Vekstutvikling relatert til klima i et utynnet 60 år gammelt granbestand (Picea abies) på Ås

Growth development related to climate in a uncultivated 60 year old spruce-stand (Picea abies) in Ås

Marius André Myhre
Forord

Med denne masteroppgaven avslutter jeg mitt 2-årige masterstudie i skogbruk ved Institutt for Naturforvaltning (INA), Universitetet for miljø- og biovitenskap (UMB).

Min tid på UMB har vært lærerik, og jeg har møtt mange fine mennesker.

Jeg vil få takke min hovedveileder, Line Nybakken, som under hele prosessen har holdt hodet kaldt og funnet løsninger der jeg så problemer, og som alltid har vært forståelsesfull.

En stor takk går også til Oddvar Haveraaen, som var en viktig pådriver og deltaker i feltarbeidet, og som er en utrolig tålmodig person og en utømmelig kilde til kunnskap om skog.

Av andre som fortjener en takk er Ole Martin Bollandsås ved INA, for uvurderlig hjelp med statistikk, og Signe Kroken ved IMT for anskaffelse og hjelp med væredata, og Olav Christian Ljøner Hagen for hjelp i feltarbeidet.

Til slutt vil jeg få rette en stor takk til Cathrine Sussane Torjussen, Elisabeth Iversen og Wenche Nyberg for konstruktiv kritikk og hjelp til skriveprosessen.

Takk til alle venner og medstudenter, som har gjort studietiden min på Ås til en tid jeg vil minnes.

Universitetet for miljø- og biovitenskap

Ås, 15. desember 2013

Marius André Myhre
Sammendrag
Abstract
To study the correlation between ring width in spruce (Picea abies) and climate, ring widths from 184 spruce trees from an uncultivated spruce-stand with a high site-index in Ås municipality, Akershus country, was measured. The trees were divided into 6 diameter-classes, and a regression analyses was performed with temperature and precipitation as the independent variable. Ring width- and climate data from 1961 – 2012 were used. Ring-widths showed strongest correlation to temperature in the month of September, and were second-best correlated with May temperature. Ring-widths was strongest correlated to precipitation in May, and second-best correlated to June precipitation. Ring-widths of the current year showed strongest correlation to temperature in the month of September and precipitation in the month of May in the cross-correlation analysis. From the previous year’s growth season, ring-widths was strongest correlated to the temperature of September.
1. Innledning.. 1
2. Materiale og Metode .. 4
 2.1 Studieområdet... 4
 2.2 Feltarbeidet / Datainnsamling ... 4
 2.3 Lagring av stammeskiver .. 5
 2.4 Årringbreddemålinger .. 5
 2.5 Værdata .. 5
 2.6 Databehandling .. 6
 2.6.1 Bearbeiding av datamateriale ... 6
 2.6.2 Statistiske analyser ... 7
3. Resultat .. 8
4. Diskusjon .. 13
 4.1 Temperatur ... 13
 4.1.1 Enkeltmånedene mai - september ... 13
 4.1.2 Mai – august og juni - september .. 16
 4.1.3 Medio mai til medio september .. 17
 4.1.4 Temperatur og nedbør samlet .. 17
 4.2 Nedbør .. 18
 4.2.1 Enkeltmånedene mai - september .. 18
 4.2.2 Mai – august og juni - september .. 19
 4.2.3 Medio mai til medio september .. 20
 4.2.4 August- og september temperatur- og nedbør året før 21
5. Konklusjon .. 22
6. Litteraturliste .. 23
1. Innledning

Klimaet er i stadig forandring (Alfsen 2001; Bye m. fl. 2013), og klimaendringer har i flere tusen år påvirket skogbildet i Norge (Nybø 2010). Klimaet er i endring også i dag, og det er de forsterkede endringene det i dag er fokus på (Alfsen 2001; Larsen 2011). I følge FN's klimapanel skyldes de forsterkede endringene trolig menneskelig aktivitet ved utslipp av CO₂ (IPCC 2013). I rapporten av september 2013, kommer det fram at i de tre siste tiårene har blitt gradvis varmere enn de tidligere tiårene siden 1850 (IPCC 2013). Rapporten sier også at det trolig mellom 1983 – 2012 har vært den varmeste perioden på den nordligste halvkule siden 1400-tallet (IPCC 2013). Det har vært en økning i temperaturen i atmosfæren på 0,85 grader i perioden 1880 til 2102 (IPCC 2013), og temperaturstigningen kan bli mer enn 4 °C i perioden fram mot år 2100, hvis utsippene av klimagasser fortsetter økningen som i dag (Miljødirektoratet 2013).

