Masters Thesis

Faculty of Science and Technology

Masters’s Thesis

<table>
<thead>
<tr>
<th>Study program/ Specialization:</th>
<th>Spring semester, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore Technology/ Subsea Technology</td>
<td>Open / Restricted access</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Writer:</th>
<th>... (Writer’s signature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indra Permana</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty supervisor:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Daniel Karunakaran (Adjunct Professor)</td>
<td>(University of Stavanger, Subsea 7 Norway)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External supervisor(s):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Dasharatha Achani (Subsea 7 Norway)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title of thesis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Study on Engineering Critical Assessment (ECA) of Subsea Pipeline Girth Welds for Reeling Installation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits (ECTS):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key words:</th>
<th>Pages: xxiv + 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECA, CTOD, J-Integral, Reeling Installation, pipeline, LINKpipe, CRACKWISE, Fracture Mechanics, Girth Welds, clad pipes.</td>
<td>+ attachment/other: 74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stavanger, June 15, 2013</th>
<th>Date/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/year</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

Reeling is offshore pipeline installation method which delivers fast and cost effective pipeline laying. Each of the pipeline segment are welded onshore, the long section of pipeline then spooled onto a large diameter of reel. However, reeling installation method causes large plastic strain to the pipeline girth welds. Due to the existing cracks commonly found in the girth welds, the plastic strain will cause possible crack growth.

To derive the acceptance criteria for pipeline girth weld defects and sustain the integrity of pipeline during reeling installation, an Engineering Critical Assessment (ECA) is required.

The objective of this thesis is to perform Engineering Critical Assessment (ECA) of pipeline girth welds during reeling installation particularly in spooling on and reeling off stages using LINKpipe and CRACKWISE software and also to perform the ECA for clad/lined pipes using LINKpipe.

CRACKWISE is one of the software that can be used for the flaw assessment of pipeline girth welds during reeling installation. In order to reduce the conservatism of existing failure assessment methods, SINTEF recently have developed a new failure assessment approach which depends on finite element calculations of pipeline model.

LINKpipe is based on four-node ANDES shell elements and a non-linear line-spring element. The software established an efficient and adequately accurate model even for large level of strain, thus it has potential as an alternative ECA tool for pipelines subjected to plastic strains. Moreover, the new bi-metallic shell elements that were developed in LINKpipe making it capable analyzing defect assessments on clad and lined pipes.

Based on the analyses performed for the thesis work the influence of misalignment for the critical crack size curve is less significant compared to the effect of residual stress. On the contrary, pipe misalignment in LINKpipe ECA simulations can show the effect of increasing the Crack Driving Force very significantly, which makes the critical crack size, became smaller. Whereas the residual stress showed little influence in the prediction of the critical crack size using LINKpipe.

When the maximum possible misalignment (which is 1.95mm) along with the residual stress is applied, the critical crack size curves resulted from CRACKWISE and LINKpipe, are relatively close to each other. However, CRACKWISE tends to be conservative for long crack lengths (>90mm) compared to LINKpipe, whereas for short crack lengths (<90mm) CRACKWISE yields less conservative critical crack sizes.

Key words: ECA, CTOD, J-Integral, Reeling Installation, pipeline, LINKpipe, CRACKWISE, Fracture Mechanics, Girth Welds, clad pipes.
ACKNOWLEDGEMENT

This thesis is the final work to fulfill the requirement for Master of Science degree in the Offshore Technology at the Department of Mechanical and Structural Engineering and Materials Science, Faculty of Science and Technology, University of Stavanger, Norway. This thesis work is carried out in the premises of the company, Subsea7 Norway during spring, academic year 2013.

I would like to acknowledge and express my sincere gratitude to the following persons who have made the completion of this thesis possible:

My faculty supervisor, Dr. Daniel Karunakaran (Adjunct Professor), for giving me the opportunity to work for the thesis under his supervision, and also for his advice, guidances and support.

My supervisor from Subsea7, Dr. Dasharatha Achani, for his guidances, support, his willingness to spend time to review the thesis. His advice and knowledge are very valuable for this thesis.

Dr. Zhengmao Yang from Subsea7, for his advice and valuable discussion during the thesis work.

Subsea7 Norway, for providing me an office space, computer system, full support and access to the software used for the thesis work.

My loving, supportive, encouraging, and patient wife, Rika Afriana for her endless support, prayers and help. This thesis would not have been possible without her contributions.

Last but not least, I would like to thank my family in Indonesia, my mother, my brother and sister for their love, prayers and support.

Stavanger, 15th June 2013

Indra Permana
TABLE OF CONTENTS

ABSTRACT .. iii
ACKNOWLEDGEMENT ... v
TABLE OF CONTENTS ... vii
LIST OF FIGURES .. xi
LIST OF TABLES .. xv
DEFINITION OF SYMBOLS ... xvii

1. INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Problem Description ... 2
 1.3 Thesis Objectives .. 3
 1.4 Outline of Thesis .. 3

2. STATE OF THE ART .. 5
 2.1 Reeling Installation ... 5
 2.1.1 General .. 5
 2.1.2 Reeling Mechanism ... 7
 2.1.3 Reeling Installation of Clad and Lined Pipes .. 9
 2.2 ECA for Pipeline Girth Welds in Reeling Installation .. 10
 2.2.1 Main Loading Condition on Rigid Pipeline in Reeling Installation 11
 2.2.2 Engineering Critical Assessment (ECA) Codes .. 12
 2.3 ECA for Girth Welds in Clad and Lined Pipes .. 13
 2.3.1 Girth Welding of Clad and Lined Pipes .. 13
 2.3.2 ECA Procedures for Clad and Lined Pipes ... 16

3. THEORETICAL BACKGROUND .. 23
 3.1 The Concept of Fracture Mechanics ... 23
 3.1.1 Linear Elastic Fracture Mechanics (LEFM) .. 24
 3.1.2 Elastic Plastic Fracture Mechanics (EPFM) .. 29
 3.1.3 CTOD (Crack Tip Opening Displacement) ... 29
 3.1.4 J-Integral ... 31
 3.2 Stress-Strain Characteristics ... 32
 3.3 Small Scale Testing for ECA ... 39
3.3.1 Tensile Test ..39
3.3.2 Fracture Resistance Test ..39
3.3.3 CTOD from J Fracture Toughness ..44

4. MODELING TOOLS ...47
4.1 Modeling Concept by LINKpipe ..47
 4.1.1 General ...47
 4.1.2 LINKpipe Verification ..48
 4.1.3 Line-Spring and Shell Finite Element ..49
 4.1.4 Ductile Crack Growth ..51
 4.1.5 Fatigue Crack Growth ..51
 4.1.6 Clad and Lined Pipes ..51
4.2 Modeling Concept by CRACKWISE ...52
 4.2.1 Defining Stresses ..54
 4.2.2 Selecting FAD (Failure Assessment Diagram) ...58

5. ANALYSIS METHODOLOGY ..63
5.1 ECA of Pipeline Girth Welds ..63
 5.1.1 ECA using LINKpipe ..63
 5.1.2 ECA using CRACKWISE ..64
5.2 ECA of Clad Pipes using LINKpipe ..67

6. CASE STUDY ..69
6.1 ECA of Pipeline Girth Weld ...69
 6.1.1 Pipeline Geometries ..69
 6.1.2 Stress Concentration Factor (SCF) ...69
 6.1.3 Pipeline Tensile Properties ...70
 6.1.4 Fracture Toughness ..72
6.2 ECA of Clad Pipes Girth Weld ..73
 6.2.1 Reeling Strain ..73
 6.2.2 Clad Pipes Geometry and Material ...74
 6.2.3 Clad Pipes Tensile Properties ...74
 6.2.4 Fracture Toughness ..76
 6.2.5 Installation Fatigue Data ..77

7. RESULTS AND DISCUSSION ...79
7.1 Results for ECA of Pipeline Girth Welds ...79
 7.1.1 Reeling Strain ..79
7.1.2 CRACKWISE Simulation ...79
7.1.3 LINKpipe Simulation ...85
7.1.4 Sensitivity Analysis of LINKpipe Simulation90
7.2 ECA Results Comparison (LINKpipe and CRACKWISE)99
7.3 Results for ECA of Clad Pipes with Girth Welds101

8. CONCLUSIONS AND FURTHER WORK ..111
 8.1 Conclusions ...111
 8.2 Further Work ..112

REFERENCE ..xxi

APPENDIX A CRACKWISE ECA Simulation Results Summary

APPENDIX B LINKpipe ECA Simulation Results Log

APPENDIX C LINKpipe ECA Simulation Results Sample for Clad Pipes
LIST OF FIGURES

Figure 1.1	Configuration of pipeline reeling installation (Ref., photograph courtesy Technip cited in Kyriakides, 2007).	1
Figure 2.1	Typical onshore manufacturing site for reeling installation (spoolbase) (Ref., Pipeline and Riser Lecture notes, UiS, 2012).	6
Figure 2.2	Typical configuration of pipeline reeling installation (Ref., Sriskandarajah, Jones and Bedrossian, 2003).	7
Figure 2.3	Bending moment and curvature curve of the reeling process (Ref., Manouchehri, Howard and Denniel, 2008).	8
Figure 2.4	Weld over-match definition (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).	14
Figure 2.5	Weld partially over-matches definition (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).	15
Figure 2.6	Illustration of different region in clad and lined pipe (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).	16
Figure 2.7	Illustration of various materials typically involved in lined and clad pipelines (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).	18
Figure 2.8	Weld geometry and different materials (Ref., LINKpipe theory manual).	20
Figure 3.1	Fracture Modes of loading (Ref., Howard and Dana, 2000).	24
Figure 3.2	Coordinate system for crack tip stresses (mode I loading) (Ref., Howard and Dana, 2000).	25
Figure 3.3	KI, values for different crack geometries (Ref., Barsom and Rolfe, 1999).	26
Figure 3.4	Relation between stress, flaw size, and material toughness (Ref., Barsom and Rolfe, 1999).	27
Figure 3.5	Illustration describing analogy between column instability and crack instability: (a) Column instability (b) Crack Instability (Ref., Barsom and Rolfe, 1999).	28
Figure 3.6	An illustration showing the definition of CMOD and CTOD (Ref., Kuhn and Medlin, 2000).	30
Figure 3.7	An illustration of J-Integral (Ref., http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/images/Integral.gif).	31
Figure 3.8	The curve of stress–strain for a linear elastic solid (Ref., Ashby and Jones, 2012).	33
Figure 3.9 The example of typical stress-strain curve for carbon steel (Ref., Marlow, 2002). ...34

Figure 3.10 The example of Ramberg–Osgood stress-strain curve (Ref., Kyriakides, 2007). ...35

Figure 3.11 Example stress–strain curve of an X60 steel exhibiting Lüders banding: (a) small strain regime and (b) straining to failure (Ref., Kyriakides, 2007). ..36

Figure 3.12 Stress–strain behavior of seamless pipe – first and subsequent cycles (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines). ..37

Figure 3.13 Example of stress-strain behavior in tension and compression (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines, 2011). ..38

Figure 3.14 Example of second cycle stress–strain behavior in tension and compression (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines, 2011). ..38

Figure 3.15 The clamped SENT (Single Edge Notched Tension) specimen (Ref., DNV-RP-F108). ..39

Figure 3.16 Relationship between defect orientation and height in the pipe with the crack orientation and size in the specimen (Ref., DNV RP F108).41

Figure 3.17 Load as a function of Crack Mouth Opening Displacement (Ref., DNV-RP-F108). ..44

Figure 3.18 Predicted J-CTOD relationship for plane stress and plane strain, assuming $\alpha = 1$ (Ref., Anderson, 2005). ..46

Figure 4.1 Solid and shell/line-spring modeling of surface cracked shells (Ref., LINKpipe theory manual, 2012). ...48

Figure 4.2 (a) 2D shell model with line-springs representing the surface crack. (b) The compliance at any point along the line-spring (Ref., Berg et al., 2007)..50

Figure 4.3 Illustration of clad pipes (Ref., LINKpipe theory manual, 2012).52

Figure 4.4 Level 3 – ductile tearing instability assessment flowchart (Ref., BS7910: 2005). ..56

Figure 4.5 Linearization of stress distributions (Ref., BS7910: 2005)..................57

Figure 4.6 Level 2 FADs (Ref., BS7910: 2005). ..58

Figure 5.1 The analysis flowchart using LINKpipe (input data, calculation and modeling sequences). ..65

Figure 5.2 An illustration of pipe geometry on CRACKWISE (Ref., CRACKWISE software, 2009). ..66
Figure 5.3 The analysis flowchart using CRACKWISE (input data, calculation and modeling sequences) ...66
Figure 5.4 The analysis flowchart using LINKpipe for Clad pipes.68
Figure 6.1 Ramberg-Osgood stress and strain curve (Ref., Subsea7, 2006).71
Figure 6.2 Fracture resistance curve (Ref., Subsea7, 2006).73
Figure 6.3 As received true stress and strain curve used in the analysis (Ref., Subsea7, 2010). ..75
Figure 6.4 Strained & Aged true stress and strain curve (Ref., Subsea7, 2010)76
Figure 6.5 Fracture resistance curve (Ref., Subsea7, 2010).77
Figure 7.1 Intersection between Neuber curve and the stress-strain curve of the material...80
Figure 7.2 Critical Crack Size curve from CRACKWISE analysis (Base Case).83
Figure 7.3 Critical Crack Size curve from CRACKWISE analysis with various residual stresses. ...84
Figure 7.4 Critical Crack Size curve from CRACKWISE analysis with different misalignment. ..85
Figure 7.5 True stress-strain curve used in LINKpipe simulation.86
Figure 7.6 Power law hardening curve fitted to the true stress-strain curve86
Figure 7.7 Curve fitted of computed CTOD values. ...88
Figure 7.8 Critical Crack Size curve from LINKpipe analysis.89
Figure 7.9 CTOD as a function of nominal strain for different crack size90
Figure 7.10 Meshing arrangement in LINKpipe (Ref., LINKpipe software).91
Figure 7.11 Four different types of mesh configurations and the CTOD value.92
Figure 7.12 CTOD as a function of nominal strain for different mesh configurations ..93
Figure 7.13 Four different types of mesh configurations and the CTOD value.93
Figure 7.14 Critical crack size curve from LINKpipe analysis for three different cases of misalignment compare to base case curve94
Figure 7.15 CTOD as a function of nominal strain for different quantity of misalignment. ...95
Figure 7.16 Critical crack size curve from LINKpipe analysis for different situations of residual stress ...96
Figure 7.17 CTOD as a function of nominal strain for different conditions of residual stress ...96
Figure 7.18 Engineering stress-strain curves of Base Metal (BM) and Weld Metal (WM). ...97
Figure 7.19 Critical crack size curve comparison between weld under-match and even-match conditions. ... 98
Figure 7.20 CTOD as a function of nominal strain for weld even-match and under-match conditions. ... 99
Figure 7.21 Comparison of Critical Crack Size curves from LINKpipe and CRACKWISE... 100
Figure 7.22 Comparison of Critical Crack Size curves obtained from LINKpipe and CRACKWISE for the case with maximum possible misalignment. ... 101
Figure 7.23 True stress-strain curves of the materials (as-received).............................. 102
Figure 7.24 Curve fitted of computed CTOD values. ... 103
Figure 7.25 Equivalent stress-strain curve generated from FE analysis (Subsea 7, 2010) .. 106
Figure 7.26 Comparison of Critical Crack Size curves from LINKpipe – Case 2 and CRACKWISE for clad pipe... 109
LIST OF TABLES

Table 2.1 Main Characteristics of Reeling Vessels (Ref., Kyriakides, 2007)5
Table 2.2 Requirement to Unstable Fracture1) (Ref., DNV-OS-F101)13
Table 2.3 Girth Weld Integrity Assessment Procedures during Installation for Pipelines with CRA Cladding/Liner (Ref., DNV, JIP Lined and Clad Pipelines Phase 3, 2013) ..17
Table 2.4 Stress-Strain Curves Used In Category 2 ECA FE, Clad Pipe (Ref., DNV, JIP Lined and Clad Pipelines Phase 3, 2013) ..19
Table 2.5 Stress-Strain Curves Used In Category 2 ECA FE, Lined Pipe (Ref., DNV, JIP Lined and Clad Pipelines Phase 3, 2013) ..19
Table 4.1 Symbols Definition in Figure 4.4 and Figure 4.555
Table 6.1 Pipeline Geometries and Material (Ref., Subsea7, 2006)69
Table 6.2 Ramberg - Osgood Stress/Strain Curves Parameter (Ref., Subsea7, 2006) ...71
Table 6.3 SENT Specimen Test Results (Ref., Subsea7, 2006)71
Table 6.4 The Reeling Strain for All Cycles (Ref., Subsea7, 2010)74
Table 6.5 Pipeline Geometries and Material of Clad Pipes (Ref., Subsea7, 2010) ...74
Table 6.6 Young’s Modulus of Materials (Ref., Subsea7, 2010)75
Table 6.7 SENT Specimen Test Results (Ref., Subsea7, 2010)76
Table 6.8 Installation Stress Range (Ref., Subsea7, 2010)78
Table 6.9 Multiplication Factor for Different Clamp Position (Ref., Subsea7, 2010) ...78
Table 7.1 Applied Stress Summary for CRACKWISE Analysis81
Table 7.2 Lr Cut off Value Calculation (Ref., Subsea7, 2006)82
Table 7.3 Parameters for Power Law Hardening ...85
Table 7.4 Fracture Resistance Parameters ...87
Table 7.5 Summary of CTOD Calculation from J ..87
Table 7.6 Mesh Configurations for The Analysis ...92
Table 7.7 Summary of Weld Metal Properties (Ramberg-Osgood)97
Table 7.8 Identified Material Parameters of Power Hardening Law102
Table 7.9 Summary of CTOD Values Computed from J-Integral Values103
Table 7.10 Fracture Resistance Parameters ...103
Table 7.11 Critical Crack Size for Reeling Installation (First Case)104
Table 7.12 Critical Crack Size for Reeling Installation (Second Case)105
Table 7.13 Crack Growth due to Reeling and Installation Fatigue (First Case)106
Table 7.14 Crack Growth due to Reeling and Installation Fatigue (Second Case)106
Table 7.15 Critical Defects Sizes for Reeling Installation (Ref., Subsea 7, 2010)107
DEFINITION OF SYMBOLS

SYMBOL - LATIN CHARACTERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Crack depth</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>a₀</td>
<td>Initial crack depth</td>
</tr>
<tr>
<td>A₀</td>
<td>Original cross sectional area</td>
</tr>
<tr>
<td>aₑᶠ</td>
<td>Effective crack tip</td>
</tr>
<tr>
<td>aₑᵍ</td>
<td>Limit tearing flaw extension</td>
</tr>
<tr>
<td>aᵣ</td>
<td>Intermediate value of tearing flaw extension</td>
</tr>
<tr>
<td>B</td>
<td>Specimen Width</td>
</tr>
<tr>
<td>BM</td>
<td>Base Material</td>
</tr>
<tr>
<td>c</td>
<td>Half of the crack length</td>
</tr>
<tr>
<td>C</td>
<td>Clad Layer</td>
</tr>
<tr>
<td>C₁, C₂</td>
<td>Fitting parameter in crack growth resistance equation</td>
</tr>
<tr>
<td>Cₑ</td>
<td>The elastic compliance</td>
</tr>
<tr>
<td>CTOD</td>
<td>Crack Tip Opening Displacement</td>
</tr>
<tr>
<td>dₐ</td>
<td>A dimensionless constant</td>
</tr>
<tr>
<td>eₑₒ</td>
<td>Reference Strain,</td>
</tr>
<tr>
<td>E</td>
<td>Elastic modulus of the material</td>
</tr>
<tr>
<td>E’</td>
<td>Young’s modulus for plane strain</td>
</tr>
<tr>
<td>Fₗw</td>
<td>Finite width correction factor</td>
</tr>
<tr>
<td>FW</td>
<td>Filler Weld</td>
</tr>
<tr>
<td>G</td>
<td>The strain-energy release rate</td>
</tr>
<tr>
<td>H</td>
<td>The length of the specimen between the grips</td>
</tr>
<tr>
<td>Hₛ</td>
<td>Significant Wave Height</td>
</tr>
<tr>
<td>J</td>
<td>The elastic-plastic field in the vicinity of at the crack tip</td>
</tr>
<tr>
<td>Jₑ</td>
<td>Elastic part of the J-Integral</td>
</tr>
<tr>
<td>Jₚ</td>
<td>Plastic part of the J-Integral</td>
</tr>
<tr>
<td>Jₚ₀</td>
<td>Plastic part of the J-Integral without crack growth correction</td>
</tr>
<tr>
<td>K</td>
<td>Stress Intensity Factor</td>
</tr>
<tr>
<td>Kₑ</td>
<td>Critical stress intensity factor</td>
</tr>
<tr>
<td>Kᵣ</td>
<td>The stress intensity factor (Mode I - tensile opening load)</td>
</tr>
<tr>
<td>Kₑₘ</td>
<td>Misalignment</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>K_{mat}</td>
<td>Material toughness measured by stress intensity factor</td>
</tr>
<tr>
<td>K_r</td>
<td>Fracture ratio of applied elastic K value to K_{mat}</td>
</tr>
<tr>
<td>K_t</td>
<td>Elastic stress concentration factor (SCF)</td>
</tr>
<tr>
<td>$K_{\text{tm/tb}}$</td>
<td>Membrane/bending stress SCF</td>
</tr>
<tr>
<td>L</td>
<td>Width of girth weld cap</td>
</tr>
<tr>
<td>L_r</td>
<td>Ratio of applied load to yield load</td>
</tr>
<tr>
<td>$L_{r_{\text{max}}}$</td>
<td>The cut off level</td>
</tr>
<tr>
<td>m</td>
<td>Constraint parameter according to ASTM E1290-02</td>
</tr>
<tr>
<td>$M_{k_{\text{tm/kb}}}$</td>
<td>Membrane/bending stress intensity magnification factors for weld toe</td>
</tr>
<tr>
<td>$M_{m/b}$</td>
<td>Membrane/bending stress intensity magnification factors</td>
</tr>
<tr>
<td>n</td>
<td>Strain Hardening Exponent</td>
</tr>
<tr>
<td>OD</td>
<td>Pipe Outside Diameter</td>
</tr>
<tr>
<td>OW</td>
<td>Overlay Weld</td>
</tr>
<tr>
<td>P</td>
<td>Tension Load</td>
</tr>
<tr>
<td>P_b</td>
<td>Primary bending stress</td>
</tr>
<tr>
<td>P_m</td>
<td>Primary membrane stress</td>
</tr>
<tr>
<td>PP</td>
<td>Parent Pipe</td>
</tr>
<tr>
<td>Q_b</td>
<td>Secondary bending stress</td>
</tr>
<tr>
<td>Q_m</td>
<td>Secondary membrane stress</td>
</tr>
<tr>
<td>r</td>
<td>The distance in front of the crack tip</td>
</tr>
<tr>
<td>r_c</td>
<td>Radius of the cylinder</td>
</tr>
<tr>
<td>RH</td>
<td>Root/hot passes</td>
</tr>
<tr>
<td>r_{y}</td>
<td>The distance between actual and effective crack tip</td>
</tr>
<tr>
<td>s</td>
<td>Arc length along Γ</td>
</tr>
<tr>
<td>S</td>
<td>Nominal stress (excluding SCF)</td>
</tr>
<tr>
<td>s_{yo}</td>
<td>Reference Stress,</td>
</tr>
<tr>
<td>T and t</td>
<td>Wall thickness of the pipes on each side of the girth weld, $T > t$</td>
</tr>
<tr>
<td>\vec{T}</td>
<td>The force vector normal to Γ</td>
</tr>
<tr>
<td>t_c</td>
<td>Overall coating thickness</td>
</tr>
<tr>
<td>T_{Sw}</td>
<td>Tensile strength of the weld filler metal</td>
</tr>
<tr>
<td>T_{Spp}</td>
<td>Tensile strength of the parent pipe material</td>
</tr>
<tr>
<td>\vec{u}</td>
<td>The displacement vector</td>
</tr>
<tr>
<td>U</td>
<td>The pseudopotential energy</td>
</tr>
<tr>
<td>U_p</td>
<td>The plastic part of the area under the load vs. CMOD curve</td>
</tr>
<tr>
<td>UTS</td>
<td>The tensile strength at the test temperature</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
</tbody>
</table>
w The strain-energy density
W Plate Thickness
WM Weld Metal
WT Wall Thickness
x The fraction of the length of the localized ligament deformation passing through the weld metal
y The fraction of the length of the localized ligament deformation passing through the clad material
YS The engineering yield stress at test temperature
YSw Yield strength of the weld filler metal
YSpp Yield strength of the parent pipe material
(Y\sigma)_p Contributions from primary stresses
(Y\sigma)_s Contributions from secondary stresses

SYMBOL - GREEK CHARACTERS

\(\alpha \) Elastic parameter
\(\Gamma \) Any contour surrounding the crack tip
\(\delta \) The displacement at the crack tip
\(\delta_{mat} \) Material toughness measured by CTOD method
\(\delta_\varepsilon + \delta_m \) Eccentricities from wall thickness differences and misalignment
\(\Delta a \) Tearing Length
\(\Delta \sigma_p \) Bending component of stress range
\(\Delta \sigma_m \) Membrane component of stress range
\(\varepsilon_1 \) Actual strain (including SCF)
\(\varepsilon_{nom} \) Nominal strain (excluding SCF)
\(\varepsilon_{1,nom} \) Total Nominal Strain
\(\varepsilon_C \) Strain where stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe
\(\varepsilon_p \) Accumulated Plastic Strain
\(\varepsilon_{pl} \) True Plastic strain
\(\varepsilon_{TS,W} \) Strain value at tensile strength of the weld filler metal
\(\varepsilon_{TS,PP} \) Strain value at tensile strength of the parent pipe material
\(\eta_p \)
Dimensionless function of the geometry

\(\nu \)
Crack opening displacement

\(\rho \)
A plasticity correction factor

\(\sigma_{BM}(\varepsilon) \)
The stress-strain curve for the base material

\(\sigma_c \)
Stress where stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe

\(\sigma_{clad}(\varepsilon) \)
The stress-strain curve for the clad material

\(\sigma_{eff}(\varepsilon) \)
The equivalent stress strain curve

\(\sigma_{WM}(\varepsilon) \)
The stress strain curve of the weld material

\(\sigma \)
Stress Level

\(\sigma_1 \)
Actual stress (including SCF)

\(\sigma_o \)
Initial yield stress

\(\sigma_e \)
Engineering Stress

\(\sigma_L \)
Lower Yield Stress

\(\sigma_t \)
True Stress

\(\sigma_U \)
Lower Yield Stress

\(\sigma'_y \)
The appropriate material yield strength at the given temperature for analysis

\(\sigma_{yy} \)
The local stress near the crack tip

\(\sigma_{ys} \)
Yield Strength

\(\sigma_{uts} \)
Ultimate Tensile Strength

\(\sigma'_f \)
The appropriate flow strength
1. INTRODUCTION

1.1 Background

Reeling is offshore pipeline installation method (Figure 1.1) which delivers fast and cost effective pipeline laying. Each of the pipeline segment are welded onshore, the long section of pipeline then spooled onto a large diameter of reel.

The reductions in terms of installation time and overall cost is possible due to the continuity of the method and all of the fabrication processes such as assembly, welding, inspection, and coating was completed on shore.

However, reeling installation method caused large plastic strain to the pipeline girth welds. Due to the existing cracks commonly found in the girth welds, the plastic strain will cause possible crack growth. To derive the acceptance criteria for pipeline girth weld defects and sustain the integrity of pipeline during reeling installation, an Engineering Critical Assessment (ECA) is required. ECA is based on fracture mechanics and has the objective to generate the allowable cracks size in the girth welds.

![Figure 1.1 Configuration of pipeline reeling installation (Ref. photograph courtesy Technip cited in Kyriakides, 2007).](image-url)

ECA can be conducted as described in several standards such as BS7910 (Guide to methods for assessing the acceptability of flaws in metallic structures), DNV-OS-F101 Appendix A (Structural Integrity of Girth Welds in Offshore Pipelines) and DNV-RP-F108 (Fracture Control for Pipeline Installation Methods Introducing Cyclic Plastic Strain).
BS7910 is a common industry practice for flaw assessment procedures. However, BS7910 is not developed for pipeline condition with large plastic strain. The recommended practice DNV-RP-F108 is therefore established to provide guidance for defect assessment of pipeline subjected to cyclic plastic strain e.g. reeling installation method. CRACKWISE is one of the software that can be used for the flaw assessment of pipeline girth welds during reeling installation. In order to reduce the conservatism of existing failure assessment methods, SINTEF recently have developed a new failure assessment approach which depends on finite element calculations of pipeline model.

LINKpipe is based on four-node ANDES shell elements and a non-linear line-spring element (Olsø et al., 2008). The software established an efficient and adequately accurate model even for large level of strain, thus it has potential as an alternative ECA tool for pipelines subjected to plastic strains.

The implementation of clad/lined pipes combined with reeling installation is considered to be cost effective in situation where the products transported through pipeline are highly corrosive. Clad pipe is pipeline in which the CRA (Corrosion Resistance Alloy) metallurgically bonded to the backing steel, whereas lined pipe is pipeline in which the CRA is mechanically bonded to the backing steel.

The new feature from LINKpipe to assess defects in clad/lined pipes is very useful for the present industry. The new bi-metallic shell elements that were developed in LINKpipe making it capable analyzing defect assessments on clad and lined pipes which is not covered by former method.

1.2 Problem Description

The thesis emphasizes on the Engineering Critical Assessment for pipeline subjected to plastic strain deformation during reeling installation and determining the acceptable flaw size in girth welds. It is important to remark some of the challenges for the assessments:

1. Defects in the pipeline Girth welds is a common occurrence and it can be a big challenges for pipeline integrity assessments, especially when the pipeline subjected to large plastic strain in order of ~2% during reeling installation (Espen et al., 2007);
2. Traditional ECA procedure tend to yield “over-conservative” results and the assessment of pipeline girth welds subjected to plastic strain may have very small acceptable defect size for weld flaws (Cosham and Macdonald, 2008);
3. There is currently no common recognized ECA procedure for clad and lined pipes subjected to plastic strain (Olsø et al., 2011);
4. Clad pipes have common problem of partial weld undermatch in which the weld metal will undermatching the base metal (Olsø et al., 2011);
5. There are several conditions that have to consider in the ECA analysis such as misalignment at the girth welds, effect of weld residual stress, and strength mismatch between base metal and weld metal.
1.3 Thesis Objectives

The objective of this thesis is to perform Engineering Critical Assessment (ECA) of pipeline girth welds during reeling installation particularly in spooling on and reeling off stages using LINKpipe and CRACKWISE software.

The Scopes of this thesis are as follows:

1. To perform ECA analyses using the tools CRACKWISE and LINKpipe and compare the results;
2. To carry out sensitivity analyses considering misalignment at the girth welds, effect of weld residual stress, and strength mismatch between base and weld metal in LINKpipe;
3. To perform an ECA for clad/lined pipes using LINKpipe and discuss the results against those from previous work.

1.4 Outline of Thesis

The outline of the thesis is describes as follows:

Chapter 2: (State of the art)
Contains all the relevant publications of existing developments related to ECA for subsea pipelines during reeling installation with the corresponding citations.

Chapter 3: (Theoretical Background)
The chapter includes theoretical background relevant for ECA for subsea pipelines.

Chapter 4: (Modeling Tools)
The chapter includes general description of modeling tools (LINKpipe and CRACKWISE) used in the analyses.

Chapter 5: (Analysis Methodology)
The chapter describes the analysis methodology using CRACKWISE and LINKpipe for ECA of Pipelines.

Chapter 6: (Case Study)
The chapter describes the case study including the necessary input such as geometrical properties and material characteristics for ECA analysis.

Chapter 7: (Results and Discussion)
The chapter presents and compares the results of the ECA from both CRACKWISE and LINKpipe tools. Also it includes the sensitivity analyses performed by considering the properties of geometrical and material mismatch.
Chapter 8: (Conclusion and Further Work)

The chapter presents the conclusions from the current work and discusses the further work.
2. STATE OF THE ART

2.1 Reeling Installation

2.1.1 General

Reeling is one of the most efficient offshore pipeline installation methods. In this method several miles long of pipeline from spool base is spooled onto a large diameter of a reel located on the vessel. In the installation sites the vessel installs the pipeline by constantly spooling off the pipeline from the reel drum. In case of the reeling installation, all of the pipeline fabrication processes such as assembly, welding, inspection, and coating are completed on shore. This makes possible the reductions in terms of installation time and overall cost due to the continuous laying process.

Main characteristics of the reeling vessel listed in Table 2.1.

Table 2.1 Main Characteristics of Reeling Vessels (Ref., Kyriakides, 2007)

<table>
<thead>
<tr>
<th>Specs</th>
<th>Apache</th>
<th>Chickasaw</th>
<th>Deep Blue</th>
<th>Hercules</th>
<th>Skandi Navica</th>
<th>Seven Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Type</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical (2)</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Vertical</td>
</tr>
<tr>
<td>Reel Radius (ID, m)</td>
<td>8.23</td>
<td>6.1 (7.2)</td>
<td>9.75</td>
<td>9</td>
<td>7.5</td>
<td>9</td>
</tr>
<tr>
<td>Flange Radius (m)</td>
<td>12.5</td>
<td>12.2</td>
<td>17.5</td>
<td>12.5</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Reel Width (m)</td>
<td>6.5</td>
<td>3.35</td>
<td>7</td>
<td>6.7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ramp Radius (m)</td>
<td>10</td>
<td>*</td>
<td>9</td>
<td>*</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Pipe Capacity (ton)</td>
<td>2,000</td>
<td>2,500</td>
<td>2,500 x 2</td>
<td>6,500</td>
<td>2,500</td>
<td>3,500</td>
</tr>
<tr>
<td>Pipe Diameters (in)</td>
<td>4-16</td>
<td>2-12.75</td>
<td>4-18</td>
<td>4-18</td>
<td>4-16</td>
<td>4-16</td>
</tr>
<tr>
<td>Tension/Reel (ton)</td>
<td>84-128</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tension/Tensioner (ton)</td>
<td>72</td>
<td>82</td>
<td>275 x 2</td>
<td>544</td>
<td>37</td>
<td>400</td>
</tr>
</tbody>
</table>

*Pipe reverse bent to approximately the yield curvature.

The mechanism of spooling and unspooling initiates certain bending curvature in pipeline. This causes the pipeline to undergo into plastic deformation. For example, as stated in Kyriakides (2007), in the case of Apache reel with 8.23m radius, a 12-inch pipeline subjected to bending is deformed to maximum strain of 1.93% and 16-inch pipeline to the strain of 2.41%. Hence, to avoid local buckling, wall thickness and mechanical properties of a pipeline shall be chosen properly.
In general, concrete pipeline coating can’t be used in the reeling processes. Relatively thick wall thickness is required to avoid the pipe flattening and provide additional weight for pipeline stability (Mousselli, 1981).

According to Mousselli (1981), the advantages and disadvantages for reeling installation method are described below.

The advantages of reeling installation method include:

a. Improved manufacturing control at the spool base;

b. Reduced consequences of bad weather condition due to fast installation speed;

c. Minimum preparation to assemble and spooling various sizes of pipes for continuous installation;

d. It can also be used for pipeline bundles.

Main disadvantages of reeling installation method include:

a. Maximum pipeline size is limited up to 16-inch diameter;

b. Relatively thick wall thickness is required;

c. Limited length of pipeline can be reeled based on the capacity of reel.

Figure 2.1 Typical onshore manufacturing site for reeling installation (spoolbase) (Ref., Pipeline and Riser Lecture notes, UiS, 2012).

A typical onshore manufacturing site or spoolbase can be seen in Figure 2.1. Generally it has the assembly workshop which hosts one or two assembly lines. Each of workshops is
equipped with several stations such as beveling station, welding station, Non-Destructive Testing (NDT) and field joint coating stations.

In order to ensure high quality welds and low rejection rates, the assembly operation is carried out in clean and controlled environment. A number of welding techniques can be performed in a several welding stations such as manual or mechanized welding techniques. Furthermore, many NDE (Non Destructive Examination) methods from standard radiography to Automatic Ultrasonic Testing (AUT) can be performed to provide the accurate measurement of defect size (Denniel, 2009).

One of the pipeline design concerns for reeling installation is the girth welds. Inadequate strength in the girth weld could cause failure during reeling operations. The most important measure to avoid this failure is to select the strain tolerant welding material and implement it in welded connections. The common practice is to use the welding material that overmatch the pipeline properties, as stated in the DNV Rules for pipelines subjected to plastic strain. Based on DNV Rules, an Engineering Critical Assessment (ECA) is required for the girth welds that subjected to strain exceeding 0.4% (Sriskandarajah, Jones and Bedrossian, 2003).

2.1.2 Reeling Mechanism

Pipeline is reeled onto a reel drum with certain radius that is placed on the vessel. During laying the pipeline unraveled from the reel drum and passes the delivery ramp with known diameter. Figure 2.2 shows the typical configuration for pipe reeling. Conversion points means that a point at which the inelastic forward or reverse bend is conducted to the pipeline (Sriskandarajah, Jones and Bedrossian, 2003).

![Figure 2.2 Typical configuration of pipeline reeling installation](Ref., Sriskandarajah, Jones and Bedrossian, 2003).
Figure 2.3 describes bending moment and curvature plot of the reeling process as presented in the work of Manouchehri, Howard and Denniel, (2008).

![Bending moment and curvature curve of the reeling process](image)

Figure 2.3 Bending moment and curvature curve of the reeling process (Ref., Manouchehri, Howard and Denniel, 2008).

Reeling process in the Figure 2.3 encompasses five steps:

a. **Step 1**: The pipeline is spooled from the spool base onto the reel drum. Line OAB indicates the pipeline taken beyond the yield point (A) to a maximum curvature (B), equal to the radius of the reel drum. The radius of curvature increases as the reel drum slowly packed with pipeline.

b. **Step 2**: Line BCD shows the unspooling process of the pipeline. Line BCD indicates the pipeline goes into reverse plastic deformation with some residual curvature. Point D represent approximately straight pipeline due to self-weight and back tension, it span from the reel drum to the aligner.

c. **Step 3**: Line DE represent the pipeline is rolled over the aligner in the direction similar as with the first plastic deformation. In the point E, the pipeline curvature equal to the radius of the aligner.

d. **Step 4**: The pipeline is undergoes the reverse plastic bend indicated by Line EFO. It unloads elastically and experiences plastic deformation causing negative curvature
(Point F). The reverse curvature shall carefully select to make sure the pipeline physically straight (Point O).

According to Denniel, (2009) there are some key elements/requirements that establish the reeling is safe and “extremely reliable”:

a. Reeling is a displacement controlled process. The pipeline is subjected to plastic bending with tension on the reel drum. However, the reel drum diameter limits the curvature that the pipeline can obtain.

b. The ductile and strain hardening are important properties for pipeline. The ductility is the ability of the pipeline to avoid wall thinning or necking, while strain hardening is defined as increased material strength beyond yield. The ductility is an important parameter which enables the pipeline under reeling to plastically deform to the strain level less than that at ultimate limit. Similarly, the strain hardening is also an important factor for providing good level of stability in the reeling operation by assuring uniform distribution of bending strains along pipeline. The strain hardening makes the bending moment needed to raise the curvature of the pipeline continuously increase even after it reaches the yield point.

Generally, the level of strain hardening is described by the ratio of yield strength (YS) to Ultimate Tensile Strength (UTS). Good material stability under plastic deformation is indicated by having lower value of this ratio as it represents better resistance of the material over the yield.

c. The weld strength shall overmatch the strength of pipeline to assure that larger strain levels will not occur in the welds and that welds are strong points along the line.

According to Manouchehri, Howard and Denniel (2008), the nominal strain, ε_{nom} induced in a pipeline for a given outside diameter (OD), reel drum radius (R_{reel}), and overall coating thickness (t_c):

$$\varepsilon_{nom} = \frac{OD}{2R_{reel} + OD + 2t_c}$$... (2.1)

2.1.3 Reeling Installation of Clad and Lined Pipes

Clad and line pipes are being used in subsea applications for carrying corrosive fluids. For the corrosive fluids, mechanically bonded bimetal pipe is considered as a cheaper solution compared to other options such as solid corrosion resistant alloys or metallurgically cladded pipe. The combination of Reeling installation and mechanically lined pipe (Lined Pipe) is further considered as a cost effective solution for the corrosive fluids.

