, eventuelt innsvingende trafikk er pålagt vikeplikt ved trafikksett</td>
</tr>
<tr>
<td>forttau</td>
<td>del av veg reservert for gående. Ligger høyere enn kjørebanen og er adskilt fra denne med kantstein. Se gangbane</td>
</tr>
<tr>
<td>fotgjenger</td>
<td>gående trafikkant</td>
</tr>
<tr>
<td>fri vegstrekning</td>
<td>angir den del av vegnettet som ligger utenfor kryssområdene</td>
</tr>
<tr>
<td>fullkanalisert kryss</td>
<td>kryss hvor det er kanalisering i alle tillartene til krysset</td>
</tr>
<tr>
<td>funksjon</td>
<td>angir den type trafikk vegen skal avvikle</td>
</tr>
<tr>
<td>fylkesveg</td>
<td>offentlig veg med fylkesutvalget som vegmyndighet. Vegmyndighet kan delegeres til fylkesvegstyret eller til vegsjef og formannskap</td>
</tr>
<tr>
<td>fysisk kanalisering</td>
<td>bruak av opphøyde trafikkøyere for å lede trafikken i bestemte kjørefelt eller påbestemt måte. Trafikkøyene skal være fysiske, ikke malt</td>
</tr>
<tr>
<td>gang/sykkelveg</td>
<td>veier for fotgjengere og syklistere, adskilt fra motorisert trafikk</td>
</tr>
<tr>
<td>gangfelt</td>
<td>oppmerket felt for fotgjengere</td>
</tr>
<tr>
<td>gangfelt, opphøyet</td>
<td>gangfelt som er bygd opp slik at det fysisk ligger høyere enn kjørebanen</td>
</tr>
<tr>
<td>gate/løp</td>
<td>det areal som er tilgjengelig for avvikling av trafikk i en gate</td>
</tr>
<tr>
<td>gateletun</td>
<td>område som fortrinnsvis er beregnet til opphold og lek hvor trafikk med kjøretøyer har begrenset omfang</td>
</tr>
<tr>
<td>gjennomgangstrafikk</td>
<td>del av en trafikkstrøm som verken har start eller mål i det definerte planområdet hvor trafikkstrømmen befinner seg</td>
</tr>
<tr>
<td>græft, lukket</td>
<td>græft hvor vannet føres i nedgravd rør</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>grøft, åpen</td>
<td>grøft hvor vannet fører på overflaten</td>
</tr>
<tr>
<td>grønn bølge</td>
<td>samordning av signalanleggene i kryss langs en vegstrekning slik at en ved kjøring langs setter vegen med konstant fart kan passere kryssene på grønt</td>
</tr>
<tr>
<td>gågate</td>
<td>gate normalt reservert for fotgjengere og syklister</td>
</tr>
<tr>
<td>"harnmer"</td>
<td>spesiell utforming av en snuplass</td>
</tr>
<tr>
<td>hankkryss</td>
<td>planskt kryssing mellom primærvæg og sekundærveg der rampen(e) kobles til primær- og sekundærveg med plankryss (T-kryss)</td>
</tr>
<tr>
<td>havarilomme</td>
<td>eget areal, lommer, spesielt beregnet for hensetting av kjøretøy som er havarert, f.eks. motorstopp</td>
</tr>
<tr>
<td>hinder</td>
<td>nærmere definert gjenstand som befinner seg i, eller i nærheten av kjørebanen</td>
</tr>
<tr>
<td>hjørneavrunding</td>
<td>utforming av kjærebanekant i tilknytning til kryss</td>
</tr>
<tr>
<td>holdeplass</td>
<td>areal, plass, som oftest beliggende inntil kjørebanen og som er beregnet for av- og påstigning til kollektivtransport</td>
</tr>
<tr>
<td>horizontalgeometri</td>
<td>geometri for horisontalkurvaturan</td>
</tr>
<tr>
<td>horisontalkurvatur</td>
<td>veglinjas geometriske elementer i horisontaltraseen</td>
</tr>
<tr>
<td>horisontalkurve</td>
<td>kurve i vegens horisontalprosjeksjon</td>
</tr>
<tr>
<td>horisontalkurveradius</td>
<td>radius i en sirkelbue i vegens horisontalprosjeksjon</td>
</tr>
<tr>
<td>hovedrastepllass</td>
<td>rastepllass som skal gi de vegførende mulighet til en noe længer rast og som er utrustet til en relativt høyere standard med mer romslig geometri. Toalettmuligheter bør forefinnes. Avstanden mellom hovedrasteplasser bør være ca. 45 km</td>
</tr>
<tr>
<td>hovedveg</td>
<td>overordnet veg i et trafikkdifferensiert vegsystem</td>
</tr>
<tr>
<td>hovedvegtilfart</td>
<td>arm til primærvægen i et vegkryss</td>
</tr>
<tr>
<td>hump</td>
<td>fartsreduiserende tiltak</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>hytteområde</td>
<td>område hvor arealene i det vesentligste er knyttet til hytter og fritidshus</td>
</tr>
<tr>
<td>høybrekk</td>
<td>konveks vertikal kurve, bakketopp. Kjennetegnes ved at vertikalvinkelproduktet ligger over veglinja</td>
</tr>
<tr>
<td>høybrekkskurve</td>
<td>vertikal kurve ved høybrekk</td>
</tr>
<tr>
<td>høybrekksradius</td>
<td>radius i tilknytning til et høybrekk</td>
</tr>
<tr>
<td>høfartsveg</td>
<td>veger hvor det er et høyt fartsnivå</td>
</tr>
<tr>
<td>høyde, fri</td>
<td>minste høyde mellom kjørebane og overliggende hinder. Ved skilting tas det hensyn til en viss reservehøyde pga. snø, tale o.l.</td>
</tr>
<tr>
<td>høyersvingefelt</td>
<td>avsvingningsfelt til høyre for gjennomgående kjøreløp</td>
</tr>
<tr>
<td>indre sone</td>
<td>angir den indre del av en vegtunnel i lysteknisk sammenheng</td>
</tr>
<tr>
<td>industriadkomst</td>
<td>adkomst til arealer som i det vesentligste er disponert til industrivirksomhet</td>
</tr>
<tr>
<td>industriområde</td>
<td>område som i det vesentligste er disponert til industriområder</td>
</tr>
<tr>
<td>innkjøringsbredde</td>
<td>kjørebanebredde på tilfarten til en rundkjøring like foran vikelinjen</td>
</tr>
<tr>
<td>innkjøringsradius</td>
<td>radius på hjerneavrendingen ved innkjøringen til en rundkjøring</td>
</tr>
<tr>
<td>inngangssone</td>
<td>angir den del av tunnelen som ligger umiddelbart innenfor tunnelportalen. Lengden vil variere mellom 40 og 75 m avhengig av fartsgrensen og er definert av hensyn til belysningen</td>
