Abstract:
Existing literature have focused on the influence of institutional factors on wage determination when explaining the prolonged cross-country differences in unemployment. Although coordination of wage bargaining probably affects entry barriers and competition in product markets as well, research on price determination has typically not considered such factors. In this paper, an imperfect competition model - where the price markup depends on coordination of wage bargaining (and relative prices) - is set up and estimated on a panel of 15 OECD-countries. We derive a hypothesis that coordination has two separate effects on prices, i.e. an indirect effect through its effect on wages and a direct effect on the price markup. The estimates show that when we correct for the effect of coordination on wages, consumer prices may be as much as 21 percent higher in countries like Italy, the Netherlands, Ireland, Austria and Norway as compared to Canada, the US and the UK, due to the effect of coordination on the price markup. Since coordination probably has a dampening effect on wages, this may explain why many researchers have been unable to find any clear effect of coordination on unemployment in reduced form analysis.

Keywords: Imperfect competition model, price markup, labor market institutions, unemployment, panel data model.

JEL classification: C23, E31, J51

Acknowledgement: We are indebted to Lane Kenworthy and Luca Nunziata for providing us with data, and to Peter Pedroni for sending us his latest version of the programming code for RATS. Many thanks to Terje Skjerpen for his invaluable comments. We also wish to thank Ragnar Nymoen for helpful discussions on earlier drafts.

Address: Roger Bjørnstad, Statistics Norway, Research Department.
E-mail: roger.bjornstad@ssb.no

Kjartan Øren Kalstad, Statistics Norway, Research Department.
E-mail: kjartan.kalstad@ssb.no
Discussion Papers comprise research papers intended for international journals or books. A preprint of a Discussion Paper may be longer and more elaborate than a standard journal article, as it may include intermediate calculations and background material etc.

Abstracts with downloadable Discussion Papers in PDF are available on the Internet:
http://www.ssb.no
http://ideas.repec.org/s/ssb/dispap.html

For printed Discussion Papers contact:
Statistics Norway
Sales- and subscription service
NO-2225 Kongsvinger

Telephone: +47 62 88 55 00
Telefax: +47 62 88 55 95
E-mail: Salg-abonnement@ssb.no
1. Introduction

One of the main results in these studies is that countries with a high degree of coordination of wage bargaining are associated with the best macroeconomic performance and the lowest unemployment when controlling for other factors. However, the evidence is inconclusive when it comes to identifying the effect of coordination at an intermediate level relative to a low level. Some of the studies find a hump-shaped relationship, i.e. that coordination at an intermediate level produces the highest unemployment, yet others find a monotonically decreasing relationship between coordination and unemployment. Hence, it is commonly concluded that the effect of coordination on unemployment is ambiguous.

A common feature in all the studies listed above is that they only consider reduced-form-equations, so they cannot tell us anything about the causal relationship between union coordination and unemployment. However, the underlying assumption is that coordination only affects wage setting, and that the effect of coordination on nominal wages also is unclear. On the other hand, Nunziata (2005) – which to our knowledge is the only published article where the effect of coordination is estimated in a multi-country wage bargaining model – found a monotonically decreasing effect of coordination on real labor costs on a panel of 20 OECD countries. Podrecca (2004) analysed the importance of labour market institutions in wage equations for 20 OECD countries as well. However, she did not test for a separate effect of coordination alone, but whether union coordination made a difference on the wage responsiveness to changes in unemployment. She found no significant effect. Nunziata (2005) found that an increase in unemployment had a more moderating effect on wages
when there was a high degree of coordination, and that tax increases had a stronger effect in uncoordinated settlements.

If this is true, i.e. that real wages decrease monotonically as coordination increases, but unemployment does not, then we might suspect that coordination also has a separate effect in the determination of prices. Figure 1 illustrates the equilibrium relationship between real wages and unemployment as put forward by e.g. Layard et al. (1991). The two curves show the anticipated level of real wages in wage setting and price setting, respectively. Equilibrium is where the two curves intersect, indicating a real wage level consistent with steady state in both the labor market and the product market. In the figure, changes in coordination of wage bargaining are assumed to affect both the wage curve and the price curve. If changes in coordination shift the curves as indicated, a lower degree of coordination will monotonically increase real wages, while the effect on unemployment is ambiguous, consistent with the empirical findings. Note that a higher level of coordination then has two separate effects on prices and that they are working in opposite directions; first, an indirect moderating effect through its effect on wages, and second, a direct positive effect on the price markup.