Installation of lined pipe using reeling method needs comprehensive analysis and testing:

- To verify the response of the pipe subjected to global plastic deformation under reeling process;
• To check the interaction between liner pipe and outer pipe and the capacity of the liner against acceptance criteria for local buckling.

There exist some challenges with regard to the reeling of lined pipes. According to Toguyeni and Banse (2012):

a. There is risk of local buckling (wrinkling) of the liner pipe when the mechanically lined pipe is in reeling process or global plastic deformation in bending;

b. In case of no internal pressure applied, the straightening process of the lined pipe lowers the magnitude of wrinkles but it cannot remove them completely;

c. The interfacial contact stress or gripping force between the carbon steel pipe and the CRA liner is reduces the magnitude of wrinkles but it cannot rule out the formation of the wrinkles;

d. Applying of minimum 30 bar of internal pressure in reeling process prevents the development of wrinkles.

2.2 ECA for Pipeline Girth Welds in Reeling Installation

Engineering Critical Assessment (ECA) and workmanship criteria are two acceptance levels for welding flaws. The workmanship acceptance levels for welding flaws in pipeline girth welds can be found in several guidelines such as BS 4515-1, API 1104 and DNV-OS-F101. These acceptance levels are not fitness-for-purpose defect limits, but it clarifies what a “good welder” should be able to accomplish. Furthermore, ECA applies the fracture mechanics in order to ensure the weld integrity on a rational basis.

Mostly the ECA procedures were not applied in the older onshore and offshore pipelines. Lately, the ECA has been conducted widely since the latest pipeline designs are introduced higher complexities such as high-temperatures and pressures, plastic strain during installation, deep water installation, and aggressive internal conditions. Other reason is the use of transition technology application from the radiography to the Automatic Ultrasonic Testing (AUT). This is used as the main inspection method during construction and it produces the flaw sizing and information of location in 2-dimension (Macdonald and Cheaitani, 2010).

In the present industry practice, ECA is carried out along the subsea pipeline design work in order to analyze the acceptable flaws size in the girth weld. The ECA is carried out through all the phases of pipeline’s life cycle from the installation until the end of the design life. Furthermore, the fracture mechanics based ECA is also used to evaluate the acceptable flaw sizes in structures i.e. “to demonstrate fitness-for-purpose”.

Usually defects exist initially in the girth welds during the pipeline fabrication. The main purpose of applying ECA in the reeled rigid pipeline is to determine the largest bounding envelope of initial defect sizes (for depth and length of defect) that could be accepted for the given loading history in pipeline design life.
The basic procedure is to assume the existence of certain defect size in the girth welds and to carry out the ECA in order to ensure these defects are acceptable without resulting in fracture during the loading history of pipeline.

As the basis of ECA, fracture mechanics provides criticality predictions of structures with existing crack like defects, given:

1. Geometry (size, orientation and location of cracks, geometry of structure, etc.);
2. Material properties (tensile yield and strength, stress strain curve, weld metal mismatch, fracture toughness, tearing resistance, etc.);
3. Total loading history (from initial spooling onto vessel to end of design life conditions).

Steel structures that have a particular minimum ductility, such as rigid pipelines with existing defects in the girth welds, could fail by fracture during reeling installation. The failure during reeling installation can be induced by many mechanisms:

1. Extreme tearing during single action of high axial load (spooling/reeling);
2. Cyclic tearing, or so-called ‘tear-fatigue’, during the repeated actions of high axial load (spooling/reeling/straightening cycles) in plastic range;
3. High cycle fatigue or cyclic growth of cracks during higher frequency smaller amplitude cyclic loading (installation hold periods on vessel) in the elastic range.

In case of seamless rigid pipelines, preventing possible failure due to fracture is mainly concentrated in the girth welds. As was mentioned in the work from Subsea7 (2011), there need to be considered several features such as:

- The basic geometry and material data;
- Misalignment at the girth welds;
- Effect of weld residual stress;
- Evolution of stress-strain curve of parent material under reeling cycles;
- The effect of internal pressure.

2.2.1 Main Loading Condition on Rigid Pipeline in Reeling Installation

Two main load conditions that a rigid pipeline usually experiences during reeling installation are described below. Each of these loadings has large different characteristics with associated pipeline responses (Subsea7, 2011).

1. Initial spooling onto vessel at spool base, and subsequent offshore reeling off with straightening on vessel, and installation.

In the spooling on and reeling off stages, pipeline is subjected to the high curvature associated with plastic deformation of the pipe material. This initiates hoop stresses in the pipe due to small level of ovalisation. Also, during these stages, the cyclic tearing mechanism takes place in the defects. Therefore, prediction and assessment of this cyclic tearing of the defects is the most important objective of the ECA. It should also be noted
that there are significant changes in the material stress-strain behavior and in the weld residual stresses during these stages.

2. Installation fatigue during hold periods on vessel.

Fatigue during hold periods is induced by wave loading on vessel and pipeline. It causes relatively high frequency fluctuations in the pipe axial stresses just below the clamp on the vessel. This situation happen when pipeline is needed to be held on the vessel for certain period of time. Long exposure to this loading condition has to be avoided as it would cause excessive cyclic growth of the defects. The main characteristics of the loading are high cycle, low amplitude, loading in the elastic range.

2.2.2 Engineering Critical Assessment (ECA) Codes

The code, BS 7910 outlines procedures in detail regarding how to carry out the Engineering Critical Assessment. The procedures are mainly stress based and the codes could not directly be applied to the strain-based situations. As a general standard, BS7910 is also supplemented by additional guidance in pipeline design codes and standards.

The design code, DNV-RP-F108 was established to provide guidelines for ECAs of girth welds subjected to cyclic plastic strains during installation. It introduced the constraint matched Single Edge Notch Tension (SENT) fracture mechanics specimen design. SENT specimen developed for pipeline girth welds assessment.

The code, DNV-OS-F101 provides additional guidelines for operation and installation methods, involving plastic strain in the pipeline, such as reeling which introduce several cycles of tensile and compressive plastic deformation.

In accordance with DNV-OS-F101, Section 5 D1100 (Fracture and supplementary requirement P), it is stated that pipeline systems shall have adequate resistance to unstable fracture. Table 2.2 summarizes the requirements of unstable fracture against the safety as described in Table 5-10 from Section 5 D1100, DNV-OS-F101. The parameters $\varepsilon_{1,\text{nom}}$ and ε_{p} in the table are referred as total nominal strain and accumulated plastic strain, respectively.

Supplementary requirement (P) refers to line pipe for plastic deformation (Section 7 I300, DNV-OS-F101). The main objective of supplementary requirement (P) is to ensure that the material has sufficient properties after being subject to plastic deformation, and that the material has sufficient ductility.

Section 10E from DNV-OS-F101 (check) gives additional requirements for pipeline installation methods that involve plastic deformation (e.g. reeling) (Macdonald and Cheaitani, 2010).
Table 2.2 Requirement to Unstable Fracture\(^1\) (Ref., DNV-OS-F101)

<table>
<thead>
<tr>
<th>Total nominal strain</th>
<th>Accumulated plastic strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{1,\text{nom}} \leq 0.4%)</td>
<td>Materials, welding, workmanship and testing are in accordance with the requirements of this standard. As an alternative girth welds allowable defect sizes may be assessed according to Appendix A.</td>
</tr>
<tr>
<td>0.4% < (\varepsilon_{1,\text{nom}})</td>
<td>The integrity of the girth welds shall be assessed in accordance with Appendix A.</td>
</tr>
<tr>
<td>1.0% < (\varepsilon_{1,\text{nom}}) (^2) or 2.0% < (\varepsilon_p)</td>
<td>Supplementary requirement (P) shall be applied</td>
</tr>
</tbody>
</table>

1) The strain levels refers to after NDT
2) Total nominal strain in any direction from a single event

2.3 ECA for Girth Welds in Clad and Lined Pipes

In the subsea gathering systems, Subsea flowlines that transport highly corrosive hydrocarbons are typically built from carbon manganese (CMn) steel linepipe or Corrosion Resistant Alloy (CRA) material. There are two typical material selection strategies for this type of situation:

a. Carbon steel linepipe designed with thicker wall thickness as a corrosion allowance: The objective of thicker wall thickness is to compensate the thickness loss due to corrosion over the design life of the flowline. It is often combined with mitigating method to reduce the loss of wall thickness.

b. Clad or Lined pipes that are basically CMn steel linepipe with internal layer of CRA material: For both clad and lined pipes, there is no need for additional wall thickness for corrosion allowance. The CRA layer in the clad pipe is metallurgically bonded to the carbon steel substrate; on the other hand the CRA layer in Lined pipes is mechanically bonded in place within the parent pipe.

Clad and Lined pipes carry a big challenge in terms of design and welding. The weld features in these types of pipeline are typically more complex than in rigid C-Mn flowlines. This fact is reflected in the difficulty in conducting ECAs using existing codes and standard (Macdonald and Cheaitani, 2010).

2.3.1 Girth Welding of Clad and Lined Pipes

Girth welds in typical solid carbon steel pipelines with no internal cladding or lining by CRA layer are always made of weld consumables with characteristics of maintaining full
overmatch of yield and tensile strength over the parent pipe. This technique has been considered advantageous to protect the girth weld and the existing small defects that are induced during welding under loading conditions involving high plastic deformation.

The full strength overmatching of weld consumable over the parent pipe will avoid strain localization in the weld and lower the amplitude of loading on local defects in the welds. However, the tearing resistance and fracture toughness of the weld consumable is typically lower than that of parent pipe.

Metallurgically clad or mechanically bonded internal thin layers of CRA are normally butt welded using weld consumables of the same CRA material. The most of CRA materials have lower yield strength but with significantly higher work hardening compared to the carbon steel of parent pipe that can be assumed to be up to X65 grade. The typical ranges of “crossover” strain level will vary between 2% and 5%. Above this strain level the CRA material overmatches the carbon parent pipe. This situation is called partial overmatching (mismatch) of the parent pipe by the weld consumable (Sriskandarajah, Bedrossian, and Ngai, 2012).

According to DNV-JIP Lined and Clad Pipelines (2013), there are three different types of weld strength mismatches:

1. **Weld Overmatch**

The filler weld is identified as overmatch if all of the criteria below are fulfilled (Figure 2.4):

 a) The tensile stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe material before 0.5% strain ($Y_{SW} > Y_{SPP}$);

 b) The tensile strength of the weld filler metal is more than 15% higher than the tensile strength of the parent pipe material ($T_{SW} > 1.15*T_{SPP}$);

 c) The strain value at TS (Tensile Strength) is higher for the weld filler metal than the strain value at TS for the parent pipe material (if the stress-strain curves do not show the TS of the weld metal, it is acceptable to estimate the remaining stress-strain curve based on the test machine displacement).

 ![Figure 2.4](image)

 Figure 2.4 Weld over-match definition (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).
2. Weld Partially Overmatch

The filler weld is identified as partially overmatch if all of the criteria below are fulfilled (Figure 2.5):

a) The yield strength of the CRA girth weld is at least 0.85 times the yield strength of the parent pipe material;

b) The tensile stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe after 0.5% strain but before the TS of the parent pipe is reached and before a strain level of 5%;

c) The tensile strength of the filler weld metal (T_{sw}) is at least 10% higher than the TS of the parent pipe material (T_{sp});

d) The strain at TS is higher for the weld filler metal (if the stress-strain curves do not show the TS of the weld metal, it is acceptable to estimate the remaining stress-strain curve based on the test machine displacement);

![Figure 2.5](image)

Figure 2.5 Weld partially over-matches definition (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).

3. Weld Under-match

The girth weld metal identified as weld under-match when it does not fulfilled either overmatch or partially overmatch.

Where,

\[
Y_{Sw} = \text{Yield strength of the weld filler metal},
\]

\[
Y_{Sp} = \text{Yield strength of the parent pipe material},
\]

\[
T_{Sw} = \text{Tensile strength of the weld filler metal},
\]

\[
T_{Sp} = \text{Tensile strength of the parent pipe material},
\]

\[
\varepsilon_{Ts,W} = \text{Strain value at tensile strength of the weld filler metal},
\]

\[
\varepsilon_{Ts,PP} = \text{Strain value at tensile strength of the parent pipe material},
\]

\[
\varepsilon_{C} = \text{strain where stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe},
\]

\[
Y_{Sw} \geq 0.85 \cdot Y_{Sp}
\]

\[
T_{Sw} \geq 1.1 \cdot T_{Sp}
\]

\[
\varepsilon_{Ts,W} > \varepsilon_{Ts,PP}
\]

\[
\varepsilon_{C} < T_{Sp}
\]

\[
0.5\% < \varepsilon_{C} \leq 5\%
\]
\[\sigma_C = \text{Stress where stress-strain curve of the weld filler metal crosses the stress-strain curve of the parent pipe.} \]

Figure 2.6 illustrates the definition of different region of girth weld in clad and lined pipe.

![Illustration of different region in clad and lined pipe](image)

Figure 2.6 Illustration of different region in clad and lined pipe (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).

2.3.2 ECA Procedures for Clad and Lined Pipes

According to DNV-JIP Lined and Clad Pipelines (2013), the ECA-analysis for clad and lined pipes can be categorized into:

Category 1 ECA:

The first category is based on the analytical solutions and does not need the FE-based fracture mechanics. The category 1 ECA adopts conservative approach to construct the Failure Assessment Diagram. The conservative approach is based on a lower bound stress-strain curve.

Category 2 ECA:

The second category is based on the conventional ECA procedures which are presented in DNV-OS-F101. However, in this category fracture mechanics based FE analysis is carried out to compare the crack driving force from the new developed stress-strain curve.

The new developed stress-strain curve is addressed as the equivalent stress-strain curve. Typically it is acceptable to adjust the crack driving force with other process such as establishing the appropriate reference stress solution to modify the shape of the FAD curve or assigning the safety factor to determine the conservative crack driving force calculation.

If the procedures above are used it should be verified that it does not give potentially non-conservative results. The traditional ECA approach in accordance with DNV-OS-F101 is
acceptable to carry out when it shown that for given flaw sizes the crack driving force for the models representing the “worst case” stress strain curves for all material are smaller than the models where only the parent pipe tensile properties are defined.

Category 3 ECA:

The 3D FE fracture mechanics analyses are used to represent the maximum allowable flaw sizes in Category 3 ECA. Hence a specific and chosen “worst case” well geometry and misalignment shall be illustrated in the FE model. The summary for requirements and methodology of ECA categories for girth welds in pipes with liner or clad can be seen below in Table 2.3.

Table 2.3 Girth Weld Integrity Assessment Procedures during Installation for Pipelines with CRA Cladding/Liner (Ref., DNV, JIP Lined and Clad Pipelines Phase 3, 2013)

<table>
<thead>
<tr>
<th>Girth Weld Classification</th>
<th>Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Undermatch”</td>
<td>Only category 3 ECA is acceptable</td>
</tr>
<tr>
<td>“Overmatch”</td>
<td>Category 1 shall be used to verify the “workmanship” NDT acceptance criteria for the root for strains below 0.4% (tearing shall be evaluated)</td>
</tr>
<tr>
<td></td>
<td>For region A and B: Appendix A of DNV-OS-F101 is applicable. ECA shall be performed if $\varepsilon_{l,nom}$ exceeds 0.4%</td>
</tr>
<tr>
<td></td>
<td>For Region C: Category 1, 2 or 3 ECA shall be performed if $\varepsilon_{l,nom}$ exceeds 0.4%</td>
</tr>
<tr>
<td>“Partially overmatch”</td>
<td>Category 1 shall be used to verify the “workmanship” NDT acceptance criteria for the root for strains below 0.4% (tearing shall be evaluated)</td>
</tr>
<tr>
<td></td>
<td>Category 2 or 3 ECA shall be used if $\varepsilon_{l,nom}$ exceeds 0.4%. Tearing analyses shall always be assessed for region C</td>
</tr>
</tbody>
</table>

The first category of ECA is only used to verify that the “workmanship” NDT acceptance criterion is acceptable for load cases where the installation maximum applied strain during installation is less than 0.4%.

a) Stress-strain characteristics used in the FE fracture mechanics analysis

The applied stress-strain characteristics in the FE analysis are important and the characteristics are to be described depending on chosen load case and the location of the defect in the weld joint. The illustration of various materials which are typically involved in lined and clad pipelines can be seen in Figure 2.7.
Figure 2.7 Illustration of various materials typically involved in lined and clad pipelines (Ref., DNV, JIP Lined and Clad Pipelines, Phase 3, 2013).

In Clad Pipe:
PP = Parent Pipe
FW = Filler Weld
C = Clad Layer
RH = Root/hot passes

In Lined Pipe:
PP = Parent Pipe
FW = Filler Weld
C = Clad Layer
RH = Root/hot passes
OW = Overlay Weld

The stress-strain characteristics applied in the FE analysis shall be determined according to Table 2.4 for clad pipelines and according to Table 2.5 for lined pipelines. The guidance to determine the upper-bound and lower-bound material characteristics are specified below.
Table 2.4 Stress-Strain Curves Used In Category 2 ECA FE, Clad Pipe (Ref. DNV, JIP Lined and Clad Pipelines Phase 3, 2013)

<table>
<thead>
<tr>
<th>Flaws in weld region A and B</th>
<th>Flaws in weld region C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain<0.25% or stress-based (Optional)</td>
<td>Strain>0.25% or strain-based</td>
</tr>
<tr>
<td>PP: lower-bound(^1)</td>
<td>PP: upper-bound(^3)</td>
</tr>
<tr>
<td>FW: lower-bound(^2,4)</td>
<td>FW: lower-bound(^1,4)</td>
</tr>
<tr>
<td>C: mean-curve(^6)</td>
<td>C: lower-bound(^2,4)</td>
</tr>
<tr>
<td>RH: mean curve(^2,4)</td>
<td>RH: lower-bound(^2,4)</td>
</tr>
</tbody>
</table>

1) Lower-bound is either a curve fitted through SMSY or SMTS with reasonable shape based on stress-strain curves established from testing or in accordance with DNV-OS-F101.

2) Lower-bound is fitted curve through the lower yield stress out of five and the lowest tensile strength out of the same five tests. The shape of the curve shall still represent the material reasonably.

3) The upper-bound curve shall be determined in accordance with DNV-OS-F101.

4) It is acceptable to use the same curve for the filler weld, the clad and the root/hot passes as long as the curve is representing a lower-bound curve.

5) The upper-bound curve is fitted through the highest yield stress out of five tests and the minimum tensile strength out of the same 5 tests. The shape of the curve shall still represent the material reasonably.

Table 2.5 Stress-Strain Curves Used In Category 2 ECA FE, Lined Pipe (Ref. DNV, JIP Lined and Clad Pipelines Phase 3, 2013)

<table>
<thead>
<tr>
<th>Flaws in weld region A and B</th>
<th>Flaws in weld region C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain<0.25% or stress-based (Optional)</td>
<td>Strain>0.25% or strain-based</td>
</tr>
<tr>
<td>PP: lower-bound(^1)</td>
<td>PP: upper-bound(^3)</td>
</tr>
<tr>
<td>FW: lower-bound(^2,4)</td>
<td>FW: lower-bound(^3)</td>
</tr>
<tr>
<td>L: mean-curve(^4)</td>
<td>L: lower-bound(^2)</td>
</tr>
<tr>
<td>RH: mean curve(^4)</td>
<td>RH: lower-bound(^2)</td>
</tr>
<tr>
<td>OW: mean curve(^4)</td>
<td>OW: lower-bound(^2)</td>
</tr>
</tbody>
</table>

1) Lower-bound is either a curve fitted through SMSY or SMTS with reasonable shape based on stress-strain curves established from testing or in accordance with DNV-OS-F101.

2) Lower-bound is fitted curve through the lower yield stress out of five and the lowest tensile strength out of the same five tests. The shape of the curve shall still represent the material reasonably.

3) The upper-bound curve shall be determined in accordance with DNV-OS-F101.

4) It is acceptable to use the same curve for the filler weld, the clad and the root/hot passes as long as the curve is representing a lower-bound curve.

5) The upper-bound curve is fitted through the highest yield stress out of five tests and the minimum tensile strength out of the same 5 tests. The shape of the curve shall still represent the material reasonably.

6) It is acceptable to use the same curve for the filler weld, the liner material and the root/hot passes as long as the curve represents a lower-bound curve for the materials.
b) Defect Type

The Category 2 and 3 ECA’s shall be conducted for both external and internal surface breaking flaws as a minimum. It is acceptable to evaluate embedded flaws independently and establish the dedicated acceptance criteria for embedded flaws.

Moreover, it is also acceptable to use similar acceptance criteria for embedded flaws as for surface breaking flaws. Hence, the criticality of surface breaking defects and embedded defects are the same except for the embedded flaws which located close to surface with the ligament less than half the defect height.

In such cases the height of defect shall be defined as the combination of ligament height plus measured defect height. The AUT/UT flaw sizing error shall be considered by reducing the maximum allowable flaw sizes.

c) Determination of Equivalent Stress-strain Curves

The equivalent stress-strain is calculated in several steps as follows:

1. The FE analysis is carried out to calculate The Crack Driving Force (CDF) for certain flaws.
2. The Crack Driving Force (CDF) is also calculated based on the BS7910. Both of the calculated results from FE analysis and BS7910 are compared.
3. The CDF is a function of geometry and tensile properties of the materials. Hence, changing the stress-strain curve defined in BS7910 will change the CDF.
4. The equivalent stress-strain curve is generated when the CDF as the result of BS7910 procedure equal to the CDF by FE analysis.

Olsø et al., (2011) proposed a new procedure to develop the equivalent stress-strain curve accounting the weld metal mismatch in clad pipes which are implemented in LINKpipe.

![Weld geometry and different materials](Ref., LINKpipe theory manual).
A simple alternative procedure for developing an equivalent material curve is the weighting principle. This methodology has been developed as a simple approach, because the equivalent material curve is generated without the FE analysis. In addition to weld metal, there are two materials through the thickness in the base material of a clad pipe; backing steel and clad material.

The description about the basis of the weighting principle is as follow:

“The different materials all contribute to the total deformation and opening of the crack as the ligament strain at the crack tip extends into the different material zones.”

The Figure 2.8 shows the illustration of ligament strain which extending from the crack tip around 45 degrees. It is clearly shown that the deformation will exist for different material region close to the crack tip and the weighted average of the stress-strain curve is approximated by the relative length of line for each material zone line.

Hence, the equivalent stress strain curve can be determined from the Equation 2.2 as follow:

\[
\sigma_{\text{eff}} (\varepsilon) = (1 - x - y)\sigma_{\text{BM}} (\varepsilon) + x\sigma_{\text{WM}} (\varepsilon) + y\sigma_{\text{clad}} (\varepsilon) \text{ (2.2)}
\]

Where,

\[
\sigma_{\text{BM}} (\varepsilon) = \text{The stress strain curve for the base material,}
\]

\[
\sigma_{\text{WM}} (\varepsilon) = \text{The stress strain curve of the weld material,}
\]

\[
\sigma_{\text{clad}} (\varepsilon) = \text{The stress-strain curve for the clad material,}
\]

\[
x = \text{The fraction of the length of the localized ligament deformation passing through the weld metal,}
\]

\[
y = \text{The same for the clad material.}
\]

The developed equivalent stress-strain curve can be employed to calculate ECA analysis. It should be noted that the similar analysis steps can be used for the weighting along the weld metal and the base metal layers (only) in the conventional pipes without clad layer.
3. THEORETICAL BACKGROUND

3.1 The Concept of Fracture Mechanics

Fracture mechanics is a technique to describe the fracture behavior of cracked or flawed structural members based on stress analysis in the crack or notch region. Hence, it is not depending on the use of “extensive service experience” to interpret test results into practical design information as long as we can obtain:

1. The fracture toughness of the material, using fracture-mechanics tests;
2. The nominal stress on the structural member;
3. Flaw size and geometry of the structural member.

Cracks or sharp notches are common defects that happen in structures such as bridges, building, ships or even pipeline girth welds. Fracture in the structure can be prevented by applying fracture mechanics and by calculating the allowable stress levels and inspection requirements. Fracture mechanics can also be used to determine the critical size of the crack in the structure under fatigue loading or stress corrosion cracking.

Hence, fracture mechanics analysis and testing have many advantages compared to the traditional toughness test method. The fracture mechanics proposed a method of quantitative design to avoid the fracture in structures. It also can be used to assess the fitness for service, or “life extension”, of existing structures (Barsom and Rolfe, 1999).

There are basically two categories of fracture mechanics:

- Linear Elastic Fracture Mechanics (LEFM)
- Elastic-Plastic Fracture Mechanics (EPFM)

Of the above two categories, the LEFM is the most established one and it analyzes the nature of the materials where cracking is assumed to appear primarily in the elastic conditions. It also assumes that the amount of plasticity is limited and the crack tip is sharp.

There are some limitations in using LEFM such as when analyzing ductile materials or lower strength steel, it is difficult to identify plastic behavior by LEFM. Hence, EPFM was developed from LEFM to analyze ductile materials. Compared to LEFM, EPFM considers that the crack tip is not sharp and that there is an amount of crack tip plasticity or blunting. Lower-strength and higher-toughness steels are typical structural materials that are designed using EPFM (Dieter, 1997).
3.1.1 Linear Elastic Fracture Mechanics (LEFM)

The basic theory of linear elastic fracture mechanics (LEFM) is that the stress field around the sharp crack can be described by stress intensity factor, \(K_I \), parameter having unit of \(Pa\sqrt{m} \) (Barsom and Rolfe, 1999).

Figure 3.1 shows the three fracture modes of loading, the stress intensity typically given a subscript correspond to the modes of loading i.e., \(K_I \), \(K_{II} \), or \(K_{III} \).

![Fracture Modes of loading](image)

According to Howard and Dana (2000), the stress intensity factor can be associated with the local stress at the crack tip as:

\[
\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \tag{3.1}
\]

Where,

\(\sigma_{yy} \) = The local stress near the crack tip,

\(K_I \) = The stress intensity factor (Mode I - tensile opening load),

\(r \) = The distance in front of the crack tip (with \(\theta = 0 \)) (as indicated in **Figure 3.2**).
Figure 3.2 Coordinate system for crack tip stresses (mode I loading) (Ref., Howard and Dana, 2000).

Based on the work of Barsom and Rolfe (1999), the single parameter, K_I, is a function of the stress level, σ, and the crack or flaw size, a. It is similar with the driving force, σ, in structural design. The fracture that follows unstable crack growth appears when parameter, σ and flaw size, a, resulting in critical value of K_I, called K_c.

For a body subjected to tensile stresses, Figure 3.3 presents the equations describing the elastic-stress field around the crack tip for different crack configurations. The equations show, K_I, as a function of, σ, and crack size, a.

K_c, or the critical value of stress-intensity factor at failure is a material property. It is similar to the yield strength, σ_{ys}, which resist yielding in structural design. This parameter can be determined for a given material at particular thickness and specific temperature from testing.

The critical value of stress-intensity factor can be used to determine the allowable flaw size in structural member for given stress level, temperature, and loading rate. It can also be used to calculate safe design stress level that can be applied to the existing flaw size in the structure.

The critical stress-intensity factor is greatly influenced by “service conditions” like temperature, loading rate and constraint. For structural materials, it must be determined through testing of actual material until failure at different temperature and loading rates.
The concepts of fracture mechanics can be used in the design to avoid fractures in the structures and also to extend the life of existing structures through fitness-for-service analyses.

The essential basic method to avoid fracture in structural material is to make sure that the calculated stress-intensity factor, K_I (the driving force), less than the critical stress-intensity factor, K_c (the resistance force).

A typical design procedure to avoid fracture in structural members is as follows:

1. Calculate the maximum nominal stress, σ, for the structure member being analyzed;
2. Evaluate the typical flaw geometry and initial crack size, a_0;
3. To prevent fracture during the expected lifetime of a structure, calculate the maximum probable crack size during the expected lifetime;
4. Calculate K_I for the stress, σ, and flaw size, a, using the suitable K_I relation;
5. Carry out the testing of material from member of structure to be built to determine the critical stress-intensity factor, K_c, which is the function of the appropriate service temperature and loading rate;
6. Make sure that, K_I, will be lower than the critical stress-intensity factor, K_c, throughout the entire life of the structure. This will need the selection of different type of material or reduction of the maximum nominal service stress;

![Figure 3.3 K_I values for different crack geometries (Ref., Barsom and Rolfe, 1999).](image-url)
Furthermore, Barsom and Rolfe (1999) also explained about schematic relation between material fracture toughness, K_c, to the nominal stress, σ, and crack size, a, (see Figure 3.4). As mentioned earlier, the stress intensity factor, K_I, will depend on a combination of stress and flaw size while the material fracture toughness represents the ability of a material to resist fracture in the presence of crack.

Hence, the fracture will occur when the stress intensity factor, K_I, coincides with the critical value of, K_c. K_c value is determined from laboratory testing in particular temperature and loading rate. The combination of stress and flaw size will not cause fracture in structural material as long as it doesn’t achieve the critical value of K_c.

![Figure 3.4](image_url)
Figure 3.4 Relation between stress, flaw size, and material toughness (Ref., Barsom and Rolfe, 1999).

The Figure 3.5 shows the analogy to explain the essential points in fracture-mechanics by comparing it to Euler Column instability. In order to prevent buckling occurred to the column, the applied stress and L/r value should be below the critical stress in Euler curve. On the other hand, to prevent fracture the applied stress, σ, for given flaw size, a, should be below the material fracture toughness or K_c.

Indra Permana - University of Stavanger
27 | Page
The method of linear-elastic fracture mechanics still can be applied to a material with small sizes of plastic zone compared with the size of the crack. For such cases, the stresses in the plastic zone and the development of the process zone are related to the calculated elastic stress intensity factor.

Hence, the beginning of crack extension, that is determined by a critical state in the process zone, is relates to critical intensity factor, K_c.

It should be noted that the assumptions mentioned above are valid if the size of plastic zone is relatively smaller than the crack size a, and the rest of cross section, $W - a$, where, W, is the plates thickness. The relation of linear elastic fracture mechanics (LEFM) can be used when the Equations 3.2 and 3.3 below are fulfilled:

$$a > \beta_1 \left(\frac{K_c}{\sigma_{ys}} \right)^2$$

and

$$W - a > \beta_2 \left(\frac{K_c}{\sigma_{ys}} \right)^2$$

Where, $\beta_1 = \beta_2 = 2.5$. The methods of Elastic Plastic Fracture Mechanics (EPFM) have to be used when the above equations above are not fulfilled (Buschow et al., 2001).

Figure 3.5 Illustration describing analogy between column instability and crack instability: (a) Column instability (b) Crack Instability (Ref., Barsom and Rolfe, 1999).
3.1.2 Elastic Plastic Fracture Mechanics (EPFM)

For many structural parts which are made from low-strength, tough material, a considerable amount crack tip plastic deformation and stable crack growth (tearing) can present before instability.

In this case, the methods of linear elastic fracture mechanics is not adequate to be applied since this method no longer has ability to identify the crack tip behavior in the occurrence of large yielding and extensive stable crack growth. Hence, another concept is required to analyze the structural integrity for ductile materials.

There are two concepts that can be applied for non-linear fracture mechanics:

1. The path independent J-Integral that is used to quantify the crack tip area, and
2. Crack Tip Opening Displacement (CTOD) that is related to the amount of opening of the two faces of crack at the crack tip.

Both of these concepts can be applied to extend fracture mechanics for the low strength and tough material (Farahmand, 2001).

3.1.3 CTOD (Crack Tip Opening Displacement)

The concept, CTOD (Crack Tip Opening Displacement) concept is addressed for analyzing fracture based on crack trip strain criterion. CTOD is the diameter of the circular arc at the blunted crack tip as shown in Figure 3.6. Figure 3.6 illustrates the concept of CTOD and CMOD (Crack-Mouth Opening Displacement) before and after deformation of a sample specimen with crack. It is clearly shown that the CTOD is analyzed on the crack tip while the CMOD is at center line of the loads.

The design codes, British Standard 7448 - Part 1 and the ASTM E 1290 can be used as the guidelines for analyzing the CTOD. The crack-opening displacement, \(v \), for a crack in an elastic regime can be calculated by using Equation 3.4. It is depend on the stress intensity, \(K \), and the distance, \(r \), from the crack tip.

\[
v = \frac{2K}{\pi E} \left(\frac{2\pi r}{\sqrt{r}} \right)^{1/2}
\]

Where,

- \(E \) is the elastic modulus of the material,
- \(K \) is stress intensity,
- \(v \) is crack opening displacement,
- \(r \) is distance of \(v \) from the crack tip.

The displacement at the crack tip, \(\delta \), in case of small scale yielding can be determined by assuming the effective crack tip is at a distance, \(r_y \), from the actual crack tip (\(a_{eff} = a + r_y \)).
\[\delta = 2v = \frac{4K}{\pi E} (2\sqrt{\pi r})^{1/2} = \frac{4K^2}{\pi E\sigma_y} \] .. (3.5)

Where, \(\sigma_y \), is the local stress at the crack tip.

Theoretically, fracture occurs if the displacement at the crack tip, \(\delta \), reaches the critical value of CTOD. The CTOD method is limited by analytical and experimental uncertainties of the crack tip area as follows:

1. Analytically the definition of, \(\delta \), is “the CTOD at the interface of the elastic-plastic boundary and the crack surface.”
2. Experimentally, \(\delta \), is “calculated from displacement measurements taken remotely from the crack tip because direct physical measurements are not precise.”
3. Other uncertainty is shown by Equation 3.5, by the term, \(\sigma_y \), that may vary by 75%, “depending on the degree of elastic constraint a crack tip characteristic that cannot be measured directly.”

The CTOD concept presents better quality results over linear-elastic method in the plastic regime (Kuhn and Medlin, 2000).

Figure 3.6 An illustration showing the definition of CMOD and CTOD (Ref., Kuhn and Medlin, 2000).
3.1.4 J-Integral

The J-integral describes the elastic-plastic field in the vicinity of at the crack tip. J-integral is defined as the line integral:

\[J = \int_{\Gamma} \left(wdy - \bar{T} \frac{\partial \bar{u}}{\partial x} ds \right) \](3.6)

Where,

- \(\Gamma \) = Any contour surrounding the crack tip,
- \(w \) = The strain-energy density,
- \(\bar{T} \) = The force vector normal to \(\Gamma \),
- \(\bar{u} \) = The displacement vector,
- \(s \) = Arc length along \(\Gamma \).

Figure 3.7 An illustration of J-Integral (Ref., http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/images/JIntegral.gif).

According to Kuhn and Medlin (2000), “J-Integral is path independent for linear and nonlinear elastic materials and nearly so for most structural materials (elastic-plastic) under monotonic loading condition”. The J-Integral can be calculated using numerical methods by computing the load and the displacement along a contour away from the crack tip. By using J-Integral, the uncertainties of the crack tip area in the CTOD method can be eliminated.

An equivalent interpretation is that J-Integral is defined as the ratio between “the change of the pseudopotential energy” (the area under the curve of load-displacement), \(U \), and an increment of crack extension of unit area, \(A \), as shown in **Equation 3.7**,

\[\frac{\partial U}{\partial A} \]
Furthermore Kuhn and Medlin (2000) states that “the strain energy released upon crack extension is the driving fracture force for fracture in cracked material under linear-elastic conditions”. The elastic strain energy, \(U \), is the work done by a load, \(P \), creating a displacement, \(\Delta \). The formula for the elastic strain energy can be seen in Equation 3.8.

\[
U = \frac{P\Delta}{2} = \frac{C_e P^2}{2}
\]

Where \(C_e = \frac{\Delta}{P} \), is the elastic compliance.

The strain-energy release rate, \(G \), is defined as the ratio of the loss of elastic potential energy, \(U \), over the crack extension of unit area, \(A \). The strain-energy release rate, \(G \), for a crack extending at constant load or deflection can be determined by the Equation 3.9 as follows:

\[
G = \frac{dU}{dA} = \left(\frac{P^2}{2} \right) \frac{dC_e}{dA}
\]

In the linear-elastic situation, the potential energy = the strain energy (\(U=V \)). Hence, Equation 3.7 is similar as Equation 3.9 and \(J=G \). Thus, \(J \) appears to be logical extension of LEFM method into elastic-plastic range.

However, the energy interpretation of the J-integral does not apply to the process of crack extension. \(J \) is not equal to the energy available for the crack extension in elastic-plastic materials as \(G \) is for elastic materials. This is happen because of the irreversibility of plastic deformation. \(J \) is simply analytically suitable, a measurable parameter to determine the characteristic of the elastic-plastic area at the crack tip. The \(J_{IC} \), is a critical value of \(J \) when the crack initiation under elastic-plastic conditions occurs.

Moreover, the J-Integral method is also relevant for crack initiation and crack propagation. For most of materials that fail in the elastic-plastic range, significant fracture resistance occurs after the crack initiation. Hence, the J-integral method as a fracture criterion might be overly conservative in some cases.

3.2 Stress-Strain Characteristics

All materials have an elastic limit (yield strength). Brittle materials will subject to sudden fracture when they are loaded beyond the elastic limit. On the other hand, ductile materials will deform plastically beyond its elastic limit which means that the materials will have permanent deformation.

Figure 3.8 shows the linear stress-strain response of elastic material as described by Hooke’s law. The stress-strain response is linear for most of solid materials at small strains, “less than
0.001 or 0.1%”. The slope of linear response is then defined as Young’s modulus i.e. the ratio of the stress over the strain. The shaded area describes the elastic energy stored in solid per unit volume and the energy can be restored when the load is withdrawn (Ashby and Jones, 2012).

![Stress-strain curve](image)

Figure 3.8 The curve of stress–strain for a linear elastic solid (Ref., Ashby and Jones, 2012).

Elastic limit is defined as the maximum stress the material could hold without any permanent deformation when all the loads have been withdrawn. Strains that occur happen before the material reach its elastic limit are small and reversible (Marlow, 2002).

Proportional limit is the highest stress point at which stress is directly proportional to strain. Beyond this point, most of material will deviate from line elastic behavior. This nonlinearity is correlated with “stress-induced, plastic flow” in the material where the new equilibrium of microscopic structure is introduced.

This plasticity depends upon the mechanism of molecular mobility of the materials. If it has lacking mobility, the material will be brittle than ductile. For brittle materials, the stress-strain curves are linear over the strain range and fracture will be occurred without noticeable plastic region (Roylance, 2001).

On the other hand, the ductile material has capability to restrain large strains during loading prior to fracture. A visible elongation or the transformations of cross sectional dimension are found as the result of these large strains. This deformation can be regarded as warning of the failure of the materials. The mild steel, aluminum and some its alloys, copper and polymer are some of examples for this type of materials (Marlow, 2002).

In order to increase the strain and continue to rise beyond the proportional limit, the amount of stress will be needed. The mechanism where the materials need an increasing stress to
continue straining is called strain hardening. Generally the proportional limit is equal to or close to the elastic limit of the material because the microstructure transformation associated with “plastic flow” is not reversed during unloading. A typical stress-strain response of carbon steel can be seen below in Figure 3.9. The yield point is the condition which the amount of stress will be needed to induce a specific of permanent strain, “typically 0.2%” (Roylance, 2001).

![Figure 3.9](image_url) The example of typical stress-strain curve for carbon steel (Ref., Marlow, 2002).

From Figure 3.9, it can be clearly seen that the rate of strain hardening is faded away closer to UTS point (Ultimate Tensile Strength). Beyond this point, the carbon steel will tend to be “strain softens” and the required stress will therefore be smaller for each increment of additional strain. The rate of strain hardening is the slope of the stress-strain curve (tangent modulus).

A. TRUE STRESS AND TRUE STRAIN

According to Roylance, (2001) a noticeable decrement in the cross sectional area \(A \) is occurred under tension due to the molecular/microstructure transformation in solid materials. Engineering stress, \(\sigma_e = \frac{P}{A_0} \) is calculated based on original cross sectional area of specimen before testing, while true stress, \(\sigma_t = \frac{P}{A} \), is calculated based on true (or reduced) cross sectional area of specimen after testing. Hence, true stress-strain response of a ductile material is higher than engineering stress-strain response.
Generally the engineering stress-strain curve and the true stress-strain will be similar until it reaches the elastic limit. Beyond the elastic limit, the engineering stress-strain will be different to the true stress-strain due to the change of original dimension. Hence, the engineering stress-strain must be interpreted with caution beyond the elastic limit. The true stress rather than the engineering stress can give a more direct measure of material’s response in the plastic flow range.