</tr>
<tr>
<td>innkjøringsvinkel</td>
<td>angir tilsøkningsvinkel til en rundkjøring</td>
</tr>
<tr>
<td>innspenning</td>
<td>brukes for å angi den bredden vegen bør ha utenfor rekkverkstolpen for at denne ikke skal gi etter ved påkjøring</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>innsvingssikt</td>
<td>sikt langs primaørveg i tilknytning til et kryss slik at innsvingende trafikk ikke skal sjøvere trafikk på primaørvegen ved innkjøring på primaørvegen</td>
</tr>
<tr>
<td>jetfase</td>
<td>fase hvor forurensat luft fra tunnelen blåses rett ut</td>
</tr>
<tr>
<td>kanalisering</td>
<td>tiltak for å lede trafikken i bestemte kjørefelt eller på bestemt måte (trafikkøy, oppmerking)</td>
</tr>
<tr>
<td>kantlinje</td>
<td>linje som markerer kjørebanens ytterkant</td>
</tr>
<tr>
<td>kantstein</td>
<td>stein som settes for å avgrense trafikkøy, fortau, midtdeler etc. Vanlige materialer er granitt, betong eller asfalt</td>
</tr>
<tr>
<td>kantstein, avvisende</td>
<td>kantstein som er utformet med en rett eller tilnærmet rett kant (3:1-5:1) mot kjørebanen</td>
</tr>
<tr>
<td>kantstein, ikke-avvisende</td>
<td>kantstein som er utformet slik at den ved påkjøring av kjøreøy reduserer faren for skade på kjøreøy og annen trafikk på veien</td>
</tr>
<tr>
<td>kantsteinsklaring</td>
<td>klaring mellom kantstein og teoretisk kjørebanekant</td>
</tr>
<tr>
<td>kantsteinsparkering</td>
<td>parkering på vegareal mot kantstein/ fortau</td>
</tr>
<tr>
<td>kapasitet</td>
<td>den største trafikk mengde over en gitt tidsperiode som kan avvikles under gitte veg- og trafikkforhold</td>
</tr>
<tr>
<td>kjørebane</td>
<td>den del av en veg som består av ett eller flere kjørefelt, som ligger irrtill hverandre og i samme plan</td>
</tr>
<tr>
<td>kjørebanekant</td>
<td>angir begrensning av kjørebanen, dvs. overgang mellom kjørebane og skulder</td>
</tr>
<tr>
<td>kjøreart</td>
<td>forholdet mellom kjørt veglengde og effektiv kjøretid for en enkelt trafikkant, inklusive stans forårsaket av trafikkforholdene</td>
</tr>
<tr>
<td>kjørefelt</td>
<td>den del av en veg som er bestemt for en vognrekke</td>
</tr>
<tr>
<td>kjørefeltlinje</td>
<td>linje på kjørebanen som markerer skille mellom flere kjørefelt for trafikk i samme retning. Når kjørefeltlinje er fullt opptrukket, kalles den sperrelinje og indikerer forbud mot kryssing</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>kjøremåte A</td>
<td>dimensjonerende kjøretøy kan kjøre med dimensjonerende fart på fri vegstrekning, og under normale forhold skal framkommeligheten være knyttet til bruk av eget kjørefelt. I kryss vil farten være 15 km/t. Snuing skal kunne utføres uten rygging.</td>
</tr>
<tr>
<td>kjøremåte B</td>
<td>dimensjonerende kjøretøy må kjøre med en hastighet lavere enn dimensjonerende fart på fri vegstreking og under 15 km/t i kryss. I kurver og kryss kan det være aktuelt å ta i bruk deler av annet kjørefelt og/eller skulder. Ved suning kan rygging være nødvendig.</td>
</tr>
<tr>
<td>kjøretøy, lett</td>
<td>personbil, varebil og minste type lastebil, med kjøreegenskaper lik personbilenas</td>
</tr>
<tr>
<td>kjøretøy, tung</td>
<td>busser og lastebiler med tvingehjul på bakakselen. Tung bil kan omregnes til personbilenheter</td>
</tr>
<tr>
<td>kjøretøyhøyde</td>
<td>høyden til dimensjonerende type kjøretøy</td>
</tr>
<tr>
<td>kjøretøytypetype (typekjøretøy)</td>
<td>angir hvilke representutive kjøretøy som det vil være aktuelt å dimensjonere for</td>
</tr>
<tr>
<td>klotoid</td>
<td>overgangskurve hvor krumningen tittar eller avtar linsertrt og kurvelengden</td>
</tr>
<tr>
<td>klotoidparameter</td>
<td>faktor som betegner forsterrelsen i forhold til en enhetsklotoid</td>
</tr>
<tr>
<td>kleverbladkryss</td>
<td>toplinkryss med direkte fart rampe og sløyfe i hver av de fire kvadranter mellom de kryssende veger</td>
</tr>
<tr>
<td>kollektivfelt</td>
<td>kjørefelt hvor det bare er tillatt for kollektivtrafikk, f.eks. sporvogn, buss og drosje</td>
</tr>
<tr>
<td>kollektivgate</td>
<td>gate hvor det bare er tillatt for kollektivtrafikk, f.eks. sporvogn, buss og drosje</td>
</tr>
<tr>
<td>kollektivtrafikk</td>
<td>transport av trafikanter i større trafikkenheter, f.eks. bane, buss og trikk</td>
</tr>
<tr>
<td>kollektivtrasé</td>
<td>egen trasé beregnet for kollektive transportmidler</td>
</tr>
<tr>
<td>kommunal veg</td>
<td>offentlig veg hvor formannskapet (eller den formannskapet bemyndiger) er vegmyndighet</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>konfliktområde</td>
<td>område som inneholder ett eller flere konfliktpunkter</td>
</tr>
<tr>
<td>konfliktpunkt</td>
<td>krysningspunktet mellom kryssende eller konvergerende trafikkstrømmer</td>
</tr>
<tr>
<td>kontrakurve</td>
<td>to nabokurver (sirkelkurver) som krummer i motsatt retning</td>
</tr>
<tr>
<td>kontrast, negativ</td>
<td>når vegbelysningen er slik at hindringer på kjørebanen og fotgjengere opptrer som mørke silhuetter mot en lysere bakgrunn</td>
</tr>
<tr>
<td>kontrast, positiv</td>
<td>når vegbelysningen er slik at hindringer er lyse mot en mørk bakgrunn</td>
</tr>
<tr>
<td>korttidsparkering</td>
<td>parkering hvor maksimal tillatt parkeringstid er 1 døgn</td>
</tr>
<tr>
<td>kryss</td>
<td>sted hvor veg munner ut i eller krysser annen veg</td>