Studiene som er nevnt over, presenterer resultater fra undersøkelser av klimaets påvirkning på årringbredder for større områder, over flere regioner. Jeg har derfor gjennomført denne studien for å undersøke hvordan lokale forhold kan skille seg fra et mer generelt bilde.

Målet med denne studien var å undersøke sammenhengen mellom de klimatiske faktorene temperatur og nedbør, i et utynnet granbestand i Ås kommune. Videre ville jeg undersøke hvordan de ulike klimatiske faktorene påvirket årringbredden både for enkeltmåneder, men også for hele vekstsesongen. Min hypotese var at både temperatur og nedbør korrelerer positivt med årringbredde, men at nedbør ville bety mest. Dette er fordi gran er etablert på hele Østlandet med alle dets temperaturvariasjoner, men virker til å trives best på fuktig mark.
2. Materiale og Metode

2.1 Studieområdet
Datamaterialet ble samlet inn i et utynnet granbestand på Norderås i Ås kommune, Akershus (N 59° 40.889', E 10° 45.885'). Bestandet er ca. 1,4 dekar stort.

Bestandet ble plantet i 1950 med barrotplanter og en planteavstand på 1,4 x 1,4 meter. Før planting var feltet anvendt til innmarksbeite, men ble omgjort til fordel for plantingen av et forsøk, som hadde som hensikt å undersøke forskjellige plantemetoder. Grantrærne ble bonitetert til G24 (Norsk institutt for Skog og Lanskap; Steinset m. fl. 1999), men uten noen klar vegetasjonstype. Feltet ligger i en sørvendt svak helling.

2.2 Feltarbeidet / Datainnsamling
Innsamlingen av data ble gjort fra midten av september til slutten av oktober 2012. Stammeskivene ble tatt ut ved brysthøyde (1.3 m) på felte trær. Borprøvene ble også tatt ut i brysthøyde fra de resterende trærne, til måling av årringbredder. Kun friske trær ble brukt som prøvetrær. Dette ble gjort fordi et tre som blir registrert tørt et gitt år, trolig har «dødd» trinnvis fram til det blir registrert som tørt, og derfor vil tilveksten bli påvirket.

Hvert enkelt tre ble under planting merket med et unikt nummer. Før felling ble hvert tre og merket i himmelretning sør med et skjær i barken i vertikal retning med motorsag, for å markere himmelretningen treet har vokst, til senere målinger. Etter at treet var felt, ble det strukket målebånd fra stubbeavskjær, som da var ved 0 cm på målebåndet, til enden av toppskuddet. Brysthøyde ved 1,3 meter ble målt 110 cm fra stammeavskjær, som en kompensasjon for stubbehøyden.

Borprøvene ble gjort i himmelretning nord mot sør retning, da dette var mest praktisk i forhold til arbeidsstilling for boriingen.
2.3 Lagring av stammeskiver
Stammeskivene ble lagret i et uisolert lagerbygg over vinteren i vedsekker, fram til målinger startet i januar. Borprøvene ble lagt i platebeholder, en plastbeholder med åpning i bunn og topp med adskilte rom beregnet for borprøver, med merking av trenummer for hver borprøve.

2.4 Årringbreddemålinger

2.5 Værdata
De kystnære områdene på Østlandet har om våren, mars til mai, en normal middeltemperatur på underkant av 5 °C. Sommertemperaturen, månedene juni – august, ligger rundt 15 °C, og høsten, september – november, har en normal sesongtemperatur på 8 °C. Vinteren, desember – februar, har en sesongtemperatur på Østlandet rundt 0 °C (Meteorologisk institutt).

2.6 Databehandling

2.6.1 Bearbeiding av datamateriale
Dokumentasjonen fra de tidligere oppfølgingene av bestandet (avgang og andre skader) ble benyttet til å fjerne trær som var enten registrert skadet ved et tidspunkt, eller som hadde stått ved siden av trær som har avgått. På den måten elimineres en mulig feilkilde, da dette ville være en ytre påvirkning på årringbredden som ikke er klimarelatert, som for eksempel effekten av mindre konkurranse som følge av at nabotreet dør. Trær som i papirene fra de tidligere feltregistreringer var merket som tørre eller glisne, ble også fjernet fra datamaterialet. Trær hvor individuelle årringbredder skilte seg markant ut i forhold til resten av trærne og gjennomsnittet, enten ved spesielt liten- eller mye vekst, ble fjerne fra datamaterialet. Der det lot seg gjøre, ble stammeskivene/borprøvene det var tvil om, målt på ny. Datamaterialet ble så inndelt i 6 diameterklasser, hvor klasseinndelingen ble bestemt rent matematisk etter antallet stammeskiver. Dette ble gjort for at hver diameterklasse skulle bli likt vektet. Antall trær representert i hver diameterklasse framkommer av Tabell 1.