B. THE RAMBERG–OSGOOD STRESS–STRAIN FIT

According to the work of Kyriakides (2007), the relation of stress and strain can be defined by using the power law relationship. The most commonly used formula is the three parameter Ramberg–Osgood Equation as follows:

\[
\varepsilon = \frac{\sigma}{E} \left[1 + \frac{3}{7} \left(\frac{\sigma}{\sigma_y} \right)^{n-1} \right]
\] ...(3.10)

Where \(E \), \(\sigma_y \), and, \(n \), are fit parameters. These parameters can be determined from a measured stress-strain curve as follows:

a) \(E \) is the slope of the linearly elastic part of the curve;

b) \(\sigma_y \), is the stress at the intersection of the stress-strain curve and a line through the origin with a slope of 0.7E (see Figure 3.10);

c) An approximate value of \(n \) is determined from the slope of the linear part of plot of log \(\left(\varepsilon - \frac{\sigma}{E} \right) \) vs. log (\(\sigma \));

d) Plot this first estimate of the fit and compare the curve with the curve from the experiment. Change, \(\sigma_y \), and, \(n \), repeatedly until the best fit is achieved.

![Figure 3.10 The example of Ramberg–Osgood stress-strain curve (Ref., Kyriakides, 2007).](image-url)
C. DISCONTINUOUS YIELDING ON STRESS STRAIN CURVE

The transition from elastic to plastic deformation of hot-finished low carbon steel is usually characterized by a material instability called Lüders strain. The Lüders strain can be defined as the stretch of strain during the yield stress point. The macroscopic effect of the instability is inhomogeneous deformation.

The example of phenomenon for “Lüders strain” and inhomogeneous strain in low-carbon steel can be seen in Figure 3.11. It shows the typical stress-strain response in a uniaxial test in X60 line-grade carbon steel.

The Figure 3.11(a) shows the zoom of stress-strain response along the Lüders strain band. The figure clearly shows two yield points, σ_U, (upper yield stress) and σ_L, (lower yield stress). The localized plastic deformation begins at the upper yield stress with sudden drop in stress.

During displacement control, Lüders strain spreads along the material of steel while the stress is relatively constant. In the end of the Lüders strain band ($\Delta \varepsilon_L \approx 2.67\%$), the material of steel will start hardens and return back to homogenous deformation. From the Figure 3.11(a), it can be determined that the yield stress is, σ_L, (418MPa) as the plateau stress value.

The Figure 3.11(b) shows the continuation of stress-strain response of X60 steel containing Lüders strain, until specimen fail. From this figure, the steel hardens during strains range from 2.97% to 15.5% and the material deforms homogeneously (Kyriakides, 2007).

![Figure 3.11](image.png)

Figure 3.11 Example stress–strain curve of an X60 steel exhibiting Lüders banding: (a) small strain regime and (b) straining to failure (Ref., Kyriakides, 2007).
It is well established that the material instability (Lüder’s plateau behavior) can be seen in the stress-strain response of the as-received seamless pipe in tension only. The mechanical cold working during spooling and reeling off process will transform Lüder’s plateau behavior into new stress-strain response with more continuously yielding curve.

Figure 3.12 shows an example of comparison results between model test and FE modeling by ABAQUS. It can be observe from **Figure 3.12**:

1. The Lüder’s plateau behavior during the first tensile loading with initial peak of yield stress;
2. “The apparent onset of yielding” in compression at relatively low stress;
3. Lower yield stress under subsequent tensile loading.

The description above represents the steel behavior during the loading cycles. It is started by tensile loading continued with compression loading. When the compression is first applied, the plateau behavior is not appearing as shown in **Figure 3.13**. It shows the stress-strain response of X65 steel during the loading cycle in tension and compression.

Figure 3.12 Stress–strain behavior of seamless pipe – first and subsequent cycles (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines).
The Figure 3.14 shows the steel behavior during the second tension and compression with no plateau behavior. It is shows that the stress strain response between tension and compression in the second cycle is quite similar.

It is now generally accepted that the continuous curve behavior is the result of mechanical straining during reeling. The plateau behavior will reappears after certain period of time, depending on the temperature (Subsea7, 2011).

Figure 3.13 Example of stress-strain behavior in tension and compression (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines, 2011).

Figure 3.14 Example of second cycle stress-strain behavior in tension and compression (Ref., Subsea7 Technical Guideline: ECA of Reeled Rigid Pipelines, 2011).
3.3 Small Scale Testing for ECA

3.3.1 Tensile Test

The tensile test can be done for base and weld metal by using conventional round bar dumbbell shaped tensile test specimens. The samples of base metal are taken along the pipe longitudinal direction while the samples of the weld metal are taken along the direction transverse to the pipe axis. Usually, the yield strength on the weld is higher than the yield strength of the base metal as referred to over match girt weld condition (Subsea7, 2011).

The tensile test is conducted to generate a stress-strain response. In this test, the engineering stress is calculated based on the basis of the original cross-sectional area of the sample instead of the true stress that is based on the actual area of cross section. The significant reductions in cross-sectional area are presented between yield and fracture at the latter stage of the tensile test for ductile materials. Furthermore, the ultimate stress, the yield stress and Young’s modulus, E, can be determined from the stress–strain curve (Megson, 2005).

3.3.2 Fracture Resistance Test

According to DNV-RP-F108, the objective of the fracture resistance test is to determine the fracture resistance for both of the pipe and girth welds to calculate to the acceptable flaw sizes.

Furthermore for the installation phase, DNV-RP-F108 recommended conducting the fracture test by using the SENT (Single Edge Notched Tension) specimen (see Figure 3.15).

![Figure 3.15](image)

Figure 3.15 The clamped SENT (Single Edge Notched Tension) specimen (Ref., DNV-RP-F108).
The material fracture resistance can be described typically by K (Stress Intensity Factor), CTOD (Crack Tip Opening Displacement) or the J-integral. However, it is well-known that the stress-strain state at a crack tip cannot be fully described only by single parameter alone. The fracture resistance also influences by the crack tip constraint i.e., the degree of crack tip stress tri-axiality.

In addition to DNV-RP-F108, the BS 7448 and ASTM E 1820 also define the methodology for fracture resistance testing by using SENB (Single Edge Notched Bend) or CT (Compact Tension) specimen. The difference between SENB and CT with SENT specimen is that both specimen predominantly loaded in bending and has high crack tip constraint. Hence, the fracture resistance test by using SENB and CT will give lower bound estimation of material fracture resistance. Therefore, for conservative fracture assessment, these tests can be selected for a large range application of engineering structure.

During installation, pipeline girth welds are primarily loaded in tension even though the pipeline is globally subjected bending. Furthermore, the flaws size being analyzed is usually governed by the weld pass height, around 2-6mm which is relatively small. Therefore, the crack tip constraint in pipe will be decreased due to these aspects when compared to deeply notch standard specimens, SENB and CT. Hence, it is acceptable to obtain the fracture resistance using the specimen with a crack tip constraint closer to the actual crack tip constraint in the pipe.

The SENT specimen is a specimen that has loading mode and crack tip constraint similar to the actual loading mode and crack tip constraint in the girth weld of a pipe subjected to the bending and axial loading.

High toughness materials are needed in the installation method involving significant plastic strain in order to generate realistic allowable flaw sizes in the girth welds.

1. The J-R (or CTOD-R) curves is typically used to described the fracture resistance;
2. The brittle fracture is not allow to occur before achieving the maximum load plateau or stable crack extension of at least 1.5mm.

A. CRACK ORIENTATION AND LOCATION

Figure 3.16 shows the SENT specimen that shall normally be designed with a Surface Notch (SN), since it is the relevant orientation for flaws in the girth welds.
B. SPECIMEN DIMENSIONS

The dimensions for the SN specimen are recommended with ratio $B=2W$ where W, is the wall thickness t, of specimen and B, is the specimen width. It is also required that the W, should be less than the minimum amount of machining necessary in order to acquire a rectangular specimen. The examples of SENT specimen with definition of various dimensions can be seen in Figure 3.15 and Figure 3.16 respectively.

If the reductions in wall thickness, because of pipe dimension (D/t), will be more than 15% (i.e. $W < 0.85 \times t$). The specimen width, B, may be reduced, as long as this reduction not less than $B \geq W$. Figure 3.16 illustrates the notch orientations and their connection to circumferential defect in the pipe.

The crack tip constraint tends to be insensitive by the pre-crack depth (a/W, machined notch + fatigue pre-cracking) in both the clamped SENT specimen and circumferential cracks of the pipe. Therefore, the actual pre-crack depth in the clamped SENT specimen is not crucial as long as the ratio between the pre-crack depth and the specimen a/W is around $0.2 \leq a/W \leq 0.5$.

During determining pre-crack in the SENT specimen, the actual microstructure sampled by the crack tip and its relation to the subsequent defect assessment shall be considered.
C. LOADING CONDITIONS
The SENT specimen can be clamped (see Figure 3.15) or pin-loaded in the test machine. Since both of these loading conditions give acceptable crack tip constraint similar to defects in pipe girth welds.

If the clamped specimen is used, the free length or “day-light” between the grips (H) of the test machine shall be equal to ten times specimen width, 10W, when using the formula for estimating, J. On the other hand, for pin loaded specimen, the clamping distant is not affecting the results.

In pin loaded specimen, the testing machine does not give restraining bending moment on the SENT specimen. It may difficult to achieve ideally pin loaded specimen gripping in practical condition. The formula in Equation 3.14 will however usable to obtain slightly conservative result, when the specimen is gripped e.g., in an ordinary wedge clamp which is connected to the testing machine by using bolt bearing.

D. TESTING CONDITIONS
The multiple specimens approach with at least 6 specimens or 6 valid results for each crack location shall be used to produce the J-R (or CTOD-R) curves. The specimens shall be loaded to tearing lengths between 0.2 and 3 mm. The majority of data shall be between 0.5 and 1.5 mm. The J-R or CTOD curves shall be generated as a lower bound curve for experimental results.

Generally, the fitting data with the form \(J = x \cdot \Delta a^m \) is fits the data well. If the cut off level, \(L_{f \max} \), is calculated from the SENT test, it shall be determined from at least three specimens that loaded beyond maximum load. The tearing length, \(\Delta a \), for the J-R curve shall include blunting.

For assessment of the installation phase, testing shall be performed for as-welded (undeformed condition) and at the lowest anticipated temperature for reeling-on and reeling-off.

However, the test at the highest anticipated temperature shall also be considered if the pipe temperature during installation may be higher than 50°C (25°C for Duplex stainless steels) due to field coating application. The stable crack tearing resistance may be lowered at high temperatures.

E. FORMULA TO CALCULATE J FOR SENT SPECIMENS
The crack growth resistance is recommended to be described by J-R curves. The elastic and plastic parts are considered separately when generating the total J-integral.

The Equation 3.11 can be used to calculate J-integral when the amount of ductile crack growth lower than 10% of the initial remaining ligament (\(W - a_0 \)).

\[
J = J_e + J_p = J_e + J_{p0} \]

\[
J = J_e + J_p \approx J_e + J_{p0} \quad \text{.. (3.11)}
\]

\[
J = x \cdot \Delta a^m \]

\[
L_{f \max} \]

\[
J_e \]

\[
J_p \]

\[
J_{p0} \]

\[
W - a_0 \]
Where,

\(J_e \) = Elastic part of the J-Integral,
\(J_p \) = Plastic part of the J-Integral,
\(J_{p0} \) = Plastic part of the J-Integral without crack growth correction.

The relation between the elastic part of the J-integral and the Stress Intensity Factor \(K \), can be seen in Equation 3.12 below:

\[
J_e = \frac{K^2}{E'} \tag{3.12}
\]

Where,

\(E' \) = E for plane stress (E is Young’s Modulus)
\[E' = \frac{E}{1 - v^2} \quad \text{for Plane Strain} \tag{3.13} \]

\(v \) = Poisson’s ratio

The plastic part of the J-Integral is calculated through the plastic work applied to the cracked specimen:

\[
J_p = \frac{\eta_p \cdot U_p}{B(W - a_0)} \tag{3.14}
\]

Where,

\(\eta_p \) = Dimensionless function of the geometry,
\(U_p \) = The plastic part of the area under the load vs. Crack Mouth Opening Displacement (CMOD) curve (Figure 3.17),
\(B \) = The width of the specimen (Figure 3.15),
\((W - a_0) \) = The remaining ligament (Figure 3.15),
\(a_0 \) = The initial crack length.

The CMOD can be determined from two ways; direct measurement from the crack mouth of specimen or double clip gauges approximation. The formula of, \(\eta_p \), to determine, \(J_p \), can be seen in Equation 3.15. It can be used for:

\[0.2 \leq a/W \leq 0.5; \]
\[1 \leq B/W \leq 5; \]
H = 10W.

\[
\eta_p = 0.88 \times \left\{ \frac{209,747 \cdot e^{-\left(\frac{R}{W}\right)} - 85,668 \cdot \left(\frac{a}{W}\right)^5 + \left(\frac{467,666 \cdot e^{-\left(\frac{R}{W}\right)} + 195,032\right) \cdot \left(\frac{a}{W}\right)^4}{}}{}} + \left(\frac{393,925 \cdot e^{-\left(\frac{R}{W}\right)} - 163,572 \cdot \left(\frac{a}{W}\right)^3 + \left(\frac{-160,931 \cdot e^{-\left(\frac{R}{W}\right)} - 61,334\right) \cdot \left(\frac{a}{W}\right)^2}{}}{}} + \left(\frac{32,319 \cdot e^{-\left(\frac{R}{W}\right)} - 9,568 \cdot \left(\frac{a}{W}\right)^2 + \left(\frac{-1,72 \cdot e^{-\left(\frac{R}{W}\right)} + 1,333\right)}{}}{}} \right\}
\]

(3.15)

Figure 3.17 Load as a function of Crack Mouth Opening Displacement (Ref., DNV-RP-F108).

3.3.3 CTOD from J Fracture Toughness

Fracture toughness is defined by J-integral in relation to SENT specimen testing. However, majority of works and literatures concerning ECA and circumferential defects in pipeline girth welds at high strain, defined crack driving force in terms of CTOD rather than J-integral. Hence, it will be necessary to convert the J-integral from SENT specimen into an equivalent CTOD (Macdonald, 2011).

According to DNV OS-F101, the Equation 3.16 can be used to transform the J-integral into CTOD conservatively.

\[
\delta = \frac{J}{m \left(\frac{YS + UTS}{2}\right)} \...(3.16)
\]
\[m = 1.221 + 0.793 \frac{a}{W} + 2.751n - 1.418n \frac{a}{W} \](3.17)

\[n = 1.724 - 6.098 \left(\frac{YS}{UTS} \right) + 8.326 \left(\frac{YS}{UTS} \right)^2 - 3.965 \left(\frac{YS}{UTS} \right)^3 \](3.18)

Where,

\begin{align*}
YS & = \text{The engineering yield stress at test temperature}, \\
UTS & = \text{The tensile strength at the test temperature}, \\
m & = \text{Constraint parameter according to ASTM E1290-02}, \\
n & = \text{The strain-hardening parameter}, \\
a & = \text{The original crack size}, \\
W & = \text{The specimen width}.
\end{align*}

Another way to convert J-integral to CTOD can be seen in the work of Shih (1981) cited in Anderson (2005), **Equation 3.19** can be used as an alternative approach to calculate CTOD which can be applied well beyond the validity limits of LEFM.

\[\delta = \frac{d_n J}{\sigma_o} \](3.19)

Where \(d_n \) is a dimensionless constant, which can be selected from **Figure 3.18** which shows that \(d_n \) is highly dependence on the strain hardening exponent (n) and a slightly dependence on \(\frac{a \sigma}{E} \). For \(\alpha \neq 1 \), the **Equation 3.19** should be multiplied by \(\alpha^{1/n} \).
Figure 3.18 Predicted J-CTOD relationship for plane stress and plane strain, assuming $\alpha = 1$ (Ref., Anderson, 2005).
4. MODELING TOOLS

4.1 Modeling Concept by LINKpipe

4.1.1 General

Three dimensional solid finite elements are commonly used in discretizing the shell structure for the crack analysis in traditional approach. An illustration of typical mesh can be seen in Figure 4.1. However, this approach needs higher demand of CPU capacity and requires long duration of simulation process. Hence, an alternative approach is introduced by using shell finite elements for solving fracture mechanics related problems and by modeling cracks using line-spring finite elements.

A typical solid finite element mesh requires 30,000 degrees of freedom (utilizing two symmetry planes) while the similar shell model will have around 1,000 degrees of freedom (using symmetry). Hence, the CPU utilization will reduce typically by a factor of 10. The main advantage of using shell/line-spring elements is to reduce the required time during pre and post processing of the FE analyses. An illustration of solid and shell/line-spring modeling of surface cracked shells can be seen in Figure 4.1.

Using line-spring finite elements, the crack is modeled as nonlinear springs between the shell elements with varying compliance as a function of crack depth and plastic deformations. The accuracy of predicted fracture mechanics parameters such as crack tip opening displacement (CTOD) and J-integral is important for this approach.

On the other hand, this method still has limitations for short crack and large deformation analysis. Short cracks with respect to practical situations are the cracks with depth less than 25% of the shell thickness. To assess the criticality of the defects, simultaneous use of large displacement and rotations are needed to consider in many applications. These features are well-considered and implemented in a new commercial code, LINK.

LINK is a general nonlinear shell finite element program accounting large rigid body motion and plasticity. The type of the shell element is a rectangular ANDES element in a co-rotated formulation. The local strains assumed to be small. Within this formulation, better line-spring finite element is implemented.

These features made LINK a tool that can consider both cracks and global/local buckling in the same simulation. One of industry practice where this is applicable is in reeling installation with nominal strain around ~2% (LINKftr, 2012).
4.1.2 LINKpipe Verification

Comparison using LINKpipe and large scale test for pipeline with surface cracks has been done by Berg et al., (2007). The summary of the work is as follows:

a. The study was to compare the results from large scale experiments of pipe segments with the results predicted by LINKpipe;
b. For the modeling, it is assumed that pipeline was subjected to pure bending load to represent the external applied load;
c. For the case of bending of the pipes having external surface defects, the results from shell-line spring model and large scale testing were compared. The comparison showed that the results are “generally in good agreement quantitatively”;
d. The comparison adds support for the implementation of LINKpipe software for fracture analysis of pipeline loaded beyond yielding.

Several verifications of the software by comparing with the predictions from 3D solid finite element analysis are provided by the following literature:

1. The summary from the work of Sandvik et al., (2011) is as follows:

 FE analyses using 3D FE model from Abaqus and Shell-Line spring element model from LINKpipe were performed. The FE models included the ductile tearing and material crack growth resistance characteristics. A comparison has been done by comparing the crack driving forces i.e., plotting the crack tip opening displacement (CTOD) against the global longitudinal tension strain. The work concluded that LINKpipe software results are “in reasonable accordance with the Abaqus/Explicit Simulations and should be suitable for the pipeline engineering fracture assessment model.”

Figure 4.1 Solid and shell/line-spring modeling of surface cracked shells (Ref., LINKpipe theory manual, 2012).
2. Thaulow et al., (2006), performed fracture assessment of pipeline using efficient and accurate line-spring model. 3D FE analysis and large scale testing were performed to compare the results. The main conclusions of the study are:

 a) The fracture parameters that calculated from LINKpipe model (line-spring) for surface cracked pipes are in “good agreement” with 3D FE simulation;
 b) Line-spring model is proved to be an efficient and accurate tool to estimate constraint in pipeline with surface cracked;
 c) Also, in case of crack driving force for ECA, LINKpipe give very close result to the 3D calculations.

3. Jayadevan et al., (2006) carried out a study to examine ductile crack growth in surface cracked pipes. They used the line-spring model to simulate ductile tearing surface cracked pipes with a focus on the through-thickness ductile crack growth of the circumferential surface crack. The predictions from the line-spring model were compared against that from 3D FE analyses. The influence of ductile tearing on crack driving force for surface cracked pipes was investigated using line-spring model. The main conclusions are:

 a) The results of ductile crack growth from line-spring were in “good agreement” with detailed continuum simulation;
 b) The study showed that the crack growth line-spring model is an accurate method for ductile crack growth simulation in surface cracked pipes.

4. Jayadevan et al., (2005), conducted a study to determine the constraint in pipelines using efficient and accurate line-spring model, the results are then compared with detailed 3D FE analysis. The main conclusions are:

 a) The results for elastic SIF (Stress Intensity Factor) and T-stress results from the line-spring model are in “good agreement” with the results from 3D FE analysis;
 b) Even under large-scale yielding, the results for T-stress from the elastic-plastic line-spring model correspond well with the constraint results from 3D FE analysis.

5. Skallerud B, Holthe K, and Haugen B., (2005), compared the results from shell and line-spring finite element simulations with the results from detailed solid finite element analyses using Abaqus. The numerical simulation is performed for several cases i.e., Single Edged Notched Tensile (SENT) specimen, cracked cylindrical shell in tension, and cracked cylindrical shell in bending. The study showed that the co-rotated thin shell elements based on assumed natural deviatoric strains and co-rotated line-spring finite elements combination works well.

4.1.3 Line-Spring and Shell Finite Element

A. LINE-SPRING FINITE ELEMENT

According to Berg et al., (2007), a 3D-problem can be represented by a 2D shell structure by using the line-spring technology. A surface crack is then modeled by using line-spring
elements. The compliance in the line-spring elements is calculated based on known solutions of a single edge notch (SEN) specimen.

The local compliance of a spring at a point depends on the depth of the surface crack at that point. Once the local compliance computed, the stress intensity factor, K_I, and the crack tip opening displacement, CTOD, can be calculated along the crack front.

![Figure 4.2](image-url)
(a) 2D shell model with line-springs representing the surface crack. (b) The compliance at any point along the line-spring (Ref., Berg et al., 2007).

B. SHELL FINITE ELEMENT

According to LINKpipe theory manual (2012), the shell finite element used in LINKpipe is an Assumed Natural Deviatoric Strains (ANDES) shell element. The shell and line-spring element in LINKpipe is a high-performance and non-conforming thin shell finite element based on ANDES.

The ANDES element was initially developed by Felippa and Militello (1992) as cited in LINKpipe theory manual (2012). It was further extended by Skallerud and Haugen (1999) as cited in LINKpipe theory manual (2012) to handle large rotations and inelastic behavior. The ANDES shell finite element is derived in a co-rotated formulation that gives a “stringent way” of extracting only the strains and curvatures generating deformations in the element.

The strains at element level are assumed to be small, but the global deformations can still be large. Detailed descriptions for the derivations of the co-rotated ANDES shell finite are published by Skallerud et al. (2005) as cited in LINKpipe theory manual (2012).
4.1.4 Ductile Crack Growth

Ductile crack growth is applied in the line-spring element for fully plastic deformation conditions. Jayadevan et al., (2006) as cited in LINKpipe theory manual (2012) showed the applicability of using the crack growth resistance curve that is in accordance with the established use as defined in BS7910:1999. The crack growth resistance curve used in LINKpipe can be given by Equation 4.1.

\[CTOD = CTOD_i + C_1 (\Delta a)^{C_2} \] ...(4.1)

Where, \(CTOD_i \) is the critical CTOD-value at onset of ductile tearing. \(C_1 \) and \(C_2 \) are fitting constants. The updated crack depth, \(a \), at the end of a load increment is expressed by Equation 4.2.

\[a^{(i+1)} = a^{(i)} + da^{(i)} \] ...(4.2)

4.1.5 Fatigue Crack Growth

The high cycle fatigue load station in LINKpipe is based on the analysis methods described in BS7910. The computations are based on the K-solution in BS7910, but not from the finite element calculations. To determine accumulated fatigue crack growth under certain loading cycles, LINKpipe conducts a numerical integration of Paris’ equation for crack growth.

4.1.6 Clad and Lined Pipes

According to Olsø et al., (2011), a new bi-metallic shell element was developed in LINKpipe in order to analyze fracture and local buckling on clad pipes.

For fracture assessment in clad pipes, LINKpipe uses through thickness integration of the shell element. The through thickness integration is executed in two steps, one step for each material layer. In the shell element, the strain and stress resultants are calculated in the mid-thickness (reference plane). The strain components in each integration point through the thickness will then be based on the strains in the nodes.

According to LINKpipe theory manual (2012) to account mismatch in weld metal, a simplified approach in the line-spring finite element is implemented. Input data are the stress-strain curves for each of the material. Figure 4.3 shows an illustration where base material, weld metal and clad material are present. It is assumed that the strain localization in the ligament follows a 45° line from the crack tip to the opposite surface.

Based on the assumptions in Figure 4.3, a weight function is used to calculate an equivalent stress-strain curve which should be assigned to the line-spring element. The weight function can be seen in Equation 2.2.

Furthermore, in the work of Olsø et al., (2011), the procedure can also be applied for the conventional pipeline without clad layer.
4.2 Modeling Concept by CRACKWISE

According to CRACKWISE help documentation (2009), CRACKWISE automates the procedures of fracture and general fatigue analyses based on BS 7910: 2005 (incorporating Amendment No.1). BS7910 provides guidance on methods for analyzing the consequence of defects in terms of the structural integrity of welded structures. The methods are based on fracture mechanics, and relate to planar, crack-like defects. However, they may be used conservatively for evaluating volumetric flaws.

CRACKWISE complies with BS 7910 and provides additional features that enable it to examine the issues relating to the structural integrity assessment. The software automates the following calculations:

1. Fracture - known parameter, critical, sensitivity and critical sensitivity calculations;
2. Fatigue - crack growth calculations;
3. Fatigue and fracture - crack growth with fracture check (fatigue life).

CRACKWISE has the capability to perform the following type of calculations:

1. Fracture assessments: these (default setting) includes:
 - Performing known parameter assessments for different defect types combine with critical parameter calculations;
 - Assessing the maximum allowable defect dimensions, stresses, minimum required toughness and tensile properties;
 - Performing sensitivity analyses for most of the input parameters;
 - Carrying out critical and sensitivity parameter calculations by using input of geometry, stresses and material.
2. Fatigue assessments: these enable crack growth to be projected for structures subjected to cyclic loading.

3. Combined fatigue and fracture assessment: when both options fatigue and fracture are chosen, CRACKWISE includes a check from fracture at each stage of fatigue crack growth, to enable the fatigue life to be computed.

The BS 7910 fracture assessment methods are based on the concept of the Failure Assessment Diagram (FAD). The vertical axis of the FAD denotes the likelihood of fracture, whereas the horizontal axis denotes the likelihood of plastic collapse. The interaction between these two failure modes is taken into account in the analyses and shown by plotting a failure line on the FAD.

The analysis of a specific defect generates a single point on the FAD for assessment Levels 1 and 2, and an assessment line for Level 3. If the assessment point or assessment line is within or on the failure line then the defect is acceptable. If the point or line lies entirely outside the failure line then there is a possibility of structural failure, and the defect is not acceptable. For Level 3, if the assessment locus lies partially within the failure locus then the defect is acceptable, but with some tearing possible.

BS 7910 includes three levels of fracture assessments. Each assessment is based on the concept of a failure assessment diagram (FAD), which accounts for both fracture and plastic collapse modes:

Level 1 is a simplified method, and has an objective as preliminary assessments, or when input data are uncertain. Level 1 largely complies with PD6493:1980 and includes the CTOD design curve. Level 1 incorporates in-built safety factors of about 2 on defect size in terms of fracture, and 1.25 on stress in terms of plastic collapse. Level 1 procedure is based on simplified assumptions regarding stress distributions and FAD, and worst-case input data should be used.

Level 2 is the normal assessment method. Level 2 does not include in-built safety factors. However, guidance is provided to set certain partial safety factors on stress, flaw dimensions, toughness and yield strength. A various types of failure assessment diagrams are available, depending on material type and available data.

Level 3 is the most advanced method, and is capable of modeling ductile tearing, based on toughness expressed in terms of an R-curve. Furthermore, the Level 3 FAD is based on the specific stress-strain curve for the material to be assessed. However, a default option is given if the stress-strain curve is unknown. Also for this level, a various types of failure assessment diagrams are available, depending on material type and available data.

According to BS9710:2005, there are three types of level 3 assessment methods: Levels 3A, 3B and 3C. Each method applies a ductile tearing analysis and uses a different assessment line. The analysis results from the assessment are either a single assessment point or a locus of assessment points. If either the point or any part of the locus lies within the area bounded
by the axes and the assessment line, the flaw is acceptable; if it lays outside the area then the flaw is not acceptable.

The ECA for the spooling on and reeling off are performed using Level 3B of the BS 7910 methods. This is based on permitting some tearing of the defect to take place and the FAL (The Failure Assessment Line) is produced from the specific material stress-strain curve (Subsea 7, 2011).

Figure 4.4 shows level 3 – ductile tearing instability assessment flowchart taken from BS9710.

4.2.1 Defining Stresses

According to BS7910:2005, the stresses that will be considered in the analysis are those that would be calculated by a stress analysis of the unflawed structure. The actual stress distributions may be used or the stresses may be linearized, as shown in Figure 4.5. The linearized method will usually overestimate the stress but it has the advantage that it does not need to be repeated with crack growth.

It is important that the effect of local or gross discontinuities or by misalignment is taken into account in the primary membrane and bending stresses, the secondary stresses and the magnification of the primary stresses.

A. PRIMARY STRESS (P)

The primary stress is stresses that could (if sufficiently high) contribute to plastic collapse. It is different from secondary stresses, which do not contribute to the plastic collapse. However, both stresses can contribute to failure by fracture, fatigue, creep or stress corrosion cracking.

They include all stresses arising from internal pressure and external loads. The primary stresses are separated into primary membrane, \(P_m \), and primary bending, \(P_b \), components as follows:

a. **Primary membrane stress** \((P_m) \) is “the mean stress through the section thickness that is necessary to ensure the equilibrium of the component or structure.”

b. **Primary bending stress** \((P_b) \) is “the component of stress due to imposed loading that varies linearly across the section thickness. The bending stresses are in equilibrium with the local bending moment applied to the component.”

B. SECONDARY STRESS (Q)

The secondary stresses, \(Q \), are “self-equilibrating stresses necessary to satisfy compatibility in the structure.” It can be relieved by local yielding, heat treatment, etc. Thermal and residual stresses are normally categorized as secondary stresses, but fluctuating thermal stresses are treated as primary in a fatigue assessment. A significant characteristic of secondary stresses is that they do not contribute to plastic collapse, since they arise from strain/displacement limited phenomena.
The secondary stresses may be distributed into secondary membrane, Q_m, and secondary bending, Q_b, components similar to primary stresses. For level 3 assessment the residual stresses may in general be assumed to be uniform, as for Level 1, or non-uniform.

If the residual stresses are assumed to be uniform, the residual stress component, Q_m, may be assumed to be equal to the lower of the following values:

$$Q_m = \sigma'_y$$... (4.3)

or

$$Q_m = \left(1.4 - \frac{\sigma'_{\text{ref}}}{\sigma'_{f}}\right)\sigma'_y$$... (4.4)

Where,

σ'_y = The appropriate material yield strength at the given temperature for analysis. Except for temperatures below ambient, the room temperature value of σ'_y is used in Equation 4.3.

σ'_{f} = The appropriate flow strength (assumed to be the average of the yield and the tensile strengths) at given temperature for the analysis. *(For the purposes of determining the residual stress, the flow stress is not restricted to a maximum of 1.2 times the yield strength).*

σ'_{ref} = Reference stress.

Table 4.1 Symbols Definition in Figure 4.4 and Figure 4.5

<table>
<thead>
<tr>
<th>Symbols (\text{Description})</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{mat} Material toughness measured by stress intensity factor</td>
</tr>
<tr>
<td>δ_{mat} Material toughness measured by CTOD method</td>
</tr>
<tr>
<td>Δa Increment in a</td>
</tr>
<tr>
<td>a_0 Initial flaw size</td>
</tr>
<tr>
<td>a_i Intermediate value of tearing flaw extension</td>
</tr>
<tr>
<td>a_g Limit tearing flaw extension</td>
</tr>
<tr>
<td>L_r Ratio of applied load to yield load</td>
</tr>
<tr>
<td>K_r Fracture ratio of applied elastic K value to K_{mat}</td>
</tr>
<tr>
<td>δ_r Fracture ratio using CTOD parameters</td>
</tr>
<tr>
<td>$\Delta \sigma_b$ Bending component of stress range</td>
</tr>
<tr>
<td>$\Delta \sigma_m$ Membrane component of stress range</td>
</tr>
</tbody>
</table>
Figure 4.4 Level 3 – ductile tearing instability assessment flowchart (Ref., BS7910: 2005).
Figure 4.5 Linearization of stress distributions (Ref., BS7910: 2005).
4.2.2 Selecting FAD (Failure Assessment Diagram)

The procedure for selecting FAD is taken (quotes) directly from BS9710:2005 as follows:

A. FAD for Level 3A: Generalized FAD of Level 2A (not requiring stress-strain data)

The FAD is the same as that for Level 2A (p.45 BS9710):

The equations describing the assessment line are the following (p.39 BS9710):

For \(L_r \leq L_{r_{\text{max}}} \):

\[
\sqrt{\delta_r} \text{ or } K_r = \left(1 - 0.14 L_r^2\right) \left[0.3 + 0.7 \exp\left(-0.65 L_r^5\right)\right] \tag{4.5}
\]

For \(L_r > L_{r_{\text{max}}} \):

\[
\sqrt{\delta_r} \text{ or } K_r = 0 \tag{4.6}
\]

The FAD is shown in Figure 4.6 with different cut-offs for different materials.

For materials which exhibit a yield discontinuity (often referred to as Lüders plateau) in the stress-strain curve (i.e. any curve which is not monotonically increasing), or for which it cannot be assumed with confidence that no discontinuities exist, either a cut-off value for \(L_r \) of 1.0 should be applied or Level 2B should be used.

This FAD provides a reasonable underestimate of the flaw tolerance of a structure but the underestimate may be excessive in cases where the initial rate of hardening in the stress-strain curve is high (such as materials operating in the strain ageing régime). In those cases, Level 3B should be considered (p.45 BS9710).

![Figure 4.6 Level 2 FADs (Ref., BS7910: 2005).](image-url)
B. FAD for Level 3B: Material–specific curve

The material-specific FAD is derived as for Level 2B. Stress-strain data for the material are needed, especially at strains below 1%. This diagram is suitable for all metals, regardless of their stress-strain behavior (p.45 BS9710).

This method is suitable for parent material and weld metal of all types. It will generally give more accurate results than Level 2A but requires significantly more data. It requires a specific stress-strain curve; Stress-strain data are required at the appropriate temperature for parent material and/or weld metal (p.41 BS9710).

The lower yield or 0.2% proof strength, tensile strength, and modulus of elasticity should be determined together with sufficient co-ordinate stress/strain points to define the curve. Particular attention should be paid in defining the shape of the stress/strain curve for strains below 1%.

C. Estimation of L_r

The cut-off is to prevent localized plastic collapse and it is set at the point at which $L_r = L_{r\text{max}}$ where (p.38 BS9710):

$$L_{r\text{max}} = \frac{\sigma_{ys} + \sigma_{uts}}{2\sigma_{ys}}$$

...(4.7)

For level 2 and 3, the load ratio L_r is calculated from the following equation (p.44 BS9710):

$$L_r = \frac{\sigma_{\text{ref}}}{\sigma_{ys}}$$

...(4.8)

Where,

σ_{ref} is obtained from an appropriate reference stress solution as outlined in Equation 4.9.

For Internal surface flaws in cylinders oriented circumferentially, the reference stress is calculated from the following equation (p.245 BS9710):

$$\sigma_{\text{ref}} = \frac{P_m}{P_m} \left\{ \frac{\pi}{C} \left(1 - \frac{a}{B}\right) + 2\left(\frac{a}{B}\right) \sin \left(\frac{C}{r}\right) \right\} + \frac{2P_b}{3(1-a^2)}$$

...(4.9)

Where,
Mater Thesis: A Study on ECA of Subsea Pipeline Girth Welds for Reeling Installation

\[a'' = \frac{a}{B} \left(1 + \frac{B}{c} \right) \]
for \(\pi r \geq c + B \) ..(4.10)

\[a'' = \left(\frac{a}{B} \right) \left(\frac{c}{\pi r} \right) \]
for \(\pi r_c \geq c + B \) ..(4.11)

Where,

\(P_m = \) The total membrane stress due to external bending, axial loads and pressure,

\(P_b = \) The total through-wall bending stress due to external bending and/or local misalignment,

\(a = \) Crack height,

\(c = \) Half of crack length,

\(B = \) The section thickness,

\(r_c = \) Radius of the cylinder.

D. Fracture Ratio (Kr)

\(K_r \) is calculated from the following equation (p.42-43 BS9710):

\[K_r = \frac{K_I}{K_{mat}} \] ...(4.12)

Where secondary stresses are present, a plasticity correction factor, \(\rho \), is necessary to allow for interaction of the primary \((Y\sigma)_p\) and secondary \((Y\sigma)_s\) stress contributions, such that:

\[K_r = \frac{K_I}{K_{mat}} + \rho \] ...(4.13)

For Level 2 and 3, the applied stress intensity factor, \(K_i \), has the following general form (p.37, 42 BS9710):

\[K_I = (Y\sigma)\sqrt{\pi a} \] ...(4.14)

\[(Y\sigma) = (Y\sigma)_p + (Y\sigma)_s \] ...(4.15)

Where \((Y\sigma)_p\) and \((Y\sigma)_s\) represent contributions from primary and secondary stresses, respectively.
\[
(Y\sigma)_p = M_f \left[k_m M_m P_m + k_{tb} M_{kb} \left\{ P_b + (k_m - 1)P_m \right\} \right] \quad \text{.. (4.16)}
\]

\[
(Y\sigma)_s = M_{m} Q_m + M_{b} Q_b \quad \text{.. (4.17)}
\]

Where,

- \(F_w\) = Finite width correction factor,
- \(K_{tm/tb}\) = Membrane/bending stress SCF,
- \(M_{m/b}\) = Membrane/bending stress intensity magnification factors,
- \(K_m\) = Misalignment,
- \(M_{km/kb}\) = Membrane/bending stress intensity magnification factors for weld toe.

In the above equations, expressions for \(M_f, F_w, M_m\) and \(M_b\) are given in BS9710 Appendix M for different types of flaw in different configurations.

\(M_{km}\) and \(M_{kb}\) apply when the flaw or crack is in a region of local stress concentration.

For \(k_m, k_{tb}\) and \(k_m\), reference should be made to BS9710 part 6.4 and Annex D.
5. ANALYSIS METHODOLOGY

5.1 ECA of Pipeline Girth Welds

Based on DNV-OS-F101 Appendix A, the analysis procedure and necessary testing rely upon the level of monotonic and cyclic deformations. DNV-OS-F101 divides the ECA into three different analysis categories. The analysis procedure for reeled pipeline is categorized as “ECA static – high” which means the pipeline undergoes maximum longitudinal strain equal to or larger than 0.4% with maximum number of strain cycle limited to 10.

The Engineering Critical Assessment of pipeline girth welds is performed on rigid pipeline during reeling installation particularly in spooling on and reeling off stages. During these stages the pipeline is in high curvature condition and is subjected to large plastic deformation. The analysis of ECA does not include the installation fatigue during hold period on vessel. In this assessment, the base pipe tensile properties and the weld metal tensile properties are assumed to be even-matching.

The analysis only considers surface defect as it is conservative assumption. According to DNV-RP-F108, p.12 (Guidance note 10):

“It is normally acceptable to only analyze surface breaking defects and use the same acceptance criteria also for embedded defects (note that the defect height, 2a, of an embedded defect is then the same as the defect height, a, of a surface defect). If the embedded defect is located close to the surface (ligament less than half the defect height) the ligament between the defect and the surface shall be included in the defect height.”

5.1.1 ECA using LINKpipe

LINKpipe analyzes fracture and crack growth based on shell and line-spring finite elements. The shell element used in LINKpipe is a rectangular ANDES (Assumed Natural Deviatoric Strain) element in a co-rotated formulation. The crack is modeled by line-spring element as nonlinear springs between the shell elements.

LINKpipe has the capability to run an ECA-analysis using non-linear direct calculation. To perform the ECA analysis using LINKpipe, it needs to model the minimum and the maximum defect sizes (crack depth and length). LINKpipe performs ECA on iterative process in a loop. The loop of ECA-analysis will start with the maximum crack length and then the iteration begins to find the critical crack depth that satisfies the acceptance criteria for the given crack length.

Input data for ECA-analysis using LINKpipe is as follows:
1. Material Data

The input for material data include basic material properties (Young’s Modulus, Poisson’s Ratio, True stress-strain curve) and parameters of ductile crack growth based on Equation 4.1 (CTOD as a function of crack growth). LINKpipe uses power law hardening model as a default option for the input of stress and strain curve.