</tr>
<tr>
<td>kryss, fullkanalisert</td>
<td>kryss hvor det i alle tilfarter til krysset er kanalisering</td>
</tr>
<tr>
<td>kryss, fjerplan</td>
<td>generelle betegnelser på kryss hvor hovedtrafikkstrømmene ikke kan kryssa hverandre i plan. Kontakt mellom hovedtrafikkstrømmene skjer ved ramper</td>
</tr>
<tr>
<td>kryss, planskilt</td>
<td>kryss hvor hovedtrafikkstrømmen ikke kan kryssa hverandre i plan. Kontakt mellom hovedtrafikkstrømmene skjer ved ramper</td>
</tr>
<tr>
<td>kryss, signalregulert</td>
<td>kryss hvor de ulike svingebevegelsene er regulert ved trafikklysneraler</td>
</tr>
<tr>
<td>kryss, ukanalisert</td>
<td>kryss hvor det ikke i noen av tilfartene er fysiske eller malte øyer for å lede/separere trafikken</td>
</tr>
<tr>
<td>kryss, uregulert</td>
<td>kryss hvor ingen av tilfartene er skiltet med vikeplikt eller signalregulert. Den generelle regel om vikeplikt for trafikk fra høyre gjelder</td>
</tr>
<tr>
<td>kryss, vikepliktsregulert</td>
<td>kryss hvor den ene eller flere av tilfartene har vikeplikt overfor andre trafikkstrømmer regulert med trafikkskilt</td>
</tr>
<tr>
<td>kryssingsvinkel</td>
<td>vinkelen mellom kryssende, divergerende eller konvergerende trafikkstrømmer</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>kryssområde</td>
<td>omfatter tilfartene til et vegkryss som ligger innenfor en avstand av 1,5 ganger stoppsikt (målt langs tilfartene) fra krysset</td>
</tr>
<tr>
<td>krysstype</td>
<td>ulike former for kryss</td>
</tr>
<tr>
<td>kryssutformning</td>
<td>geometrisk utformning av vegkryss</td>
</tr>
<tr>
<td>kuldeport</td>
<td>egen port som hindrer kald luft fra å trenge inn i tunnelen</td>
</tr>
<tr>
<td>landeveg</td>
<td>veg i områder med spredt bebyggelse og utenfor bebygd område</td>
</tr>
<tr>
<td>langsgående oppstilling</td>
<td>oppmerkede plasser langs kantstein</td>
</tr>
<tr>
<td>langtidsparkering</td>
<td>parkering hvor tillatt parkeringstid overstiger 1 døgn</td>
</tr>
<tr>
<td>lastebil, liten</td>
<td>dimensjonerende type kjøretøy med en total lengde på opptil 8,0 m. Gruppen omfatter smålastebiler, renholdsblur og vanlige bruobiler med unntak av stigebiler</td>
</tr>
<tr>
<td>lavbrekk</td>
<td>konkav overgang i linjeføringen i vertikalplanet. Kjønnetegnes ved at vertikalvinkelpunktet ligger under veglinja</td>
</tr>
<tr>
<td>lavbrekkskurve</td>
<td>vertikalkurve i lavbrekk</td>
</tr>
<tr>
<td>lavbrekksradius</td>
<td>krumningsradien i tilknytning til en lavbrekkskurve</td>
</tr>
<tr>
<td>ledeoey</td>
<td>trafikkøy som brukes i tilknytning til kryss for å lede trafikantene slik som forutsatt</td>
</tr>
<tr>
<td>leskur</td>
<td>skur som etter nærmere kriterier blir sett opp på bussholdeplasser</td>
</tr>
<tr>
<td>linjeføring</td>
<td>veglinjas kurvatur i horisontal- og vertikalplanet</td>
</tr>
<tr>
<td>liten rasteplass</td>
<td>rasteplass som normalt er utstyrt med avfallsbeholder og 2-4 bord. Liten rasteplass vil stort sett være aktuelt på avkjørsels regulerte veger</td>
</tr>
<tr>
<td>lokalveg</td>
<td>veg som er beregnet for den interne trafikk innen et begrenset område</td>
</tr>
<tr>
<td>lokalvegnnett</td>
<td>vegnett beregnet for lokaltrafikk</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lufting, halvtverr</td>
<td>ventilasjonsprinsipp hvor frisk luft tilføres gjennom hele tunnelen, mens brukt luft blåses ut av tunnelen i en retning</td>
</tr>
<tr>
<td>lufting, langs</td>
<td>ventilasjonsprinsipp hvor luften drives i en retning gjennom tunnelen</td>
</tr>
<tr>
<td>lufting, tverr</td>
<td>ventilasjonsprinsipp hvor frisk luft tilføres og brukt luft trekkes ut gjennom kanaler i tunnelen</td>
</tr>
<tr>
<td>luminans</td>
<td>angir hvor lys en flate er ved forholdet mellom lysstyrken, målt i candela, normalt fra flaten og flatens tilsynelatende størrelse i m²</td>
</tr>
<tr>
<td>luminansjevnhet, total midlere</td>
<td>forholdet mellom minste og midlere luminansverdi for vegdekket over en vegstrekning</td>
</tr>
<tr>
<td>luminansjevnhet, langsgående</td>
<td>forholdet mellom minste og største luminansverdi i lengderetningen av veien</td>
</tr>
<tr>
<td>lux</td>
<td>enhet for belysningsstyrke</td>
</tr>
<tr>
<td>manøvreringsareal</td>
<td>det areal som vil være nødvendig for å avvikle trafikken med dimensjonende type kjøreøy som forutsatt</td>
</tr>
<tr>
<td>midtdeler</td>
<td>areal (fysisk opphøyd eller mall) som skiller kjørebaner med trafikk i motsatte kjøreretninger</td>
</tr>
<tr>
<td>midtlinje</td>
<td>linje på kjørebanen som markerer skille mellom trafikk i motsatte kjøreretninger. Når midtlinje er fuült opptrukket, kallæs den sperrelinje og indikerer forbud mot kryssinger</td>
</tr>
<tr>
<td>miljøprioritert gjennomkjøring</td>
<td>bruk av eksisterende veg for avvikling av gjennomgangstrafikken ved at en reduserer konfliktene ved å prioritere botunksjon/loksamsomfunnet på bekostning av frammøommeligheten for biltrafikken ved ulike trafikktekniske og fysiske tiltak</td>
</tr>
<tr>
<td>minirundkjøring</td>
<td>rundkjøring hvor sentraløysa har en diameter under 4 m og normalt er overførbar</td>
</tr>
<tr>
<td>motor-A-veg</td>
<td>motorveg med adskilte kjørebaner og minst to kjørefelt i hver retning. Plankryss tillates ikke</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>motor-B-veg</td>