There may be at least three theoretical justifications for including coordination as a separate explanatory variable in the price equation. First, as coordination between unions increases, firms realize that their competitors suffer from the same rise in wages; pass-through to prices may tend to be faster and more comprehensive, increasing the markup in macro. Second, since wage bargaining implies profit sharing (see Layard et al., 1991, Ch. 2), unions may wish to create entry barriers for new competitors. As coordination increases the unions may be more successful in creating these entry barriers, especially if the unions have political power. There may be several other motivations for the unions to fight new entrants as well. For example, the unions may want to protect their existing members against potential joblessness (insiders vs. outsiders), or they want to protect themselves in case they suspect that new firms primarily want to hire non-unionized workers. Moreover, unions may fear that new firms will challenge several of the rights the unions have accomplished throughout the years of bargaining. Third, there may exist other types of entry costs in a highly unionized labor market, i.e. the cost of negotiating rigorous tariff agreements.
Price formation has been subject to some research, although, interestingly, there seems to be no consensus about which variables determine prices at the aggregate level.\(^1\) Nevertheless, there has been little or no research linking institutional factors such as trade unions and the role of coordination of wage bargaining to price determination. This paper aims to correct for this deficiency in the literature.

The empirical evidence presented in this paper is founded on panel data for 15 OECD countries observed from the 1960s to 2000. We use an index developed by Kenworthy (2001) as an indicator of the level of coordination of wage bargaining. The main finding is that coordination significantly increases the level of consumer prices. An increase in the wage coordination index from the lowest level (1) to the highest level (5) will induce a long-run price level increase of 21 percent according to the estimates in our baseline model.

\(^1\) See *inter alia*, Price (1991), Martin (1997) and Ashworth and Byrne (2003).
The remainder of the paper develops these points and is structured as follows. First, in Section 2, we set up an imperfect competition model for price determination, where the markup depends on coordination of wage bargaining and the relationship between import prices and prices on domestically produced goods and services. Then, after discussing the econometric methodology and data in Sections 3 and 4 respectively, we estimate the model in Section 5. Conclusions are drawn in Section 6.

2. Literature and Economic Theory

Price determination is essential to the understanding of complex issues of unemployment and inflation. The increasing attention of policymakers regarding inflation targets in monetary policy has necessitated further research in this field. Nevertheless, there is surprisingly little literature on the role of labor market institutions on price setting behavior.

In the literature on price determination there are two central theories - purchasing power parity theory (PPP or the law of one price) and the pricing-to-market theory, or the markup theory. The purchasing power theory argues that domestic prices are determined in the long run by world market prices, thus it emphasizes the importance of import prices.² The markup theory developed by Michal Kalecki states that producers set prices as a markup over average variable costs³, partly as an insurance against variability in input prices and partly to earn greater profits. This latter theory has become a widely accepted approach to price determination, and has, besides being a standard assumption in many macroeconomic models⁴, also been subject to considerable empirical testing.⁵

Martin (1997) advocates, through his theoretical and empirical assessment of the UK economy, that reality is somewhat in the middle of these two main theories. He argues that interactions between domestic and foreign agents cannot be neglected when it comes to theories of price formation, thus both domestic costs and import prices are important in determining the domestic price level.

We utilize the markup theory in this paper; by including an index for the coordination of wage determination, we attempt to investigate whether there is an omitted variable bias in the standard price determination model. To our knowledge there has been no attempt to study the role of labor market

² See Dornbusch (1992) for further details.
³ See Kalecki (1943).
⁵ See for example Scherer and Ross (1990).
institutions for the price setting behavior. However, some studies aim at describing their effect on prices in reduced-form-equations, i.e. inserting for wage determining factors in price-equations.6 Nunziata (2005) for example, elucidated institutional factors as highly significant in influencing wages. He estimated the determinants of labor costs in 20 OECD countries, and found both a direct effect on wages, through wage pressure despite excess supply in the labor market, and an indirect effect via the matching process of unemployed individuals to available job vacancies. Furthermore, bargaining coordination, employment protection and benefit replacement ratios were significantly affecting labor costs and consequently wages. Nunziata (2005) found that bargaining coordination significantly decreased wages, while employment protection and benefit replacement ratios significantly increased wages.

Layard et al. (1991) consider the issues of wage bargaining and trade unions in some detail. However, there is no model explicitly linking coordination of wage determination and price determination. Nevertheless, the concepts of corporatism, trade unions and nominal inertia plus its effects on unemployment is discussed in great depth in this book.

Ashworth and Byrne (2003) and Asteriou et al. (2002) specify and estimate price equations of OECD countries, but neither of the papers includes elements of wage-setting coordination. The estimations in both papers put a roughly 50-50 percent weight on unit labor costs and import prices in the price equation, respectively, which corresponds relatively well to the estimates in single-country studies as well (see \textit{inter alia} Boug et al., 2006, and Bårdsen et al., 1998).