2. Geometry

The input data for geometry includes: Pipe Geometry (Outer diameter, wall thickness, pipe length), Defect Geometry (Crack Depth, Crack Length, Orientation, Type, Shape), Misalignment, Shell Thickness Properties (base metal wall thickness, CRA wall thickness for clad pipes), and Weld Geometry.

3. Load Condition and Residual Stress

There are four types of load stations in LINKpipe such as load controlled, reeling, displacement and rotation controlled.

4. Fracture Stop Criteria for ECA-Analysis

LINKpipe requires the fracture stop criteria during the ECA-analysis. There are three fracture stop criteria used in LINKpipe, such as Maximum CTOD, Maximum Crack Growth, and Maximum Crack Depth.

The flowchart of ECA analysis using LINKpipe describes the work steps consist of input data, calculation and modeling sequences as seen in Figure 5.1.

5.1.2 ECA using CRACKWISE

CRACKWISE is windows based software that automates fracture analysis procedures based on BS9710:2005. The ECA for pipeline girth welds in reeling installation are carried out using level 3B analysis procedure according to BS9710. A level 3 analysis procedure enables ductile tearing to be analyzed. The FAD in the level 3B analysis is based on the specific stress-strain curve of the material being assessed.

The List of required input data used for ECA of pipeline girth welds using CRACKWISE is as follows:

1. Geometry:

The input data for geometry includes type of geometry, type of flaw, weld profile, weld cap width, maximum misalignment, wall thickness B, width or length W, radius rm, flaw height a, and flaw length 2c. Figure 5.2 illustrates the pipe geometry in CRACKWISE. Stress Intensity Factor (SIF) and reference stress solution depend on the type of flaw and geometry.
Figure 5.1 The analysis flowchart using LINKpipe (input data, calculation and modeling sequences).

2. Fracture Toughness:

The data regarding fracture toughness in level 3 analysis include fracture resistance curve in the form of J-integral or CTOD as a function of Δa.

3. Primary Stress:

The stress value for primary stress is the stress derived from material’s stress-strain curve corresponding to the nominal strain of the pipeline during reeling installation. This stress value is the input as parameter P_m (primary membrane stress) in CRACKWISE. Bending stress component P_b (primary bending stress), that is induced by misalignment in the pipeline is calculated using SCF (Stress Concentration Factor) in association with Neuber’s rule.

4. Secondary Stress

The input secondary stress is welding residual stress which is given as a parameter Q_m, (secondary membrane stress) in CRACKWISE.
5. Critical Parameter

Main result of ECA is the generic curve of critical crack size or allowable defect size. The generic curve can be generated by CRACKWISE by selecting flaw height as critical analysis parameter and flaw length as sensitivity analysis parameter.

![Illustration of pipe geometry on CRACKWISE](Ref., CRACKWISE software, 2009).

The flowchart describing the analysis steps using CRACKWISE can be seen in Figure 5.3.

![Analysis flowchart using CRACKWISE](input data, calculation and modeling sequences).
5.2 ECA of Clad Pipes using LINKpipe

Engineering Critical Assessment for girth weld in clad pipes is analyzed using LINKpipe. LINKpipe has the capability to assess the integrity of Clad Pipe through the implementation of bimetallic shell element combined with line-spring elements.

According to Olsø et al., (2011), the application of the bi-metallic shell element in LINKpipe is assumed no relative sliding or full bonding between the CRA layer and the base metal. This assumption is applicable for clad pipes. But in case of lined pipes the CRA layer is mechanically bonded by friction force between the layer and the base metal. The bond makes the layer in lined pipes more likely to slide from the base metal and there is also the possibility of liner wrinkling the pipe when subjected to large bending moments.

However, the main objective of ECA is the fracture integrity of the girth welds. Furthermore, at the ends of each lined pipe the CRA layer usually welded to the base metal so that the pipes can be assumed locally behave like clad pipe. Hence, it can be concluded that the application of bi-metallic shell element can also be used to analyze the ECA of lined pipes.

To handle the strength mismatch in the clad pipes, LINKpipe has similar approach with DNV that is to develop an equivalent material stress-strain curve. The difference is that DNV method requires performing FE analysis to build a single equivalent curve, whereas LINKpipe uses weighting principle (see Figure 2.8) that has been described in the Section 2.3.2.

For the present thesis work, the fracture assessment for clad pipes has been performed for two stages of ECA analysis i.e., the spooling on and reeling off stages and installation fatigue during hold periods on vessel.

For Clad Pipes, the flowchart describing the analysis steps using LINKpipe can be seen in Figure 5.4.
Figure 5.4 The analysis flowchart using LINKpipe for Clad pipes.
6. CASE STUDY

There are two sets of different input data used in the analysis. The first set of data is for ECA of martensitic stainless steels pipeline and the second set of data is for ECA of clad pipe.

6.1 ECA of Pipeline Girth Weld

This section presents all of the input data required for Engineering Critical Assessment of pipeline girth weld during reeling installation.

6.1.1 Pipeline Geometries

The 10” pipeline made of 13Cr martensitic stainless steel is used for the current study. Table 6.1 presents geometric and material data for the pipeline.

Table 6.1 Pipeline Geometries and Material (Ref., Subsea7, 2006)

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>WPQ</th>
<th>OD (mm)</th>
<th>WT (mm)</th>
<th>WT tolerance</th>
<th>Coating Thickness (mm)</th>
<th>Pipeline Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10”</td>
<td>ES0063-WPQ-01&01a</td>
<td>273.1</td>
<td>15.6</td>
<td>±12.5%</td>
<td>70</td>
<td>13%Cr, 2.5%Mo (SML 13Cr I PDF)</td>
</tr>
</tbody>
</table>

The possible minimum wall thickness has been used in the analysis. The minimum wall thickness is nominal wall thickness minus the wall thickness tolerance. During reeling installation the pipe experiences the load cycles of bending over the reel drum and straightening. The diameter of the reel drum used for the current assessment is 15m.

6.1.2 Stress Concentration Factor (SCF)

The bending component of applied stress is the input CRACKWISE and it is calculated using elastic Stress Concentration Factor (SCF) which induced by eccentricities from wall thickness differences and misalignment. SCF can be calculated using Equation 6.1 in accordance to DNV RP F108:

\[
SCF = 1 + \frac{6(\delta_i + \delta_{\text{m}})}{t} \cdot \frac{1}{1 + \left(\frac{T}{t}\right)^{2.5}} \cdot e^{-\alpha} \tag{6.1}
\]

Where,
\[
\alpha = \frac{1.82L}{\sqrt{OD \cdot t}} \left(1 + \frac{T}{t} \right)^{2.5}
\]

(6.2)

Where,

T and t = Wall thickness of the pipes on each side of the girth weld, T > t,

\(\delta_t + \delta_m \) = Eccentricities from wall thickness differences and misalignment (including out-of-roundness, center eccentricity, different diameters etc.),

L = Width of girth weld cap,

OD = Outside diameter of pipe (nominal value is acceptable).

It is assumed that maximum misalignment is 1.95mm and the corresponding SCF value is 1.242.

6.1.3 Pipeline Tensile Properties

For ECA analyses using CRACKWISE with level 3B assessment, it is required to define the pipeline material characteristics in the form of engineering stress-strain curve. The curve can be described either by means of the Ramberg–Osgood equation or by entering the actual strain–strain data manually.

CRACKWISE uses the following Ramberg–Osgood equation:

\[
\frac{\varepsilon}{\varepsilon_{yo}} = \frac{\sigma}{\sigma_{yo}} + \alpha \left(\frac{\sigma}{\sigma_{yo}} \right) ^n
\]

(6.3)

Where,

\(\sigma_{yo} \) = Reference Stress,

\(\varepsilon_{yo} \) = Reference Strain,

n = Strain Hardening Exponent.

On the other hand, for ECA analyses using LINKpipe, it is required to model true stress-strain curve either by using the default option power hardening law (see Equation 6.4) as a default input or by entering the actual stress–strain data manually.

\[
\sigma = \sigma_0 \left(\frac{\varepsilon_{pl} \cdot E}{\sigma_0} + 1 \right) ^n
\]

(6.4)

Where,

\(\sigma_0 \) = Initial yield stress,
$\varepsilon_{pl} = \text{True Plastic strain},$

$E = \text{Young’s Modulus},$

$n = \text{Strain Hardening Exponent}.$

The ECA analyses have been performed with the assumption that the weld metal strength is evenly matches with the strength of the base metal (parent pipe). The stress-strain curve used in the assessment is based on Ramberg-Osgood hardening law. Figure 6.1 presents the stress-strain curve based on the material parameters summarized in Table 6.2.

Table 6.2 Ramberg - Osgood Stress/Strain Curves Parameter (Ref., Subsea7, 2006)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>R-O Base Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield stress, $R_{p0.5}$</td>
<td>691 MPa</td>
</tr>
<tr>
<td>Ultimate Tensile Strength, (UTS)</td>
<td>899 MPa</td>
</tr>
<tr>
<td>Young’s Modulus, E</td>
<td>205,000 N/mm²</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Elastic Parameter, α</td>
<td>0.593</td>
</tr>
<tr>
<td>Hardening parameter, n</td>
<td>14.276</td>
</tr>
</tbody>
</table>

Figure 6.1 Ramberg-Osgood stress and strain curve (Ref., Subsea7, 2006).
6.1.4 Fracture Toughness

The material’s fracture resistance is described by the J-integral and determined by testing of the SENT (Single Edge Notched Tension) specimen. The specimen is designed to have a loading mode and crack tip constraint similar to the loading mode and constraint for a crack in the pipeline girth weld. The fracture resistance is defined by the J-integral value as a function of measured ductile crack extension (Δa). The test results are then described as J-Δa curve fitted with lower bound experimental values.

The test results for SENT specimen can be found in Table 6.3, whereas the corresponding lower bound J-Δa curve can be seen in the Figure 6.2.

Based on DNV-RP-108, “The J-R curves shall be established as a lower bound curve for the experimental results. Often a curve of the form $J=x*\Delta a^m$ fits the data well.”

The representative lower bound curve used in the analyses is as follows: $J = 1.410 \cdot \Delta a^{0.68}$

<table>
<thead>
<tr>
<th>Weld Procedure/ Pipeline</th>
<th>Notch Location</th>
<th>Specimen Width, B (mm)</th>
<th>a_0/W</th>
<th>J (N/mm)</th>
<th>Δa (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10” Main Line & Tie-in Procedure</td>
<td>WM</td>
<td>25.71</td>
<td>0.33</td>
<td>1,860.10</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.49</td>
<td>0.42</td>
<td>1,194.70</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.70</td>
<td>0.41</td>
<td>540.80</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.04</td>
<td>0.42</td>
<td>1,836.40</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.05</td>
<td>0.38</td>
<td>1,408.90</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.05</td>
<td>0.43</td>
<td>535.00</td>
<td>0.16</td>
</tr>
<tr>
<td>10” Main Line & Tie-in Procedure</td>
<td>FL/HAZ</td>
<td>25.99</td>
<td>0.41</td>
<td>1,734.41</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.00</td>
<td>0.38</td>
<td>1,087.00</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.00</td>
<td>0.38</td>
<td>507.10</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.98</td>
<td>0.37</td>
<td>1,857.10</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.00</td>
<td>0.35</td>
<td>1,152.50</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.01</td>
<td>0.37</td>
<td>516.60</td>
<td>0.15</td>
</tr>
</tbody>
</table>
6.2 ECA of Clad Pipes Girth Weld

This section presents the input data required for Engineering Critical Assessment of clad pipes girth welds. The assessment considers the reeling installation including fatigue due to hold periods on vessel. It is assumed that ECA analysis for clad pipes is also applicable for lined pipes as described in the Section 5.2.

6.2.1 Reeling Strain

The reeling installation phases used in the ECA of clad pipes consisted of:

1. Reeling on;
2. Reeling off – assumed pulled straight;
3. Bending over the aligner;
4. Through straightener;
5. Back onto aligner;

The installation phases mentioned above are with addition of half cycle of “adjustment of the ramp”. Hence, a total of three tensile strain cycles are used in the analysis. Table 6.4 presents the reeling strain for all cycles.

![Fracture resistance curve](image-url)
Table 6.4 The Reeling Strain for All Cycles (Ref., Subsea7, 2010)

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Reeling Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>1.77%</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>1.42%</td>
</tr>
<tr>
<td>Cycle 3</td>
<td>1.62%</td>
</tr>
</tbody>
</table>

6.2.2 Clad Pipes Geometry and Material

The current work of ECA analysis for clad pipes considers the pipeline with pipe diameter and wall thickness: 273.1mm OD x 15mm WT (+3.0 mm Clad). **Table 6.5** presents the details of clad pipe geometry and material used in the analyses.

Table 6.5 Pipeline Geometries and Material of Clad Pipes (Ref., Subsea7, 2010)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>273.1 x 18 mm - Clad Production Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min WT</td>
<td>17.7 mm</td>
</tr>
<tr>
<td>Max WT</td>
<td>19.4 mm</td>
</tr>
<tr>
<td>Coating Thickness Start of Life</td>
<td>82 mm</td>
</tr>
<tr>
<td>Boat Reel Hub Diameter</td>
<td>15 m</td>
</tr>
<tr>
<td>Parent Pipe Material</td>
<td>SAWL 415 I SFPDU</td>
</tr>
<tr>
<td>Clad Material</td>
<td>UNS S31603 CRA</td>
</tr>
</tbody>
</table>

6.2.3 Clad Pipes Tensile Properties

There are three different materials in a clad pipe i.e. parent pipe material, clad layer material, and weld metal material. To determine the type of strength mismatch, all of the three materials stress-strain curve shall be compared. The true stress-strain curve from the tensile testing is used for ECA using LINKpipe.

For the present analysis, the following stress-strain curves were applied:

1. Upper bound stress-strain curve for parent pipe material;
2. Lower bound stress-strain curve for girth weld;
3. Lower bound stress-strain curve for clad material.

The young’s modulus used for the analysis can be seen in **Table 6.6**. The as-received and strained-aged true stress-strain curve for parent pipe, weld, and clad materials can be seen in **Figure 6.3** and **Figure 6.4**, respectively. For the as-received condition the girth welds is identified as partially overmatch, whereas for the strained & aged condition the girth welds is considered as fully overmatch.
Table 6.6 Young’s Modulus of Materials (Ref., Subsea7, 2010)

<table>
<thead>
<tr>
<th>Material</th>
<th>Young’s Modulus (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent material – As Received</td>
<td>200,000</td>
</tr>
<tr>
<td>Parent material – Strained & Aged</td>
<td>200,000</td>
</tr>
<tr>
<td>Mainline weld – As Received</td>
<td>170,000</td>
</tr>
<tr>
<td>Mainline weld – Strained & Aged</td>
<td>200,000</td>
</tr>
<tr>
<td>CRA Clad</td>
<td>200,000</td>
</tr>
</tbody>
</table>

Figure 6.3 As received true stress and strain curve used in the analysis (Ref., Subsea7, 2010).
6.2.4 Fracture Toughness

Table 6.7 summarizes SENT specimen test results for material fracture resistance. Figure 6.5 presents lower bound fracture resistance curve (J-Δa curve).

The representative equation of the lower bound curve is: \(J = 920 \cdot \Delta a^{0.8} \)

<table>
<thead>
<tr>
<th>Location</th>
<th>B (mm)</th>
<th>W (mm)</th>
<th>(a_0) (mm)</th>
<th>(\Delta a) (mm)</th>
<th>J (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCL</td>
<td>39.86</td>
<td>20.33</td>
<td>7.96</td>
<td>2.01</td>
<td>1,622</td>
</tr>
<tr>
<td>WCL</td>
<td>39.93</td>
<td>20.08</td>
<td>6.30</td>
<td>1.30</td>
<td>1,265</td>
</tr>
<tr>
<td>WCL</td>
<td>39.99</td>
<td>20.04</td>
<td>7.03</td>
<td>0.60</td>
<td>760</td>
</tr>
<tr>
<td>WCL</td>
<td>39.90</td>
<td>20.04</td>
<td>6.40</td>
<td>1.33</td>
<td>1,506</td>
</tr>
<tr>
<td>WCL</td>
<td>39.97</td>
<td>20.02</td>
<td>6.68</td>
<td>0.52</td>
<td>565</td>
</tr>
<tr>
<td>WCL</td>
<td>39.95</td>
<td>20.13</td>
<td>6.61</td>
<td>0.61</td>
<td>671</td>
</tr>
<tr>
<td>HAZ</td>
<td>40.06</td>
<td>20.15</td>
<td>5.95</td>
<td>1.56</td>
<td>1,803</td>
</tr>
<tr>
<td>HAZ</td>
<td>39.99</td>
<td>20.06</td>
<td>6.82</td>
<td>0.31</td>
<td>661</td>
</tr>
<tr>
<td>HAZ</td>
<td>40.04</td>
<td>20.05</td>
<td>6.73</td>
<td>0.78</td>
<td>1,113</td>
</tr>
<tr>
<td>HAZ</td>
<td>40.10</td>
<td>20.14</td>
<td>5.51</td>
<td>0.86</td>
<td>1,223</td>
</tr>
<tr>
<td>HAZ</td>
<td>40.00</td>
<td>20.06</td>
<td>6.28</td>
<td>0.56</td>
<td>986</td>
</tr>
<tr>
<td>HAZ</td>
<td>40.04</td>
<td>20.10</td>
<td>5.86</td>
<td>1.29</td>
<td>1,643</td>
</tr>
</tbody>
</table>
6.2.5 Installation Fatigue Data

The cyclic loading is used as input for the ECA analysis of high cycle fatigue condition. The loading is normally generated from the simulation of the dynamic wave and current loadings during installation under specified sea state and vessel motions. The simulation itself is usually performed over a minimum duration of time. Pipeline response from this loading is then recorded in the form of a stress range spectrum and occurrences.

The blocks data of stress range in the analysis are based on an infinite stiff clamp. However, the infinite stiff clamp assumptions gives over conservative analysis results. Therefore, the input stress ranges given in Table 6.8 shall be multiplied by a factor of 0.9 for the ECA analysis for fatigue crack growth during hold on period.

Additional stress multiplication factor is also applied to accommodate different clamp positions (distance between clamp and the weld). Table 6.9 shows the multiplication factor for different clamp positions.
Table 6.8 Installation Stress Range (Ref., Subsea7, 2010)

10” pipeline – 18 hours clamping time
Water Depth: 383m
Hs: 3.0m
Condition: Empty – No current

<table>
<thead>
<tr>
<th>Stress Upper Limit (MPa)</th>
<th>Number of Cycles (pr. 18h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>510</td>
</tr>
<tr>
<td>69</td>
<td>845</td>
</tr>
<tr>
<td>104</td>
<td>995</td>
</tr>
<tr>
<td>138</td>
<td>941</td>
</tr>
<tr>
<td>173</td>
<td>708</td>
</tr>
<tr>
<td>207</td>
<td>623</td>
</tr>
<tr>
<td>242</td>
<td>426</td>
</tr>
<tr>
<td>276</td>
<td>390</td>
</tr>
<tr>
<td>311</td>
<td>234</td>
</tr>
<tr>
<td>346</td>
<td>251</td>
</tr>
<tr>
<td>380</td>
<td>132</td>
</tr>
<tr>
<td>415</td>
<td>126</td>
</tr>
<tr>
<td>449</td>
<td>24</td>
</tr>
<tr>
<td>484</td>
<td>36</td>
</tr>
<tr>
<td>518</td>
<td>30</td>
</tr>
<tr>
<td>553</td>
<td>12</td>
</tr>
<tr>
<td>587</td>
<td>0</td>
</tr>
<tr>
<td>622</td>
<td>12</td>
</tr>
<tr>
<td>657</td>
<td>12</td>
</tr>
<tr>
<td>691</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 6.9 Multiplication Factor for Different Clamp Position (Ref., Subsea7, 2010)

<table>
<thead>
<tr>
<th>Distance from Clamp (m)</th>
<th>Reduction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
</tr>
<tr>
<td>6</td>
<td>0.52</td>
</tr>
</tbody>
</table>
7. RESULTS AND DISCUSSION

7.1 Results for ECA of Pipeline Girth Welds

7.1.1 Reeling Strain

During reeling installation pipeline experiences large plastic strains during bending into reel drum and bending over the aligner. The reeling installation phase can be described as follow:

1. Reeling on (Bending over reel);
2. Reeling off (The pipeline span from the reel drum to the aligner);
3. Bending over the Aligner;
4. Bending through straightener;
5. Out of the straightener.

The maximum strain is induced in pipeline during the phase of reeling on (bending over the reel). For the given input data from Section 6.1.1, the maximum strain obtained from Equation 2.1 is 1.772%.

7.1.2 CRACKWISE Simulation

A. APPLIED STRESS CALCULATION

The input value of applied stress (Primary Stress) for CRACKWISE is determined from the stress-strain curve of the base metal based on the nominal strain induced in the pipeline during reeling installation. The calculated nominal strain is 1.772%. The stress value corresponding to the nominal strain in the stress-strain curve is used as the value of parameter P_m (primary membrane stress) in CRACKWISE. The estimated value of P_m is 791.4 MPa.

The bending component of this stress is calculated using elastic Stress Concentration Factor (SCF). For the assumed maximum misalignment of 1.95mm, the value of SCF used for the analysis is 1.242 based on the expression given in Section 6.1.2.

The value of SCF is then used in the Neuber rule to determine the actual stress.

According to DNV RP F108, The Neuber method was originally developed to assess strains at notches it has been found useful for reeling analyses and there have not been any failures reported that can be attributed to non-conservatism due to the use of this method.

The Neuber method is defined by the following equation:
Where,

\[K_i = \text{Elastic stress concentration factor (SCF)}, \]

\[S = \text{Nominal stress (excluding SCF)}, \]

\[\varepsilon_{\text{nom}} = \text{Nominal strain (excluding SCF)}, \]

\[\varepsilon_i = \text{Actual strain (including SCF)}, \]

\[\sigma_i = \text{Actual stress (including SCF)}. \]

The intersection between the Neuber curve and the stress-strain curve of the material determines the actual stress and strain as a result of the elastic SCF. The additional stress from eccentricities calculated by the Neuber method is applied as a primary bending stress, \(P_b \).

Neuber Curve is defined by:

\[
\frac{S \times \varepsilon_{\text{nom}} \times K_i^2}{\sigma} \text{ plotted against } S
\]

The intersection between the Neuber curve and the stress-strain curve of the material can be seen in **Figure 7.1**. The intersection point from the figure is (2.64, 818.6).
The value of P_b is equal to 27.2 MPa obtained by subtracting the primary stress from the stress at the intersection point. The summary of the applied primary membrane and bending stresses (P_m and P_b) for 10” pipeline can be seen in the **Table 7.1**.

Table 7.1 Applied Stress Summary for CRACKWISE Analysis

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Max Reeling Strain</th>
<th>SCF</th>
<th>P_m (Mpa)</th>
<th>P_b (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10”</td>
<td>1.772%</td>
<td>1.242</td>
<td>791.4</td>
<td>27.2</td>
</tr>
</tbody>
</table>

B. L_r CUT OFF CALCULATION

According to DNV-RP-F108, the FAD (Failure Assessment Diagram) cannot be extended to arbitrarily large plastic deformation and a cut off limit for L_r ($L_r = \frac{\sigma_{ref}}{\sigma_Y}$) must be defined. For displacement controlled situations such as the situation in reeling installation, it is acceptable to increase the cut off level ($L_{r\ max}$) in the FAD, (from $L_r = \frac{\sigma_{flow}}{\sigma_Y}$ as suggested in BS 7910:2005) provided there is experimental support for such an extension.

The support can be provided by SENT specimen that has constraint similar to the constraint of pipeline. If the test results are available, the following procedure for determining $L_{r\ max}$ is acceptable:

- **The maximum load shall be determined from at least three tests. The location of the cracks in the specimens must correspond to the location considered in the pipe.**
- $L_{r\ max} = \frac{\sigma_{ref}}{\sigma_Y}$ Corresponding to the recorded maximum loads shall be calculated and used to define $L_{r\ max}$.
- **The actual value of $L_{r\ max}$ to be used in the analyses shall be chosen taking scatter in the results into consideration.**

The L_r cut off value calculation can be seen in the **Table 7.2**.
Table 7.2 \(L_r \) Cut off Value Calculation (Ref., Subsea7, 2006)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Max Load (kN)</th>
<th>Width, B (mm)</th>
<th>Thickness, W (mm)</th>
<th>(a_0) (mm)</th>
<th>Ligament, (p) (mm)</th>
<th>(\sigma_{\text{ref}}) (MPa)</th>
<th>(\frac{\sigma_{\text{ref}}}{\sigma_{\text{ys}}})</th>
<th>(L_r) cut-off (Ref. Subsea7, 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>215.86</td>
<td>25.71</td>
<td>12.85</td>
<td>4.30</td>
<td>8.55</td>
<td>981.98</td>
<td>1.511</td>
<td>1.511</td>
</tr>
<tr>
<td>6-2</td>
<td>196.38</td>
<td>25.49</td>
<td>12.65</td>
<td>5.28</td>
<td>7.37</td>
<td>1,045.35</td>
<td>1.608</td>
<td>1.608</td>
</tr>
<tr>
<td>6-4</td>
<td>195.76</td>
<td>26.04</td>
<td>12.99</td>
<td>5.52</td>
<td>7.47</td>
<td>1,066.38</td>
<td>1.548</td>
<td>1.548</td>
</tr>
<tr>
<td>6-5</td>
<td>206.94</td>
<td>26.05</td>
<td>13.11</td>
<td>5</td>
<td>8.11</td>
<td>979.53</td>
<td>1.507</td>
<td>1.507</td>
</tr>
<tr>
<td>6-7</td>
<td>187.28</td>
<td>25.99</td>
<td>13.15</td>
<td>5.42</td>
<td>7.73</td>
<td>932.19</td>
<td>1.434</td>
<td>1.434</td>
</tr>
<tr>
<td>6-8</td>
<td>196.14</td>
<td>26.00</td>
<td>13.17</td>
<td>5.06</td>
<td>8.11</td>
<td>930.19</td>
<td>1.431</td>
<td>1.431</td>
</tr>
<tr>
<td>6-10</td>
<td>203.4</td>
<td>25.98</td>
<td>13.01</td>
<td>4.86</td>
<td>8.15</td>
<td>960.63</td>
<td>1.478</td>
<td>1.478</td>
</tr>
<tr>
<td>6-11</td>
<td>213.4</td>
<td>26.00</td>
<td>13.17</td>
<td>4.57</td>
<td>8.60</td>
<td>954.38</td>
<td>1.468</td>
<td>1.468</td>
</tr>
</tbody>
</table>

According to DNV-OS-F101- 2007, Appendix A (E208):

\[
\sigma_{\text{ref}} = \frac{\text{Max load}}{B(W - a_0)} \tag{7.2}
\]

\[
L_r \text{ cut-off} = \frac{\sigma_{\text{ref}}}{\sigma_{\text{ys}}} \tag{7.3}
\]

C. ENGINEERING CRITICAL ASSESSMENT BY CRACKWISE

DNV-OS-F101 states that the maximum tearing permitted during the whole installation phase should not exceed 1 mm. The loading history of reeling installation is indicated for two cycles of tensile plastic strain: reel on and bending over the aligner. Accordingly, one tensile occurrence permits only 0.5 mm allowable tearing.

In the analysis, the DNV requirement of 1 mm allowable ductile tearing for the whole reeling installation is assumed to be satisfied by applying only one cycle of plastic strain (1.772\%) but with maximum tearing of 0.3 mm. This assumption is considered to be more conservative than that according to DNV requirement. The summary of parameters for calculating the maximum allowable crack size curves using CRACKWISE is as follow:

1. The wall thickness used in the analysis is the minimum wall thickness determined by nominal wall thickness minus wall thickness tolerance;
2. The weld residual stress is set to equal to the yield stress with enabled relaxation;
3. Lower bound J-R curve (\(J = 1.410 \Delta a^{0.68} \));
4. Maximum allowable tearing of 0.3 mm;
5. Upper bound stress and strain curve (Ramberg-Osgood Fitted);
6. Maximum applied strain of 1.772%.

The maximum allowable crack size curve given the parameter above is defined as a base case for comparison. In the simulation, the Kastner solution was used to calculate the reference stress. As stated in the DNF-RP-F108, reference stress determined by Kastner solution is recommended for the assessment of surface cracks.

Using the input parameters mentioned above, CRACKWISE analyses were performed to predict the critical crack sizes. The critical crack size curve predicted from CRACKWISE analyses is shown in the Figure 7.2.

The curve in Figure 7.2 shows relatively smaller critical crack depth for crack length in the range of 100-200mm. For crack length in the range of 25-100, the critical depth increases rapidly and the maximum critical depth is at the crack length of 25mm.

![Critical Crack Size Curve](image)

Figure 7.2 Critical Crack Size curve from CRACKWISE analysis (Base Case).

1. EFFECT OF RESIDUAL STRESS

Welding residual stress is included in the analysis as the secondary membrane stress. The critical crack size curve in the Figure 7.2 shows the results where the residual stress is set to equal to yield stress with enabled relaxation. Figure 7.3 shows the results from sensitivity analyses when the residual stress input \(Q_m\) on CRACKWISE was introduced.

It is seen that the introduction of residual stress yields lower critical crack sizes compared to the sizes predicted from the analyses without residual stress. The difference between
the predictions from the analyses with and without considering residual stress is significant. From the results, it can be concluded that the critical crack size predicted by CRACKWISE is greatly influenced by residual stress.

For the case where residual stress is considered to be equal to yield stress, the critical crack size reduces very significantly especially for short crack length (<50mm). The results show that assigning residual stress equal to yield stress yields more conservative results compared to the cases of without and relaxed residual stress. In other words, neglecting residual stress predicts less conservative results of critical crack size curve.

The results from analyses are in agreement with those from the work of Lei (2005) cited in Tkaczyk, et.al. (2007). It has been concluded that the BS7910 procedure is handling the residual stress in a conservative manner.

![Critical Crack Size Curve](image)

Figure 7.3 Critical Crack Size curve from CRACKWISE analysis with various residual stresses.

2. EFFECT OF MISALIGNMENT

In CRACKWISE ECA simulations, pipeline misalignment is incorporated into primary bending stress (P_b). This bending component is calculated using Stress Concentration Factor and Neuber rule. The maximum misalignment assumed in this analysis is 1.95mm as mentioned in the Section 6.1.2. **Figure 7.4** shows the comparison between the base case curve with maximum misalignment and the critical crack size curve without misalignment.

The result shows that the critical crack size is smaller for the case of pipeline with maximum misalignment. The difference between the pipeline with maximum
misalignment and without misalignment is not significant although the considered misalignment of 1.95mm is relatively high.

From the analyses of CRACKWISE simulations, it can be concluded that the influence of misalignment for the critical crack size curve is less significant compared to the effect of residual stress.

![Critical Crack Size Curve](image)

Figure 7.4 Critical Crack Size curve from CRACKWISE analysis with different misalignment.

7.1.3 LINKpipe Simulation

A. MATERIAL PROPERTIES INPUT

As mentioned, LINKpipe simulation uses true stress-strain curves in the form power hardening law as default input option. **Figure 7.5** shows the true stress-strain curve used in the analyses.

The form of power hardening equation can be seen in the **Equation 6.4**.

The parameters for power law hardening are determined by fitting the curve with the true stress-strain curve. The fitted curve can be seen in **Figure 7.6** and the identified parameters used in LINKpipe simulation are as follow:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0</td>
<td>n</td>
<td>E</td>
</tr>
<tr>
<td>630 MPa</td>
<td>0.136</td>
<td>205,000 MPa</td>
</tr>
</tbody>
</table>
B. FRACTURE TOUGHNESS ANALYSIS

The crack driving force in LINKpipe is measured by CTOD. To simulate the crack propagation LINKpipe uses the ductile crack growth formulation in the form of CTOD as a function of ductile crack extension (Δa) (See Section 4.1.4).

Figure 7.5 True stress-strain curve used in LINKpipe simulation.

Figure 7.6 Power law hardening curve fitted to the true stress-strain curve.
\[CTOD = CTOD_i + C_1(\Delta a)^{C_2} \]

The fracture resistance curve determined by the results of SENT specimen testing is in the form of J-\(\Delta a\). When CTOD test data is not available, the values of CTOD need to be calculated from J-integral values. DNV-OS-F101 provides the conservative method to estimate CTOD from J-integral. The equation that used in this analysis is explained in Section 3.3.3.

The calculated CTOD values are summarized in Table 7.5. For performing FE analyses using LINKpipe, the fracture resistance parameters expressed in Equation 7.4 need to be defined. These fracture parameters can be identified by fitting the expression in Equation 7.4 against with test results of CTOD. It should be noted that in the present study, CTOD values are computed from test data of J-integral. The parameters identified from the curve fitting are as follows:

<p>| Table 7.4 Fracture Resistance Parameters |
|-----------------|-------|-------|</p>
<table>
<thead>
<tr>
<th>CTODi</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.95</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Figure 7.7 shows the curve fitted with CTOD computed values.

<p>| Table 7.5 Summary of CTOD Calculation from J |
|-----------------|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>a/W</th>
<th>J (N/mm)</th>
<th>n</th>
<th>m</th>
<th>CTOD - mm (Computed)</th>
<th>(\Delta a) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>507.1</td>
<td>0.1553</td>
<td>1.866</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>0.41</td>
<td>540.8</td>
<td>0.1553</td>
<td>1.883</td>
<td>0.36</td>
<td>0.13</td>
</tr>
<tr>
<td>0.37</td>
<td>516.6</td>
<td>0.1553</td>
<td>1.860</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>0.43</td>
<td>535</td>
<td>0.1553</td>
<td>1.895</td>
<td>0.36</td>
<td>0.16</td>
</tr>
<tr>
<td>0.42</td>
<td>1194.7</td>
<td>0.1553</td>
<td>1.889</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>0.35</td>
<td>1152.5</td>
<td>0.1553</td>
<td>1.849</td>
<td>0.78</td>
<td>0.67</td>
</tr>
<tr>
<td>0.38</td>
<td>1408.9</td>
<td>0.1553</td>
<td>1.866</td>
<td>0.95</td>
<td>0.7</td>
</tr>
<tr>
<td>0.38</td>
<td>1087</td>
<td>0.1553</td>
<td>1.866</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>0.42</td>
<td>1836.4</td>
<td>0.1553</td>
<td>1.889</td>
<td>1.22</td>
<td>1.31</td>
</tr>
<tr>
<td>0.41</td>
<td>1734.41</td>
<td>0.1553</td>
<td>1.883</td>
<td>1.16</td>
<td>1.32</td>
</tr>
<tr>
<td>0.33</td>
<td>1860.1</td>
<td>0.1553</td>
<td>1.837</td>
<td>1.27</td>
<td>1.36</td>
</tr>
<tr>
<td>0.37</td>
<td>1857.1</td>
<td>0.1553</td>
<td>1.860</td>
<td>1.26</td>
<td>1.53</td>
</tr>
</tbody>
</table>
The summary of parameters for calculating the critical crack size curve using LINKpipe is as follows:

1. The pipeline wall thickness is the minimum wall thickness determined by nominal wall thickness minus wall thickness tolerance;
2. CTOD-Δa curve obtained through conversion of lower bound J-R curve by adopting a conservative approach stated in the DNV-OS-F101 Appendix A;
3. Maximum allowable tearing 0.3mm;
4. Upper bound stress and strain curve (Power law hardening);
5. Maximum applied strain of 1.772%.

Based on the input of above mentioned parameters, the analyses using LINKpipe were performed to identify the critical crack sizes. The predicted critical crack size curve obtained from the analyses is shown in the Figure 7.8 the curve is referred as a base case for the comparison of the results from the sensitivity analysis.
Figure 7.8 Critical Crack Size curve from LINKpipe analysis.

The Crack Driving Force (CDF) in the form of CTOD as a function of nominal strain can be seen in the Figure 7.9. Figure 7.9 describes the difference of CTOD and Nominal Strain curves for four various crack lengths with the same crack depth (2mm).

The curves can be divided into two categories: the first one is the CDF in the short cracks with length range of 35-50mm and the second one is long cracks with length range of 75-100mm. The reason for distinction is that the CDF in the short crack category has relatively similar quantity for both cases, whereas the CDF in the long crack category is also has similar quantity for both cases.

The difference of CDF between short crack and long crack in LINKpipe can be distinguished for nominal strain larger than 0.5%. For relatively short crack length, LINKpipe predicted slightly higher crack driving force compared to long crack length.
7.1.4 Sensitivity Analysis of LINKpipe Simulation

The sensitivity analyses were performed to evaluate the influence of several parameters in predicting critical crack sizes. The critical size curve generated from the sensitivity analyses is compared to the curve from base case. The cases that have been analyzed are as follows:

1. Case 1: Meshing Sensitivity
2. Case 2: Pipe Misalignment
3. Case 3: Residual Stress
4. Case 4: Strength Mismatch

A. CASE 1: MESHING SENSITIVITY

LINKpipe uses meshing arrangement as shown in Figure 7.10. For the present case, several analyses were performed using different mesh densities to evaluate the effect of mesh in predicting the Crack Driving Force (CDF) and Ductile Crack Growth (DCG). In FE modeling using LINKpipe, different mesh density is achieved by changing the following mesh related parameters:

1. The values of dx1 and dx2 describe element size in x-direction at the different locations from the crack as seen (Figure 7.10);
2. The values dy, dy2, and dy1 similarly describe element size in circumferential direction at the different locations from the crack as seen (Figure 7.10).

The analyses have been carried out for the following three different mesh configurations:

![Figure 7.9 CTOD as a function of nominal strain for different crack size.](image)
1. The first configuration (Mesh1 in **Figure 7.11**): The configuration has the same mesh as the base case, but differs from the mesh along circumferential crack length. The mesh is more dense along circumferential crack length (see **Table 7.6**);

2. The second configuration (Mesh2 in **Figure 7.11**): This configuration differs from the base case mesh with respect to the parameter dx2 (see **Table 7.6**). Compared to the based case, the configuration has more dense mesh in longitudinal direction at the vicinity of the crack;

3. The third configuration (Mesh3 in **Figure 7.11**): This configuration differs from the base case mesh with respect to the parameter dx2, dy2, and dy (see **Table 7.6**). It is seen in this configuration that all these parameters are halved compared to the base case configuration. Further, **Figure 7.11** shows that this configuration comprises more dense mesh at the vicinity of crack with respect to both longitudinal and circumferential direction.

Figure 7.10 Meshing arrangement in LINKpipe (Ref., LINKpipe software).
Table 7.6 Mesh Configurations for The Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Case</th>
<th>Mesh 1</th>
<th>Mesh 2</th>
<th>Mesh 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>dx1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>dx2</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>dy1</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>dy2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>dy</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The predicted CDF and DCG from different mesh configurations is then compared against the CDF and DCG from base case mesh configuration as can be seen in Figure 7.12, and Figure 7.13 respectively. It is seen in Figure 7.11 that the base configuration has coarse mesh which obviously takes less computational time compared to the other mesh patterns.

However, the accuracy of the model predictions is more important. The three different configurations yield approximately similar predictions as seen in the Figure 7.11, and Figure 7.13. It can be said that the chosen mesh patterns do not show much influence on the model predictions in terms of accuracy. Hence, the base case mesh configuration is therefore used for the subsequent sensitivity analyses.

Figure 7.11 Four different types of mesh configurations and the CTOD value.
Figure 7.12 CTOD as a function of nominal strain for different mesh configurations.

Figure 7.13 Four different types of mesh configurations and the CTOD value.
B. CASE 2: PIPE MISALIGNMENT

As stated in the theory and user manual (2012), LINKpipe used linear dependencies between the nodes from the left and the right pipe segment to handle the geometrical discontinuities such as misalignment. Pipe misalignment in the model will give additional bending moment to the crack.

The influence of misalignment to determine the critical crack size curve is analyzed using three different amounts of misalignment i.e., 0.5mm, 1.5mm and 2.5mm. All the critical crack size curves obtained from different amounts of misalignment were then compared against base case curve.

Figure 7.14 shows critical crack size curve from LINKpipe analysis for three different cases of misalignment and compares against the base case curve. It can be seen from the Figure 7.14 that misalignment greatly influences the critical crack size. When the amount of misalignment increases, the allowable defect size is decreasing which means that the curve tends to be more conservative.

The small quantity of critical crack size because of misalignment concludes that the crack driving force is increases as the misalignment in the pipeline increases. Figure 7.15 shows the CTOD value as a function of nominal strain for crack size of 2x50 mm. It can be seen that misalignment in the pipeline shows the significant effect in increasing the crack driving force, which make the allowable crack size became smaller. It can be concluded that LINKpipe covers misalignment in a conservative way.