<td>motorveg med to eller flere kjørefelt. Den kan bygges med eller uten midtdel. Offentlige veger kan føres inn på eller krysse en motor-B-veg i samme plan</td>
</tr>
<tr>
<td>motorveg</td>
<td>vegtype uten direkte tilknytning til eiendommene langs vegen, og forbeholdt motorkjøretøy, nærmere spesiifisert i trafikkreglene</td>
</tr>
<tr>
<td>motorvogn</td>
<td>kjøretøy som blir drevet fram med motor</td>
</tr>
<tr>
<td>mykbehandling</td>
<td>god tilpasning mellom vegutforming og terræng</td>
</tr>
<tr>
<td>møteplass</td>
<td>spesielt anlagt og merket breddeutvidelse hvor kjøretøy kan komme forbi hverandre på entelts veger</td>
</tr>
<tr>
<td>møtesikt</td>
<td>fri sikt fram til et kjøretøy med nærmere angitt høyde og som kjører i motsatt retning i samme kjørefelt. Avstanden mellom de to kjøretøyene skal være til- strøkkelig til at begge kjøretøy skal kunne stanse i forsvarlig avstand fra hverandre</td>
</tr>
<tr>
<td>normalbredde</td>
<td>angir sum av kjørebanebredde og skulder for en veg i tunnel</td>
</tr>
<tr>
<td>nedlys</td>
<td>system hvor hver 3. eller 4. armatur lyser 30 min eller mer etter at strøm til veglys er avbrukt</td>
</tr>
<tr>
<td>nødstopp</td>
<td>omfatter de tifeller hvor en er nødt til å stoppe forlate kjøretøyet pga. en feil ved kjøretøyet</td>
</tr>
<tr>
<td>nødstrøm</td>
<td>dieselaggregat eller batteri backup som trer i kraft når normal strømforsyning er brukt</td>
</tr>
<tr>
<td>omløpatid</td>
<td>omfatter den tid som et signalanlegg bruker for å gi alle trafikkstrømmer grønt signal en gang. Enkelte strømmer kan få grønt flere ganger innenfor omløps- tiden</td>
</tr>
<tr>
<td>områdetype</td>
<td>beskrivelse av det landskap, bebyggelse som vegen går gjennom</td>
</tr>
<tr>
<td>omveg</td>
<td>den mer lengde som er forbundet ved alternativt vegvalg</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>opprettingskurve</td>
<td>del av kurveforløp i forbindelse med slyng. Opprettingskurven forbindes sirkelkurven i slyngen med tilstøtende vegelement</td>
</tr>
<tr>
<td>oppstillingsfelt</td>
<td>ekstra kjørefelt for ventende kjøretøy. Brukes fortrinnvis ved vegkryss, oppstillingsplass o.l.</td>
</tr>
<tr>
<td>optisk linjefering</td>
<td>vegutforming som gir trafikanten informasjon om det videre vegforløp</td>
</tr>
<tr>
<td>overgangskurve</td>
<td>kurve som binder sammen rettlinjer og/ eller sirkler. Brukes for å skape en kjærodynamisk og estetisk god linjefering</td>
</tr>
<tr>
<td>overgangssone</td>
<td>den belysningssonen i tunnel som ligger mellom innkjeringssonen og indre sone</td>
</tr>
<tr>
<td>overgangssted</td>
<td>sted hvor fotgjengere og syklister krysser veg/gate</td>
</tr>
<tr>
<td>overheng</td>
<td>a) fjell som henger ut over grøft eller vegkropp</td>
</tr>
<tr>
<td></td>
<td>b) avstanden mellom ytre forhjuls spor og kjøretoyets ytterbegrensning ved kjøring i kurve</td>
</tr>
<tr>
<td></td>
<td>c) avstanden mellom kjørebanebølget og vertikalproksjonen av en lysarmaturets midtpunkt. Gjelder veglysanlegg</td>
</tr>
<tr>
<td>overhøyde</td>
<td>kjørebanens tverrfall i eller i forbindelse med en kurve</td>
</tr>
<tr>
<td>overhøydersrampe</td>
<td>den veglengde som brukes til oppbygging av overhøyde</td>
</tr>
<tr>
<td>overvannsgråft (terrenggråft)</td>
<td>åpen gråft langs vegen utenfor skjeringsstoppen eller fyllingsfoten for avskjæring og bortledning av vann</td>
</tr>
<tr>
<td>parallellført retardasjonsfelt</td>
<td>avsvingningsfelt hvor deler av hastighetsreduksjonen vil foregå på et parallelt med tilhørende kjørefelt</td>
</tr>
<tr>
<td>parkering</td>
<td>enhver hensetting av kjøretøy selv om kjøren ikke forlater dette, unntatt kortest mulig opphold for av- og påstigning eller av- og påføring</td>
</tr>
<tr>
<td>parkeringsbås</td>
<td>felt avmerket i kjørebanen reservert for parkering</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>parkeringsdekning</td>
<td>angir antall oppstillingsplasser for kjøretøy og sykkel pr. boligenhet</td>
</tr>
<tr>
<td>primærsignal</td>
<td>det første signal for en traffikstrøm som trafikkantene i denne traffikstrømmen møter ved ankomsten til et signalregulert område</td>
</tr>
<tr>
<td>primærveg</td>
<td>den veg i et vegkryss som ikke er pålagt vikeplikt, og som gjerne har overordnet funksjon</td>
</tr>
<tr>
<td>rammeplan (for avkjørsler)</td>
<td>plan for hvilken holdning en skal ha til avkjørsler langs vegnettet. Planen er behandlet av politiske organ</td>
</tr>
<tr>
<td>randbebyggelse</td>
<td>spredt bebyggelse langs etter en veg</td>
</tr>
<tr>
<td>rasteplass</td>
<td>sted ved veien der trafikanter kan parkere og hvile</td>
</tr>
<tr>
<td>refuge</td>
<td>trafikkdefle. Betegnelsen refuge blir stort sett brukt i tilknytning til kryss i bymessig strek</td>
</tr>
<tr>
<td>reguleringssplan</td>
<td>detaljert grunnutnyttelsesplan av et større eller mindre område, utarbeidet etter bygningsloven</td>
</tr>
<tr>
<td>reisetid</td>
<td>den tid som et kjøretøy, en person behøver for å reise mellom to punkter når eventuelle stans undervegs er medregnet</td>
</tr>
<tr>
<td>rekkehusområde</td>
<td>område som stort sett er dominert av rekkehusbekjenning</td>
</tr>
<tr>
<td>rekkverk, mykt</td>
<td>rekkverk som vil være ettergivende ved påkjøringer</td>
</tr>
<tr>
<td>rekkverk, stivt</td>