Tabell 1: Antall trær representert for hver diameterklasse 1-6, med diameter i brysthøydediameter i centimeter (cm) og årstall for årringbredde.

<table>
<thead>
<tr>
<th>Diameterklasse</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter i brysthøyde (cm)</td>
<td>40,7 - 27,7</td>
<td>27,6 - 24,9</td>
<td>24,6 - 22,3</td>
<td>22,2 - 20,3</td>
<td>20,2 - 17,1</td>
<td>16,9 - 11,0</td>
</tr>
<tr>
<td>Antall trær</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>29</td>
<td>27</td>
</tr>
</tbody>
</table>

Det er tatt ut noe flere trær fra datamaterialet i diameterklasse 5 og 6, som relativt sett var for unge. Med det menes at alderen skilte seg tydelig fra resten av diametergruppen, og ble fjernet med hensyn til at gjennomsnittlig årringbredde for hvert år som skulle brukes. For alle klassene er året 1983 fjernet, grunnet manglende værdata i juli-måned.
2.6.2 Statistiske analyser

De statistiske analysene ble gjort i Minitab 16 (Minitab Incorporation, Pennsylvania, USA). Jeg utførte regresjonsanalyser, der årringbredde ble benyttet som responsvariabel, og et stigningstall og værdata som prediksjonsvariable. Et stigningstall ble benyttet som responsvariabel for å ta høyde for økende alder i bestandet. Gjennomsnittlig temperatur ble benyttet for månedene, mens sum per måned ble benyttet for nedbør. Etter at alle analysene var gjort, ble verdiene som Minitab 16 noterte som «unusual observations» fjernet fra datasettet, og analysene ble gjort på ny. Disse observasjonene ble merket for observasjoner som enten ga høy standardfeil, eller observasjoner hvor X-verdien hadde stor innflytelse.

3. Resultat
I vekstsesongen med enkeltmånedene mai til september, har nedbør i mai størst betydning for årringbredden (Tabell 3). Diametergruppene 2-5 viser signifikant, positiv korrelasjon (p \leq 0,05) med nedbør, mens diametergruppene 1 og 6 var positivt korrelert, men ikke signifikante. Alle signifikante korrelasjoner var over 58 (R>58), og diametergruppe 5 viste sterkest korrelasjon (r² = 69,4). Juni hadde ikke like stor betydning som mai, hvor kun 2 diametergrupper var signifikant, positivt korrelert, og også svakere korrelert med nedbør enn mai. I samme vekstsesong var temperaturen i september viktigst av månedene for årringbredden (Tabell 2). Diametergruppene 2, 3 og 4 viste sterkest positiv korrelasjon med september, og de var alle tre signifikante. Også her var mai representert, med diametergruppe 4 og 5 positivt korrelert med temperatur, og hvor begge var signifikante. Hverken juli eller august viste noen signifikante korrelasjoner med temperatur eller nedbør, men likevel var alle diametergruppene positivt korrelert.

Nedbør i tetraterm mai – august hadde størst betydning for årringbrede (Tabell 4), hvor diametergruppe 2, 3 og 4 alle var signifikant, positivt korrelert. For tetraterm juni – september var og alle korrelasjoner positive, men her var det ingen som var signifikante. Kun én diametergruppe var signifikant, positivt korrelert mot temperatur, og det var diametergruppe 2 med tetraterm juni – september.

Nedbør var viktigst i perioden 15. mai til 14. september, med to signifikant, positivt korrelerte diametergrupper (Tabell 5). Sterkest korrelasjon med nedbør av de signifikante diametergruppene viste diametergruppe 3 (r² = 60,8). Med temperatur var alle korrelasjoner positive, men ingen var signifikante.

Der temperatur og nedbør sammen ble korrelert med årringbredden, viste september-temperatur og mai-nedbør lik betydning for årringbrede, hvor diametergruppe 2 -5 viste positiv, signifikant korrelasjon med både temperatur og nedbør (Tabell 6a og Tabell 6b). Juni-nedbør viste seg ikke å ha like stor betydning, med 2 signifikante, positive korrelasjoner.