![Critical Crack Size Curve](image)

Figure 7.14 Critical crack size curve from LINKpipe analysis for three different cases of misalignment compare to base case curve.
Figure 7.15 CTOD as a function of nominal strain for different quantity of misalignment.

C. CASE 3: RESIDUAL STRESS

In this case, the effect of residual stress to determine the critical crack size using LINKpipe is investigated. Figure 7.16 shows the comparison of critical crack size curve for the three different situations i.e., no welding residual stress, welding residual stress with relaxation enable, and welding residual stress equal to yield stress.

When the relaxation is applied in LINKpipe, the reduction in the residual stress is similar to the procedure in the BS7910 2005 Section 7.3.4.2.

Compared to the effect of misalignment, the residual stress shows very slightly influence over the critical crack size. The effect of the residual stress can also be seen in Figure 7.17 in terms of CTOD as a function of nominal strain. From the analyses using LINKpipe, it is seen that the influence of residual stress on the predictions of critical crack sizes and CTOD is insignificant and it only caused slightly increase in the crack driving force.
Figure 7.16 Critical crack size curve from LINKpipe analysis for different situations of residual stress.

Figure 7.17 CTOD as a function of nominal strain for different conditions of residual stress.
D. CASE 4: STRENGTH MISMATCH

Regarding the welding consumable for the girth welds, the previous work shows that the case of weld strength overmatch with the strength of the base pipe is beneficial. Hence, it is important to assess the effect of weld strength under-match in the prediction of critical crack size.

The present work considers weld strength even-match as a base case and assesses the effect of weld under-match by comparing the predicted results for the critical crack size against with the results from the base case.

The properties of the weld metal used for the analysis are summarized in the Table 7.7. Figure 7.18 shows the engineering stress-strain curves of base metal and weld metal. The figure presents the strength of weld that under matches with the strength of base metal.

Table 7.7 Summary of Weld Metal Properties (Ramberg-Osgood)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weld Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield stress, $R_{p0.5}$</td>
<td>650 MPa</td>
</tr>
<tr>
<td>Ultimate Tensile Strength, (UTS)</td>
<td>840 MPa</td>
</tr>
<tr>
<td>Young's Modulus, E</td>
<td>190,000 N/mm²</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Elastic Parameter, α</td>
<td>0.585</td>
</tr>
<tr>
<td>Hardening parameter, n</td>
<td>17.872</td>
</tr>
</tbody>
</table>

Figure 7.18 Engineering stress-strain curves of Base Metal (BM) and Weld Metal (WM).
As mentioned is the Section 4.1.6, to account for material mismatch LINKpipe uses a weight function to generate the equivalent stress-strain curve for weld metal and base metal.

The results from ECA analyses using LINKpipe can be seen in the Figure 7.19 for the case where strength of the weld metal under-matches with that of the base metal. The critical crack size curve for weld under-match case is compared against the base case curve. It can be seen from Figure 7.19 that the weld strength under-match condition gives smaller critical crack size compared to the even-match condition.

Further, Figure 7.20 shows that the case of strength under-match significantly increases the Crack Driving Force that made the critical crack size curve become smaller.

![Critical Crack Size Curve](image)

Figure 7.19 Critical crack size curve comparison between weld under-match and even-match conditions.
7.2 ECA Results Comparison (LINKpipe and CRACKWISE)

The software tools CRACKWISE and LINKpipe obviously have different approach to do the Engineering Critical Assessment. In addition, these tools also have several differences in terms of input parameters for ECA. These input parameters have to be taken into account to get the accurate comparison of the results from both tools. The differences in terms of input parameters used in the current are as follows:

1. The stress-strain curve used in CRACKWISE modeling is in the form of Ramberg-Osgood curve. On the other hand, the stress-strain curve used in LINKpipe is in the form of power hardening law;
2. J-integral data was used as fracture toughness parameter in CRACKWISE analyses, whereas CTOD data was used as fracture toughness parameter in LINKpipe analyses.

The comparison of ECA results from CRACKWISE and LINKpipe has been done using the same input parameters as listed below:

1. The wall thickness used in the analysis is the minimum wall thickness determined by nominal wall thickness minus wall thickness tolerance;
2. The weld residual stress is set to equal the yield stress with enabled relaxation;
3. Maximum applied strain is 1.772%;
4. Maximum allowable tearing is 0.3mm;
5. No misalignment;
6. Upper bound stress and strain curve;
7. Lower bound fracture resistance curve.

Figure 7.21 shows the critical size curve comparison obtained from CRACKWISE and LINKpipe. The figure presents the results for critical depth predicted by both the software for given crack length range from 25-200mm.

![Critical Crack Size Curve](image)

Figure 7.21 Comparison of Critical Crack Size curves from LINKpipe and CRACKWISE.

It can be seen that CRACKWISE gave more conservative results almost for every crack length except for short crack lengths in the range of about 25 to 30mm. For the crack lengths in the range of 30 to 200mm, CRACKWISE underestimated the results compared to the results from LINKpipe. The maximum difference is in the order of about 39% for crack length of 200mm.

The above comparison is made with the assumptions of accounting residual stress and neglecting the pipe misalignment. Also combined effect of residual stress and misalignment was investigated using the same other input mentioned above. Maximum possible misalignment which is 1.95mm as mentioned previously is used for the analyses and comparison.

With respect to the prediction of Crack Driving Force (CDF), the influence of misalignment on the predictions from CRACKWISE is less compared to that from LINKpipe. On the other hand, from **Figure 7.3** and **Figure 7.16** residual stress showed greater influence on the prediction of the CDF from CRACKWISE rather than that from LINKpipe.
Figure 7.22 compares the results obtained from CRACKWISE and LINKpipe and shows the influence of considered misalignment and residual stress (with relaxation). With both variables (residual stress and misalignment) accounted on in the analyses, the critical crack size curve resulted from both tools is relatively close to each other. However, the results from CRACKWISE still tend to be conservative for long crack lengths (>90mm) compared to the results from LINKpipe, whereas for short crack lengths (<90mm) CRACKWISE yields less conservative results of cracks size.

Figure 7.22 Comparison of Critical Crack Size curves obtained from LINKpipe and CRACKWISE for the case with maximum possible misalignment.

7.3 Results for ECA of Clad Pipes with Girth Welds

The two stages of Engineering Critical Assessment of clad pipes with girth welds have been carried out using LINKpipe. The input data for the analysis is adopted from the Section 6.2.

A. INPUT DATA FOR MATERIAL PROPERTIES

The as-received true stress-strain data given in the Section 6.2.3 is used by fitting by power hardening law (see Equation 6.4). The parameters for power hardening law for modeling the true stress-strain curve are shown in Table 7.8 for the materials: parent pipe, CRA layer and weld metal. The resultant true stress-strain curves for the three materials can be seen in Figure 7.23.
Table 7.8 Identified Material Parameters of Power Hardening Law

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parent Pipe</th>
<th>CRA Layer</th>
<th>Weld Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (σ_0) - MPa</td>
<td>500</td>
<td>415</td>
<td>310</td>
</tr>
<tr>
<td>Strain Hardening Exponent (n)</td>
<td>0.051</td>
<td>0.16</td>
<td>0.232</td>
</tr>
<tr>
<td>Young's Modulus (E) - MPa</td>
<td>200,000</td>
<td>200,000</td>
<td>170,000</td>
</tr>
</tbody>
</table>

B. FRACTURE TOUGHNESS ANALYSIS

As mentioned previously, the crack driving force from LINKpipe analyses is measured by CTOD. To analyze the crack propagation, LINKpipe uses the ductile crack growth formulation in the form of CTOD as a function of ductile crack extension (Δa) (See Section 4.1.4). The methodology of computing the fracture resistance parameter CTOD for ECA analyses is explained in detail in Section 3.3.3.

The summary of computed CTOD values can be seen in Table 7.9.
It is known that LINKpipe uses the ductile crack growth formulation in the form of CTOD as a function of ductile crack extension (Δa). The parameters of the crack growth formulation are determined by fitting the CTOD curve with the computed CTOD values. The identified parameters are as listed below in Table 7.10.

Table 7.10 Fracture Resistance Parameters

<table>
<thead>
<tr>
<th>CTODi</th>
<th>C₁</th>
<th>C₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.752</td>
<td>0.786</td>
</tr>
</tbody>
</table>

Figure 7.24 shows the curve fitted of CTOD computed values.

![Resistance Curve (CTOD - Δa)](image)

Figure 7.24 Curve fitted of computed CTOD values.
C. ENGINEERING CRITICAL ASSESSMENT BY LINKPIPE

The ECA for clad pipes was carried out for two stages of reeling installation:

1. Reeling tensile strain cycle.
2. Installation fatigue during hold periods on vessel.

As mentioned in Section 6.2.1, three tensile strain cycles are used in the analysis. The following two cases of analyses have been carried out:

1. **Case 1: Critical Crack Size for Reeling Tensile Strain Cycles Without Misalignment and Residual Stress**

The critical crack depths were determined by LINKpipe for different selected crack lengths. Five different cracks length were selected for the analysis. In this case the residual stress and misalignment are neglected. The summary of parameters to generate the trend of maximum allowable crack size for clad pipes using LINKpipe is as follows:

1. The pipeline wall thickness used in the analysis is the possible minimum wall thickness;
2. CTOD-Δa curve obtained through conversion of lower bound J-R curve by adopting a conservative approach stated in the DNV-OS-F101 Appendix A;
3. Maximum allowable tearing of 1.27mm for three tensile strain cycles;
4. True stress-strain curves of parent pipe material, girth weld and clad layer;
5. Three strain cycles was applied i.e., 1.77%, 1.42% and 1.62%;
6. No residual stress applied is assumed;
7. No misalignment is assumed.

The critical cracks size predicted based on given the parameters above are summarized in Table 7.11.

<table>
<thead>
<tr>
<th>Critical Crack Size (Pre-Installation)</th>
<th>Crack Size after Reeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Depth (a) - mm</td>
<td>Crack Length (2C) - mm</td>
</tr>
<tr>
<td>2.75</td>
<td>110</td>
</tr>
<tr>
<td>2.80</td>
<td>90</td>
</tr>
<tr>
<td>2.85</td>
<td>65</td>
</tr>
<tr>
<td>2.90</td>
<td>45</td>
</tr>
<tr>
<td>3.05</td>
<td>30</td>
</tr>
</tbody>
</table>
2. Case 2: Critical Crack Size for Reeling Tensile Strain Cycles With Misalignment and Residual Stress

The data of input parameters used in this analysis is the same as the data used for the first case except for the data of misalignment and residual stress which are included in the present analyses. The possible maximum misalignment used in the analysis is 1.4mm and the residual stress is set to equal yield strength. For the second case, the predicted critical cracks sizes obtained from the analyses are listed below in Table 7.12.

The predicted critical crack sizes for the second case are smaller than that for the first case, which is due to the effect of misalignment and residual stress. As discussed in the Section 7.1.4, the results from analyses using LINKpipe conclude that the use of misalignment in the pipeline highly reduces the critical cracks size.

Table 7.12 Critical Crack Size for Reeling Installation (Second Case)

<table>
<thead>
<tr>
<th>Critical Crack Size (Pre-Installation)</th>
<th>Crack Size after Reeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Depth (a) (mm)</td>
<td>Crack Length (2C) (mm)</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1.25</td>
<td>110</td>
</tr>
<tr>
<td>1.35</td>
<td>90</td>
</tr>
<tr>
<td>1.40</td>
<td>65</td>
</tr>
<tr>
<td>1.42</td>
<td>45</td>
</tr>
<tr>
<td>1.50</td>
<td>30</td>
</tr>
</tbody>
</table>

3. Fatigue Crack Growth due to Installation Fatigue

The objective of this present analysis is to assess post installation fatigue crack size. Fatigue crack growth during hold periods on vessel was estimated by using LINKpipe considering high cycle fatigue load stations based on the assessment procedures described in BS9710. The size of the cracks at the start of this ECA stage is the crack size obtained at the end of previous stage, which is the end of reeling installation (refer to Table 7.11 and Table 7.12 - Crack size after reeling).

For clad pipes, the summary of assumptions to generate post installation fatigue crack sizes using LINKpipe is as follows:

1. Installation fatigue spectrum input is taken from Table 6.8, with hold period of 18 hours and 2 m distance from clamp to weld.
2. Several multiplication factors were applied such as:
 - A factor of 0.9 to reduce the conservatism of infinite stiff clamp assumption;
 - A factor of 0.85 for 2m clamp distance assumption.

Paris law of fatigue crack growth for steels in air as recommended by BS7910 was used in the analysis. Table 7.13 and Table 7.14 show the critical cracks size and post installation crack due to reeling and fatigue for the first and second cases respectively.
Table 7.13 Crack Growth due to Reeling and Installation Fatigue (First Case)

<table>
<thead>
<tr>
<th>Critical Crack Size (Pre-Installation)</th>
<th>Crack Size after Reeling</th>
<th>Post Installation Fatigue Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Depth (a) - mm</td>
<td>Crack Length (2C) - mm</td>
<td>Crack Depth (a) - mm</td>
</tr>
<tr>
<td>2.75</td>
<td>110</td>
<td>3.75</td>
</tr>
<tr>
<td>2.80</td>
<td>90</td>
<td>3.81</td>
</tr>
<tr>
<td>2.85</td>
<td>65</td>
<td>3.87</td>
</tr>
<tr>
<td>2.90</td>
<td>45</td>
<td>3.88</td>
</tr>
<tr>
<td>3.05</td>
<td>30</td>
<td>4.04</td>
</tr>
</tbody>
</table>

Table 7.14 Crack Growth due to Reeling and Installation Fatigue (Second Case)

<table>
<thead>
<tr>
<th>Critical Crack Size (Pre-Installation)</th>
<th>Crack Size after Reeling</th>
<th>Post Installation Fatigue Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Depth (a) - mm</td>
<td>Crack Length (2C) - mm</td>
<td>Crack Depth (a) - mm</td>
</tr>
<tr>
<td>1.25</td>
<td>110</td>
<td>2.87</td>
</tr>
<tr>
<td>1.35</td>
<td>90</td>
<td>2.76</td>
</tr>
<tr>
<td>1.40</td>
<td>65</td>
<td>2.75</td>
</tr>
<tr>
<td>1.42</td>
<td>45</td>
<td>2.66</td>
</tr>
<tr>
<td>1.50</td>
<td>30</td>
<td>2.49</td>
</tr>
</tbody>
</table>

D. ENGINEERING CRITICAL ASSESSMENT BY CRACKWISE

For clad pipes, the section compares the ECA results from LINKpipe analyses against the results from CRACKWISE. The results from CRACKWISE were adopted from the work of Subsea7, 2010. The stress-strain curve used in the analyses is the equivalent stress-strain curve generated by FE analysis as described in Section 2.3.2. The equivalent stress-strain curve can be seen in Figure 7.25.

![Equivalent Stress and Strain Curve (as received)](image)

Figure 7.25 Equivalent stress-strain curve generated from FE analysis (Subsea 7, 2010)
In the work of Subsea7, 2010, the summary of the parameters used in the CRACKWISE simulations are as follows:

1. The possible minimum wall thickness;
2. Lower bound J-R curve;
3. Three strain cycles were applied i.e., 1.77%, 1.42% and 1.62%;
4. Assumed pipe misalignment was of 1.4mm and corresponding applied stress was treated as bending stress (Pb);
5. The residual stress was treated as welding strain (welding stress divided by young’s modulus), with no relaxation;
6. Maximum allowable tearing was assumed to be 1.27mm for three tensile strain cycles.

The critical crack sizes predicted using CRACKWISE can be seen in the Table 7.15.

Table 7.15 Critical Defects Sizes for Reeling Installation (Ref., Subsea 7, 2010)

<table>
<thead>
<tr>
<th>Crack Depth (mm)</th>
<th>Crack Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>110</td>
</tr>
<tr>
<td>2.0</td>
<td>90</td>
</tr>
<tr>
<td>2.5</td>
<td>65</td>
</tr>
<tr>
<td>3.0</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>35</td>
</tr>
<tr>
<td>4.0</td>
<td>30</td>
</tr>
</tbody>
</table>

E. **ECA OF CLAD PIPE RESULTS COMPARISON (LINKPIPE vs. CRACKWISE)**

The critical crack size predicted using CRACKWISE is compared with the critical crack size predicted using LINKpipe. The critical crack size predictions from LINKpipe listed in the Table 7.12 (Case 2) are used for the comparison.

The ECA of clad pipe results comparison between CRACKWISE and LINKpipe has been carried out for the same input parameters as listed follow:

1. The pipeline wall thickness used in the analysis is the possible minimum wall thickness;
2. Maximum allowable tearing of 1.27mm for three tensile strain cycles;
3. Three strain cycles was applied i.e., 1.77%, 1.42% and 1.62%;

However, there are some input parameters which show difference between LINKpipe and CRACKWISE are:
1. FRACTURE RESISTANCE CURVE
 LINKpipe: CTOD-Δa curve obtained through conversion of lower bound J-R curve by adopting a conservative approach stated in the DNV-OS-F101 Appendix A.
 CRACKWISE: Lower bound J-R curve.

2. STRESS-STRAIN CURVE
 LINKpipe: Equivalent stress-strain curve generated by LINKpipe using weight principle described in Section 4.1.6.
 CRACKWISE: Equivalent stress-strain curve generated using FE analysis described in Section 2.3.2.

3. RESIDUAL STRESS
 LINKpipe: Residual stress equal to yield with no relaxation.
 CRACKWISE: The residual stress is treated as welding strain (welding stress divided by young’s modulus), with no relaxation.

4. MISALIGNMENT
 LINKpipe: Maximum misalignment of 1.4mm is applied.
 CRACKWISE: Maximum misalignment was of 1.4mm and corresponding applied stress was treated as bending stress (Pb).

Figure 7.26 compares the results from LINKpipe and CRACKWISE using the same input data. The figure shows that the results from LINKpipe are more conservative than CRACKWISE. This behavior can be explained as follows:

1. The effect of misalignment over the predictions of critical crack sizes from LINKpipe is more significant than the influence of misalignment over the predictions from CRACKWISE.
2. The residual stress in CRACKWISE analyses is treated as welding strain in addition to the nominal strain and incorporated into primary stress. Hence, the effect of residual stress is no longer significant to the predictions of critical crack size curve.
Figure 7.26 Comparison of Critical Crack Size curves from LINKpipe – Case 2 and CRACKWISE for clad pipe.
8. CONCLUSIONS AND FURTHER WORK

8.1 Conclusions

Reeling installation method causes large plastic deformation in the pipeline girth welds. Due to the existing cracks commonly found during fabrication phase in the girth welds, the plastic strain can cause possible crack growth. The ECA analyses have been carried out for reeling installation using the software tools CRACKWISE and LINKpipe. The purpose ECA is to generate the generic trend of critical crack sizes in the girth welds.

The present thesis work includes Engineering Critical Assessment for 10" pipeline made of 13Cr martensitic stainless steel using CRACKWISE and LINKpipe. For the selected pipeline, the analyses that have been performed are as follow:

1. Analyses considering the influence of misalignment and residual stress to predict the critical crack sizes using CRACKWISE.
2. The sensitivity analyses for ECA using LINKpipe to evaluate the influence of the important parameters in predicting the critical crack size. The parameters such as misalignment, residual stress, strength mismatch, and meshing configuration are considered for the analyses.
3. Analyses for comparison of critical crack sizes predicted from CRACKWISE and LINKpipe simulations.

In addition, ECA analyses were also performed for clad pipe with 273.1mm OD and 15mm WT (+3.0 mm Clad) using LINKpipe. The results from these analyses are compared against those from previous work based on CRACKWISE.

The following conclusions are made based on the above mentioned analyses performed for the work:

1. The critical crack size predicted by CRACKWISE can be greatly influenced by residual stress. For the case where the residual stress is considered to be equal to the yield stress, the critical crack size reduces very significantly especially for short crack length (<50mm). The results from Figure 7.3 show that assigning residual stress equal to yield stress gives more conservative results compared to the cases of zero residual stress and relaxed residual stress. In other words, neglecting residual stress predicts less conservative results for critical crack sizes.

2. The results from CRACKWISE simulations in Figure 7.4 show that the critical crack size is smaller for the case of pipeline with maximum misalignment. However, the influence of misalignment for the critical crack size curve is less significant compared to the effect of residual stress.
3. Based on the sensitivity analyses for ECA using LINKpipe in Section 7.1.4, pipe misalignment and strength mismatch can show high influence on the prediction of Crack Driving Force. Pipe misalignment in LINKpipe ECA simulations can show the effect in increasing the Crack Driving Force very significantly, which makes the critical crack size became smaller. It can be concluded that LINKpipe treats the pipe misalignment conservatively.

4. Weld under-match condition from analyses using LINKpipe can significantly increase the Crack Driving Force (see Figure 7.20) that made the critical crack sizes became smaller.

5. The residual stress showed little influence in the prediction of the critical crack size using LINKpipe (see Figure 7.16). Furthermore, the influence of residual stress on the predictions of CTOD can be insignificant and it only caused very small increase in the crack driving force (see Figure 7.17).

6. The comparison of predicted critical crack size from CRACKWISE and LINKpipe has been carried out. The comparison is made based on neglecting misalignment and applying the weld residual stress equal the yield stress with enabled relaxation. CRACKWISE gave more conservative results almost for every crack length except for short crack lengths in the range of about 25 to 30mm. For the crack lengths in the range of 30 to 200mm, CRACKWISE underestimated the results compared to the results from LINKpipe. The maximum discrepancy in the results is in the order of about 39% for crack length of 200mm (see Figure 7.21).

7. When the maximum possible misalignment (which is 1.95mm) along with the residual stress is applied, the critical crack size curves resulted from CRACKWISE and LINKpipe, are relatively close to each other. However, CRACKWISE tends to be conservative for long crack lengths (>90mm) compared to LINKpipe, whereas for short crack lengths (<90mm) CRACKWISE yields less conservative critical crack sizes (see Figure 7.22).

8. Comparison has also been made between the predictions from LINKpipe and CRACKWISE for the clad pipes with girth welds. For the same given input data, LINKpipe predicts the critical crack size conservatively compared to the results from CRACKWISE.

8.2 Further Work

Further works that can be carried out to improve the conclusion of the thesis are as follows:

1. Comparison of ECA with various pipeline geometries (diameter and wall thickness) and using experimental CTOD values;

2. Three Dimension Finite Element Analysis to verify the results from LINKpipe and CRACKWISE, especially for ECA analysis of clad pipe.
REFERENCE

TWI Software. 2009. CRACKWISE 4 help content version 4.1.6795.0 Final.
Appendix A

CRACKWISE ECA Simulation Results Summary
CRACKWISE ECA Simulation Results Summary
(Used in Figure 7.2, 7.3, 7.4 and 7.22 – Base Case)
Project Information

- **Current input file**: C:\Users\SS7N1346\Documents\Master Thesis\21 Crackwise Simulation Files\Projek_Data_Modify_BaseCaseThesis.cw4
- **Calculation type**: Fracture
- **Assessment level**: Level 3

Geometry

- **Geometry type**: Cylinder, external, circumferential flaw
- **Flaw type**: Surface
- **Stress intensity solution**: Surface flaw in plate M.3.2
- **Reference stress solution**: Surface flaw in cylinder oriented circumferentially P.4.3.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall thickness, B</td>
<td>13.65 mm</td>
</tr>
<tr>
<td>Width/length, W</td>
<td>815 mm</td>
</tr>
<tr>
<td>Radius, rm</td>
<td>129 mm</td>
</tr>
</tbody>
</table>

Flaw Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw height, a</td>
<td>2 mm</td>
</tr>
<tr>
<td>Flaw length, 2c</td>
<td>100 mm</td>
</tr>
<tr>
<td>Parametric angle Max</td>
<td></td>
</tr>
</tbody>
</table>

Primary Stresses

<table>
<thead>
<tr>
<th>Type</th>
<th>Membrane stress, Pm</th>
<th>Bending stress, Pb</th>
<th>Stress concentration factor, ktm</th>
<th>Stress concentration factor, ktb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>791.4 MPa</td>
<td>27.2 MPa</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Secondary Stresses

- **Type**: As Welded - Relaxation is Enabled
- **Thermal membrane stress, Qtm**: 0 MPa
- **Thermal bending stress, Qtb**: 0 MPa
- **Appropriate σy (Room temp)**: 691 MPa

Tensile Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield strength (Assess. temp)</td>
<td>691 MPa</td>
</tr>
<tr>
<td>Yield strength (Room temp)</td>
<td>691 MPa</td>
</tr>
<tr>
<td>Tensile strength (Assess. temp)</td>
<td>899 MPa</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>2.05E+05 MPa</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>FAD cut off point</td>
<td>1.431</td>
</tr>
</tbody>
</table>
This software is licensed to Acergy Group

<table>
<thead>
<tr>
<th>FAD type</th>
<th>Ramberg-Osgood Stress-Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit type</td>
<td>Engineering stress strain</td>
</tr>
<tr>
<td>Hardening</td>
<td>14,276</td>
</tr>
<tr>
<td>Constant</td>
<td>0,593</td>
</tr>
<tr>
<td>Reference strain</td>
<td>0,0033707</td>
</tr>
</tbody>
</table>

Toughness (J)

<table>
<thead>
<tr>
<th>RCurve</th>
<th>BS7448 offset power law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tearing direction</td>
<td>Length and height</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>1410</td>
</tr>
<tr>
<td>x</td>
<td>0,68</td>
</tr>
<tr>
<td>Minimum tearing</td>
<td>0,05</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,3</td>
</tr>
<tr>
<td>Increments</td>
<td>200</td>
</tr>
</tbody>
</table>

Criticality/Sensitivity solver settings

<table>
<thead>
<tr>
<th>Critical Parameter</th>
<th>Flaw height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>500</td>
</tr>
<tr>
<td>Base value</td>
<td>2</td>
</tr>
<tr>
<td>Initial step size</td>
<td>0,05</td>
</tr>
<tr>
<td>Minimum step size</td>
<td>0,025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity Parameter</th>
<th>Flaw length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Maximum</td>
<td>200</td>
</tr>
<tr>
<td>Points</td>
<td>100</td>
</tr>
</tbody>
</table>

Sensitivity results

<table>
<thead>
<tr>
<th>Flaw length</th>
<th>Flaw height</th>
<th>Results</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>26,768</td>
<td>4,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>28,535</td>
<td>4,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>30,303</td>
<td>4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>32,071</td>
<td>3,9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>33,838</td>
<td>3,8</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>35,606</td>
<td>3,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>37,374</td>
<td>3,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>39,141</td>
<td>3,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>40,909</td>
<td>3,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>42,677</td>
<td>3,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>44,444</td>
<td>3,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>46,212</td>
<td>3,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>47,98</td>
<td>3,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>49,747</td>
<td>3,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>51,515</td>
<td>3,15</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>53,283</td>
<td>3,1</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>55,051</td>
<td>3,05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>Value</td>
<td>Qm</td>
<td>Status</td>
<td>Note</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>56,818</td>
<td>3,05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>58,586</td>
<td>3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>60,354</td>
<td>2,95</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>62,121</td>
<td>2,95</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>63,889</td>
<td>2,9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>65,657</td>
<td>2,9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>67,424</td>
<td>2,85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>69,192</td>
<td>2,85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>70,96</td>
<td>2,8</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>72,727</td>
<td>2,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>74,495</td>
<td>2,75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>76,263</td>
<td>2,75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>78,03</td>
<td>2,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>79,798</td>
<td>2,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>81,566</td>
<td>2,65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>83,333</td>
<td>2,65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>85,101</td>
<td>2,65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>86,869</td>
<td>2,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>88,636</td>
<td>2,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>90,404</td>
<td>2,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>92,172</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>93,939</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>95,707</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>97,475</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>99,242</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>101,01</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>102,78</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>104,55</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>106,31</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>108,08</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>109,85</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>111,62</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>113,38</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>115,15</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>116,92</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>118,69</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>120,45</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>122,22</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>123,99</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>125,76</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>127,53</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>Width Error (mm)</td>
<td>Result</td>
<td>Note</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>129.29</td>
<td>2.3</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>131.06</td>
<td>2.3</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>132.83</td>
<td>2.3</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>134.6</td>
<td>2.25</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>136.36</td>
<td>2.25</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>138.13</td>
<td>2.25</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>139.9</td>
<td>2.25</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>141.67</td>
<td>2.25</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>143.43</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>145.2</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>146.97</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>148.74</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>150.51</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>152.27</td>
<td>2.2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>154.04</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>155.81</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>157.58</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>159.34</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>161.11</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>162.88</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>164.65</td>
<td>2.15</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>166.41</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>168.18</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>169.95</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>171.72</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>173.48</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>175.25</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>177.02</td>
<td>2.1</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>178.79</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>180.56</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>182.32</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>184.09</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>185.86</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>187.63</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>189.39</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>191.16</td>
<td>2.05</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>192.93</td>
<td>2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>194.7</td>
<td>2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>196.46</td>
<td>2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>198.23</td>
<td>2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>Unacceptable</td>
<td>Qm < 0.4 *</td>
</tr>
</tbody>
</table>
This software is licensed to Acergy Group
This software is licensed to Acergy Group

![Graph showing the relationship between critical parameter and flaw height as a function of flaw length. The x-axis represents flaw length ranging from 20 to 200, and the y-axis represents critical parameter flaw height ranging from 1.5 to 5. The graph shows a decreasing trend as flaw length increases.]
Stress strain curve

- Stress MPa
- Strain %

TWI Software, Granta Park, Great Abington, Cambridge, CB21 6AL, UK. Tel: +44(0)1223 899000, Fax: +44(0)1223 892588, Email: crackwise@twi.co.uk © 2007 TWI Software
CRACKWISE ECA Simulation Results Summary

(Used in Figure 7.3 – No Residual Stress)
Project Information

- **Current input file**: C:\Users\SS7N1346\Documents\Master Thesis\21 Crackwise Simulation Files\Projek_Data_Modify_BaseCaseThesis.cw4
- **Calculation type**: Fracture
- **Assessment level**: Level 3

Geometry

- **Geometry type**: Cylinder, external, circumferential flaw
- **Flaw type**: Surface

Stress intensity solution
- Surface flaw in plate M.3.2

Reference stress solution
- Surface flaw in cylinder oriented circumferentially P.4.3.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall thickness, B (mm)</td>
<td>13.65</td>
</tr>
<tr>
<td>Width/length, W (mm)</td>
<td>815</td>
</tr>
<tr>
<td>Radius, rm (mm)</td>
<td>129</td>
</tr>
</tbody>
</table>

Flaw Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw height, a (mm)</td>
<td>2</td>
</tr>
<tr>
<td>Flaw length, 2c (mm)</td>
<td>100</td>
</tr>
<tr>
<td>Parametric angle</td>
<td>Max</td>
</tr>
</tbody>
</table>

Primary Stresses

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane stress, Pm (MPa)</td>
<td>791.4</td>
</tr>
<tr>
<td>Bending stress, Pb (MPa)</td>
<td>27.2</td>
</tr>
</tbody>
</table>

Stress concentration factor
- ktm: 1
- ktb: 1

Secondary Stresses

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal membrane stress, Qtm</td>
<td>0 MPa</td>
</tr>
<tr>
<td>Thermal bending stress, Qtb</td>
<td>0 MPa</td>
</tr>
</tbody>
</table>

Tensile Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield strength (Assess. temp) σy (MPa)</td>
<td>691</td>
</tr>
<tr>
<td>Yield strength (Room temp) σy (MPa)</td>
<td>691</td>
</tr>
<tr>
<td>Tensile strength (Assess. temp) σu (MPa)</td>
<td>899</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>2.05E+05 MPa</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>FAD cut off point</td>
<td>1.431</td>
</tr>
</tbody>
</table>
This software is licensed to Acergy Group

<table>
<thead>
<tr>
<th>FAD type</th>
<th>Ramberg-Osgood Stress-Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit type</td>
<td>Engineering stress strain</td>
</tr>
<tr>
<td>Hardening (14,276)</td>
<td>Resolution (100)</td>
</tr>
<tr>
<td>Constant (0.593)</td>
<td></td>
</tr>
<tr>
<td>Reference strain (0.0033707)</td>
<td></td>
</tr>
</tbody>
</table>

Toughness (J)

<table>
<thead>
<tr>
<th>RCurve (BS7448 offset power law)</th>
<th>Tearing direction Length and height</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (0)</td>
<td>Minimum tearing (0.05 mm)</td>
</tr>
<tr>
<td>l (1410)</td>
<td>Maximum (0.3 mm)</td>
</tr>
<tr>
<td>x (0.68)</td>
<td>Increments (200)</td>
</tr>
</tbody>
</table>

Criticality/Sensitivity solver settings

<table>
<thead>
<tr>
<th>Critical Parameter</th>
<th>Flaw height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>500</td>
</tr>
<tr>
<td>Base value</td>
<td>2</td>
</tr>
<tr>
<td>Initial step size</td>
<td>0.05</td>
</tr>
<tr>
<td>Minimum step size</td>
<td>0.025</td>
</tr>
<tr>
<td>Sensitivity Parameter</td>
<td>Flaw length</td>
</tr>
<tr>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Maximum</td>
<td>200</td>
</tr>
<tr>
<td>Points</td>
<td>100</td>
</tr>
</tbody>
</table>

Sensitivity results

<table>
<thead>
<tr>
<th>Flaw length</th>
<th>Flaw height</th>
<th>Results</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>6.75</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>26,768</td>
<td>6.25</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>28,535</td>
<td>5.9</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>30,303</td>
<td>5.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>32,071</td>
<td>5.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>33,838</td>
<td>5.2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>35,606</td>
<td>5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>37,374</td>
<td>4.85</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>39,141</td>
<td>4.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>40,909</td>
<td>4.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>42,677</td>
<td>4.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>44,444</td>
<td>4.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>46,212</td>
<td>4.3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>47,98</td>
<td>4.25</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>49,747</td>
<td>4.15</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>51,515</td>
<td>4.1</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>53,283</td>
<td>4.05</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>55,051</td>
<td>3.95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Grade</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>56,818</td>
<td>3.9</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>58,586</td>
<td>3.85</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>60,354</td>
<td>3.8</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>62,121</td>
<td>3.75</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>63,889</td>
<td>3.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>65,657</td>
<td>3.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>67,424</td>
<td>3.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>69,192</td>
<td>3.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>70,96</td>
<td>3.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>72,727</td>
<td>3.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>74,495</td>
<td>3.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>76,263</td>
<td>3.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>78,03</td>
<td>3.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>79,798</td>
<td>3.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>81,566</td>
<td>3.35</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>83,333</td>
<td>3.35</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>85,101</td>
<td>3.3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>86,869</td>
<td>3.25</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>88,636</td>
<td>3.25</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>90,404</td>
<td>3.2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>92,172</td>
<td>3.2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>93,939</td>
<td>3.2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>95,707</td>
<td>3.15</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>97,475</td>
<td>3.15</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>99,242</td>
<td>3.1</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>101,01</td>
<td>3.1</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>102,78</td>
<td>3.05</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>104,55</td>
<td>3.05</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>106,31</td>
<td>3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>108,08</td>
<td>3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>109,85</td>
<td>3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>111,62</td>
<td>2.95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>113,38</td>
<td>2.95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>115,15</td>
<td>2.95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>116,92</td>
<td>2.9</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>118,69</td>
<td>2.9</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>120,45</td>
<td>2.9</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>122,22</td>
<td>2.85</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>123,99</td>
<td>2.85</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>125,76</td>
<td>2.85</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>127,53</td>
<td>2.8</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Rating</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>129.29</td>
<td>2.8</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>131.06</td>
<td>2.8</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>132.83</td>
<td>2.8</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>134.6</td>
<td>2.75</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>136.36</td>
<td>2.75</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>138.13</td>
<td>2.75</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>139.9</td>
<td>2.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>141.67</td>
<td>2.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>143.43</td>
<td>2.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>145.2</td>
<td>2.7</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>146.97</td>
<td>2.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>148.74</td>
<td>2.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>150.51</td>
<td>2.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>152.27</td>
<td>2.65</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>154.04</td>
<td>2.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>155.81</td>
<td>2.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>157.58</td>
<td>2.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>159.34</td>
<td>2.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>161.11</td>
<td>2.6</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>162.88</td>
<td>2.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>164.65</td>
<td>2.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>166.41</td>
<td>2.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>168.18</td>
<td>2.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>169.95</td>
<td>2.55</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>171.72</td>
<td>2.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>173.48</td>
<td>2.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>175.25</td>
<td>2.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>177.02</td>
<td>2.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>178.79</td>
<td>2.5</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>180.56</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>182.32</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>184.09</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>185.86</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>187.63</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>189.39</td>
<td>2.45</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>191.16</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>192.93</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>194.7</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>196.46</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>198.23</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2.4</td>
<td>Unacceptable</td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity Parameter is Flaw length

critical parameter vs flaw height

Critical Parameter vs Flaw Height

Sensitivity Parameter vs Flaw length
This software is licensed to Acergy Group

R-Curve

Toughness kJ/m^2

Tearing mm
Stress strain curve

![Stress strain curve graph](image-url)
CRACKWISE ECA Simulation Results Summary
(Used in Figure 7.3 – Residual Stress Equal Yield)
Project Information

<table>
<thead>
<tr>
<th>Current input file</th>
<th>C:\Users\SS7N1346\Documents\Master Thesis\21 Crackwise Simulation Files\Projek_Data_Modify_BaseCaseThesis.cw4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation type</td>
<td>Fracture</td>
</tr>
<tr>
<td>Assessment level</td>
<td>Level 3</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Geometry type</th>
<th>Cylinder, external, circumferential flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw type</td>
<td>Surface</td>
</tr>
<tr>
<td>Stress intensity solution</td>
<td>Surface flaw in plate M.3.2</td>
</tr>
<tr>
<td>Reference stress solution</td>
<td>Surface flaw in cylinder oriented circumferentially P.4.3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall thickness, B</th>
<th>13.65 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width/length, W</td>
<td>815 mm</td>
</tr>
<tr>
<td>Radius, rm</td>
<td>129 mm</td>
</tr>
</tbody>
</table>

Flaw Dimensions

<table>
<thead>
<tr>
<th>Flaw height, a</th>
<th>2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw length, 2c</td>
<td>100 mm</td>
</tr>
<tr>
<td>Parametric angle</td>
<td>Max</td>
</tr>
</tbody>
</table>

Primary Stresses

<table>
<thead>
<tr>
<th>Membrane stress, Pm</th>
<th>791.4 MPa</th>
<th>Stress concentration factor, ktm</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending stress, Pb</td>
<td>27.2 MPa</td>
<td>Stress concentration factor, ktb</td>
<td>1</td>
</tr>
</tbody>
</table>

Secondary Stresses

<table>
<thead>
<tr>
<th>Type</th>
<th>As Welded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal membrane stress, Qtm</td>
<td>0 MPa</td>
</tr>
<tr>
<td>Thermal bending stress, Qtb</td>
<td>0 MPa</td>
</tr>
<tr>
<td>Appropriate σy (Room temp)</td>
<td>691 MPa</td>
</tr>
</tbody>
</table>

Tensile Properties

<table>
<thead>
<tr>
<th>Yield strength (Assess. temp) σy</th>
<th>691 MPa</th>
<th>Young's modulus</th>
<th>2.05E+05 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield strength (Room temp) σy</td>
<td>691 MPa</td>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Tensile strength (Assess. temp) σu</td>
<td>899 MPa</td>
<td>FAD cut off point</td>
<td>1.431</td>
</tr>
</tbody>
</table>
This software is licensed to Acergy Group

FAD type Ramberg-Osgood Stress-Strain

Unit type Engineering stress strain

<table>
<thead>
<tr>
<th>Hardening</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,276</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>Reference strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,593</td>
<td>0,0033707</td>
</tr>
</tbody>
</table>

Toughness (J)

<table>
<thead>
<tr>
<th>RCurve</th>
<th>Tearing direction</th>
<th>Length and height</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS7448 offset power law</td>
<td>Minimum tearing</td>
<td>0,05 mm</td>
</tr>
<tr>
<td>m</td>
<td>Maximum</td>
<td>0,3 mm</td>
</tr>
<tr>
<td>I</td>
<td>Increments</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,68</td>
</tr>
</tbody>
</table>

Criticality/Sensitivity solver settings

<table>
<thead>
<tr>
<th>Critical Parameter</th>
<th>Flaw height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>500</td>
</tr>
<tr>
<td>Base value</td>
<td>2</td>
</tr>
<tr>
<td>Initial step size</td>
<td>0,05</td>
</tr>
<tr>
<td>Minimum step size</td>
<td>0,025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity Parameter</th>
<th>Flaw length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Maximum</td>
<td>200</td>
</tr>
<tr>
<td>Points</td>
<td>100</td>
</tr>
</tbody>
</table>