<td>rekkverk som er konstruert slik at det ikke gir etter, bøyes ut ved påkjøring</td>
</tr>
<tr>
<td>repos</td>
<td>horisontalt platå i tilknytning til ramp og trapper</td>
</tr>
<tr>
<td>retarcasjonsfelt</td>
<td>fartredaksjonfelt hvor kjøretøyene retarderer i forbindelse med avkjøring</td>
</tr>
<tr>
<td>retningsfordeling</td>
<td>trafikkens fordeling etter kjøreretning</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>riksveg</td>
<td>offentlig veg med Samferdselsdepartementet og Vegdirektoratet som vegnyndighet</td>
</tr>
<tr>
<td>rumlefelt</td>
<td>felt som er utformet slik at det ved kjøring over i stor fart framkommer en rumlende lyd</td>
</tr>
<tr>
<td>rundkjøring</td>
<td>betegnelse for et vegkrys i plan der forbindelsen mellom de kryssende veier skjer ved anvegskjøring rundt en større eller mindre sentral trafikkey</td>
</tr>
<tr>
<td>ruterkryss</td>
<td>toplanskrys mellom to gjennomgående veier med ramp i alle kvadranter. Avkjøringsrampene fra hovedvegen ligger alltid foran krysset, påkjøringsrampene etter. På sekundærvegen vil de ulike trafikkstrømmene krysse hverandre. Krysstypen kalles også diamantkryss</td>
</tr>
<tr>
<td>rømningsveg</td>
<td>egen veg for rømning dersom det skulle oppstå farlige situasjoner som f.eks. brann. Begrepet er stort sett benyttet til tunneler</td>
</tr>
<tr>
<td>rømningslys</td>
<td>lyspunkter plassert ca. 1 m over kjørebanenivå i tunneler, som angir rømningsveg når hovedstrømmen er brukt</td>
</tr>
<tr>
<td>røykfase</td>
<td>fase hvor forurensset luft fra tunnelen påvirkes av vindforhold utenfor tunnelen</td>
</tr>
<tr>
<td>sagtannopstilling</td>
<td>oppstillingsform for busser på terminaler langs kantstein. Kantsteinsutformingen vil ha form som sagtann</td>
</tr>
<tr>
<td>samkjøring</td>
<td>signalregulering der to eller flere anlegg er styrt samkjørt (samordnet), ofte for å stablere grønne bølger</td>
</tr>
<tr>
<td>samtavkjørsel</td>
<td>adkomst til flere aktiviteter langs vegen er samlet i en felles adkomstveg</td>
</tr>
<tr>
<td>samleveg</td>
<td>forbindelsesveg mellom adkomstveg og hovedveg i et differensiert vegsystem</td>
</tr>
<tr>
<td>sammensatt klotoid</td>
<td>overgangskurve som er satt sammen av flere klotoider med ulik parameter</td>
</tr>
<tr>
<td>sammenstøtende klotoid</td>
<td>to klotoider som støter sammen i et punkt med samme radius</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>sekundærsignal</td>
<td>signalhode som viser samme signalbilde som primærsignalet, og som er plassert etter primærsignalet i kjøretøyningsområdet</td>
</tr>
<tr>
<td>sekundærveg</td>
<td>veg som har fått/ha en underordnet funksjon i forhold til en annen veg (primærveg). Begrepet brukes oftest i tilknytning til kryss og vegnett</td>
</tr>
<tr>
<td>senterlinje</td>
<td>angir den linje i tverrprofilen hvor lengdemåling og høydeangivelse er relatert til. For vanlig tofelts veg vil senterlinja ligge midt i kjørebanen</td>
</tr>
<tr>
<td>sentraløysystem</td>
<td>trafikkøy som er plassert midt i rundkjøringen. Sentralkjøring er ofte brukt i bygdeområder.</td>
</tr>
<tr>
<td>serviceanlegg</td>
<td>anlegg som gir trafikant anledning til avkobling, avslopp, oppladning samt å få dekket eventuelle behov for andre tjenester både før og etter kjøretøyet</td>
</tr>
<tr>
<td>sidefriksjonstaktor</td>
<td>angir hvilken friksjonsfaktor som kan anvendes til å holde et kjøretøy på sin plass i kjørebanen ved kjøring i kurve</td>
</tr>
<tr>
<td>sideklaring</td>
<td>angir klaring i tverrprofil mellom areal som er beregnet for trafikk og areal som ikke er beregnet for trafikk</td>
</tr>
<tr>
<td>sideveg</td>
<td>veg som kommer inn mot krysser en annen veg</td>
</tr>
<tr>
<td>signalanlegg</td>
<td>et styreapparat og vanligvis flere trafikkspenn som med manuelt eller automatisk styring regulerer eller varsler trafikk</td>
</tr>
<tr>
<td>signalprioritering</td>
<td>signalanlegg hvor de ulike tilfarter/trafikkstrømmer kan gis ulik prioritering ved bruk av trafikklyssignaler</td>
</tr>
<tr>
<td>signalregulerte kryss</td>
<td>kryss hvor ferdsselen i krysset er regulert av trafikk-signalanlegg</td>
</tr>
<tr>
<td>sikkerhetsavstand</td>
<td>angir den horisontale avstand fra kjørebanekant ut til et farlig hinder</td>
</tr>
<tr>
<td>sikt, fri</td>
<td>den største, sammenhengende, synlige veglengde mellom en vognfører som befinner seg midt i kjørefeltet og har en øyehøyde 1.1 m over kjørebanen, og et objekt med nærmere angitt høyde lenger framme i kjørebanen</td>
</tr>
</tbody>
</table>

408
<table>
<thead>
<tr>
<th>Begrep</th>
<th>Definisjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>siktstrekkant</td>
<td>område ved vegkryss som, etter nærmere angitte regler, sikrer bliføreren tilstrekkelig fri sikt</td>
</tr>
<tr>
<td>sirkulasjonsareal</td>
<td>angir det areal i en rundkjøring som er beregnet for trafikk. Sirkulasjonsarealet ligger utenfor sentrale småhusområde og er ytterst begrenset av rundkjøringens ytre diameter</td>
</tr>
<tr>
<td>skjermhøyde, effektiv</td>
<td>den del av støyskjermen som ligger over forbindelselinja mellom støykilden og mottaker</td>
</tr>
<tr>
<td>sløringsaluminens</td>
<td>et mål på tilsigeringen av det sentrale synsfelt som skyter, lys fra en blanding aluminens spres over øyet. Beregnes som en funksjon av belysningsstyrken fra blendingskilden på øyet, og vinkel mellom synsretningen og retningen mot den blandinge aluminens. Reduserer kontrastfølsomheten</td>