Korrelert med temperatur og nedbør året før, var september-temperatur av størst betydning for årringbrede (Tabell 7). Diametergruppe 2 -5 viste signifikant, positiv korrelasjon mot september-temperatur, men ingen signifikante korrelasjoner mot hverken september-nedbør eller august temperatur og nedbør.
Tabell 2: Årringbredde korreleret med temperatur for hver enkelte måned mai, juni, juli, august og september for alle diametergrupper 1-6, med p-verdi, r² og koeffisient. Uttevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diametergruppe</th>
<th>p-verdi</th>
<th>r²</th>
<th>Koeffisient</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konstant</td>
<td>År</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,365</td>
<td>0,455</td>
<td>0,915</td>
<td>0,745</td>
</tr>
<tr>
<td>2</td>
<td>0,072</td>
<td>0,772</td>
<td>0,433</td>
<td>0,137</td>
</tr>
<tr>
<td>3</td>
<td>0,084</td>
<td>0,878</td>
<td>0,987</td>
<td>0,61</td>
</tr>
<tr>
<td>4</td>
<td>0,035</td>
<td>0,765</td>
<td>0,922</td>
<td>0,558</td>
</tr>
<tr>
<td>5</td>
<td>0,021</td>
<td>0,517</td>
<td>0,778</td>
<td>0,222</td>
</tr>
<tr>
<td>6</td>
<td>0,745</td>
<td>0,634</td>
<td>0,401</td>
<td>0,342</td>
</tr>
</tbody>
</table>

Tabell 3: Årringbredde korreleret med nedbør for hver enkelte måned mai, juni, juli, august og september for alle diametergrupper 1-6, med p-verdi, r² og koeffisient. Uttevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diametergruppe</th>
<th>p-verdi</th>
<th>r²</th>
<th>Koeffisient</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konstant</td>
<td>År</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,813</td>
<td>0,138</td>
<td>0,107</td>
<td>0,834</td>
</tr>
<tr>
<td>2</td>
<td>0,003</td>
<td>0,237</td>
<td>0,277</td>
<td>0,829</td>
</tr>
<tr>
<td>3</td>
<td>0,005</td>
<td>0,036</td>
<td>0,237</td>
<td>0,975</td>
</tr>
<tr>
<td>4</td>
<td>0,005</td>
<td>0,046</td>
<td>0,326</td>
<td>0,924</td>
</tr>
<tr>
<td>5</td>
<td>0,003</td>
<td>0,306</td>
<td>0,405</td>
<td>0,714</td>
</tr>
<tr>
<td>6</td>
<td>0,114</td>
<td>0,762</td>
<td>0,344</td>
<td>0,293</td>
</tr>
</tbody>
</table>
Tabell 4: Årringbredde korrelert med både temperatur og nedbør for tetraterm mai – august og juni - september for alle diametergrupper 1- 6, med p-verdi, r^2 og koeffisient. Uthevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diameter – gruppe</th>
<th>p-verdi</th>
<th>r^2</th>
<th>Koeffisient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatur</td>
<td>Nedbør</td>
<td>Temperatur</td>
</tr>
<tr>
<td>1</td>
<td>0,502</td>
<td>0,766</td>
<td>0,751</td>
</tr>
<tr>
<td>2</td>
<td>0,724</td>
<td>0,024</td>
<td>0,017</td>
</tr>
<tr>
<td>3</td>
<td>0,673</td>
<td>0,239</td>
<td>0,004</td>
</tr>
<tr>
<td>4</td>
<td>0,597</td>
<td>0,183</td>
<td>0,004</td>
</tr>
<tr>
<td>5</td>
<td>0,914</td>
<td>0,106</td>
<td>0,054</td>
</tr>
<tr>
<td>6</td>
<td>0,337</td>
<td>0,175</td>
<td>0,758</td>
</tr>
</tbody>
</table>