Sensitivity results

<table>
<thead>
<tr>
<th>Flaw length</th>
<th>Flaw height</th>
<th>Results</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2,35</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>26,768</td>
<td>2,3</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>28,535</td>
<td>2,25</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>30,303</td>
<td>2,2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>32,071</td>
<td>2,15</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>33,838</td>
<td>2,1</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>35,606</td>
<td>2,05</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>37,374</td>
<td>2,05</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>39,141</td>
<td>2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>40,909</td>
<td>2</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>42,677</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>44,444</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>46,212</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>47,98</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>49,747</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>51,515</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>53,283</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>55,051</td>
<td>1,95</td>
<td>Unacceptable</td>
<td></td>
</tr>
</tbody>
</table>

First point is unsafe
<table>
<thead>
<tr>
<th>Value</th>
<th>Rating</th>
<th>Status</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,818</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>58,586</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>60,354</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>62,121</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>63,889</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>65,657</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>67,424</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>69,192</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>70,96</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>72,727</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>74,495</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>76,263</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>78,03</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>79,798</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>81,566</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>83,333</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>85,101</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>86,869</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>88,636</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>90,404</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>92,172</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>93,939</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>95,707</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>97,475</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>99,242</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>101,01</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>102,78</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>104,55</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>106,31</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>108,08</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>109,85</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>111,62</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>113,38</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>115,15</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>116,92</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>118,69</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>120,45</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>122,22</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>123,99</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>125,76</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>127,53</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>Value</td>
<td>Angle</td>
<td>Condition</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>129.29</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>131.06</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>132.83</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>134.6</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>136.36</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>138.13</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>139.9</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>141.67</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>143.43</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>145.2</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>146.97</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>148.74</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>150.51</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>152.27</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>154.04</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>155.81</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>157.58</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>159.34</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>161.11</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>162.88</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>164.65</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>166.41</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>168.18</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>169.95</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>171.72</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>173.48</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>175.25</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>177.02</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>178.79</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>180.56</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>182.32</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>184.09</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>185.86</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>187.63</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>189.39</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>191.16</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>192.93</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>194.7</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>196.46</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>198.23</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
<tr>
<td>200</td>
<td>1.95</td>
<td>Unacceptable</td>
<td>First point is unsafe</td>
</tr>
</tbody>
</table>
Stress strain curve

Stress MPa

Strain %
CRACKWISE ECA Simulation Results Summary

(Used in Figure 7.4 and 7.21 – Residual Stress Equal Yield Strength with Relaxation and No Misalignment)
This software is licensed to Acergy Group

Project Information

Current input file
C:\Users\SS7N1346\Documents\Master Thesis\21 Crackwise Simulation Files\Projek_Data_Modify_BaseCaseThesis.cw4

Calculation type
Fracture

Assessment level
Level 3

Geometry

- **Geometry type**: Cylinder, external, circumferential flaw
- **Flaw type**: Surface
- **Stress intensity solution**: Surface flaw in plate M.3.2
- **Reference stress solution**: Surface flaw in cylinder oriented circumferentially P.4.3.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall thickness, B (B)</td>
<td>13.65 mm</td>
</tr>
<tr>
<td>Width/length, W</td>
<td>815 mm</td>
</tr>
<tr>
<td>Radius, rm</td>
<td>129</td>
</tr>
</tbody>
</table>

Flaw Dimensions

<table>
<thead>
<tr>
<th>Flaw Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw height, a (a)</td>
<td>2 mm</td>
</tr>
<tr>
<td>Flaw length, 2c (2c)</td>
<td>100 mm</td>
</tr>
<tr>
<td>Parametric angle</td>
<td>Max</td>
</tr>
</tbody>
</table>

Primary Stresses

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane stress, Pm</td>
<td>791.4 MPa</td>
</tr>
<tr>
<td>Bending stress, Pb</td>
<td>0 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress Concentration Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ktm</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Secondary Stresses

- **Type**: As Welded - Relaxation is Enabled

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal membrane stress, Qtm</td>
<td>0 MPa</td>
</tr>
<tr>
<td>Thermal bending stress, Qtb</td>
<td>0 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appropriate σy (Room temp)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>691 MPa</td>
<td></td>
</tr>
</tbody>
</table>

Tensile Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield strength (Assess. temp) σy</td>
<td>691 MPa</td>
</tr>
<tr>
<td>Yield strength (Room temp) σy</td>
<td>691 MPa</td>
</tr>
<tr>
<td>Tensile strength (Assess. temp) σu</td>
<td>899 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus</td>
<td>2.05E+05 MPa</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>FAD cut off point</td>
<td>1.431</td>
</tr>
</tbody>
</table>
This software is licensed to Acergy Group

FAD type
- Ramberg-Osgood Stress-Strain

Unit type
- Engineering stress strain

Hardening
- 14,276

Constant
- 0,593

Reference strain
- 0,0033707

Toughness (J)

<table>
<thead>
<tr>
<th>RCurve</th>
<th>BS7448 offset power law</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>1410</td>
</tr>
<tr>
<td>x</td>
<td>0,68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tearing direction</th>
<th>Length and height</th>
<th>Minimum tearing</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increments</td>
<td></td>
</tr>
</tbody>
</table>

Criticality/Sensitivity solver settings

<table>
<thead>
<tr>
<th>Critical Parameter</th>
<th>Flaw height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>500</td>
</tr>
<tr>
<td>Base value</td>
<td>2</td>
</tr>
<tr>
<td>Initial step size</td>
<td>0,05</td>
</tr>
<tr>
<td>Minimum step size</td>
<td>0,025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity Parameter</th>
<th>Flaw length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>25</td>
</tr>
<tr>
<td>Maximum</td>
<td>200</td>
</tr>
<tr>
<td>Points</td>
<td>100</td>
</tr>
</tbody>
</table>

Sensitivity results

<table>
<thead>
<tr>
<th>Flaw length</th>
<th>Flaw height</th>
<th>Results</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>26,768</td>
<td>5,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>28,535</td>
<td>5,05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>30,303</td>
<td>4,85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>32,071</td>
<td>4,65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>33,838</td>
<td>4,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>35,606</td>
<td>4,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>37,374</td>
<td>4,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>39,141</td>
<td>4,15</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>40,909</td>
<td>4,05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>42,677</td>
<td>3,95</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>44,444</td>
<td>3,9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>46,212</td>
<td>3,8</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>47,98</td>
<td>3,75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>49,747</td>
<td>3,7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>51,515</td>
<td>3,65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>53,283</td>
<td>3,6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>55,051</td>
<td>3,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>Number</td>
<td>Value</td>
<td>Note</td>
<td>Condition</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>56,818</td>
<td>3.5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>58,586</td>
<td>3.45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>60,354</td>
<td>3.4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>62,121</td>
<td>3.35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>63,889</td>
<td>3.35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>65,657</td>
<td>3.3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>67,424</td>
<td>3.25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>69,192</td>
<td>3.25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>70,96</td>
<td>3.2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>72,727</td>
<td>3.15</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>74,495</td>
<td>3.15</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>76,263</td>
<td>3.1</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>78,03</td>
<td>3.1</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>79,798</td>
<td>3.05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>81,566</td>
<td>3.05</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>83,333</td>
<td>3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>85,101</td>
<td>3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>86,869</td>
<td>2.95</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>88,636</td>
<td>2.95</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>90,404</td>
<td>2.9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>92,172</td>
<td>2.9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>93,939</td>
<td>2.9</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>95,707</td>
<td>2.85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>97,475</td>
<td>2.85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>99,242</td>
<td>2.85</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>101,01</td>
<td>2.8</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>102,78</td>
<td>2.8</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>104,55</td>
<td>2.75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>106,31</td>
<td>2.75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>108,08</td>
<td>2.75</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>109,85</td>
<td>2.7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>111,62</td>
<td>2.7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>113,38</td>
<td>2.7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>115,15</td>
<td>2.7</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>116,92</td>
<td>2.65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>118,69</td>
<td>2.65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>120,45</td>
<td>2.65</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>122,22</td>
<td>2.6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>123,99</td>
<td>2.6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>125,76</td>
<td>2.6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>127,53</td>
<td>2.6</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4</td>
</tr>
<tr>
<td>129,29</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>131,06</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>132,83</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>134,6</td>
<td>2,55</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>136,36</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>138,13</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>139,9</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>141,67</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>143,43</td>
<td>2,5</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>145,2</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>146,97</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>148,74</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>150,51</td>
<td>2,45</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>152,27</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>154,04</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>155,81</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>157,58</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>159,34</td>
<td>2,4</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>161,11</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>162,88</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>164,65</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>166,41</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>168,18</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>169,95</td>
<td>2,35</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>171,72</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>173,48</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>175,25</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>177,02</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>178,79</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>180,56</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>182,32</td>
<td>2,3</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>184,09</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>185,86</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>187,63</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>189,39</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>191,16</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>192,93</td>
<td>2,25</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>194,7</td>
<td>2,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>196,46</td>
<td>2,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>198,23</td>
<td>2,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
<tr>
<td>200</td>
<td>2,2</td>
<td>Unacceptable</td>
<td>Note, Qm < 0.4 *</td>
</tr>
</tbody>
</table>
R-Curve

Tearing mm

Toughness kJ/m²

0 0,1 0,2 0,3

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Rcurve
Stress strain curve

Strain %

0 5 10 15 20 25 30 35

S t r e s s M P a

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Appendix B

LINKpipe ECA Simulation Results Log
Table B.1 ECA Simulation Results Log (for Figure 7.8 – Base Case)

<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>2c</th>
<th>a</th>
<th>Directory</th>
<th>Status</th>
<th>Stop Criteria</th>
<th>Crackgrowth</th>
<th>CrackDepth</th>
<th>CTOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.013</td>
<td>2.176</td>
<td>0.135</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.02</td>
<td>2.405</td>
<td>0.157</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.031</td>
<td>2.641</td>
<td>0.187</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.049</td>
<td>2.886</td>
<td>0.225</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Ok</td>
<td></td>
<td>0.069</td>
<td>3.119</td>
<td>0.261</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>3</td>
<td>model0006</td>
<td>Ok</td>
<td></td>
<td>0.092</td>
<td>3.354</td>
<td>0.298</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>3.2</td>
<td>model0007</td>
<td>Ok</td>
<td></td>
<td>0.131</td>
<td>3.588</td>
<td>0.352</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>3.4</td>
<td>model0008</td>
<td>Ok</td>
<td></td>
<td>0.19</td>
<td>3.84</td>
<td>0.422</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>3.6</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.267</td>
<td>4.07</td>
<td>0.502</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>3.8</td>
<td>model0010</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.414</td>
<td>4.399</td>
<td>0.63</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td>3.644</td>
<td>model0011</td>
<td>Ok</td>
<td></td>
<td>0.285</td>
<td>4.101</td>
<td>0.519</td>
</tr>
<tr>
<td>12</td>
<td>195</td>
<td>3.844</td>
<td>model0012</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.463</td>
<td>4.497</td>
<td>0.668</td>
</tr>
<tr>
<td>13</td>
<td>190</td>
<td>3.674</td>
<td>model0013</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.299</td>
<td>4.147</td>
<td>0.531</td>
</tr>
<tr>
<td>14</td>
<td>190</td>
<td>3.474</td>
<td>model0014</td>
<td>Ok</td>
<td></td>
<td>0.214</td>
<td>3.921</td>
<td>0.449</td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>3.682</td>
<td>model0015</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.302</td>
<td>4.16</td>
<td>0.534</td>
</tr>
<tr>
<td>16</td>
<td>185</td>
<td>3.482</td>
<td>model0016</td>
<td>Ok</td>
<td></td>
<td>0.216</td>
<td>3.902</td>
<td>0.451</td>
</tr>
<tr>
<td>17</td>
<td>180</td>
<td>3.666</td>
<td>model0017</td>
<td>Ok</td>
<td></td>
<td>0.29</td>
<td>4.131</td>
<td>0.524</td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>3.866</td>
<td>model0018</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.474</td>
<td>4.531</td>
<td>0.676</td>
</tr>
<tr>
<td>19</td>
<td>175</td>
<td>3.678</td>
<td>model0019</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.147</td>
<td>0.528</td>
</tr>
<tr>
<td>20</td>
<td>175</td>
<td>3.878</td>
<td>model0020</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.482</td>
<td>4.553</td>
<td>0.682</td>
</tr>
<tr>
<td>21</td>
<td>170</td>
<td>3.69</td>
<td>model0021</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.304</td>
<td>4.17</td>
<td>0.536</td>
</tr>
<tr>
<td>22</td>
<td>170</td>
<td>3.49</td>
<td>model0022</td>
<td>Ok</td>
<td></td>
<td>0.219</td>
<td>3.874</td>
<td>0.454</td>
</tr>
<tr>
<td>23</td>
<td>165</td>
<td>3.662</td>
<td>model0023</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>4.127</td>
<td>0.524</td>
</tr>
<tr>
<td>24</td>
<td>165</td>
<td>3.862</td>
<td>model0024</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.465</td>
<td>4.519</td>
<td>0.67</td>
</tr>
<tr>
<td>25</td>
<td>160</td>
<td>3.667</td>
<td>model0025</td>
<td>Ok</td>
<td></td>
<td>0.292</td>
<td>4.133</td>
<td>0.525</td>
</tr>
<tr>
<td>26</td>
<td>160</td>
<td>3.867</td>
<td>model0026</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.465</td>
<td>4.523</td>
<td>0.669</td>
</tr>
<tr>
<td>27</td>
<td>155</td>
<td>3.68</td>
<td>model0027</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>4.147</td>
<td>0.525</td>
</tr>
<tr>
<td>28</td>
<td>155</td>
<td>3.88</td>
<td>model0028</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.465</td>
<td>4.538</td>
<td>0.67</td>
</tr>
<tr>
<td>29</td>
<td>150</td>
<td>3.707</td>
<td>model0029</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.303</td>
<td>4.187</td>
<td>0.536</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>3.507</td>
<td>model0030</td>
<td>Ok</td>
<td></td>
<td>0.219</td>
<td>3.886</td>
<td>0.453</td>
</tr>
<tr>
<td>31</td>
<td>145</td>
<td>3.695</td>
<td>model0031</td>
<td>Ok</td>
<td></td>
<td>0.292</td>
<td>4.164</td>
<td>0.526</td>
</tr>
<tr>
<td>32</td>
<td>145</td>
<td>3.895</td>
<td>model0032</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.465</td>
<td>4.554</td>
<td>0.669</td>
</tr>
<tr>
<td>33</td>
<td>140</td>
<td>3.71</td>
<td>model0033</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.298</td>
<td>4.186</td>
<td>0.531</td>
</tr>
<tr>
<td>34</td>
<td>140</td>
<td>3.51</td>
<td>model0034</td>
<td>Ok</td>
<td></td>
<td>0.217</td>
<td>3.889</td>
<td>0.451</td>
</tr>
<tr>
<td>35</td>
<td>135</td>
<td>3.716</td>
<td>model0035</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>4.191</td>
<td>0.53</td>
</tr>
<tr>
<td>36</td>
<td>135</td>
<td>3.916</td>
<td>model0036</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.467</td>
<td>4.579</td>
<td>0.671</td>
</tr>
<tr>
<td>37</td>
<td>130</td>
<td>3.725</td>
<td>model0037</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.302</td>
<td>4.206</td>
<td>0.534</td>
</tr>
<tr>
<td>38</td>
<td>130</td>
<td>3.525</td>
<td>model0038</td>
<td>Ok</td>
<td></td>
<td>0.219</td>
<td>3.907</td>
<td>0.454</td>
</tr>
<tr>
<td>39</td>
<td>125</td>
<td>3.709</td>
<td>model0039</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>4.177</td>
<td>0.524</td>
</tr>
<tr>
<td>40</td>
<td>125</td>
<td>3.909</td>
<td>model0040</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.446</td>
<td>4.55</td>
<td>0.655</td>
</tr>
<tr>
<td>41</td>
<td>120</td>
<td>3.722</td>
<td>model0041</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.194</td>
<td>0.528</td>
</tr>
<tr>
<td>42</td>
<td>120</td>
<td>3.922</td>
<td>model0042</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.453</td>
<td>4.569</td>
<td>0.66</td>
</tr>
<tr>
<td>43</td>
<td>115</td>
<td>3.735</td>
<td>model0043</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.299</td>
<td>4.212</td>
<td>0.532</td>
</tr>
<tr>
<td>44</td>
<td>115</td>
<td>3.535</td>
<td>model0044</td>
<td>Ok</td>
<td></td>
<td>0.219</td>
<td>3.916</td>
<td>0.454</td>
</tr>
<tr>
<td>45</td>
<td>110</td>
<td>3.736</td>
<td>model0045</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.209</td>
<td>0.528</td>
</tr>
<tr>
<td>46</td>
<td>110</td>
<td>3.936</td>
<td>model0046</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.445</td>
<td>4.576</td>
<td>0.654</td>
</tr>
<tr>
<td>47</td>
<td>105</td>
<td>3.748</td>
<td>model0047</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.222</td>
<td>0.529</td>
</tr>
<tr>
<td>48</td>
<td>105</td>
<td>3.948</td>
<td>model0048</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.441</td>
<td>4.584</td>
<td>0.651</td>
</tr>
<tr>
<td>49</td>
<td>100</td>
<td>3.762</td>
<td>model0049</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>4.226</td>
<td>0.519</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>3.962</td>
<td>model0050</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.419</td>
<td>4.576</td>
<td>0.633</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>95</td>
<td>3.822</td>
<td>model0051</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.305</td>
<td>4.31</td>
<td>0.537</td>
</tr>
<tr>
<td>52</td>
<td>95</td>
<td>3.622</td>
<td>model0052</td>
<td>Ok</td>
<td></td>
<td>0.224</td>
<td>4.012</td>
<td>0.458</td>
</tr>
<tr>
<td>53</td>
<td>90</td>
<td>3.822</td>
<td>model0053</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>4.299</td>
<td>0.529</td>
</tr>
<tr>
<td>54</td>
<td>90</td>
<td>4.022</td>
<td>model0054</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.43</td>
<td>4.649</td>
<td>0.642</td>
</tr>
<tr>
<td>55</td>
<td>85</td>
<td>3.841</td>
<td>model0055</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>4.319</td>
<td>0.53</td>
</tr>
<tr>
<td>56</td>
<td>85</td>
<td>3.641</td>
<td>model0056</td>
<td>Ok</td>
<td></td>
<td>0.22</td>
<td>4.026</td>
<td>0.454</td>
</tr>
<tr>
<td>57</td>
<td>80</td>
<td>3.856</td>
<td>model0057</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.329</td>
<td>0.527</td>
</tr>
<tr>
<td>58</td>
<td>80</td>
<td>4.056</td>
<td>model0058</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.413</td>
<td>4.665</td>
<td>0.629</td>
</tr>
<tr>
<td>59</td>
<td>75</td>
<td>3.888</td>
<td>model0059</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.3</td>
<td>4.366</td>
<td>0.532</td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>3.688</td>
<td>model0060</td>
<td>Ok</td>
<td></td>
<td>0.22</td>
<td>4.072</td>
<td>0.455</td>
</tr>
<tr>
<td>61</td>
<td>70</td>
<td>3.901</td>
<td>model0061</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>4.366</td>
<td>0.521</td>
</tr>
<tr>
<td>62</td>
<td>70</td>
<td>4.101</td>
<td>model0062</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.394</td>
<td>4.686</td>
<td>0.613</td>
</tr>
<tr>
<td>63</td>
<td>65</td>
<td>3.967</td>
<td>model0063</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>4.443</td>
<td>0.53</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>3.767</td>
<td>model0064</td>
<td>Ok</td>
<td></td>
<td>0.218</td>
<td>4.151</td>
<td>0.453</td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td>4.016</td>
<td>model0065</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.3</td>
<td>4.492</td>
<td>0.532</td>
</tr>
<tr>
<td>66</td>
<td>60</td>
<td>3.816</td>
<td>model0066</td>
<td>Ok</td>
<td></td>
<td>0.221</td>
<td>4.201</td>
<td>0.456</td>
</tr>
<tr>
<td>67</td>
<td>55</td>
<td>4.051</td>
<td>model0067</td>
<td>Ok</td>
<td></td>
<td>0.284</td>
<td>4.509</td>
<td>0.518</td>
</tr>
<tr>
<td>68</td>
<td>55</td>
<td>4.251</td>
<td>model0068</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.368</td>
<td>4.805</td>
<td>0.592</td>
</tr>
<tr>
<td>69</td>
<td>50</td>
<td>4.174</td>
<td>model0069</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.31</td>
<td>4.658</td>
<td>0.542</td>
</tr>
<tr>
<td>70</td>
<td>50</td>
<td>3.974</td>
<td>model0070</td>
<td>Ok</td>
<td></td>
<td>0.238</td>
<td>4.375</td>
<td>0.473</td>
</tr>
<tr>
<td>71</td>
<td>45</td>
<td>4.187</td>
<td>model0071</td>
<td>Ok</td>
<td></td>
<td>0.266</td>
<td>4.62</td>
<td>0.501</td>
</tr>
<tr>
<td>72</td>
<td>45</td>
<td>4.387</td>
<td>model0072</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.327</td>
<td>4.89</td>
<td>0.557</td>
</tr>
<tr>
<td>73</td>
<td>40</td>
<td>4.49</td>
<td>model0073</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.302</td>
<td>4.961</td>
<td>0.535</td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>4.29</td>
<td>model0074</td>
<td>Ok</td>
<td></td>
<td>0.255</td>
<td>4.706</td>
<td>0.49</td>
</tr>
<tr>
<td>75</td>
<td>35</td>
<td>4.661</td>
<td>model0075</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>5.119</td>
<td>0.529</td>
</tr>
<tr>
<td>76</td>
<td>35</td>
<td>4.861</td>
<td>model0076</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.34</td>
<td>5.369</td>
<td>0.568</td>
</tr>
<tr>
<td>77</td>
<td>30</td>
<td>4.873</td>
<td>model0077</td>
<td>Ok</td>
<td></td>
<td>0.273</td>
<td>5.293</td>
<td>0.507</td>
</tr>
<tr>
<td>78</td>
<td>30</td>
<td>5.073</td>
<td>model0078</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.309</td>
<td>5.534</td>
<td>0.54</td>
</tr>
<tr>
<td>79</td>
<td>25</td>
<td>5.428</td>
<td>model0079</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>5.854</td>
<td>0.524</td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>5.628</td>
<td>model0080</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.301</td>
<td>6.068</td>
<td>0.533</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.021</td>
<td>2.303</td>
<td>0.161</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.036</td>
<td>2.555</td>
<td>0.199</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.057</td>
<td>2.816</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.078</td>
<td>3.061</td>
<td>0.276</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Ok</td>
<td></td>
<td>0.107</td>
<td>3.315</td>
<td>0.321</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>3</td>
<td>model0006</td>
<td>Ok</td>
<td></td>
<td>0.165</td>
<td>3.566</td>
<td>0.394</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>3.2</td>
<td>model0007</td>
<td>Ok</td>
<td></td>
<td>0.248</td>
<td>3.8</td>
<td>0.483</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>3.4</td>
<td>model0008</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.355</td>
<td>4.075</td>
<td>0.581</td>
</tr>
<tr>
<td>9</td>
<td>195</td>
<td>3.295</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.916</td>
<td>0.527</td>
</tr>
<tr>
<td>10</td>
<td>195</td>
<td>3.495</td>
<td>model0010</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.419</td>
<td>4.248</td>
<td>0.633</td>
</tr>
<tr>
<td>11</td>
<td>190</td>
<td>3.306</td>
<td>model0011</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.925</td>
<td>0.53</td>
</tr>
<tr>
<td>12</td>
<td>190</td>
<td>3.506</td>
<td>model0012</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.422</td>
<td>4.263</td>
<td>0.636</td>
</tr>
<tr>
<td>13</td>
<td>185</td>
<td>3.313</td>
<td>model0013</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.3</td>
<td>3.922</td>
<td>0.532</td>
</tr>
<tr>
<td>14</td>
<td>185</td>
<td>3.113</td>
<td>model0014</td>
<td>Ok</td>
<td></td>
<td>0.205</td>
<td>3.673</td>
<td>0.439</td>
</tr>
<tr>
<td>15</td>
<td>180</td>
<td>3.308</td>
<td>model0015</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.913</td>
<td>0.529</td>
</tr>
<tr>
<td>16</td>
<td>180</td>
<td>3.508</td>
<td>model0016</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.42</td>
<td>4.264</td>
<td>0.634</td>
</tr>
<tr>
<td>17</td>
<td>175</td>
<td>3.313</td>
<td>model0017</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.917</td>
<td>0.528</td>
</tr>
<tr>
<td>18</td>
<td>175</td>
<td>3.513</td>
<td>model0018</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.419</td>
<td>4.267</td>
<td>0.633</td>
</tr>
<tr>
<td>19</td>
<td>170</td>
<td>3.324</td>
<td>model0019</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.303</td>
<td>3.938</td>
<td>0.535</td>
</tr>
<tr>
<td>20</td>
<td>170</td>
<td>3.124</td>
<td>model0020</td>
<td>Ok</td>
<td></td>
<td>0.209</td>
<td>3.661</td>
<td>0.443</td>
</tr>
<tr>
<td>21</td>
<td>165</td>
<td>3.303</td>
<td>model0021</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.906</td>
<td>0.527</td>
</tr>
<tr>
<td>22</td>
<td>165</td>
<td>3.503</td>
<td>model0022</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.417</td>
<td>4.255</td>
<td>0.632</td>
</tr>
<tr>
<td>23</td>
<td>160</td>
<td>3.304</td>
<td>model0023</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.906</td>
<td>0.527</td>
</tr>
<tr>
<td>24</td>
<td>160</td>
<td>3.504</td>
<td>model0024</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.415</td>
<td>4.254</td>
<td>0.63</td>
</tr>
<tr>
<td>25</td>
<td>155</td>
<td>3.315</td>
<td>model0025</td>
<td>Ok</td>
<td></td>
<td>0.292</td>
<td>3.917</td>
<td>0.526</td>
</tr>
<tr>
<td>26</td>
<td>155</td>
<td>3.515</td>
<td>model0026</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.412</td>
<td>4.263</td>
<td>0.628</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>3.343</td>
<td>model0027</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.302</td>
<td>3.959</td>
<td>0.535</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>3.143</td>
<td>model0028</td>
<td>Ok</td>
<td></td>
<td>0.211</td>
<td>3.665</td>
<td>0.445</td>
</tr>
<tr>
<td>29</td>
<td>145</td>
<td>3.339</td>
<td>model0029</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.298</td>
<td>3.95</td>
<td>0.531</td>
</tr>
<tr>
<td>30</td>
<td>145</td>
<td>3.139</td>
<td>model0030</td>
<td>Ok</td>
<td></td>
<td>0.208</td>
<td>3.664</td>
<td>0.442</td>
</tr>
<tr>
<td>31</td>
<td>140</td>
<td>3.341</td>
<td>model0031</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.95</td>
<td>0.528</td>
</tr>
<tr>
<td>32</td>
<td>140</td>
<td>3.541</td>
<td>model0032</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.413</td>
<td>4.294</td>
<td>0.629</td>
</tr>
<tr>
<td>33</td>
<td>135</td>
<td>3.352</td>
<td>model0033</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.961</td>
<td>0.528</td>
</tr>
<tr>
<td>34</td>
<td>135</td>
<td>3.552</td>
<td>model0034</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.412</td>
<td>4.305</td>
<td>0.628</td>
</tr>
<tr>
<td>35</td>
<td>130</td>
<td>3.369</td>
<td>model0035</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.303</td>
<td>3.988</td>
<td>0.535</td>
</tr>
<tr>
<td>36</td>
<td>130</td>
<td>3.169</td>
<td>model0036</td>
<td>Ok</td>
<td></td>
<td>0.214</td>
<td>3.691</td>
<td>0.449</td>
</tr>
<tr>
<td>37</td>
<td>125</td>
<td>3.353</td>
<td>model0037</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.962</td>
<td>0.528</td>
</tr>
<tr>
<td>38</td>
<td>125</td>
<td>3.553</td>
<td>model0038</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.408</td>
<td>4.302</td>
<td>0.625</td>
</tr>
<tr>
<td>39</td>
<td>120</td>
<td>3.359</td>
<td>model0039</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.967</td>
<td>0.527</td>
</tr>
<tr>
<td>40</td>
<td>120</td>
<td>3.559</td>
<td>model0040</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.406</td>
<td>4.305</td>
<td>0.623</td>
</tr>
<tr>
<td>41</td>
<td>115</td>
<td>3.374</td>
<td>model0041</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.298</td>
<td>3.989</td>
<td>0.531</td>
</tr>
<tr>
<td>42</td>
<td>115</td>
<td>3.174</td>
<td>model0042</td>
<td>Ok</td>
<td></td>
<td>0.213</td>
<td>3.678</td>
<td>0.447</td>
</tr>
<tr>
<td>43</td>
<td>110</td>
<td>3.378</td>
<td>model0043</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.991</td>
<td>0.529</td>
</tr>
<tr>
<td>44</td>
<td>110</td>
<td>3.578</td>
<td>model0044</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.405</td>
<td>4.325</td>
<td>0.622</td>
</tr>
<tr>
<td>45</td>
<td>105</td>
<td>3.389</td>
<td>model0045</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.999</td>
<td>0.528</td>
</tr>
<tr>
<td>46</td>
<td>105</td>
<td>3.589</td>
<td>model0046</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.4</td>
<td>4.33</td>
<td>0.618</td>
</tr>
<tr>
<td>47</td>
<td>100</td>
<td>3.409</td>
<td>model0047</td>
<td>Ok</td>
<td></td>
<td>0.287</td>
<td>4.014</td>
<td>0.52</td>
</tr>
<tr>
<td>48</td>
<td>100</td>
<td>3.609</td>
<td>model0048</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.386</td>
<td>4.339</td>
<td>0.607</td>
</tr>
<tr>
<td>49</td>
<td>95</td>
<td>3.482</td>
<td>model0049</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.308</td>
<td>4.117</td>
<td>0.54</td>
</tr>
<tr>
<td>50</td>
<td>95</td>
<td>3.282</td>
<td>model0050</td>
<td>Ok</td>
<td></td>
<td>0.23</td>
<td>3.814</td>
<td>0.465</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>51</td>
<td>90</td>
<td>3.473</td>
<td>model0051</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.091</td>
<td>0.528</td>
</tr>
<tr>
<td>52</td>
<td>90</td>
<td>3.673</td>
<td>model0052</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.393</td>
<td>4.414</td>
<td>0.613</td>
</tr>
<tr>
<td>53</td>
<td>85</td>
<td>3.495</td>
<td>model0053</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.116</td>
<td>0.529</td>
</tr>
<tr>
<td>54</td>
<td>85</td>
<td>3.695</td>
<td>model0054</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.392</td>
<td>4.437</td>
<td>0.612</td>
</tr>
<tr>
<td>55</td>
<td>80</td>
<td>3.518</td>
<td>model0055</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.139</td>
<td>0.528</td>
</tr>
<tr>
<td>56</td>
<td>80</td>
<td>3.718</td>
<td>model0056</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.388</td>
<td>4.456</td>
<td>0.608</td>
</tr>
<tr>
<td>57</td>
<td>75</td>
<td>3.553</td>
<td>model0057</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>4.176</td>
<td>0.53</td>
</tr>
<tr>
<td>58</td>
<td>75</td>
<td>3.753</td>
<td>model0058</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.39</td>
<td>4.493</td>
<td>0.61</td>
</tr>
<tr>
<td>59</td>
<td>70</td>
<td>3.583</td>
<td>model0059</td>
<td>Ok</td>
<td></td>
<td>0.293</td>
<td>4.204</td>
<td>0.526</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>3.783</td>
<td>model0060</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.382</td>
<td>4.516</td>
<td>0.603</td>
</tr>
<tr>
<td>61</td>
<td>65</td>
<td>3.638</td>
<td>model0061</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.264</td>
<td>0.528</td>
</tr>
<tr>
<td>62</td>
<td>65</td>
<td>3.838</td>
<td>model0062</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.383</td>
<td>4.575</td>
<td>0.605</td>
</tr>
<tr>
<td>63</td>
<td>60</td>
<td>3.7</td>
<td>model0063</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.328</td>
<td>0.529</td>
</tr>
<tr>
<td>64</td>
<td>60</td>
<td>3.9</td>
<td>model0064</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.387</td>
<td>4.642</td>
<td>0.608</td>
</tr>
<tr>
<td>65</td>
<td>55</td>
<td>3.766</td>
<td>model0065</td>
<td>Ok</td>
<td></td>
<td>0.289</td>
<td>4.388</td>
<td>0.522</td>
</tr>
<tr>
<td>66</td>
<td>55</td>
<td>3.966</td>
<td>model0066</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.378</td>
<td>4.699</td>
<td>0.601</td>
</tr>
<tr>
<td>67</td>
<td>50</td>
<td>3.881</td>
<td>model0067</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.309</td>
<td>4.528</td>
<td>0.541</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>3.681</td>
<td>model0068</td>
<td>Ok</td>
<td></td>
<td>0.243</td>
<td>4.242</td>
<td>0.478</td>
</tr>
<tr>
<td>69</td>
<td>45</td>
<td>3.897</td>
<td>model0069</td>
<td>Ok</td>
<td></td>
<td>0.265</td>
<td>4.493</td>
<td>0.5</td>
</tr>
<tr>
<td>70</td>
<td>45</td>
<td>4.097</td>
<td>model0070</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.338</td>
<td>4.784</td>
<td>0.566</td>
</tr>
<tr>
<td>71</td>
<td>40</td>
<td>4.169</td>
<td>model0071</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.311</td>
<td>4.821</td>
<td>0.542</td>
</tr>
<tr>
<td>72</td>
<td>40</td>
<td>3.969</td>
<td>model0072</td>
<td>Ok</td>
<td></td>
<td>0.249</td>
<td>4.543</td>
<td>0.484</td>
</tr>
<tr>
<td>73</td>
<td>35</td>
<td>4.264</td>
<td>model0073</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.3</td>
<td>4.9</td>
<td>0.533</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>4.064</td>
<td>model0074</td>
<td>Ok</td>
<td></td>
<td>0.256</td>
<td>4.64</td>
<td>0.491</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
<td>4.367</td>
<td>model0075</td>
<td>Ok</td>
<td></td>
<td>0.253</td>
<td>4.941</td>
<td>0.488</td>
</tr>
<tr>
<td>76</td>
<td>30</td>
<td>4.567</td>
<td>model0076</td>
<td>Ok</td>
<td></td>
<td>0.277</td>
<td>5.178</td>
<td>0.511</td>
</tr>
<tr>
<td>77</td>
<td>30</td>
<td>4.767</td>
<td>model0077</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.31</td>
<td>5.423</td>
<td>0.541</td>
</tr>
<tr>
<td>78</td>
<td>25</td>
<td>5.291</td>
<td>model0078</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.32</td>
<td>5.961</td>
<td>0.551</td>
</tr>
<tr>
<td>79</td>
<td>25</td>
<td>5.091</td>
<td>model0079</td>
<td>Ok</td>
<td></td>
<td>0.287</td>
<td>5.717</td>
<td>0.521</td>
</tr>
</tbody>
</table>
Table B.3 ECA Simulation Results Log (for Figure 7.14 – 1.5 Misalignment)