</tr>
<tr>
<td>skjæring</td>
<td>utgravning i opprinnelig terræng begrenset av skjæringsskråning og vegens planum (traubunn)</td>
</tr>
<tr>
<td>skulder</td>
<td>kjørbart felt som ligger inntil kjørebanen. Ytre skulder skal brukes til nødvendig parkering. Skulder skal ikke brukes for vanlig trafikk</td>
</tr>
<tr>
<td>skulderbredde</td>
<td>bredde av skulder. På oppmerket veg måles skulderbredde fra midt i kantlinje og til skulderkant. På grusveg måles skulderbredde så avstand mellom definert kjøreningskast og skulderkant</td>
</tr>
<tr>
<td>slyng</td>
<td>et linjeferingselement med horisontalkurveradius mindre enn 40 m og som har en retningsendring vesentlig større enn 90 grader</td>
</tr>
<tr>
<td>slyngklasse</td>
<td>inndeling av vegnettet i ulike klasses etter kjørebanebredde utfra hvilke typekjøretøy som skal kunne møtes i slyngen</td>
</tr>
<tr>
<td>sløyfe</td>
<td>rampe i et fjerplankryss som gjør det mulig å overføre trafikk fra den ene veugen og videre til venstre langs den andre, bare ved å svinge til høyre</td>
</tr>
<tr>
<td>småhusområde</td>
<td>område som i det vesentligste er bygd ut/skal bygges ut med enkeltstående hus</td>
</tr>
<tr>
<td>snusisje</td>
<td>eget areal spesielt beregnet for å snu kjøretøy i tunnel</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>snuplass</td>
<td>plass som er beregnet for snuing av kjøretøy</td>
</tr>
<tr>
<td>snøoppplag</td>
<td>areal beregnet for oppplag/lagring av snø</td>
</tr>
<tr>
<td>sommerdøgntrafikk, SDT</td>
<td>den totale trafikkmenge (kjt) som passerer et snitt av en veg i juni, juli og august dividert med 365/4</td>
</tr>
<tr>
<td>spillingstaktor</td>
<td>en av flere faktorer som beskriver vegdekkens lys-</td>
</tr>
<tr>
<td></td>
<td>tekniske egenskaper. Er et mål på den delen av</td>
</tr>
<tr>
<td></td>
<td>luminansen som utgjøres av spillingens refleksjon</td>
</tr>
<tr>
<td>sperrelinje</td>
<td>fullt opptrukket kjørefeilinje som angir forbud mot å</td>
</tr>
<tr>
<td></td>
<td>krysse eller berøre linje</td>
</tr>
<tr>
<td>sporingsbredde</td>
<td>angir den økning i bredde som et kjøretøy vil bestå-</td>
</tr>
<tr>
<td></td>
<td>legge ved kjøring i kurve pga. at forhjul og bakhjul ikke fører samme</td>
</tr>
<tr>
<td></td>
<td>kjørespor i kurver</td>
</tr>
<tr>
<td>sporingskurve</td>
<td>kurver som beskriver breddebehovet som et kjøretøy</td>
</tr>
<tr>
<td></td>
<td>vil ha ved kjøring i kurver</td>
</tr>
<tr>
<td>spredd bebyggelse</td>
<td>omfatter områder utenom byer og tettsteder og</td>
</tr>
<tr>
<td></td>
<td>områder med randbebyggelse</td>
</tr>
<tr>
<td>stamveg</td>
<td>veg som inngår i det definerte overordnede</td>
</tr>
<tr>
<td></td>
<td>gjennomgående riksvegnettet i landet</td>
</tr>
<tr>
<td>standardklasse</td>
<td>beskriver vegens funksjon og tekniske kvalitet ut fra</td>
</tr>
<tr>
<td></td>
<td>vegtype og utbyggningsgraden til det området vegen</td>
</tr>
<tr>
<td></td>
<td>går gjennom</td>
</tr>
<tr>
<td>stigningsgrad</td>
<td>kjørebanens hælning i lengderetningen. Sett fram-</td>
</tr>
<tr>
<td></td>
<td>over i kjøderetningen regnes stigningsgraden som</td>
</tr>
<tr>
<td></td>
<td>positiv i stigning og negativ i fall</td>
</tr>
<tr>
<td>stigningsendring</td>
<td>den algebraiske differanse mellom stigningsgraden i</td>
</tr>
<tr>
<td></td>
<td>to etterfølgende stigninger</td>
</tr>
<tr>
<td>stoppested</td>
<td>angir sted for busstopp hvor bussen stopper i kjøre-</td>
</tr>
<tr>
<td></td>
<td>banen. Stoppstedet er skiltet med øget skilt for</td>
</tr>
<tr>
<td></td>
<td>busstopp</td>
</tr>
<tr>
<td>stoppssikt</td>
<td>fri sikt, fra biførers øye og fram til et objekt med en</td>
</tr>
<tr>
<td></td>
<td>nærmere definert høyde, over den teoretisk minste</td>
</tr>
<tr>
<td></td>
<td>lengde som medgår til reaksjon og bremsing for å</td>
</tr>
<tr>
<td></td>
<td>stoppe et kjøretøy</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>støyinnvå</td>
<td>angir "mengde" støy som et område blir utsatt for. Støyinnvå måles i dBA</td>
</tr>
<tr>
<td>støyskjerm</td>
<td>konstruksjon, f eks, av tre eller betong, som bryter den rette linje mellom støykilden og støymottaker, og som mer eller mindre absorberer lydbølgen</td>
</tr>
<tr>
<td>støyvoll</td>
<td>opphevd terrengeformasjon som bryter den rette linje mellom støykilden og støymottaker, og som mer eller mindre absorberer lydbølgen</td>
</tr>
<tr>
<td>svingfelt, høyre</td>
<td>avviningningsfelt som ligger til høyre for gjennomgående kjørefelt sett i kjøreretningen</td>
</tr>
<tr>
<td>svingfelt, venstre</td>
<td>avviningningsfelt som ligger til venstre for gjennomgående kjørefelt sett i kjøreretningen</td>
</tr>
<tr>
<td>T-kryss</td>
<td>treermet vegkryss hvor de tre vegarmene tilnærmet danner en T</td>
</tr>
<tr>
<td>takprofil</td>
<td>tverrprofilutforming som vanligvis blir brukt på rettlinje</td>
</tr>
<tr>
<td>tangentinnrykk</td>
<td>angir sideforskyvning av sirkelkurven i en slyng i forhold til tilstøtende elementer</td>
</tr>
<tr>
<td>terminal</td>
<td>a) passasjerterminal. Sted for omstigning til rutegående kollektivt transportmiddel</td>
</tr>
<tr>
<td></td>
<td>b) godsterminal. Sted for inn- og utlevering samt opplasting av gods</td>