\textbf{2.1. The theoretical foundation of the estimated equation}

A formal derivation for the price equation is now presented. First, the standard consumer price relation (1) is put forward. \(CP \) is consumer prices, \(DP \) is prices on domestically produced goods and services and \(PI \) is price of imports. The subscript \(i \) denotes country.

(1) \[CP_i = D_P^{\beta} \cdot P_I^{1-\beta} \]

6 See Sen and Dutt (1995) for a theoretical model where bargaining power affects wages and where the wage level influences the markup. See also Bowdler and Nunziata (2005) for an empirical analysis where they replace unit labour cost in a price-equation with wage determining factors.
The weight on domestic prices is assumed to be a constant β. Further, according to the markup theory, domestic prices are set as a markup over marginal costs. Unit labor costs (ULC) are used as a proxy for marginal costs\(^\text{7}\), such that:

\[
(2) \quad DP_i = (1 + m_i) \cdot ULC_i.
\]

Layard et al. (1991, p. 338) show that the markup, \((1 + m_i)\), depends on the elasticity of demand with respect to own price, i.e. that \((1 + m_i)\) depends on product-market competitiveness. In aggregated price-equations the markup is usually assumed to be either a constant or, in an open economy setting, dependent only on the relationship between import prices and prices on domestically produced goods and services. As argued in the introduction, we wish to explore whether coordination of wage bargaining influence the competition in the product market. We therefore need to specify the markup as a function of the degree of coordination. The exact link between coordination and the markup is not clear-cut, but one easy way would be to express the markup relation in the following way:

\[
(3) \quad (1 + m_i) = e^{m_{i1} + m_{i2} \cdot CO_i} \left(\frac{PI_i}{DP_i} \right)^{m_i},
\]

where we have assumed that \(m_{i1} = m_i\) and \(m_{i2} = m_2\), for all \(i\), and where \(CO\) is an index for the degree of coordination of wage bargaining.

Inserting the expression for \((1 + m_i)\) given by (3) in (2) and rearranging we obtain:

\[
(4) \quad DP_i = \left(e^{(m_{i1} + m_{i2} \cdot CO_i) \left(\frac{1}{1 + m_i} \right)} \cdot \left(\frac{m_i}{PI_i} \right)^{m_i} \right) \cdot \left(ULC_i \cdot \frac{1}{1 + m_i} \right).
\]

Inserting the equation for domestic prices (4) into the consumer price relation (1) yields:

\[
(5) \quad CP_i = \left(e^{\frac{\beta (m_{i1} + m_{i2} \cdot CO_i)}{1 + m_i}} \cdot \left(\frac{1 - \beta \cdot m_i}{PI_i} \right)^{m_i} \right) \cdot \left(ULC_i^{\frac{\beta}{1 + m_i}} \right).
\]

By taking logs of equation (5) we obtain (throughout the paper, lower case letters signify natural logarithms):

\[
\text{By taking logs of equation (5) we obtain (throughout the paper, lower case letters signify natural logarithms):}
\]

\[
\text{7 With a Cobb-Douglas production technology unit labour costs are proportional to marginal costs.}
\]
\[cp_i = \alpha \cdot m_{0i} + \delta \cdot CO_i + \alpha \cdot ulc_i + (1 - \alpha) \cdot pi_i, \]

where \(\alpha = \frac{\beta}{1 + \mu} \) and \(\delta = \alpha \cdot \mu \).

Hence, the level of consumer prices depends on unit labor costs (ulc), the price of imports (pi) and the degree of coordination of wage bargaining (CO). We will now turn to the econometric specification.

2.2. An econometric specification of price setting

We estimate the price setting using a so-called error correction model (see Sargan, 1980), where parameters related to the short-term price growth and the long-run price level are estimated simultaneously. The following shows consistency between the error correction model employed and the theory derived in the previous section.

The error correction model used in the analysis is given by:

\[\Delta cp_{it} = \gamma_i - \beta_{i1} (cp_t - ulc_t)_{t-1} - \beta_{i2} (ulc_t - pi_t)_{t-1} + \beta_{i3} CO_{it-1} \]
\[+ \beta_{i4} \Delta pi_{it} + \beta_{i5} \Delta ulc_{it} + \beta_{i6} \Delta cp_{it-1} + \beta_{i7} \gamma_{it} + \epsilon_{it}, \]

where \(\gamma_i \) is a fixed country specific effect, \(\gamma_i \) is a specific time dummy and \(\epsilon_{it} \) is an error term. The \(\beta_i \)'s are non-negative parameters and \(z_{it} \) is a vector containing all other variables and dummies. \(\Delta \) denotes the first difference of a variable.