<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>2c</th>
<th>a</th>
<th>Directory</th>
<th>Status</th>
<th>Stop Criteria</th>
<th>Crackgrowth</th>
<th>CrackDepth</th>
<th>CTOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.063</td>
<td>2.614</td>
<td>0.251</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.087</td>
<td>2.879</td>
<td>0.29</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.137</td>
<td>3.148</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.209</td>
<td>3.408</td>
<td>0.444</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.331</td>
<td>3.69</td>
<td>0.56</td>
</tr>
<tr>
<td>6</td>
<td>195</td>
<td>2.748</td>
<td>model0006</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>3.592</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>195</td>
<td>2.948</td>
<td>model0007</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.469</td>
<td>4.013</td>
<td>0.673</td>
</tr>
<tr>
<td>8</td>
<td>190</td>
<td>2.775</td>
<td>model0008</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.305</td>
<td>3.634</td>
<td>0.537</td>
</tr>
<tr>
<td>9</td>
<td>190</td>
<td>2.575</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.198</td>
<td>3.369</td>
<td>0.432</td>
</tr>
<tr>
<td>10</td>
<td>185</td>
<td>2.756</td>
<td>model010</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>3.599</td>
<td>0.522</td>
</tr>
<tr>
<td>11</td>
<td>185</td>
<td>2.956</td>
<td>model011</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.468</td>
<td>4.022</td>
<td>0.672</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>2.774</td>
<td>model012</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.301</td>
<td>3.649</td>
<td>0.533</td>
</tr>
<tr>
<td>13</td>
<td>180</td>
<td>2.574</td>
<td>model013</td>
<td>Ok</td>
<td></td>
<td>0.197</td>
<td>3.352</td>
<td>0.431</td>
</tr>
<tr>
<td>14</td>
<td>175</td>
<td>2.766</td>
<td>model014</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.608</td>
<td>0.524</td>
</tr>
<tr>
<td>15</td>
<td>175</td>
<td>2.966</td>
<td>model015</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.47</td>
<td>4.036</td>
<td>0.673</td>
</tr>
<tr>
<td>16</td>
<td>170</td>
<td>2.783</td>
<td>model016</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.306</td>
<td>3.645</td>
<td>0.538</td>
</tr>
<tr>
<td>17</td>
<td>170</td>
<td>2.583</td>
<td>model017</td>
<td>Ok</td>
<td></td>
<td>0.201</td>
<td>3.364</td>
<td>0.434</td>
</tr>
<tr>
<td>18</td>
<td>165</td>
<td>2.755</td>
<td>model018</td>
<td>Ok</td>
<td></td>
<td>0.287</td>
<td>3.592</td>
<td>0.521</td>
</tr>
<tr>
<td>19</td>
<td>165</td>
<td>2.955</td>
<td>model019</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.462</td>
<td>4.015</td>
<td>0.667</td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td>2.777</td>
<td>model020</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.299</td>
<td>3.621</td>
<td>0.531</td>
</tr>
<tr>
<td>21</td>
<td>160</td>
<td>2.577</td>
<td>model021</td>
<td>Ok</td>
<td></td>
<td>0.198</td>
<td>3.343</td>
<td>0.431</td>
</tr>
<tr>
<td>22</td>
<td>155</td>
<td>2.769</td>
<td>model022</td>
<td>Ok</td>
<td></td>
<td>0.29</td>
<td>3.611</td>
<td>0.523</td>
</tr>
<tr>
<td>23</td>
<td>155</td>
<td>2.969</td>
<td>model023</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.462</td>
<td>4.032</td>
<td>0.667</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>2.793</td>
<td>model024</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.306</td>
<td>3.657</td>
<td>0.538</td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>2.593</td>
<td>model025</td>
<td>Ok</td>
<td></td>
<td>0.201</td>
<td>3.37</td>
<td>0.434</td>
</tr>
<tr>
<td>26</td>
<td>145</td>
<td>2.777</td>
<td>model026</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>3.611</td>
<td>0.52</td>
</tr>
<tr>
<td>27</td>
<td>145</td>
<td>2.977</td>
<td>model027</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.451</td>
<td>4.025</td>
<td>0.659</td>
</tr>
<tr>
<td>28</td>
<td>140</td>
<td>2.8</td>
<td>model028</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.304</td>
<td>3.664</td>
<td>0.536</td>
</tr>
<tr>
<td>29</td>
<td>140</td>
<td>2.6</td>
<td>model029</td>
<td>Ok</td>
<td></td>
<td>0.202</td>
<td>3.337</td>
<td>0.435</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>2.786</td>
<td>model030</td>
<td>Ok</td>
<td></td>
<td>0.29</td>
<td>3.633</td>
<td>0.523</td>
</tr>
<tr>
<td>31</td>
<td>135</td>
<td>2.986</td>
<td>model031</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.448</td>
<td>4.039</td>
<td>0.657</td>
</tr>
<tr>
<td>32</td>
<td>130</td>
<td>2.807</td>
<td>model032</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.307</td>
<td>3.676</td>
<td>0.539</td>
</tr>
<tr>
<td>33</td>
<td>130</td>
<td>2.607</td>
<td>model033</td>
<td>Ok</td>
<td></td>
<td>0.201</td>
<td>3.389</td>
<td>0.435</td>
</tr>
<tr>
<td>34</td>
<td>125</td>
<td>2.777</td>
<td>model034</td>
<td>Ok</td>
<td></td>
<td>0.282</td>
<td>3.613</td>
<td>0.515</td>
</tr>
<tr>
<td>35</td>
<td>125</td>
<td>2.977</td>
<td>model035</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.431</td>
<td>4.01</td>
<td>0.643</td>
</tr>
<tr>
<td>36</td>
<td>120</td>
<td>2.818</td>
<td>model036</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.308</td>
<td>3.688</td>
<td>0.54</td>
</tr>
<tr>
<td>37</td>
<td>120</td>
<td>2.618</td>
<td>model037</td>
<td>Ok</td>
<td></td>
<td>0.204</td>
<td>3.338</td>
<td>0.438</td>
</tr>
<tr>
<td>38</td>
<td>115</td>
<td>2.791</td>
<td>model038</td>
<td>Ok</td>
<td></td>
<td>0.29</td>
<td>3.637</td>
<td>0.523</td>
</tr>
<tr>
<td>39</td>
<td>115</td>
<td>2.991</td>
<td>model039</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.432</td>
<td>4.027</td>
<td>0.644</td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>2.809</td>
<td>model040</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.664</td>
<td>0.528</td>
</tr>
<tr>
<td>41</td>
<td>110</td>
<td>3.009</td>
<td>model041</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.438</td>
<td>4.055</td>
<td>0.649</td>
</tr>
<tr>
<td>42</td>
<td>105</td>
<td>2.825</td>
<td>model042</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.307</td>
<td>3.695</td>
<td>0.539</td>
</tr>
<tr>
<td>43</td>
<td>105</td>
<td>2.625</td>
<td>model043</td>
<td>Ok</td>
<td></td>
<td>0.203</td>
<td>3.344</td>
<td>0.436</td>
</tr>
<tr>
<td>44</td>
<td>100</td>
<td>2.798</td>
<td>model044</td>
<td>Ok</td>
<td></td>
<td>0.269</td>
<td>3.622</td>
<td>0.504</td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>2.998</td>
<td>model045</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.389</td>
<td>3.99</td>
<td>0.61</td>
</tr>
<tr>
<td>46</td>
<td>95</td>
<td>2.907</td>
<td>model046</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.325</td>
<td>3.812</td>
<td>0.555</td>
</tr>
<tr>
<td>47</td>
<td>95</td>
<td>2.707</td>
<td>model047</td>
<td>Ok</td>
<td></td>
<td>0.216</td>
<td>3.458</td>
<td>0.451</td>
</tr>
<tr>
<td>48</td>
<td>90</td>
<td>2.859</td>
<td>model048</td>
<td>Ok</td>
<td></td>
<td>0.289</td>
<td>3.715</td>
<td>0.523</td>
</tr>
<tr>
<td>49</td>
<td>90</td>
<td>3.059</td>
<td>model049</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.404</td>
<td>4.076</td>
<td>0.621</td>
</tr>
<tr>
<td>50</td>
<td>85</td>
<td>2.889</td>
<td>model050</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.758</td>
<td>0.53</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>85</td>
<td>3.089</td>
<td>model0051</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.41</td>
<td>4.118</td>
<td>0.627</td>
</tr>
<tr>
<td>52</td>
<td>80</td>
<td>2.906</td>
<td>model0052</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.776</td>
<td>0.528</td>
</tr>
<tr>
<td>53</td>
<td>80</td>
<td>3.106</td>
<td>model0053</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.404</td>
<td>4.13</td>
<td>0.621</td>
</tr>
<tr>
<td>54</td>
<td>75</td>
<td>2.933</td>
<td>model0054</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>3.81</td>
<td>0.531</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>2.733</td>
<td>model0055</td>
<td>Ok</td>
<td></td>
<td>0.213</td>
<td>3.48</td>
<td>0.448</td>
</tr>
<tr>
<td>56</td>
<td>70</td>
<td>2.952</td>
<td>model0056</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.823</td>
<td>0.524</td>
</tr>
<tr>
<td>57</td>
<td>70</td>
<td>3.152</td>
<td>model0057</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.389</td>
<td>4.165</td>
<td>0.609</td>
</tr>
<tr>
<td>58</td>
<td>65</td>
<td>3.006</td>
<td>model0058</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.891</td>
<td>0.529</td>
</tr>
<tr>
<td>59</td>
<td>65</td>
<td>3.206</td>
<td>model0059</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.389</td>
<td>4.228</td>
<td>0.61</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>3.056</td>
<td>model0060</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.302</td>
<td>3.952</td>
<td>0.534</td>
</tr>
<tr>
<td>61</td>
<td>60</td>
<td>2.856</td>
<td>model0061</td>
<td>Ok</td>
<td></td>
<td>0.228</td>
<td>3.636</td>
<td>0.464</td>
</tr>
<tr>
<td>62</td>
<td>55</td>
<td>3.074</td>
<td>model0062</td>
<td>Ok</td>
<td></td>
<td>0.283</td>
<td>3.95</td>
<td>0.517</td>
</tr>
<tr>
<td>63</td>
<td>55</td>
<td>3.274</td>
<td>model0063</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.359</td>
<td>4.266</td>
<td>0.584</td>
</tr>
<tr>
<td>64</td>
<td>50</td>
<td>3.199</td>
<td>model0064</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.306</td>
<td>4.115</td>
<td>0.538</td>
</tr>
<tr>
<td>65</td>
<td>50</td>
<td>2.999</td>
<td>model0065</td>
<td>Ok</td>
<td></td>
<td>0.242</td>
<td>3.811</td>
<td>0.477</td>
</tr>
<tr>
<td>66</td>
<td>45</td>
<td>3.225</td>
<td>model0066</td>
<td>Ok</td>
<td></td>
<td>0.271</td>
<td>4.102</td>
<td>0.505</td>
</tr>
<tr>
<td>67</td>
<td>45</td>
<td>3.425</td>
<td>model0067</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.324</td>
<td>4.392</td>
<td>0.554</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>3.531</td>
<td>model0068</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.307</td>
<td>4.487</td>
<td>0.539</td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>3.331</td>
<td>model0069</td>
<td>Ok</td>
<td></td>
<td>0.26</td>
<td>4.204</td>
<td>0.495</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
<td>3.657</td>
<td>model0070</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.605</td>
<td>0.527</td>
</tr>
<tr>
<td>71</td>
<td>35</td>
<td>3.857</td>
<td>model0071</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.352</td>
<td>4.896</td>
<td>0.579</td>
</tr>
<tr>
<td>72</td>
<td>30</td>
<td>3.852</td>
<td>model0072</td>
<td>Ok</td>
<td></td>
<td>0.278</td>
<td>4.79</td>
<td>0.512</td>
</tr>
<tr>
<td>73</td>
<td>30</td>
<td>4.052</td>
<td>model0073</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.328</td>
<td>5.07</td>
<td>0.558</td>
</tr>
<tr>
<td>74</td>
<td>25</td>
<td>4.235</td>
<td>model0074</td>
<td>Ok</td>
<td></td>
<td>0.27</td>
<td>5.192</td>
<td>0.505</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td>4.435</td>
<td>model0075</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>5.434</td>
<td>0.519</td>
</tr>
<tr>
<td>76</td>
<td>25</td>
<td>4.635</td>
<td>model0076</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.309</td>
<td>5.684</td>
<td>0.541</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.168</td>
<td>2.909</td>
<td>0.398</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.28</td>
<td>3.232</td>
<td>0.514</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>4</td>
<td>model0003</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.444</td>
<td>3.636</td>
<td>0.653</td>
</tr>
<tr>
<td>4</td>
<td>195</td>
<td>2</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.249</td>
<td>0.528</td>
</tr>
<tr>
<td>5</td>
<td>195</td>
<td>2</td>
<td>model0005</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.465</td>
<td>3.688</td>
<td>0.669</td>
</tr>
<tr>
<td>6</td>
<td>190</td>
<td>2</td>
<td>model0006</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.251</td>
<td>0.529</td>
</tr>
<tr>
<td>7</td>
<td>190</td>
<td>2</td>
<td>model0007</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.465</td>
<td>3.694</td>
<td>0.669</td>
</tr>
<tr>
<td>8</td>
<td>185</td>
<td>2</td>
<td>model0008</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.3</td>
<td>3.265</td>
<td>0.533</td>
</tr>
<tr>
<td>9</td>
<td>185</td>
<td>2</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.182</td>
<td>2.954</td>
<td>0.414</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td>2</td>
<td>model010</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.252</td>
<td>0.528</td>
</tr>
<tr>
<td>11</td>
<td>180</td>
<td>2</td>
<td>model011</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.462</td>
<td>3.693</td>
<td>0.667</td>
</tr>
<tr>
<td>12</td>
<td>175</td>
<td>2</td>
<td>model012</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.259</td>
<td>0.528</td>
</tr>
<tr>
<td>13</td>
<td>175</td>
<td>2</td>
<td>model013</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.461</td>
<td>3.699</td>
<td>0.667</td>
</tr>
<tr>
<td>14</td>
<td>170</td>
<td>2</td>
<td>model014</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.302</td>
<td>3.279</td>
<td>0.535</td>
</tr>
<tr>
<td>15</td>
<td>170</td>
<td>2</td>
<td>model015</td>
<td>Ok</td>
<td></td>
<td>0.184</td>
<td>2.94</td>
<td>0.416</td>
</tr>
<tr>
<td>16</td>
<td>165</td>
<td>2</td>
<td>model016</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.257</td>
<td>0.53</td>
</tr>
<tr>
<td>17</td>
<td>165</td>
<td>2</td>
<td>model017</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.464</td>
<td>3.698</td>
<td>0.669</td>
</tr>
<tr>
<td>18</td>
<td>160</td>
<td>2</td>
<td>model018</td>
<td>Ok</td>
<td></td>
<td>0.293</td>
<td>3.244</td>
<td>0.527</td>
</tr>
<tr>
<td>19</td>
<td>160</td>
<td>2</td>
<td>model019</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.458</td>
<td>3.683</td>
<td>0.664</td>
</tr>
<tr>
<td>20</td>
<td>155</td>
<td>2</td>
<td>model020</td>
<td>Ok</td>
<td></td>
<td>0.293</td>
<td>3.251</td>
<td>0.526</td>
</tr>
<tr>
<td>21</td>
<td>155</td>
<td>2</td>
<td>model021</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.453</td>
<td>3.686</td>
<td>0.66</td>
</tr>
<tr>
<td>22</td>
<td>150</td>
<td>2</td>
<td>model022</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.3</td>
<td>3.292</td>
<td>0.533</td>
</tr>
<tr>
<td>23</td>
<td>150</td>
<td>2</td>
<td>model023</td>
<td>Ok</td>
<td></td>
<td>0.184</td>
<td>2.929</td>
<td>0.416</td>
</tr>
<tr>
<td>24</td>
<td>145</td>
<td>2</td>
<td>model024</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>3.283</td>
<td>0.531</td>
</tr>
<tr>
<td>25</td>
<td>145</td>
<td>2</td>
<td>model025</td>
<td>Ok</td>
<td></td>
<td>0.184</td>
<td>2.948</td>
<td>0.416</td>
</tr>
<tr>
<td>26</td>
<td>140</td>
<td>2</td>
<td>model026</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.284</td>
<td>0.53</td>
</tr>
<tr>
<td>27</td>
<td>140</td>
<td>2</td>
<td>model027</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.455</td>
<td>3.716</td>
<td>0.662</td>
</tr>
<tr>
<td>28</td>
<td>135</td>
<td>2</td>
<td>model028</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.286</td>
<td>0.528</td>
</tr>
<tr>
<td>29</td>
<td>135</td>
<td>2</td>
<td>model029</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.449</td>
<td>3.713</td>
<td>0.657</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>2</td>
<td>model030</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.301</td>
<td>3.307</td>
<td>0.533</td>
</tr>
<tr>
<td>31</td>
<td>130</td>
<td>2</td>
<td>model031</td>
<td>Ok</td>
<td></td>
<td>0.187</td>
<td>2.921</td>
<td>0.419</td>
</tr>
<tr>
<td>32</td>
<td>125</td>
<td>2</td>
<td>model032</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>3.298</td>
<td>0.531</td>
</tr>
<tr>
<td>33</td>
<td>125</td>
<td>2</td>
<td>model033</td>
<td>Ok</td>
<td></td>
<td>0.185</td>
<td>2.913</td>
<td>0.417</td>
</tr>
<tr>
<td>34</td>
<td>120</td>
<td>2</td>
<td>model034</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.288</td>
<td>0.527</td>
</tr>
<tr>
<td>35</td>
<td>120</td>
<td>2</td>
<td>model035</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.441</td>
<td>3.709</td>
<td>0.651</td>
</tr>
<tr>
<td>36</td>
<td>115</td>
<td>2</td>
<td>model036</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.299</td>
<td>3.308</td>
<td>0.532</td>
</tr>
<tr>
<td>37</td>
<td>115</td>
<td>2</td>
<td>model037</td>
<td>Ok</td>
<td></td>
<td>0.188</td>
<td>2.924</td>
<td>0.42</td>
</tr>
<tr>
<td>38</td>
<td>110</td>
<td>2</td>
<td>model038</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.302</td>
<td>0.528</td>
</tr>
<tr>
<td>39</td>
<td>110</td>
<td>2</td>
<td>model039</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.438</td>
<td>3.718</td>
<td>0.649</td>
</tr>
<tr>
<td>40</td>
<td>105</td>
<td>2</td>
<td>model040</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.31</td>
<td>0.528</td>
</tr>
<tr>
<td>41</td>
<td>105</td>
<td>2</td>
<td>model041</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.434</td>
<td>3.722</td>
<td>0.645</td>
</tr>
<tr>
<td>42</td>
<td>100</td>
<td>2</td>
<td>model042</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>3.323</td>
<td>0.521</td>
</tr>
<tr>
<td>43</td>
<td>100</td>
<td>2</td>
<td>model043</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.419</td>
<td>3.727</td>
<td>0.633</td>
</tr>
<tr>
<td>44</td>
<td>95</td>
<td>2</td>
<td>model044</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.31</td>
<td>3.414</td>
<td>0.542</td>
</tr>
<tr>
<td>45</td>
<td>95</td>
<td>2</td>
<td>model045</td>
<td>Ok</td>
<td></td>
<td>0.204</td>
<td>3.036</td>
<td>0.438</td>
</tr>
<tr>
<td>46</td>
<td>90</td>
<td>2</td>
<td>model046</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.371</td>
<td>0.524</td>
</tr>
<tr>
<td>47</td>
<td>90</td>
<td>2</td>
<td>model047</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.413</td>
<td>3.766</td>
<td>0.629</td>
</tr>
<tr>
<td>48</td>
<td>85</td>
<td>2</td>
<td>model048</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.302</td>
<td>3.425</td>
<td>0.534</td>
</tr>
<tr>
<td>49</td>
<td>85</td>
<td>2</td>
<td>model049</td>
<td>Ok</td>
<td></td>
<td>0.202</td>
<td>3.055</td>
<td>0.436</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>2</td>
<td>model050</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.418</td>
<td>0.527</td>
</tr>
</tbody>
</table>

Table B.4 ECA Simulation Results Log (for Figure 7.14 – 2.5 Misalignment)
<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>2c</th>
<th>a</th>
<th>Directory</th>
<th>Status</th>
<th>Stop Criteria</th>
<th>Crackgrowth</th>
<th>CrackDepth</th>
<th>CTOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>80</td>
<td>2.557</td>
<td>model0051</td>
<td>Failure (CTOD)</td>
<td>0.408</td>
<td>3.803</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>75</td>
<td>2.379</td>
<td>model0052</td>
<td>Ok</td>
<td>0.296</td>
<td>3.446</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>75</td>
<td>2.579</td>
<td>model0053</td>
<td>Failure (CTOD)</td>
<td>0.403</td>
<td>3.824</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>70</td>
<td>2.404</td>
<td>model0054</td>
<td>Ok</td>
<td>0.295</td>
<td>3.476</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>70</td>
<td>2.604</td>
<td>model0055</td>
<td>Failure (CTOD)</td>
<td>0.396</td>
<td>3.847</td>
<td>0.615</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>65</td>
<td>2.438</td>
<td>model0056</td>
<td>Ok</td>
<td>0.295</td>
<td>3.519</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>65</td>
<td>2.638</td>
<td>model0057</td>
<td>Failure (CTOD)</td>
<td>0.388</td>
<td>3.881</td>
<td>0.609</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>60</td>
<td>2.48</td>
<td>model0058</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.573</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>2.28</td>
<td>model0059</td>
<td>Ok</td>
<td>0.218</td>
<td>3.227</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>2.517</td>
<td>model0060</td>
<td>Ok</td>
<td>0.29</td>
<td>3.609</td>
<td>0.523</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>55</td>
<td>2.717</td>
<td>model0061</td>
<td>Failure (CTOD)</td>
<td>0.365</td>
<td>3.95</td>
<td>0.589</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>50</td>
<td>2.607</td>
<td>model0062</td>
<td>Failure (CTOD)</td>
<td>0.301</td>
<td>3.731</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>50</td>
<td>2.407</td>
<td>model0063</td>
<td>Ok</td>
<td>0.234</td>
<td>3.401</td>
<td>0.469</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>45</td>
<td>2.657</td>
<td>model0064</td>
<td>Ok</td>
<td>0.274</td>
<td>3.763</td>
<td>0.509</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>45</td>
<td>2.857</td>
<td>model0065</td>
<td>Failure (CTOD)</td>
<td>0.328</td>
<td>4.078</td>
<td>0.558</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>40</td>
<td>2.935</td>
<td>model0066</td>
<td>Failure (CTOD)</td>
<td>0.317</td>
<td>4.153</td>
<td>0.548</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>40</td>
<td>2.735</td>
<td>model0067</td>
<td>Ok</td>
<td>0.263</td>
<td>3.841</td>
<td>0.498</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>35</td>
<td>2.972</td>
<td>model0068</td>
<td>Failure (CTOD)</td>
<td>0.303</td>
<td>4.17</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>35</td>
<td>2.772</td>
<td>model0069</td>
<td>Ok</td>
<td>0.25</td>
<td>3.861</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>3.021</td>
<td>model0070</td>
<td>Ok</td>
<td>0.262</td>
<td>4.167</td>
<td>0.496</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>30</td>
<td>3.221</td>
<td>model0071</td>
<td>Failure (CTOD)</td>
<td>0.31</td>
<td>4.466</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>25</td>
<td>3.452</td>
<td>model0072</td>
<td>Ok</td>
<td>0.273</td>
<td>4.684</td>
<td>0.507</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>25</td>
<td>3.652</td>
<td>model0073</td>
<td>Ok</td>
<td>0.292</td>
<td>4.95</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>25</td>
<td>3.852</td>
<td>model0074</td>
<td>Failure (CTOD)</td>
<td>0.334</td>
<td>5.238</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>----</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.019</td>
<td>2.182</td>
<td>0.156</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.028</td>
<td>2.413</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.043</td>
<td>2.653</td>
<td>0.213</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.065</td>
<td>2.902</td>
<td>0.255</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Ok</td>
<td></td>
<td>0.09</td>
<td>3.139</td>
<td>0.295</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>3</td>
<td>model0006</td>
<td>Ok</td>
<td></td>
<td>0.118</td>
<td>3.38</td>
<td>0.335</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>3.2</td>
<td>model0007</td>
<td>Ok</td>
<td></td>
<td>0.164</td>
<td>3.62</td>
<td>0.393</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>3.4</td>
<td>model0008</td>
<td>Ok</td>
<td></td>
<td>0.233</td>
<td>3.877</td>
<td>0.468</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>3.6</td>
<td>model0009</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.323</td>
<td>4.113</td>
<td>0.553</td>
</tr>
<tr>
<td>10</td>
<td>195</td>
<td>3.546</td>
<td>model0010</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.036</td>
<td>0.527</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td>3.746</td>
<td>model0011</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.444</td>
<td>4.371</td>
<td>0.653</td>
</tr>
<tr>
<td>12</td>
<td>190</td>
<td>3.555</td>
<td>model0012</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.038</td>
<td>0.529</td>
</tr>
<tr>
<td>13</td>
<td>190</td>
<td>3.755</td>
<td>model0013</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.45</td>
<td>4.386</td>
<td>0.658</td>
</tr>
<tr>
<td>14</td>
<td>185</td>
<td>3.564</td>
<td>model0014</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.299</td>
<td>4.029</td>
<td>0.532</td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>3.364</td>
<td>model0015</td>
<td>Ok</td>
<td></td>
<td>0.217</td>
<td>3.8</td>
<td>0.452</td>
</tr>
<tr>
<td>16</td>
<td>180</td>
<td>3.56</td>
<td>model0016</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>4.022</td>
<td>0.53</td>
</tr>
<tr>
<td>17</td>
<td>180</td>
<td>3.76</td>
<td>model0017</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.45</td>
<td>4.392</td>
<td>0.657</td>
</tr>
<tr>
<td>18</td>
<td>175</td>
<td>3.561</td>
<td>model0018</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.022</td>
<td>0.528</td>
</tr>
<tr>
<td>19</td>
<td>175</td>
<td>3.761</td>
<td>model0019</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.447</td>
<td>4.391</td>
<td>0.656</td>
</tr>
<tr>
<td>20</td>
<td>170</td>
<td>3.569</td>
<td>model0020</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.301</td>
<td>4.036</td>
<td>0.533</td>
</tr>
<tr>
<td>21</td>
<td>170</td>
<td>3.369</td>
<td>model0021</td>
<td>Ok</td>
<td></td>
<td>0.219</td>
<td>3.816</td>
<td>0.454</td>
</tr>
<tr>
<td>22</td>
<td>165</td>
<td>3.552</td>
<td>model0022</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.013</td>
<td>0.528</td>
</tr>
<tr>
<td>23</td>
<td>165</td>
<td>3.752</td>
<td>model0023</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.437</td>
<td>4.371</td>
<td>0.648</td>
</tr>
<tr>
<td>24</td>
<td>160</td>
<td>3.549</td>
<td>model0024</td>
<td>Ok</td>
<td></td>
<td>0.293</td>
<td>4.007</td>
<td>0.527</td>
</tr>
<tr>
<td>25</td>
<td>160</td>
<td>3.749</td>
<td>model0025</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.433</td>
<td>4.364</td>
<td>0.645</td>
</tr>
<tr>
<td>26</td>
<td>155</td>
<td>3.558</td>
<td>model0026</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>4.015</td>
<td>0.524</td>
</tr>
<tr>
<td>27</td>
<td>155</td>
<td>3.758</td>
<td>model0027</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.429</td>
<td>4.37</td>
<td>0.642</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>3.587</td>
<td>model0028</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.3</td>
<td>4.055</td>
<td>0.533</td>
</tr>
<tr>
<td>29</td>
<td>150</td>
<td>3.387</td>
<td>model0029</td>
<td>Ok</td>
<td></td>
<td>0.22</td>
<td>3.782</td>
<td>0.455</td>
</tr>
<tr>
<td>30</td>
<td>145</td>
<td>3.593</td>
<td>model0030</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.3</td>
<td>4.062</td>
<td>0.533</td>
</tr>
<tr>
<td>31</td>
<td>145</td>
<td>3.393</td>
<td>model0031</td>
<td>Ok</td>
<td></td>
<td>0.221</td>
<td>3.793</td>
<td>0.456</td>
</tr>
<tr>
<td>32</td>
<td>140</td>
<td>3.586</td>
<td>model0032</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.048</td>
<td>0.528</td>
</tr>
<tr>
<td>33</td>
<td>140</td>
<td>3.786</td>
<td>model0033</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.438</td>
<td>4.408</td>
<td>0.648</td>
</tr>
<tr>
<td>34</td>
<td>135</td>
<td>3.594</td>
<td>model0034</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.055</td>
<td>0.527</td>
</tr>
<tr>
<td>35</td>
<td>135</td>
<td>3.794</td>
<td>model0035</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.437</td>
<td>4.415</td>
<td>0.647</td>
</tr>
<tr>
<td>36</td>
<td>130</td>
<td>3.611</td>
<td>model0036</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.301</td>
<td>4.082</td>
<td>0.534</td>
</tr>
<tr>
<td>37</td>
<td>130</td>
<td>3.411</td>
<td>model0037</td>
<td>Ok</td>
<td></td>
<td>0.223</td>
<td>3.788</td>
<td>0.458</td>
</tr>
<tr>
<td>38</td>
<td>125</td>
<td>3.6</td>
<td>model0038</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.065</td>
<td>0.529</td>
</tr>
<tr>
<td>39</td>
<td>125</td>
<td>3.8</td>
<td>model0039</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.435</td>
<td>4.42</td>
<td>0.646</td>
</tr>
<tr>
<td>40</td>
<td>120</td>
<td>3.8</td>
<td>model0040</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.061</td>
<td>0.527</td>
</tr>
<tr>
<td>41</td>
<td>120</td>
<td>3.8</td>
<td>model0041</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.428</td>
<td>4.411</td>
<td>0.641</td>
</tr>
<tr>
<td>42</td>
<td>115</td>
<td>3.612</td>
<td>model0042</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>4.077</td>
<td>0.529</td>
</tr>
<tr>
<td>43</td>
<td>115</td>
<td>3.812</td>
<td>model0043</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.432</td>
<td>4.429</td>
<td>0.644</td>
</tr>
<tr>
<td>44</td>
<td>110</td>
<td>3.623</td>
<td>model0044</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.298</td>
<td>4.09</td>
<td>0.531</td>
</tr>
<tr>
<td>45</td>
<td>110</td>
<td>3.423</td>
<td>model0045</td>
<td>Ok</td>
<td></td>
<td>0.223</td>
<td>3.8</td>
<td>0.458</td>
</tr>
<tr>
<td>46</td>
<td>105</td>
<td>3.63</td>
<td>model0046</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>4.093</td>
<td>0.528</td>
</tr>
<tr>
<td>47</td>
<td>105</td>
<td>3.83</td>
<td>model0047</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.424</td>
<td>4.438</td>
<td>0.638</td>
</tr>
<tr>
<td>48</td>
<td>100</td>
<td>3.646</td>
<td>model0048</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>4.102</td>
<td>0.52</td>
</tr>
<tr>
<td>49</td>
<td>100</td>
<td>3.846</td>
<td>model0049</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.41</td>
<td>4.441</td>
<td>0.626</td>
</tr>
<tr>
<td>50</td>
<td>95</td>
<td>3.708</td>
<td>model0050</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.307</td>
<td>4.188</td>
<td>0.539</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>51</td>
<td>95</td>
<td>3.508</td>
<td>model0051</td>
<td>Ok</td>
<td></td>
<td>0.232</td>
<td>3.898</td>
<td>0.467</td>
</tr>
<tr>
<td>52</td>
<td>90</td>
<td>3.695</td>
<td>model0052</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.159</td>
<td>0.527</td>
</tr>
<tr>
<td>53</td>
<td>90</td>
<td>3.895</td>
<td>model0053</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.416</td>
<td>4.497</td>
<td>0.631</td>
</tr>
<tr>
<td>54</td>
<td>85</td>
<td>3.717</td>
<td>model0054</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>4.185</td>
<td>0.53</td>
</tr>
<tr>
<td>55</td>
<td>85</td>
<td>3.917</td>
<td>model0055</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.417</td>
<td>4.52</td>
<td>0.632</td>
</tr>
<tr>
<td>56</td>
<td>80</td>
<td>3.736</td>
<td>model0056</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.201</td>
<td>0.528</td>
</tr>
<tr>
<td>57</td>
<td>80</td>
<td>3.936</td>
<td>model0057</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.41</td>
<td>4.531</td>
<td>0.627</td>
</tr>
<tr>
<td>58</td>
<td>75</td>
<td>3.766</td>
<td>model0058</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.298</td>
<td>4.234</td>
<td>0.531</td>
</tr>
<tr>
<td>59</td>
<td>75</td>
<td>3.566</td>
<td>model0059</td>
<td>Ok</td>
<td></td>
<td>0.231</td>
<td>3.953</td>
<td>0.466</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>3.786</td>
<td>model0060</td>
<td>Ok</td>
<td></td>
<td>0.292</td>
<td>4.247</td>
<td>0.525</td>
</tr>
<tr>
<td>61</td>
<td>70</td>
<td>3.986</td>
<td>model0061</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.4</td>
<td>4.569</td>
<td>0.619</td>
</tr>
<tr>
<td>62</td>
<td>65</td>
<td>3.834</td>
<td>model0062</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>4.298</td>
<td>0.527</td>
</tr>
<tr>
<td>63</td>
<td>65</td>
<td>4.034</td>
<td>model0063</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.4</td>
<td>4.617</td>
<td>0.618</td>
</tr>
<tr>
<td>64</td>
<td>60</td>
<td>3.888</td>
<td>model0064</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.302</td>
<td>4.358</td>
<td>0.534</td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td>3.688</td>
<td>model0065</td>
<td>Ok</td>
<td></td>
<td>0.232</td>
<td>4.076</td>
<td>0.467</td>
</tr>
<tr>
<td>66</td>
<td>55</td>
<td>3.909</td>
<td>model0066</td>
<td>Ok</td>
<td></td>
<td>0.284</td>
<td>4.359</td>
<td>0.518</td>
</tr>
<tr>
<td>67</td>
<td>55</td>
<td>4.109</td>
<td>model0067</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.374</td>
<td>4.66</td>
<td>0.597</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>4.016</td>
<td>model0068</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.308</td>
<td>4.489</td>
<td>0.54</td>
</tr>
<tr>
<td>69</td>
<td>50</td>
<td>3.816</td>
<td>model0069</td>
<td>Ok</td>
<td></td>
<td>0.237</td>
<td>4.207</td>
<td>0.472</td>
</tr>
<tr>
<td>70</td>
<td>45</td>
<td>4.025</td>
<td>model0070</td>
<td>Ok</td>
<td></td>
<td>0.269</td>
<td>4.453</td>
<td>0.504</td>
</tr>
<tr>
<td>71</td>
<td>45</td>
<td>4.225</td>
<td>model0071</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.339</td>
<td>4.732</td>
<td>0.567</td>
</tr>
<tr>
<td>72</td>
<td>40</td>
<td>4.267</td>
<td>model0072</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.306</td>
<td>4.732</td>
<td>0.538</td>
</tr>
<tr>
<td>73</td>
<td>40</td>
<td>4.067</td>
<td>model0073</td>
<td>Ok</td>
<td></td>
<td>0.249</td>
<td>4.467</td>
<td>0.484</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>4.371</td>
<td>model0074</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.304</td>
<td>4.827</td>
<td>0.536</td>
</tr>
<tr>
<td>75</td>
<td>35</td>
<td>4.171</td>
<td>model0075</td>
<td>Ok</td>
<td></td>
<td>0.263</td>
<td>4.578</td>
<td>0.498</td>
</tr>
<tr>
<td>76</td>
<td>30</td>
<td>4.423</td>
<td>model0076</td>
<td>Ok</td>
<td></td>
<td>0.256</td>
<td>4.815</td>
<td>0.491</td>
</tr>
<tr>
<td>77</td>
<td>30</td>
<td>4.623</td>
<td>model0077</td>
<td>Ok</td>
<td></td>
<td>0.284</td>
<td>5.048</td>
<td>0.518</td>
</tr>
<tr>
<td>78</td>
<td>30</td>
<td>4.823</td>
<td>model0078</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.323</td>
<td>5.292</td>
<td>0.553</td>
</tr>
<tr>
<td>79</td>
<td>25</td>
<td>5.174</td>
<td>model0079</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.316</td>
<td>5.621</td>
<td>0.547</td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>4.974</td>
<td>model0080</td>
<td>Ok</td>
<td></td>
<td>0.279</td>
<td>5.38</td>
<td>0.513</td>
</tr>
</tbody>
</table>
Table B.6 ECA Simulation Results Log (for Figure 7.16 – Residual Stress = Yield With Enabled Relaxation)

<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>2c</th>
<th>a</th>
<th>Directory</th>
<th>Status</th>
<th>Stop Criteria</th>
<th>Crackgrowth</th>
<th>CrackDepth</th>
<th>CTOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td>0.015</td>
<td>2.178</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td>0.023</td>
<td>2.408</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td>0.036</td>
<td>2.645</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td>0.056</td>
<td>2.892</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Ok</td>
<td>0.078</td>
<td>3.127</td>
<td>0.276</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>3</td>
<td>model0006</td>
<td>Ok</td>
<td>0.103</td>
<td>3.365</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>3.2</td>
<td>model0007</td>
<td>Ok</td>
<td>0.144</td>
<td>3.601</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>3.4</td>
<td>model0008</td>
<td>Ok</td>
<td>0.207</td>
<td>3.855</td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>3.6</td>
<td>model0009</td>
<td>Ok</td>
<td>0.288</td>
<td>4.088</td>
<td>0.522</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>3.8</td>
<td>model0010</td>
<td>Failure (CTOD)</td>
<td>0.458</td>
<td>4.443</td>
<td>0.664</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td>3.611</td>
<td>model0011</td>
<td>Ok</td>
<td>0.293</td>
<td>4.074</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>195</td>
<td>3.811</td>
<td>model0012</td>
<td>Failure (CTOD)</td>
<td>0.47</td>
<td>4.468</td>
<td>0.673</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>190</td>
<td>3.621</td>
<td>model0013</td>
<td>Ok</td>
<td>0.296</td>
<td>4.086</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>190</td>
<td>3.821</td>
<td>model0014</td>
<td>Failure (CTOD)</td>
<td>0.475</td>
<td>4.483</td>
<td>0.677</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>3.631</td>
<td>model0015</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>4.101</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>185</td>
<td>3.431</td>
<td>model0016</td>
<td>Ok</td>
<td>0.215</td>
<td>3.88</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>180</td>
<td>3.626</td>
<td>model0017</td>
<td>Ok</td>
<td>0.296</td>
<td>4.094</td>
<td>0.529</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>180</td>
<td>3.826</td>
<td>model0018</td>
<td>Failure (CTOD)</td>
<td>0.473</td>
<td>4.488</td>
<td>0.676</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>175</td>
<td>3.629</td>
<td>model0019</td>
<td>Ok</td>
<td>0.295</td>
<td>4.095</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>175</td>
<td>3.829</td>
<td>model0020</td>
<td>Failure (CTOD)</td>
<td>0.471</td>
<td>4.488</td>
<td>0.674</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>170</td>
<td>3.637</td>
<td>model0021</td>
<td>Failure (CTOD)</td>
<td>0.301</td>
<td>4.111</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>170</td>
<td>3.437</td>
<td>model0022</td>
<td>Ok</td>
<td>0.218</td>
<td>3.857</td>
<td>0.452</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>165</td>
<td>3.619</td>
<td>model0023</td>
<td>Ok</td>
<td>0.294</td>
<td>4.084</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>165</td>
<td>3.819</td>
<td>model0024</td>
<td>Failure (CTOD)</td>
<td>0.462</td>
<td>4.469</td>
<td>0.667</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>160</td>
<td>3.619</td>
<td>model0025</td>
<td>Ok</td>
<td>0.293</td>
<td>4.083</td>
<td>0.526</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>160</td>
<td>3.819</td>
<td>model0026</td>
<td>Failure (CTOD)</td>
<td>0.458</td>
<td>4.465</td>
<td>0.664</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>155</td>
<td>3.63</td>
<td>model0027</td>
<td>Ok</td>
<td>0.291</td>
<td>4.092</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>155</td>
<td>3.83</td>
<td>model0028</td>
<td>Failure (CTOD)</td>
<td>0.455</td>
<td>4.473</td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>150</td>
<td>3.655</td>
<td>model0029</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>4.128</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>3.455</td>
<td>model0030</td>
<td>Ok</td>
<td>0.218</td>
<td>3.83</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>145</td>
<td>3.662</td>
<td>model0031</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>4.136</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>145</td>
<td>3.462</td>
<td>model0032</td>
<td>Ok</td>
<td>0.219</td>
<td>3.838</td>
<td>0.454</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>140</td>
<td>3.655</td>
<td>model0033</td>
<td>Ok</td>
<td>0.294</td>
<td>4.123</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>140</td>
<td>3.855</td>
<td>model0034</td>
<td>Failure (CTOD)</td>
<td>0.454</td>
<td>4.5</td>
<td>0.661</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>135</td>
<td>3.665</td>
<td>model0035</td>
<td>Ok</td>
<td>0.294</td>
<td>4.133</td>
<td>0.527</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>135</td>
<td>3.865</td>
<td>model0036</td>
<td>Failure (CTOD)</td>
<td>0.456</td>
<td>4.511</td>
<td>0.663</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>130</td>
<td>3.68</td>
<td>model0037</td>
<td>Failure (CTOD)</td>
<td>0.302</td>
<td>4.157</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>130</td>
<td>3.48</td>
<td>model0038</td>
<td>Ok</td>
<td>0.221</td>
<td>3.86</td>
<td>0.456</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>125</td>
<td>3.665</td>
<td>model0039</td>
<td>Ok</td>
<td>0.293</td>
<td>4.131</td>
<td>0.526</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>125</td>
<td>3.865</td>
<td>model0040</td>
<td>Failure (CTOD)</td>
<td>0.446</td>
<td>4.501</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>120</td>
<td>3.673</td>
<td>model0041</td>
<td>Ok</td>
<td>0.295</td>
<td>4.141</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>120</td>
<td>3.873</td>
<td>model0042</td>
<td>Failure (CTOD)</td>
<td>0.446</td>
<td>4.508</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>115</td>
<td>3.684</td>
<td>model0043</td>
<td>Ok</td>
<td>0.297</td>
<td>4.155</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>115</td>
<td>3.884</td>
<td>model0044</td>
<td>Failure (CTOD)</td>
<td>0.449</td>
<td>4.523</td>
<td>0.657</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>110</td>
<td>3.693</td>
<td>model0045</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>4.165</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>110</td>
<td>3.493</td>
<td>model0046</td>
<td>Ok</td>
<td>0.221</td>
<td>3.873</td>
<td>0.456</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>105</td>
<td>3.699</td>
<td>model0047</td>
<td>Ok</td>
<td>0.295</td>
<td>4.168</td>
<td>0.528</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>105</td>
<td>3.899</td>
<td>model0048</td>
<td>Failure (CTOD)</td>
<td>0.437</td>
<td>4.526</td>
<td>0.648</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>100</td>
<td>3.716</td>
<td>model0049</td>
<td>Ok</td>
<td>0.286</td>
<td>4.176</td>
<td>0.519</td>
<td></td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>3.916</td>
<td>model0050</td>
<td>Failure (CTOD)</td>
<td>0.418</td>
<td>4.525</td>
<td>0.633</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>95</td>
<td>3.776</td>
<td>model0051</td>
<td>Failure (CTOD)</td>
<td>0.308</td>
<td>4.263</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>95</td>
<td>3.576</td>
<td>model0052</td>
<td>Ok</td>
<td>0.228</td>
<td>3.967</td>
<td>0.463</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>90</td>
<td>3.761</td>
<td>model0053</td>
<td>Ok</td>
<td>0.29</td>
<td>4.225</td>
<td>0.523</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>90</td>
<td>3.961</td>
<td>model0054</td>
<td>Failure (CTOD)</td>
<td>0.421</td>
<td>4.573</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>85</td>
<td>3.798</td>
<td>model0055</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>4.275</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>85</td>
<td>3.598</td>
<td>model0056</td>
<td>Ok</td>
<td>0.225</td>
<td>3.985</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>80</td>
<td>3.805</td>
<td>model0057</td>
<td>Ok</td>
<td>0.292</td>
<td>4.273</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>80</td>
<td>4.005</td>
<td>model0058</td>
<td>Failure (CTOD)</td>
<td>0.415</td>
<td>4.611</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>75</td>
<td>3.841</td>
<td>model0059</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>4.315</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>3.641</td>
<td>model0060</td>
<td>Ok</td>
<td>0.225</td>
<td>4.028</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>70</td>
<td>3.862</td>
<td>model0061</td>
<td>Ok</td>
<td>0.291</td>
<td>4.328</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>70</td>
<td>4.062</td>
<td>model0062</td>
<td>Failure (CTOD)</td>
<td>0.404</td>
<td>4.655</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>65</td>
<td>3.914</td>
<td>model0063</td>
<td>Ok</td>
<td>0.297</td>
<td>4.385</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>4.114</td>
<td>model0064</td>
<td>Failure (CTOD)</td>
<td>0.403</td>
<td>4.705</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td>3.959</td>
<td>model0065</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>4.432</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>60</td>
<td>3.759</td>
<td>model0066</td>
<td>Ok</td>
<td>0.224</td>
<td>4.144</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>55</td>
<td>3.991</td>
<td>model0067</td>
<td>Ok</td>
<td>0.284</td>
<td>4.445</td>
<td>0.518</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>55</td>
<td>4.191</td>
<td>model0068</td>
<td>Failure (CTOD)</td>
<td>0.371</td>
<td>4.744</td>
<td>0.595</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>50</td>
<td>4.109</td>
<td>model0069</td>
<td>Failure (CTOD)</td>
<td>0.31</td>
<td>4.588</td>
<td>0.541</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>50</td>
<td>3.909</td>
<td>model0070</td>
<td>Ok</td>
<td>0.237</td>
<td>4.304</td>
<td>0.472</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>45</td>
<td>4.12</td>
<td>model0071</td>
<td>Ok</td>
<td>0.268</td>
<td>4.55</td>
<td>0.503</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>45</td>
<td>4.32</td>
<td>model0072</td>
<td>Failure (CTOD)</td>
<td>0.333</td>
<td>4.825</td>
<td>0.562</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>40</td>
<td>4.39</td>
<td>model0073</td>
<td>Failure (CTOD)</td>
<td>0.303</td>
<td>4.858</td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>4.19</td>
<td>model0074</td>
<td>Ok</td>
<td>0.253</td>
<td>4.599</td>
<td>0.488</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>35</td>
<td>4.529</td>
<td>model0075</td>
<td>Failure (CTOD)</td>
<td>0.299</td>
<td>4.984</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>35</td>
<td>4.329</td>
<td>model0076</td>
<td>Ok</td>
<td>0.264</td>
<td>4.743</td>
<td>0.499</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>30</td>
<td>4.674</td>
<td>model0077</td>
<td>Ok</td>
<td>0.259</td>
<td>5.075</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>30</td>
<td>4.874</td>
<td>model0078</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>5.319</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>25</td>
<td>5.321</td>
<td>model0079</td>
<td>Failure (CTOD)</td>
<td>0.301</td>
<td>5.755</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>5.121</td>
<td>model0080</td>
<td>Ok</td>
<td>0.268</td>
<td>5.519</td>
<td>0.503</td>
<td></td>
</tr>
</tbody>
</table>
Table B.7 ECA Simulation Results Log (for Figure 7.19 – Weld Under-match)