Tabell 5: Årringbredde korrelert med både temperatur og nedbør for perioden 15. mai til 14. september for alle diametergrupper 1- 6, med p-verdi, r^2 og koeffisient. Uthevet skrift antyder signifikant p-verdi.
Tabell 6a: Årringbredde korrelert med både temperatur og nedbør for hver enkelte måned mai, juni, juli, august og september for alle diametergrupper 1-6, med p-verdi, r^2 og koeffisient, hvor denne tabellen viser resultat for temperatur. Uthevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diameter-Gruppe</th>
<th>p-verdi nedbør</th>
<th>r^2</th>
<th>Koeffisient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai</td>
<td>Jun</td>
<td>Jul</td>
</tr>
<tr>
<td>Mai</td>
<td>0,522</td>
<td>0,195</td>
<td>0,09</td>
</tr>
<tr>
<td>Juni</td>
<td>0,014</td>
<td>0,195</td>
<td>0,208</td>
</tr>
<tr>
<td>Juli</td>
<td>0,021</td>
<td>0,215</td>
<td>0,803</td>
</tr>
<tr>
<td>August</td>
<td>0,03</td>
<td>0,034</td>
<td>0,332</td>
</tr>
<tr>
<td>September</td>
<td>0,017</td>
<td>0,233</td>
<td>0,438</td>
</tr>
<tr>
<td>Juni</td>
<td>0,125</td>
<td>0,848</td>
<td>0,139</td>
</tr>
</tbody>
</table>

Tabell 6b: Årringbredde korrelert med både temperatur og nedbør for hver enkelte måned mai, juni, juli, august og september for alle diametergrupper 1-6, med p-verdi, r^2 og koeffisient, hvor denne tabellen viser resultat for nedbør. Uthevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diameter-Gruppe</th>
<th>p-verdi nedbør</th>
<th>r^2</th>
<th>Koeffisient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mai</td>
<td>Jun</td>
<td>Jul</td>
</tr>
<tr>
<td>Mai</td>
<td>0,283</td>
<td>0,777</td>
<td>0,543</td>
</tr>
<tr>
<td>Juni</td>
<td>0,469</td>
<td>0,527</td>
<td>0,308</td>
</tr>
<tr>
<td>Juli</td>
<td>0,46</td>
<td>0,511</td>
<td>0,671</td>
</tr>
<tr>
<td>August</td>
<td>0,258</td>
<td>0,405</td>
<td>0,906</td>
</tr>
<tr>
<td>September</td>
<td>0,114</td>
<td>0,368</td>
<td>0,941</td>
</tr>
<tr>
<td>Juni</td>
<td>0,88</td>
<td>0,682</td>
<td>0,157</td>
</tr>
</tbody>
</table>

Temperatur	År	Temperatur
12,1 | 2,566 | 7,79 | -2,65 | 4,34
8,369 | 0,570 | 5,085 | 5,554 | 5,476
5,6 | 4,153 | 3,92 | 4,343 | 16,535
5,063 | 1,098 | 5,26 | 17,874
5,757 | 0,625 | 8,615 | 17,621
1,219 | 2,765 | 11,42 | 3,483 | 6,318
Tabell 7: Årringbredde korreleret med temperatur i august og september året før, og med nedbør i august og september året før for alle diametergrupper 1-6, med p-verdi, r^2 og koeffisient. Uthevet skrift antyder signifikant p-verdi.

<table>
<thead>
<tr>
<th>Diametergruppe</th>
<th>p-verdi</th>
<th>r^2</th>
<th>Koeffisient</th>
<th>Temperatur</th>
<th>Nedbør</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Konstant</td>
<td>År</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aug Sept</td>
<td>Aug Sept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,533</td>
<td>0,09</td>
<td>0,589</td>
<td>0,976</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,349</td>
<td>0,008</td>
<td>0,798</td>
<td>0,604</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,759</td>
<td>0,033</td>
<td>0,479</td>
<td>0,992</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,729</td>
<td>0,025</td>
<td>0,519</td>
<td>0,921</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,22</td>
<td>0,009</td>
<td>0,82</td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,311</td>
<td>0,15</td>
<td>0,285</td>
<td>0,479</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>39,7</td>
<td>39,6</td>
<td>39</td>
<td>78,5</td>
<td>-13,2</td>
</tr>
<tr>
<td>Sept</td>
<td>44</td>
<td>48,1</td>
<td>48,1</td>
<td>228,3</td>
<td>47,5</td>
</tr>
<tr>
<td>Aug</td>
<td>185,6</td>
<td>292,31</td>
<td>233,58</td>
<td>-5,012</td>
<td>-4,3218</td>
</tr>
</tbody>
</table>
4. Diskusjon
Styrken i dette forsøket er det høye antallet prøvetrær, som gjør at prøveflaten er godt representert. Resultatene sier noe om hvordan de forskjellige diameterklassene har blitt påvirket av temperatur og nedbør. Men det er en begrensning ved materialet, og en skal derfor være forsiktig med å trekke konklusjoner ut ifra disse resultatene på en mer generell basis. Grunnen er at det kun er ett bestand det er hentet materiale fra. Bestandet har også en relativt høy bonitet, og det har ikke blitt behandlet gjennom ungskogpleie eller tynning, noe som i mer eller mindre grad kan ha innvirkning på resultatene.