</tr>
<tr>
<td>terrem kostbart</td>
<td>område hvis kvaliteter er slik at inngrep i området vil være kostbart. Høye fjellskjæringer, tunnel og bruer vil oftest bli definert som kostbart terrenge og det kan være aktuelt å bruke reduserte bredder på en del elementer i tverrprofilen på disse steder</td>
</tr>
<tr>
<td>tett bobygelse</td>
<td>omfatter sentrumsområde, gater, kvartaler, sammenhengende fasaderekker og tung bygégelse</td>
</tr>
<tr>
<td>tettbygd strek</td>
<td>omfatter sentrumsområde, gater, kvartaler, sammenhengende fasaderekker og tung bygégelse</td>
</tr>
<tr>
<td>tettsted</td>
<td>et område hvor det bor over 200 mennesker, og der det ikke er mer enn 50 m mellom husene</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>tidsluke</td>
<td>tidsrommet mellom passeringstidspunktet over et bestemt snitt av vegen for fronten av ett kjøretøy til passeringstidspunktet for fronten av neste ankommede kjøretøy. Benyttes vanligvis for enkeltstrømmer på forkjørsveg</td>
</tr>
<tr>
<td>tilbakeblokking</td>
<td>situasjon en vil få dersom belastningen er så mye større enn kapasiteten at ventende kjøretøy vil besløssegge større deler av trafikanlegget og blokkere trafikanlegg som de nettopp har passert</td>
</tr>
<tr>
<td>tilfart</td>
<td>del av veg som leder trafikk inn i et vegkryss</td>
</tr>
<tr>
<td>tilfartskontroll</td>
<td>system som kan begrense antall kjøretøy som får passere et snitt av en tilfart i et vegsystem</td>
</tr>
<tr>
<td>tilslutning</td>
<td>situasjon hvor en trafikkstrøm skal tilknyttes en annen trafikkstrøm</td>
</tr>
<tr>
<td>timestrafikk, dimensjonerende</td>
<td>den trafikk mengde som passerer et snitt av en veg i løpet av en nærmere definert tid. Ofte representerer dimensjonerende tid den ca. 30 høyeste trafikkete tid i løpet av året</td>
</tr>
<tr>
<td>timestrøm (traffikkstrøm)</td>
<td>antall trafikkenheter som vil passere et snitt av en veg, eller et kryss, i løpet av en tid</td>
</tr>
<tr>
<td>tofelts veg</td>
<td>veg hvor det er to gjennomgående kjørefelt</td>
</tr>
<tr>
<td>tomteområde</td>
<td>område som er lagt ut til tomter</td>
</tr>
<tr>
<td>toplankryss</td>
<td>flerplankryss hvor de kryssende veger ligger i to plan</td>
</tr>
<tr>
<td>trafikant</td>
<td>enhver som ferdes på veg, eller i kjøretøy på veg</td>
</tr>
<tr>
<td>trafikant, myk</td>
<td>ikke-motorisert trafikant, dvs. fotgjengere, syklist</td>
</tr>
<tr>
<td>trafikantgruppe</td>
<td>angir ulike typer trafikanter</td>
</tr>
<tr>
<td>trafikk, blandet</td>
<td>omfatter trafikk med ulik karakter som f.eks. motorisert og ikke-motorisert trafikk, fjerntrafikk og lokaltrafikk</td>
</tr>
<tr>
<td>trafikk, kollektiv</td>
<td>transport av trafikanter i større trafikkenheter, f.eks. bane, buss, trikk</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>trafikkareal</td>
<td>areal som er beregnet for avvikling av trafikk</td>
</tr>
<tr>
<td>trafikkbelastning</td>
<td>antall kjøretøy eller personbiler som passerer et snitt på en veg i begge kjøreretninger i løpet av et angitt tidsrom</td>
</tr>
<tr>
<td>trafikkdeler</td>
<td>fysisk skille mellom trafikkstrømmer</td>
</tr>
<tr>
<td>trafikkmengde</td>
<td>trafikkens størrelse uttrykt i antall kjøretøy evtl. personbilenheter</td>
</tr>
<tr>
<td>trafikksaneringstiltak</td>
<td>tiltak for å effektivisere trafikksystemet med hensyn til trafikksikkerhet, trafikkavvikling og miljømessige aspekter</td>
</tr>
<tr>
<td>trafikstrøm</td>
<td>trafikk med likt kjøreområde, f.eks. samme svingbevegelse</td>
</tr>
<tr>
<td>trafikkstøy</td>
<td>støy framkommel pga. vegtrafikk</td>
</tr>
<tr>
<td>trafikkøy</td>
<td>område som er begrenset av kjørefelt på alle sider og som normalt ikke skal benyttes av kjøretøy. Trafikkøy kan være en forhøyning avgrenset med kantstein, eller malt på veien</td>
</tr>
<tr>
<td>transportfunksjon</td>
<td>veg som i det vesentligste er beregnet for å avvikle trafikk med lange reiseruter</td>
</tr>
<tr>
<td>transportrute, gjennomgående</td>
<td>veg som har som hovedfunksjon å avvikle trafikk som skal passere et nærmere definert område</td>
</tr>
<tr>
<td>trekantøy</td>
<td>trafikkøy som er fysisk utformet som trekant. Brukes vanligvis i tilknytning til høyresvingefelt</td>
</tr>
<tr>
<td>trekkører</td>
<td>rør som blir lagt ned i grunnen som det siden kan trekkes ledninger av ulike slag gjennom</td>
</tr>
<tr>
<td>trompetkryss</td>
<td>toplankryss med utforming som en "trompet"</td>
</tr>
<tr>
<td>truck-stopp</td>
<td>eget servicested spesielt tilrettelagt for tungtrafikktransport</td>
</tr>
<tr>
<td>tung ekvatorvogn</td>
<td>kjøretøy med tillatt totalvekt større enn 3,5 tonn</td>
</tr>
<tr>
<td>tunnelklasse</td>
<td>klassifisjonssystem for vegtunneler basert på lengde og ADT</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>tunnelportal</td>
<td>spesielt byggeverk som sammenbinder åpen veg og tunnel</td>
</tr>
<tr>
<td>tunnelprofil</td>
<td>snitt av tunnel vinkelrett på dens midtlinje</td>
</tr>
<tr>
<td>turproduksjon</td>
<td>antall tur/eris ut av og inn til et område</td>
</tr>
<tr>
<td>tverfall</td>
<td>kjørebanens helning på tvers av vegens lengdeakse</td>
</tr>
<tr>
<td>tverprofil</td>
<td>snitt av veg vinkelrett på vegens midtlinje</td>
</tr>
<tr>
<td>typekjørertøy</td>