<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>2c</th>
<th>a</th>
<th>Directory</th>
<th>Status</th>
<th>Stop Criteria</th>
<th>Crackgrowth</th>
<th>CrackDepth</th>
<th>CTOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.06</td>
<td>2.248</td>
<td>0.246</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2.2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.075</td>
<td>2.479</td>
<td>0.272</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.4</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.101</td>
<td>2.724</td>
<td>0.312</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2.6</td>
<td>model0004</td>
<td>Ok</td>
<td></td>
<td>0.143</td>
<td>2.973</td>
<td>0.368</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2.8</td>
<td>model0005</td>
<td>Ok</td>
<td></td>
<td>0.217</td>
<td>3.221</td>
<td>0.452</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>3</td>
<td>model0006</td>
<td>Failure (CTOD)</td>
<td>0.322</td>
<td>3.477</td>
<td>0.552</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>195</td>
<td>2.956</td>
<td>model0007</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.415</td>
<td>0.527</td>
</tr>
<tr>
<td>8</td>
<td>195</td>
<td>3.156</td>
<td>model0008</td>
<td>Failure (CTOD)</td>
<td>0.43</td>
<td>3.74</td>
<td>0.642</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>190</td>
<td>2.966</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.422</td>
<td>0.529</td>
</tr>
<tr>
<td>10</td>
<td>190</td>
<td>3.166</td>
<td>model010</td>
<td>Failure (CTOD)</td>
<td>0.433</td>
<td>3.753</td>
<td>0.644</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>185</td>
<td>2.973</td>
<td>model011</td>
<td>Failure (CTOD)</td>
<td>0.299</td>
<td>3.413</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>185</td>
<td>2.773</td>
<td>model012</td>
<td>Ok</td>
<td></td>
<td>0.201</td>
<td>3.168</td>
<td>0.435</td>
</tr>
<tr>
<td>13</td>
<td>180</td>
<td>2.973</td>
<td>model013</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.411</td>
<td>0.529</td>
</tr>
<tr>
<td>14</td>
<td>180</td>
<td>3.173</td>
<td>model014</td>
<td>Failure (CTOD)</td>
<td>0.43</td>
<td>3.759</td>
<td>0.642</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>175</td>
<td>2.977</td>
<td>model015</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.414</td>
<td>0.529</td>
</tr>
<tr>
<td>16</td>
<td>175</td>
<td>3.177</td>
<td>model016</td>
<td>Failure (CTOD)</td>
<td>0.429</td>
<td>3.761</td>
<td>0.641</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>170</td>
<td>2.984</td>
<td>model017</td>
<td>Failure (CTOD)</td>
<td>0.302</td>
<td>3.427</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>170</td>
<td>2.784</td>
<td>model018</td>
<td>Ok</td>
<td></td>
<td>0.204</td>
<td>3.165</td>
<td>0.438</td>
</tr>
<tr>
<td>19</td>
<td>165</td>
<td>2.968</td>
<td>model019</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.403</td>
<td>0.527</td>
</tr>
<tr>
<td>20</td>
<td>165</td>
<td>3.168</td>
<td>model020</td>
<td>Failure (CTOD)</td>
<td>0.424</td>
<td>3.748</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>160</td>
<td>2.971</td>
<td>model021</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.406</td>
<td>0.527</td>
</tr>
<tr>
<td>22</td>
<td>160</td>
<td>3.171</td>
<td>model022</td>
<td>Failure (CTOD)</td>
<td>0.424</td>
<td>3.751</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>155</td>
<td>2.982</td>
<td>model023</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.415</td>
<td>0.525</td>
</tr>
<tr>
<td>24</td>
<td>155</td>
<td>3.182</td>
<td>model024</td>
<td>Failure (CTOD)</td>
<td>0.417</td>
<td>3.755</td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>3.013</td>
<td>model025</td>
<td>Failure (CTOD)</td>
<td>0.304</td>
<td>3.46</td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>150</td>
<td>2.813</td>
<td>model026</td>
<td>Ok</td>
<td></td>
<td>0.208</td>
<td>3.156</td>
<td>0.442</td>
</tr>
<tr>
<td>27</td>
<td>145</td>
<td>3.007</td>
<td>model027</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.446</td>
<td>0.529</td>
</tr>
<tr>
<td>28</td>
<td>145</td>
<td>3.207</td>
<td>model028</td>
<td>Failure (CTOD)</td>
<td>0.421</td>
<td>3.786</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>140</td>
<td>3.017</td>
<td>model029</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.458</td>
<td>0.53</td>
</tr>
<tr>
<td>30</td>
<td>140</td>
<td>3.217</td>
<td>model030</td>
<td>Failure (CTOD)</td>
<td>0.418</td>
<td>3.794</td>
<td>0.633</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>135</td>
<td>3.025</td>
<td>model031</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.464</td>
<td>0.529</td>
</tr>
<tr>
<td>32</td>
<td>135</td>
<td>3.225</td>
<td>model032</td>
<td>Failure (CTOD)</td>
<td>0.415</td>
<td>3.798</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>130</td>
<td>3.039</td>
<td>model033</td>
<td>Failure (CTOD)</td>
<td>0.302</td>
<td>3.487</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>130</td>
<td>2.839</td>
<td>model034</td>
<td>Ok</td>
<td></td>
<td>0.21</td>
<td>3.18</td>
<td>0.444</td>
</tr>
<tr>
<td>35</td>
<td>125</td>
<td>3.026</td>
<td>model035</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.465</td>
<td>0.527</td>
</tr>
<tr>
<td>36</td>
<td>125</td>
<td>3.226</td>
<td>model036</td>
<td>Failure (CTOD)</td>
<td>0.41</td>
<td>3.796</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>120</td>
<td>3.036</td>
<td>model037</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.475</td>
<td>0.528</td>
</tr>
<tr>
<td>38</td>
<td>120</td>
<td>3.236</td>
<td>model038</td>
<td>Failure (CTOD)</td>
<td>0.411</td>
<td>3.806</td>
<td>0.627</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>115</td>
<td>3.048</td>
<td>model039</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.491</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>115</td>
<td>2.848</td>
<td>model040</td>
<td>Ok</td>
<td></td>
<td>0.209</td>
<td>3.189</td>
<td>0.444</td>
</tr>
<tr>
<td>41</td>
<td>110</td>
<td>3.056</td>
<td>model041</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.499</td>
<td>0.529</td>
</tr>
<tr>
<td>42</td>
<td>110</td>
<td>3.256</td>
<td>model042</td>
<td>Failure (CTOD)</td>
<td>0.408</td>
<td>3.825</td>
<td>0.625</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>105</td>
<td>3.068</td>
<td>model043</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.509</td>
<td>0.528</td>
</tr>
<tr>
<td>44</td>
<td>105</td>
<td>3.268</td>
<td>model044</td>
<td>Failure (CTOD)</td>
<td>0.404</td>
<td>3.833</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>3.088</td>
<td>model045</td>
<td>Ok</td>
<td></td>
<td>0.285</td>
<td>3.52</td>
<td>0.519</td>
</tr>
<tr>
<td>46</td>
<td>100</td>
<td>3.288</td>
<td>model046</td>
<td>Failure (CTOD)</td>
<td>0.386</td>
<td>3.836</td>
<td>0.607</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>95</td>
<td>3.168</td>
<td>model047</td>
<td>Failure (CTOD)</td>
<td>0.31</td>
<td>3.631</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>95</td>
<td>2.968</td>
<td>model048</td>
<td>Ok</td>
<td></td>
<td>0.228</td>
<td>3.335</td>
<td>0.463</td>
</tr>
<tr>
<td>49</td>
<td>90</td>
<td>3.154</td>
<td>model049</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.601</td>
<td>0.529</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>3.354</td>
<td>model050</td>
<td>Failure (CTOD)</td>
<td>0.396</td>
<td>3.915</td>
<td>0.615</td>
<td></td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>--------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>85</td>
<td>3.172</td>
<td>model0051</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.617</td>
<td>0.527</td>
</tr>
<tr>
<td>52</td>
<td>85</td>
<td>3.372</td>
<td>model0052</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.39</td>
<td>3.927</td>
<td>0.61</td>
</tr>
<tr>
<td>53</td>
<td>80</td>
<td>3.202</td>
<td>model0053</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.649</td>
<td>0.528</td>
</tr>
<tr>
<td>54</td>
<td>80</td>
<td>3.402</td>
<td>model0054</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.386</td>
<td>3.955</td>
<td>0.607</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>3.24</td>
<td>model0055</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.299</td>
<td>3.692</td>
<td>0.531</td>
</tr>
<tr>
<td>56</td>
<td>75</td>
<td>3.04</td>
<td>model0056</td>
<td>Ok</td>
<td></td>
<td>0.23</td>
<td>3.409</td>
<td>0.465</td>
</tr>
<tr>
<td>57</td>
<td>70</td>
<td>3.264</td>
<td>model0057</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.707</td>
<td>0.524</td>
</tr>
<tr>
<td>58</td>
<td>70</td>
<td>3.464</td>
<td>model0058</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.369</td>
<td>3.999</td>
<td>0.593</td>
</tr>
<tr>
<td>59</td>
<td>65</td>
<td>3.35</td>
<td>model0059</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.788</td>
<td>0.53</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>3.55</td>
<td>model0060</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.371</td>
<td>4.075</td>
<td>0.594</td>
</tr>
<tr>
<td>61</td>
<td>60</td>
<td>3.395</td>
<td>model0061</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.847</td>
<td>0.529</td>
</tr>
<tr>
<td>62</td>
<td>60</td>
<td>3.595</td>
<td>model0062</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.368</td>
<td>4.132</td>
<td>0.592</td>
</tr>
<tr>
<td>63</td>
<td>55</td>
<td>3.462</td>
<td>model0063</td>
<td>Ok</td>
<td></td>
<td>0.287</td>
<td>3.906</td>
<td>0.521</td>
</tr>
<tr>
<td>64</td>
<td>55</td>
<td>3.662</td>
<td>model0064</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.354</td>
<td>4.185</td>
<td>0.58</td>
</tr>
<tr>
<td>65</td>
<td>50</td>
<td>3.606</td>
<td>model0065</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.31</td>
<td>4.076</td>
<td>0.541</td>
</tr>
<tr>
<td>66</td>
<td>50</td>
<td>3.406</td>
<td>model0066</td>
<td>Ok</td>
<td></td>
<td>0.253</td>
<td>3.808</td>
<td>0.488</td>
</tr>
<tr>
<td>67</td>
<td>45</td>
<td>3.621</td>
<td>model0067</td>
<td>Ok</td>
<td></td>
<td>0.264</td>
<td>4.04</td>
<td>0.499</td>
</tr>
<tr>
<td>68</td>
<td>45</td>
<td>3.821</td>
<td>model0068</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.322</td>
<td>4.308</td>
<td>0.553</td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>3.96</td>
<td>model0069</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.316</td>
<td>4.438</td>
<td>0.547</td>
</tr>
<tr>
<td>70</td>
<td>40</td>
<td>3.76</td>
<td>model0070</td>
<td>Ok</td>
<td></td>
<td>0.259</td>
<td>4.173</td>
<td>0.494</td>
</tr>
<tr>
<td>71</td>
<td>35</td>
<td>4.047</td>
<td>model0071</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.306</td>
<td>4.507</td>
<td>0.538</td>
</tr>
<tr>
<td>72</td>
<td>35</td>
<td>3.847</td>
<td>model0072</td>
<td>Ok</td>
<td></td>
<td>0.263</td>
<td>4.257</td>
<td>0.498</td>
</tr>
<tr>
<td>73</td>
<td>30</td>
<td>4.098</td>
<td>model0073</td>
<td>Ok</td>
<td></td>
<td>0.251</td>
<td>4.489</td>
<td>0.486</td>
</tr>
<tr>
<td>74</td>
<td>30</td>
<td>4.298</td>
<td>model0074</td>
<td>Ok</td>
<td></td>
<td>0.279</td>
<td>4.722</td>
<td>0.513</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
<td>4.498</td>
<td>model0075</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.312</td>
<td>4.96</td>
<td>0.544</td>
</tr>
<tr>
<td>76</td>
<td>25</td>
<td>4.951</td>
<td>model0076</td>
<td>Failure (CTOD)</td>
<td></td>
<td>0.304</td>
<td>5.391</td>
<td>0.537</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
<td>4.751</td>
<td>model0077</td>
<td>Ok</td>
<td></td>
<td>0.273</td>
<td>5.156</td>
<td>0.507</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>2</td>
<td>model0001</td>
<td>Ok</td>
<td></td>
<td>0.103</td>
<td>2.776</td>
<td>0.315</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2</td>
<td>model0002</td>
<td>Ok</td>
<td></td>
<td>0.162</td>
<td>3.057</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2</td>
<td>model0003</td>
<td>Ok</td>
<td></td>
<td>0.256</td>
<td>3.324</td>
<td>0.491</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>2</td>
<td>model0004</td>
<td>Failure (CTOD)</td>
<td>0.387</td>
<td>3.653</td>
<td>0.608</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>195</td>
<td>2.6</td>
<td>model0005</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.417</td>
<td>0.527</td>
</tr>
<tr>
<td>6</td>
<td>195</td>
<td>2.6</td>
<td>model0006</td>
<td>Failure (CTOD)</td>
<td>0.439</td>
<td>3.792</td>
<td>0.649</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>190</td>
<td>2.75</td>
<td>model0007</td>
<td>Failure (CTOD)</td>
<td>0.3</td>
<td>3.451</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>190</td>
<td>2.75</td>
<td>model0008</td>
<td>Ok</td>
<td></td>
<td>0.193</td>
<td>3.166</td>
<td>0.426</td>
</tr>
<tr>
<td>9</td>
<td>185</td>
<td>2.6</td>
<td>model0009</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.438</td>
<td>0.528</td>
</tr>
<tr>
<td>10</td>
<td>185</td>
<td>2.6</td>
<td>model010</td>
<td>Failure (CTOD)</td>
<td>0.437</td>
<td>3.792</td>
<td>0.647</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>180</td>
<td>2.475</td>
<td>model011</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.425</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>2.275</td>
<td>model012</td>
<td>Ok</td>
<td></td>
<td>0.192</td>
<td>3.155</td>
<td>0.425</td>
</tr>
<tr>
<td>13</td>
<td>175</td>
<td>2.474</td>
<td>model013</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.417</td>
<td>0.529</td>
</tr>
<tr>
<td>14</td>
<td>175</td>
<td>2.674</td>
<td>model014</td>
<td>Failure (CTOD)</td>
<td>0.437</td>
<td>3.8</td>
<td>0.648</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>170</td>
<td>2.479</td>
<td>model015</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.407</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>170</td>
<td>2.279</td>
<td>model016</td>
<td>Ok</td>
<td></td>
<td>0.192</td>
<td>3.145</td>
<td>0.425</td>
</tr>
<tr>
<td>17</td>
<td>165</td>
<td>2.48</td>
<td>model017</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.427</td>
<td>0.53</td>
</tr>
<tr>
<td>18</td>
<td>165</td>
<td>2.68</td>
<td>model018</td>
<td>Failure (CTOD)</td>
<td>0.436</td>
<td>3.805</td>
<td>0.647</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>160</td>
<td>2.483</td>
<td>model019</td>
<td>Failure (CTOD)</td>
<td>0.301</td>
<td>3.416</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td>2.283</td>
<td>model020</td>
<td>Ok</td>
<td></td>
<td>0.195</td>
<td>3.13</td>
<td>0.428</td>
</tr>
<tr>
<td>21</td>
<td>155</td>
<td>2.472</td>
<td>model021</td>
<td>Ok</td>
<td></td>
<td>0.291</td>
<td>3.391</td>
<td>0.525</td>
</tr>
<tr>
<td>22</td>
<td>155</td>
<td>2.672</td>
<td>model022</td>
<td>Failure (CTOD)</td>
<td>0.428</td>
<td>3.787</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>150</td>
<td>2.488</td>
<td>model023</td>
<td>Failure (CTOD)</td>
<td>0.299</td>
<td>3.42</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>2.288</td>
<td>model024</td>
<td>Ok</td>
<td></td>
<td>0.195</td>
<td>3.141</td>
<td>0.428</td>
</tr>
<tr>
<td>25</td>
<td>145</td>
<td>2.486</td>
<td>model025</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.415</td>
<td>0.529</td>
</tr>
<tr>
<td>26</td>
<td>145</td>
<td>2.686</td>
<td>model026</td>
<td>Failure (CTOD)</td>
<td>0.43</td>
<td>3.808</td>
<td>0.642</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>140</td>
<td>2.495</td>
<td>model027</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.428</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>140</td>
<td>2.295</td>
<td>model028</td>
<td>Ok</td>
<td></td>
<td>0.195</td>
<td>3.147</td>
<td>0.429</td>
</tr>
<tr>
<td>29</td>
<td>135</td>
<td>2.496</td>
<td>model029</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.426</td>
<td>0.528</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>2.696</td>
<td>model030</td>
<td>Failure (CTOD)</td>
<td>0.426</td>
<td>3.816</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>130</td>
<td>2.507</td>
<td>model031</td>
<td>Failure (CTOD)</td>
<td>0.299</td>
<td>3.444</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>130</td>
<td>2.307</td>
<td>model032</td>
<td>Ok</td>
<td></td>
<td>0.197</td>
<td>3.106</td>
<td>0.43</td>
</tr>
<tr>
<td>33</td>
<td>125</td>
<td>2.509</td>
<td>model033</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.443</td>
<td>0.528</td>
</tr>
<tr>
<td>34</td>
<td>125</td>
<td>2.709</td>
<td>model034</td>
<td>Failure (CTOD)</td>
<td>0.421</td>
<td>3.827</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>120</td>
<td>2.521</td>
<td>model035</td>
<td>Failure (CTOD)</td>
<td>0.298</td>
<td>3.46</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>120</td>
<td>2.321</td>
<td>model036</td>
<td>Ok</td>
<td></td>
<td>0.199</td>
<td>3.104</td>
<td>0.432</td>
</tr>
<tr>
<td>37</td>
<td>115</td>
<td>2.529</td>
<td>model037</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.469</td>
<td>0.529</td>
</tr>
<tr>
<td>38</td>
<td>115</td>
<td>2.729</td>
<td>model038</td>
<td>Failure (CTOD)</td>
<td>0.418</td>
<td>3.849</td>
<td>0.633</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>110</td>
<td>2.541</td>
<td>model039</td>
<td>Failure (CTOD)</td>
<td>0.302</td>
<td>3.49</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>110</td>
<td>2.341</td>
<td>model040</td>
<td>Ok</td>
<td></td>
<td>0.205</td>
<td>3.154</td>
<td>0.439</td>
</tr>
<tr>
<td>41</td>
<td>105</td>
<td>2.528</td>
<td>model041</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>3.458</td>
<td>0.522</td>
</tr>
<tr>
<td>42</td>
<td>105</td>
<td>2.728</td>
<td>model042</td>
<td>Failure (CTOD)</td>
<td>0.403</td>
<td>3.831</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>100</td>
<td>2.563</td>
<td>model043</td>
<td>Failure (CTOD)</td>
<td>0.299</td>
<td>3.513</td>
<td>0.532</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>100</td>
<td>2.363</td>
<td>model044</td>
<td>Ok</td>
<td></td>
<td>0.205</td>
<td>3.162</td>
<td>0.439</td>
</tr>
<tr>
<td>45</td>
<td>95</td>
<td>2.574</td>
<td>model045</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.524</td>
<td>0.53</td>
</tr>
<tr>
<td>46</td>
<td>95</td>
<td>2.774</td>
<td>model046</td>
<td>Failure (CTOD)</td>
<td>0.406</td>
<td>3.891</td>
<td>0.623</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>90</td>
<td>2.59</td>
<td>model047</td>
<td>Ok</td>
<td></td>
<td>0.295</td>
<td>3.541</td>
<td>0.528</td>
</tr>
<tr>
<td>48</td>
<td>90</td>
<td>2.79</td>
<td>model048</td>
<td>Failure (CTOD)</td>
<td>0.402</td>
<td>3.905</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>85</td>
<td>2.615</td>
<td>model049</td>
<td>Ok</td>
<td></td>
<td>0.297</td>
<td>3.573</td>
<td>0.53</td>
</tr>
<tr>
<td>Analysis ID</td>
<td>2c</td>
<td>a</td>
<td>Directory</td>
<td>Status</td>
<td>Stop Criteria</td>
<td>Crackgrowth</td>
<td>CrackDepth</td>
<td>CTOD</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>-------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>50</td>
<td>85</td>
<td>2.815</td>
<td>model0050</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.401</td>
<td>3.935</td>
<td>0.62</td>
</tr>
<tr>
<td>51</td>
<td>80</td>
<td>2.638</td>
<td>model0051</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.6</td>
<td>0.529</td>
</tr>
<tr>
<td>52</td>
<td>80</td>
<td>2.838</td>
<td>model0052</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.396</td>
<td>3.957</td>
<td>0.615</td>
</tr>
<tr>
<td>53</td>
<td>75</td>
<td>2.67</td>
<td>model0053</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.298</td>
<td>3.641</td>
<td>0.531</td>
</tr>
<tr>
<td>54</td>
<td>75</td>
<td>2.47</td>
<td>model0054</td>
<td>Ok</td>
<td></td>
<td>0.217</td>
<td>3.304</td>
<td>0.452</td>
</tr>
<tr>
<td>55</td>
<td>70</td>
<td>2.693</td>
<td>model0055</td>
<td>Ok</td>
<td></td>
<td>0.296</td>
<td>3.665</td>
<td>0.529</td>
</tr>
<tr>
<td>56</td>
<td>70</td>
<td>2.893</td>
<td>model0056</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.396</td>
<td>4.021</td>
<td>0.615</td>
</tr>
<tr>
<td>57</td>
<td>65</td>
<td>2.726</td>
<td>model0057</td>
<td>Ok</td>
<td></td>
<td>0.29</td>
<td>3.698</td>
<td>0.524</td>
</tr>
<tr>
<td>58</td>
<td>65</td>
<td>2.926</td>
<td>model0058</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.388</td>
<td>4.049</td>
<td>0.608</td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>2.794</td>
<td>model0059</td>
<td>Ok</td>
<td></td>
<td>0.294</td>
<td>3.783</td>
<td>0.527</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>2.994</td>
<td>model0060</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.393</td>
<td>4.135</td>
<td>0.612</td>
</tr>
<tr>
<td>61</td>
<td>55</td>
<td>2.867</td>
<td>model0061</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.304</td>
<td>3.879</td>
<td>0.536</td>
</tr>
<tr>
<td>62</td>
<td>55</td>
<td>2.667</td>
<td>model0062</td>
<td>Ok</td>
<td></td>
<td>0.234</td>
<td>3.558</td>
<td>0.469</td>
</tr>
<tr>
<td>63</td>
<td>50</td>
<td>2.892</td>
<td>model0063</td>
<td>Ok</td>
<td></td>
<td>0.289</td>
<td>3.888</td>
<td>0.522</td>
</tr>
<tr>
<td>64</td>
<td>50</td>
<td>3.092</td>
<td>model0064</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.365</td>
<td>4.215</td>
<td>0.59</td>
</tr>
<tr>
<td>65</td>
<td>45</td>
<td>2.992</td>
<td>model0065</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>4.002</td>
<td>0.521</td>
</tr>
<tr>
<td>66</td>
<td>45</td>
<td>3.192</td>
<td>model0066</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.359</td>
<td>4.321</td>
<td>0.585</td>
</tr>
<tr>
<td>67</td>
<td>40</td>
<td>3.14</td>
<td>model0067</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.302</td>
<td>4.186</td>
<td>0.534</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>2.94</td>
<td>model0068</td>
<td>Ok</td>
<td></td>
<td>0.243</td>
<td>3.882</td>
<td>0.479</td>
</tr>
<tr>
<td>69</td>
<td>35</td>
<td>3.231</td>
<td>model0069</td>
<td>Ok</td>
<td></td>
<td>0.286</td>
<td>4.265</td>
<td>0.52</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
<td>3.431</td>
<td>model0070</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.336</td>
<td>4.557</td>
<td>0.565</td>
</tr>
<tr>
<td>71</td>
<td>30</td>
<td>3.455</td>
<td>model0071</td>
<td>Ok</td>
<td></td>
<td>0.288</td>
<td>4.514</td>
<td>0.521</td>
</tr>
<tr>
<td>72</td>
<td>30</td>
<td>3.655</td>
<td>model0072</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.32</td>
<td>4.786</td>
<td>0.551</td>
</tr>
<tr>
<td>73</td>
<td>25</td>
<td>3.792</td>
<td>model0073</td>
<td>Ok</td>
<td></td>
<td>0.273</td>
<td>4.871</td>
<td>0.508</td>
</tr>
<tr>
<td>74</td>
<td>25</td>
<td>3.992</td>
<td>model0074</td>
<td>Failure</td>
<td>(CTOD)</td>
<td>0.319</td>
<td>5.152</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Appendix C

LINKpipe ECA Simulation Results Sample for Clad Pipes
LINKpipe ECA Simulation Results Sample for Clad Pipes
(First Reeling Cycle)
Input data

<table>
<thead>
<tr>
<th>ID</th>
<th>BaseCaseCladPipeWithFCG.lpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project File</td>
<td>BaseCaseCladPipeWithFCG.lpp</td>
</tr>
</tbody>
</table>

Base material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>200000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>500.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>553.83</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.051</td>
</tr>
</tbody>
</table>

![Stress strain curve](image1)

Weld material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>170000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>310.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>752.90</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.232</td>
</tr>
</tbody>
</table>

![Stress strain curve](image2)

Ductile Crack Growth

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTODi</td>
<td>0.001</td>
</tr>
<tr>
<td>c1</td>
<td>0.752</td>
</tr>
<tr>
<td>c2</td>
<td>0.786</td>
</tr>
</tbody>
</table>

![Crack resistance curve](image3)
Pipe
- **Outer Diameter**: 273.1
- **Wall Thickness**: 17.7
- **Length**: 1638.6

Misalignment
- **No Misalignment**

Crack
- **Crack Depth**: 2.9
- **Crack Length**: 45.0
- **Orientation**: Circumferential
- **Type**: Outside
- **Shape**: Rectangular
- **Offset angle from centric crack**: 0.0

Weld
- **Width Top**: 0.0
- **Width Bottom**: 0.0
- **Crack Position**: Middle of Weld

Mesh Parameters
- **DX1**: 75.0
- **DX2**: 3.0
- **DY1**: 10.0
- **DY2**: 2.0
- **DY**: 1.5
- **Minimum number of line-spring elements**: 0
- **Maximum number of line-spring elements**: 0

Residual Stresses
- **No Residual Stresses**

Load Station
- **Name**: Reel Cycle 2
- **Type**: Rotation
- **Pi**: 0.0
- **Pe**: 0.0
- **Total Global Rotation**: 0.1062
- **Max Global Increment**: 0.01
- **Number of times to store results**: 2000

![Crack Resistance Curve Image]
Results

Calculation status | OK

Overview

<table>
<thead>
<tr>
<th>Load station</th>
<th>Crack type</th>
<th>Crack Depth</th>
<th>Crack Length</th>
<th>CTOD</th>
<th>Ductile crack growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Cycle 2</td>
<td>Surface</td>
<td>3.19</td>
<td>45.00</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.90</td>
<td>45.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Calculation details

<table>
<thead>
<tr>
<th>Result Directory</th>
<th>C:\Users\SS7N1346\Documents\Master Thesis\19 Simulation File LINKpipe3-001\Analysis1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>2013-06-05 10:40:41</td>
</tr>
<tr>
<td>End Time</td>
<td>10:41:30</td>
</tr>
<tr>
<td>CPU Seconds</td>
<td>48.843</td>
</tr>
</tbody>
</table>
LINKpipe ECA Simulation Results Sample for Clad Pipes
(Second Reeling Cycle)
Input data

<table>
<thead>
<tr>
<th>ID</th>
<th>BaseCaseCladPipeWithFCG.lpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project File</td>
<td>BaseCaseCladPipeWithFCG.lpp</td>
</tr>
</tbody>
</table>

Base material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>200000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>500.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>553.83</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.051</td>
</tr>
</tbody>
</table>

![Stress strain curve](image)

Weld material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>170000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>310.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>752.90</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.232</td>
</tr>
</tbody>
</table>

![Stress strain curve](image)

Ductile Crack Growth

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTODi</td>
<td>0.001</td>
</tr>
<tr>
<td>c1</td>
<td>0.752</td>
</tr>
<tr>
<td>c2</td>
<td>0.786</td>
</tr>
</tbody>
</table>

![Crack resistance curve](image)
<table>
<thead>
<tr>
<th>Pipe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Diameter</td>
<td>273.1</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>17.7</td>
</tr>
<tr>
<td>Length</td>
<td>1638.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misalignment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Misalignment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crack</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Depth</td>
<td>3.19</td>
</tr>
<tr>
<td>Crack Length</td>
<td>45.0</td>
</tr>
<tr>
<td>Orientation</td>
<td>Circumferential</td>
</tr>
<tr>
<td>Type</td>
<td>Outside</td>
</tr>
<tr>
<td>Shape</td>
<td>Rectangular</td>
</tr>
<tr>
<td>Offset angle from centric crack</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weld</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width Top</td>
<td>0.0</td>
</tr>
<tr>
<td>Width Bottom</td>
<td>0.0</td>
</tr>
<tr>
<td>Crack Position</td>
<td>Middle of Weld</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DX1</td>
<td>75.0</td>
</tr>
<tr>
<td>DX2</td>
<td>3.0</td>
</tr>
<tr>
<td>DY1</td>
<td>10.0</td>
</tr>
<tr>
<td>DY2</td>
<td>2.0</td>
</tr>
<tr>
<td>DY</td>
<td>1.5</td>
</tr>
<tr>
<td>Minimum number of line-spring elements</td>
<td>0</td>
</tr>
<tr>
<td>Maximum number of line-spring elements</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residual Stresses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Residual Stresses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Station</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Reel Cycle 2</td>
</tr>
<tr>
<td>Type</td>
<td>Rotation</td>
</tr>
<tr>
<td>Pi</td>
<td>0.0</td>
</tr>
<tr>
<td>Pe</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Global Rotation</td>
<td>0.0852</td>
</tr>
<tr>
<td>Max Global Increment</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of times to store results</td>
<td>2000</td>
</tr>
</tbody>
</table>
Results

| Calculation status | OK |

Overview

<table>
<thead>
<tr>
<th>Load station</th>
<th>Crack type</th>
<th>Crack Depth</th>
<th>Crack Length</th>
<th>CTOD</th>
<th>Ductile crack growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Cycle 2</td>
<td>Surface</td>
<td>3.50</td>
<td>45.00</td>
<td>0.22</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Calculation details

<table>
<thead>
<tr>
<th>Result Directory</th>
<th>C:\Users\SS7N1346\Documents\Master Thesis\19 Simulation File LINKpipe3-002\Analysis1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>2013-06-05 10:42:01</td>
</tr>
<tr>
<td>End Time</td>
<td>10:42:43</td>
</tr>
<tr>
<td>CPU Seconds</td>
<td>41.714</td>
</tr>
</tbody>
</table>
LINKpipe ECA Simulation Results Sample for Clad Pipes
(Third Reeling Cycle)
Input data

<table>
<thead>
<tr>
<th>ID</th>
<th>BaseCaseCladPipeWithFCG.lpp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project File</td>
<td>BaseCaseCladPipeWithFCG.lpp</td>
</tr>
</tbody>
</table>

Base material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>200000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>500.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>553.83</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.051</td>
</tr>
</tbody>
</table>

![Stress strain curve](image1.png)

Weld material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>170000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>310.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>752.90</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.232</td>
</tr>
</tbody>
</table>

![Stress strain curve](image2.png)

Ductile Crack Growth

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTODi</td>
<td>0.001</td>
</tr>
<tr>
<td>c1</td>
<td>0.752</td>
</tr>
<tr>
<td>c2</td>
<td>0.786</td>
</tr>
</tbody>
</table>

![Crack resistance curve](image3.png)
Pipe
- Outer Diameter: 273.1
- Wall Thickness: 17.7
- Length: 1638.6

Misalignment
- No Misalignment

Crack
- Crack Depth: 3.5
- Crack Length: 45.0
- Orientation: Circumferential
- Type: Outside
- Shape: Rectangular
- Offset angle from centric crack: 0.0

Weld
- Width Top: 0.0
- Width Bottom: 0.0
- Crack Position: Middle of Weld

Mesh Parameters
- DX1: 75.0
- DX2: 3.0
- DY1: 10.0
- DY2: 2.0
- DY: 1.5
- Minimum number of line-spring elements: 0
- Maximum number of line-spring elements: 0

Residual Stresses
- No Residual Stresses

Load Station
- Name: Reel Cycle 2
- Type: Rotation
- Pi: 0.0
- Pe: 0.0
- Total Global Rotation: 0.0972
- Max Global Increment: 0.01
- Number of times to store results: 2000
Results

| Calculation status | OK |

Overview

<table>
<thead>
<tr>
<th>Load station</th>
<th>Crack type</th>
<th>Crack Depth</th>
<th>Crack Length</th>
<th>CTOD</th>
<th>Ductile crack growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Cycle 2</td>
<td>Surface</td>
<td>3.88</td>
<td>45.00</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Calculation details

<table>
<thead>
<tr>
<th>Result Directory</th>
<th>C:\Users\SS7N1346\Documents\Master Thesis\19 Simulation File LINKpipe3-003\Analysis1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>2013-06-05 10:43:11</td>
</tr>
<tr>
<td>End Time</td>
<td>10:43:57</td>
</tr>
<tr>
<td>CPU Seconds</td>
<td>45.801</td>
</tr>
</tbody>
</table>
LINKpipe ECA Simulation Results Sample for Clad Pipes

(Fatigue Crack Growth)
Input data

<table>
<thead>
<tr>
<th>ID</th>
<th>BaseCaseCladPipeWithFCG.ipp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project File</td>
<td>BaseCaseCladPipeWithFCG.ipp</td>
</tr>
</tbody>
</table>

Base material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>200000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>500.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>553.83</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Weld material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>170000.0</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>310.00</td>
</tr>
<tr>
<td>Tensile Stress</td>
<td>752.90</td>
</tr>
<tr>
<td>Stress strain curve type</td>
<td>Power Law</td>
</tr>
<tr>
<td>Hardening Exponent</td>
<td>0.232</td>
</tr>
</tbody>
</table>

Ductile Crack Growth

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTODi</td>
<td>0.001</td>
</tr>
<tr>
<td>c1</td>
<td>0.752</td>
</tr>
<tr>
<td>c2</td>
<td>0.786</td>
</tr>
</tbody>
</table>

Stress strain curve
High cycle fatigue growth

<table>
<thead>
<tr>
<th>Curve name</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve data</td>
<td>deltaK0</td>
</tr>
<tr>
<td></td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td>144.0</td>
</tr>
</tbody>
</table>

Pipe

Outer Diameter	273.1
Wall Thickness	17.7
Length	1638.6

Misalignment

| No Misalignment |

Crack

Crack Depth	3.88
Crack Length	45.0
Orientation	Circumferential
Type	Outside
Shape	Rectangular
Offset angle from centric crack	0.0

Weld

Width Top	0.0
Width Bottom	0.0
Crack Position	Middle of Weld

Mesh Parameters
Residual Stresses
No Residual Stresses

Load Station

<table>
<thead>
<tr>
<th>Name</th>
<th>Installation Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>BS7910 Fatigue</td>
</tr>
<tr>
<td>Geometry</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Crack type</td>
<td>Previous</td>
</tr>
<tr>
<td>Paris curve for Outside crack</td>
<td>Paris</td>
</tr>
</tbody>
</table>

Recategorisation
No recategorisation

Number of increments in Paris integration
1000

Number of times to store results
1000

Stress spectrum

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Membrane stress</th>
<th>Bending stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>26.8</td>
<td>4.87</td>
</tr>
<tr>
<td>845</td>
<td>52.8</td>
<td>9.61</td>
</tr>
<tr>
<td>995</td>
<td>79.6</td>
<td>14.48</td>
</tr>
<tr>
<td>941</td>
<td>105.6</td>
<td>19.21</td>
</tr>
<tr>
<td>708</td>
<td>132.3</td>
<td>24.09</td>
</tr>
<tr>
<td>623</td>
<td>158.4</td>
<td>28.82</td>
</tr>
<tr>
<td>426</td>
<td>185.1</td>
<td>33.69</td>
</tr>
<tr>
<td>390</td>
<td>211.1</td>
<td>38.43</td>
</tr>
<tr>
<td>234</td>
<td>237.9</td>
<td>43.3</td>
</tr>
<tr>
<td>251</td>
<td>264.7</td>
<td>48.17</td>
</tr>
<tr>
<td>132</td>
<td>290.7</td>
<td>52.91</td>
</tr>
<tr>
<td>126</td>
<td>317.5</td>
<td>57.78</td>
</tr>
<tr>
<td>24</td>
<td>343.5</td>
<td>62.51</td>
</tr>
<tr>
<td>36</td>
<td>370.3</td>
<td>67.39</td>
</tr>
<tr>
<td>30</td>
<td>396.3</td>
<td>72.12</td>
</tr>
<tr>
<td>12</td>
<td>423.0</td>
<td>76.99</td>
</tr>
<tr>
<td>0</td>
<td>449.1</td>
<td>81.73</td>
</tr>
<tr>
<td>12</td>
<td>475.8</td>
<td>86.6</td>
</tr>
<tr>
<td>12</td>
<td>502.6</td>
<td>91.47</td>
</tr>
<tr>
<td>6</td>
<td>528.6</td>
<td>96.21</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Calculation status</th>
<th>OK</th>
</tr>
</thead>
</table>

Overview

<table>
<thead>
<tr>
<th>Load station</th>
<th>Crack type</th>
<th>Crack Depth</th>
<th>Crack Length</th>
<th>CTOD</th>
<th>Fatigue crack growth</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Fatigue Surface</td>
<td>3.88</td>
<td>45.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Calculation details

<table>
<thead>
<tr>
<th>Result Directory</th>
<th>C:\Users\SS7N1346\Documents\Master Thesis\19 Simulation File LINKpipe3-001\Analysis1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>2013-06-05 11:22:45</td>
</tr>
<tr>
<td>End Time</td>
<td>11:28:28</td>
</tr>
<tr>
<td>CPU Seconds</td>
<td>336.275</td>
</tr>
</tbody>
</table>