Resultatene som blir presentert vil til en viss grad gli over i hverandre. Derfor er diskusjonen delt opp etter temperatur og nedbør, med de forskjellige analysene som underkapitler.

Målet med denne studien var å undersøke sammenhengen mellom de klimatiske faktorene temperatur og nedbør, i et utynnet granbestand i Ås kommune. Videre ville jeg undersøke hvordan de ulike klimatiske faktorene påvirket årringbredden både for enkeltmåneder, men også for hele vekstsesongen. Min hypotese var at både temperatur og nedbør korrelerer positivt med årringbredden, men at nedbør ville bety mest. Dette er fordi gran er etablert på hele Østlandet med alle temperaturvariasjoner, men virker til å trives best på fuktig mark.

4.1 Temperatur

4.1.1 Enkeltmånedene mai - september
Temperaturen i september var av størst betydning for årringbredde av enkelt månedene. Her viste 3 diametergrupper signifikante, positive korrelasjoner. Videre viste to diametergrupper signifikante, positive korrelasjoner med temperatur i mai. Også for de andre månedene i analysen, juni, juli og august, viste alle positive korrelasjoner med temperatur.

Den negative korrelasjonen med september, som vist av Andreassen m. fl. (2006), kan komme av et en økt temperatur leder til økt transpirasjon. Blir transpirasjonen fra trærne høyere enn
opptaket av vann fra bakken og fra nedbør, kan dette bli en begrensende faktor for vekst (Mäkinen m. fl. 2003). Ettersom temperatur i september viste seg å være positivt i mine resultater, tyder dette på at tilgangen til vann gjennom rotsystemet og eventuelt nedbør har vært god i bestandet.

Farrelly m. fl. (2011) fant og at trær som er etablert på arealer hvor det tidligere har vært en form for jordbruk, vil være mer produktive enn områder som tidligere ikke har blitt kulturpåvirket. I mitt tilfelle har bestandet blitt etablert på beitemark. Farrelly m. fl. (2011) argumenterer med at nitrogen er årsaken til dette, ved at tidligere jordbruk vil endre tilgjengelig nitrogen i jorda, med bedre effekt enn ved gjødsling. Igjen vil det ikke være grunnlag for å si at dette har betydning for en klimatisk påvirkning. De fant også at vindstyrke påvirket boniteten negativt (Farrelly m. fl. 2011). Bestandet i mitt datamateriale lå i en forsenkning nedenfor et jorde, med en kantsone bestående av en del lauvtrær mellom jordet og bestandet. Bestandet lå dermed forholdsvis skjermet for vinden. Det kan ikke utelukkes at dette har hatt en effekt, men det er ikke grunnlag for å si noe om hvor stor en eventuell effekt ville vært, da dette ikke er målt i forsøkene. Resultatene til Farrelly m. fl. (2011) er ikke direkte overførbare for bestandet i mine resultater, da det var snakk om sitka-gran for Irske forhold. Likevel kan det tenkes at noen av de liknende mekanismene kan påvirke norske forhold, og dermed medvirke til resultatene som presenteres her.

4.1.2 Mai – august og juni - september
4.1.3 Medio mai til medio september
I analysen for enkeltmånedene mai til september, viste temperaturen i september å ha mest betydning for årringbredden med 3 signifikante, positive korrelasjoner. Mai-temperatur viste 2 signifikante, positive korrelasjoner. Derimot viste ingen av diametergruppene en signifikant korrelasjon med temperatur når analysen for 15. mai til 14. september ble gjort, selv om alle korrelasjonene var positive. Det kan derfor virke som at det for perioden som helhet, er andre faktorer enn temperatur som betyr mest for årringbredde. Med det menes at selv om temperatur har en positiv effekt på årringbredden, er det andre faktorer det er mindre av som setter begrensninger for veksten på trærne. Plass kan være en faktor, da for eksempel kronesjiktet hadde et høyere potensiale til å utvikle seg enn det fikk ved denne tettheten.