<td>betegnelse for kjørertøy som brukes for dimensjonerings av veianlegg</td>
</tr>
<tr>
<td>typekjørertøy B</td>
<td>omfatter vanlige bybussere med lengde opptil 12,4 m. Store turistbussere dekkes av typekjørertøy ST eller VT</td>
</tr>
<tr>
<td>typekjørertøy L</td>
<td>omfatter vanlige lastebiler og brannbiler med stige. Kjørertøy lengde opptil 11 m</td>
</tr>
<tr>
<td>typekjørertøy LL</td>
<td>omfatter smålastebiler, renholdsbiler og vanlige brannbiler med unntak av stigebiler. Kjørertøy lengde inntil 8 m</td>
</tr>
<tr>
<td>typekjørertøy P</td>
<td>omfatter personbiler og varebiler med lengde inntil 4,8 m</td>
</tr>
<tr>
<td>typekjørertøy ST</td>
<td>omfatter semitrailer med lengde inntil 15,5 m</td>
</tr>
<tr>
<td>typekjørertøy VT</td>
<td>omfatter vogntog med lengde inntil 22 m</td>
</tr>
<tr>
<td>tømmingstid</td>
<td>den tid et kjørertøy bruker fra stopplinja til det har passert konfliktområdet</td>
</tr>
<tr>
<td>U-sving</td>
<td>180 grader sving på veg uten rygging</td>
</tr>
<tr>
<td>ukanaliserte kryss</td>
<td>kryss hvor det ikke er kanalisering i noen av tilfartene</td>
</tr>
<tr>
<td>ulykkesfrekvens</td>
<td>enhet som uttrykker ulykkeshappigheten, vanligvis i antall ulykker pr 1 mill. vognkilometer</td>
</tr>
<tr>
<td>ulykkesstetthet</td>
<td>enhet som uttrykker antall ulykker, vanligvis målt i antall ulykker pr km og år</td>
</tr>
<tr>
<td>undergang</td>
<td>planfri kryssing for ikke-motorisert trafikk av en bil-veg hvor den kryssende veg går under bilvegen</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>uregulerte kryss</td>
<td>kryss hvor ingen av tilfartene er skilt med vilkårlig eller signalregulert. Den generelle regel om vilkårlig for trafikk fra høyre gjelder</td>
</tr>
<tr>
<td>utblokkingsbøyle</td>
<td>anordning som gjør at rekkeverkskinna ikke blir direkte festet til rekkeverksstolpen</td>
</tr>
<tr>
<td>utbyggingsområde</td>
<td>område som er disponert for et spesielt formål, f.eks. bolig, industri</td>
</tr>
<tr>
<td>utfart</td>
<td>angir vegforløpet ut av en rundkjøring</td>
</tr>
<tr>
<td>vegbelysning</td>
<td>belysning innrettet for å belyse veg- og gategrunn</td>
</tr>
<tr>
<td>vegbredder</td>
<td>avstanden mellom vegkantene</td>
</tr>
<tr>
<td>vegens funksjon</td>
<td>angir hvilke oppgaver rent transportmessig en veg er tenkt skal løse</td>
</tr>
<tr>
<td>vegkant</td>
<td>skjæringslinja mellom ytre kant av skulder, fortau, sykkelefelt eller sykkelbane og skråning (grøtte- eller lylings-), mur, bygning e.l.</td>
</tr>
<tr>
<td>vegnett</td>
<td>sammenstilling av hvilke veiger som forefinnes i et område og hvilken funksjon de ulike veiger har</td>
</tr>
<tr>
<td>vegsystem</td>
<td>sammenstilling av hvilke veiger som forefinnes i et område og hvilken funksjon de ulike veiger har</td>
</tr>
<tr>
<td>vegtype</td>
<td>innedeling av vegnettet i ulike typer avhengig av den funksjon de ulike veiger skal ha</td>
</tr>
<tr>
<td>veksligning</td>
<td>kjøretøy i minst to ulike trafikkstrømmer som foretar feltskifte for å tilpasse seg det videre kjøreforløp. Veksligning vil primært være knyttet til kryssområder</td>
</tr>
<tr>
<td>vekslingsstrekning</td>
<td>strekning med minst to parallelle kjørefelt hvor veksligning skal kunne foregå</td>
</tr>
<tr>
<td>vekslingsstid</td>
<td>tiden fra en signalgruppe skifter til rødt (evt. blinkende grønt for gående) og til en konfliktendere signalgruppe skifter til grønt. Framkommer som forskjellig mellom tømmingstid og innkjøringsstid</td>
</tr>
<tr>
<td>vende kurve</td>
<td>overgangskurve mellom to motsatt rettede kurver (S-kurve)</td>
</tr>
<tr>
<td>Begrep</td>
<td>Definisjon</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>vertikalkurvatur</td>
<td>veglinjas geometriske elementer i vertikalplanet</td>
</tr>
<tr>
<td>vertikalkurve</td>
<td>kurve som brukes i vegens vertikalprosjeksjon</td>
</tr>
<tr>
<td>vertikalkurveradius</td>
<td>kurveradius for en vertikalkurve</td>
</tr>
<tr>
<td>vertikaltrasé</td>
<td>vegens linjeføring i vertikalplanet</td>
</tr>
<tr>
<td>vikolineje</td>
<td>linje på tvers av kjørebanen bestående av små trekantene med spissen pekende mot trafikken</td>
</tr>
<tr>
<td>vikepliktsregulering</td>
<td>situasjon hvor de ulike tilfartene eller svingebevegelsene i et kryss er regulert ved skilting av vikeplikt</td>
</tr>
<tr>
<td>vinkeloppstilling</td>
<td>utforming av oppstillingsplassene på en buss-terminal hvor oppstillingsplassen danner en vinkel på 45-100 grader med kjøreretning inn og ut av terminalområdet</td>
</tr>
<tr>
<td>visuell færing</td>
<td>vegens utforming og vegutstyr er slik at det sammen gir et konkret og orienterende bilde av det videre vegforløp</td>
</tr>
<tr>
<td>X-kryss</td>
<td>vegkryss hvor fire vegarmer møtes i samme plan</td>
</tr>
<tr>
<td>Y-kryss</td>
<td>trearmet vegkryss hvor de tre vegarmene tilnærmet danner en Y</td>
</tr>
<tr>
<td>ønskefart</td>
<td>den fart som en trafikant vil velge ut fra vegens geometri og valgt sikkerhetsnivå. Ønskefart vil samsvare med dimensjonende fart</td>
</tr>
<tr>
<td>øyehøyde</td>
<td>øyets høyde over kjørebanen for en representativ bilfører. I normalene er øyehøyden satt til 1,1 m</td>
</tr>
<tr>
<td>årsdøgntrafikk, ÅDT</td>
<td>det totale antall kjøretøy som passerer et snitt av en veg i løpet av ett år, dividert med 365</td>
</tr>
</tbody>
</table>