4.1.4 Temperatur og nedbør samlet
I analysen hvor temperatur og nedbør sammen ble korrelert med månedene mai til september, sammenfaller resultatene i stor grad med resultatene av korrelasjonen med temperatur for enkeltmånedene mai til september, og nedbør for enkeltmånedene mai til september. Forskjellen i resultatet er når temperatur og nedbør sammen ble korrelert med mai til september. Mot temperatur i september viste 3 av enkeltmånedene signifikante korrelasjoner. Her, i kombinasjonen av temperatur og nedbør, viser 4 diametergrupper signifikante positive korrelasjoner. Som nevnt tidligere, kan dette resultatet tyde på at en forlengelse av vekstsesongen er positivt for årringbredden hos gran, og at i oppstarten av vekstsesongen (mai – juni) er nedbør viktig. Dette kan være for å kompensere for økt transpirasjon som kommer av økt temperatur og mer direkte sollys.
4.2 Nedbør

4.2.1 Enkeltmånedene mai - september

Nedbør i mai var av størst betydning for årringbredde av enkeltmånedene mai til september, hvor 4 av diametergruppene viste signifikant, positiv korrelasjon, og 2 av diametergruppene signifikant positiv korrelasjon med juni-nedbør. Også her, i likhet med analysen for temperatur mot enkeltmånedene, viste alle diametergrupper og måneder utelukkende positive korrelasjoner.

Den største betydningen av mai- og juni-nedbør kan ha sammenheng med at vekstsesongen starter etter vinterdvalen og temperaturen i lufta øker, som gir økt transpirasjon og derfor økt behov for opptak av vann, som diskutert over. Om jorda fortsatt er delvis frosset kan opptaket av vann bli vanskeligere, men når jorda har tint, får trærne dekket behovet for vann fra jorda.

Datamaterialet Mäkinen m. fl. (2003) har lagt til grunn er hentet fra 9-12 trær per prøveflate, fra 16 prøveflater for delt på sørvest- og Øst-Tyskland, Norge og Finland. Datamaterialet mitt er basert på 184 trær fra ett og samme bestand. Andreassen m. fl. (2006) har 3 trær per prøveflate, med 4 prøveflater innenfor hvert av 176 distrikt, fordelt på hele landet. Det kan innenfor mindre lokaliteter være store forskjeller (Skinnemoen 1969), som forskjeller i næring og vanntilførsel, noe som kan gi utslag på trærnes vekst. Derfor kan et utvalg av få trær per prøveflate gi et feil bilde hvis trærne har vokst på en spesielt heldig eller uheldig plassering på prøveflaten, for eksempel et fuktig drag med mye næring som gir høyere bonitet eller et

4.2.2 Mai – august og juni - september

For perioden mai til august viste 3 av diametergruppene signifikante positive korrelasjoner med nedbør. Dette kan, i likhet med temperatur, ha en sammenheng med resultatene fra enkeltmånedene. I mine resultater viste mai og juni sterkest korrelasjon med nedbør. Andreassen m. fl. (2006) fant, som tidligere nevnt, at nedbør i juni var positivt korrelert med
årringbredde for lavereliggende strøk på Østlandet, mens resten av månedene kun var svakt korreleret. Resultatene er derfor trolig ikke i samsvar med Andreassen m. fl. (2006).

Alle resultatene som nevnt her kan derimot i mer eller mindre indikere en viss sammenheng med resultatene til Maaten-Theunissen m. fl. (2013) om at gran er et tørkesensetivt treslag. Det har blitt gjort studier som viser at bestand som er tynnet kan vise større toleranse for tørke, som (Kohler m. fl. 2010), men dette er et element som ikke er vektlagt i undersøkelsen her.

4.2.3 Medio mai til medio september

For perioden 15. mai – 14. september viste mine resultater at nedbør framfor temperatur, er av størst betydning for årringbredden. To diametergrupper viste signifikante, positive korrelasjoner mot nedbør. Også her, i likhet med de andre resultatene, er alle korrelasjoner positive, men kun noen er signifikante. Hvis en ser dette i sammenheng med temperaturen for samme periode, som ikke viste noen signifikante korrelasjoner, kan det indikere at nedbøren er dels viktigere enn temperaturen er i denne perioden.
Når Mäkinen m. fl. (2003) plottet gjennomsnittstemperatur mot årringbredde og nedbør, fant de at en over gjennomsnittlig nedbørs mengde var positiv for årringbredden i regioner med høyere gjennomsnittstemperatur, men negativ i regioner med en lavere gjennomsnittstemperatur. De fant at i regioner hvor årlig temperatursum overgikk 1200 – 1300 °C, var ikke diametertilveksten relatert til temperatursum, men for regioner med lavere temperatursum økte radialtilveksten med varmere somre (Mäkinen m. fl. 2003). Dette kan bety at i varmere regioner kan mangel på nedbør være en utfordring, noe som kan skyldes at transpirasjonen blir høyere enn opptaket av vann på grunn av høy temperatur. Til sammenlikning var varmesummen, med 5 °C som basistemperatur som brukt av Mäkinen m. fl. (2003), for Ås gjennomsnittlig 1467 grad-dager per år i perioden 1. mai 2002 til 1.mai 2012 (VIPS 2013). Grad-dager er differansen mellom en gitt basistemperatur og registrert gjennomsnittstemperatur for et døgn (VIPS 2013). Dette kan da være årsaken til at nedbør viser seg å være viktigere i mine resultater, ved at temperaturen ikke er en begrensende faktor.

4.2.4 August- og september temperatur- og nedbør året før

Med september-temperatur- og nedbør året før for aktuelle vekstr, viste 4 diametergrupper signifikant, positiv korrelasjon med temperatur i september. Her var også alle andre korrelasjoner positive, også for nedbør og temperatur i august, men kun 4 var signifikante. Dette indikerer at det er andre faktorer som virker sterkere inn på de minste og de groveste trærne i datassetet, da de ikke var signifikante. Andreassen m. fl. (2006) viste at juli, august og september-temperatur året før, var negativt korrelert mot årets årringbredde. De diskuterte at kongleproduksjon kunne være en årsak, hvor diametertilvekst blir nedprioriteret framfor produksjon av kongler (Andreassen m. fl. 2006). En mulig forklaring på forskjellen i resultatene kan være at næringstilførselen i bestandet i mitt datamateriale er så god, at produksjon av kongler ikke vil gi merkbare utslag på årringbredden.

Levanič m. fl. (2009) diskuterer i et forsøk fra Slovenia at temperatur sommeren året før kan ha positiv effekt på høydeveksten til gran det aktuelle vekstår, og at dette medvirket til økt årringbredd. Da sammenhengen mellom temperatur og høydevekst ikke er målt i mitt forsøk, er det ikke grunnlag for å si at dette har vært en påvirkende faktor. Levanič m. fl. (2009) brukt to bestand, ett i lavlandet 350 meter over havet, og et i høyere liggende strøk ved 1250 meter over havet. Her skiller klimaet betydelig fra norske forhold, så det er ikke grunnlag for en sammenlikning. De skriver i diskusjonen: «Spruce in the southeastern Alps is notoriously difficult to cross-date between sites, suggesting that local site factors dominate over the regional climate signal» (Levanič m. fl. 2009) (side 7 (175)). Selv om resultatene ikke er
overførbare, kan det tenkes at akkurat dette er en faktor som også spiller inn for norske forhold, altså at mikroklimaet og spiller en stor rolle i klimaets påvirkning, og kan ha påvirket resultatene mine.

5. Konklusjon
Resultatene mine viser at temperaturen betyr mest i september og i mai har størst betydning for årringbredde, mens nedbøren betyr mest i mai og juni av enkeltmånedene. For vekstsesongen mai – september er nedbør i starten av sesongen av høyest betydning for årringbredde, mens temperatur er viktigst mot slutten av vekstsesongen. En økt temperatur i september vil også være positivt for årring-veksten året etter.

Hvis klimaendringene blir som forventet, med økt temperatur og redusert nedbør om våren og sommeren på Østlandet, vil dette kunne gi en lengre vekstsesong, men mulig en redusert vekst om våren ettersom at nedbøren er forventet å minske. Med tanke på begrensningene i datamaterialet mitt og de lokale variasjonene i klima som er på Østlandet, skal en være forsiktig med å overføre resultatene fra denne rapporten til andre lokaliteter.
6. Litteraturliste

Meteorologisk institutt. *Frentidsklima - Klima om 100 år > Målestasjoner i Norge*. Tilgjengelig fra: http://met.no/Oslo.9UFRLW5c.ips (lest 18.11).
Meteorologisk institutt. *Østlandet*. www.met.no; Metrologisk institutt. Tilgjengelig fra: http://met.no/%C3%98stlandet.b7C_wljMWU.ips (lest 30.09).

Norsk Virkesmåling. (2013). *Målereglement sagtømmer*. Tilgjengelig fra: http://www.m3n.no/B1%20M%C3%A5lereglement%20sagt%C3%B8mmer.pdf (lest 07.12).

VIPS. (2013). *Beregn varmesum og nedbørs mengde - Kalkulator*. Tilgjengelig fra: http://www.vips-landbruk.no/weather/we707s.jsp?klimastasjonId=5&fraDato=01.05.2011&basisTemperatur=0.0&tilDato=01.05.2012&BUTTON=ok (lest 04.10).