The link to equation (6) is further illustrated by calculating the steady-state solution for (7). Let steady state be defined as:

\[\Delta ulc_{it} = \omega_i, \]
\[\Delta pi_{it} = \rho_i, \]
\[\Delta \omega_i = \Delta \rho_i = \Delta^2 \omega_{it} = \Delta z_{it} = \Delta CO_{it} = \epsilon_{it} = 0, \]

i.e. that unit labor costs, import prices and consumer prices grow according to constant rates, and that \(\gamma \) and coordination remain constant. For simplicity, suppose also that \(\gamma_i = 0 \) in steady state. We can then express the steady state level of consumption prices in the following way:

\[cp_i - [\alpha_i \cdot ulc_i + (1 - \alpha_i) \cdot pi_i] = \gamma_{0i} + \delta_i \cdot CO_i \]
where

\[\alpha_i = 1 - \frac{\beta_{2i}}{\beta_{1i}}, \]

\[\gamma_{0i} = \frac{1}{\beta_{1i}} [\tau_i + \beta_{7i} z_i + (\beta_{5i} + \alpha_i \beta_{6i} - \alpha_i) \omega_i + (\beta_{4i} + (1 - \alpha_i) \beta_{6i} - (1 - \alpha_i)) \rho_i], \]

and

\[\delta_i = \frac{\beta_{3i}}{\beta_{1i}}. \]

Equation (8) is the long-run solution for the estimated price equation, and it is the empirical counterpart to equation (6). The detailed empirical results and interpretations are presented in Section 5.

3. Data Appreciation

The bulk of the data in the paper is retrieved from the OECD databases. The import prices are constructed by taking the ratio of the value and the volume of imported goods and services. While in almost all previous papers predominantly data for the manufacturing sector has been used, we use the OECD unit labor cost index that covers the whole economy.

The coordination variable (CO) is retrieved from Professor Lane Kenworthy’s dataset (Kenworthy, 2001), and constructed as an index from 1 to 5. The index draws on a variety of much cited references from the wage-setting literature, and is elaborated in the Appendix. The Thatcher regime in the United Kingdom in the 1980s is an illustrative case, which entailed a strong decentralization of the wage-setting process, bringing the score for the UK from an intermittent high level down to 1 from 1980 onwards. Figure 2 shows the coordination scores for each country. Four countries have little or no variation in the coordination scores. The four countries are France and Japan, which have a constant CO variable, and Canada and the US, which have coordination scores equal to 1 in all years except during the price and wage legislation in the 1970's. In the analysis CO is held constant also in Canada and the US since changes in consumption prices obviously would be influenced by the price controls and not necessarily the change in wage setting. Hence, in our panel regression with fixed effects these four countries do not contribute to identify the effect of coordination.

OECD Economic Outlook and Main Economic Indicator (MEI) databases.
4. Econometric Issues

The strength of the evidence of an econometric model relies heavily on the error terms being independently and identically distributed. There are several potential sources of misspecification that have to be examined. In this section we address these issues.

4.1. Unit root and cointegration

Macroeconomic time series are rarely stationary and frequently characterized by trends. The variables in a balanced error correction model with a stationary variable on the left hand side must either be stationary or cointegrated, and we must therefore determine the order of integration of the variables in our model. Generally, any process that has a single unit root is said to be integrated of order one, that is $I(1)$, implying that the first difference of the process is stationary.

We have performed four different panel unit root tests; The Levin-Lin-Chu test (Levin et al., 2002), the Im-Pesaran-Shin test (Im et al., 2003), the Fisher-ADF test and the Fisher-PP test (Maddala and Wu, 1999, and Choi, 2001). The Levin-Lin-Chu test assumes common unit root processes; the others assume individual root processes. The results are reported in Table 1.
Table 1: Panel unit root tests

<table>
<thead>
<tr>
<th>Null: Unit root</th>
<th>(\Delta c_p)</th>
<th>(\Delta u_l c)</th>
<th>(\Delta p_i)</th>
<th>(\Delta u_r)</th>
<th>(\Delta e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levin-Lin-Chu, t-stat.</td>
<td>-4.70 (0.00)**</td>
<td>-6.48 (0.00)**</td>
<td>-10.9 (0.00)**</td>
<td>-0.29 (0.39)</td>
<td>-13.5 (0.00)**</td>
</tr>
<tr>
<td>Im-Pesaran-Shin, W-stat.</td>
<td>-1.50 (0.07)</td>
<td>-3.89 (0.00)**</td>
<td>-8.21 (0.00)**</td>
<td>-6.77 (0.00)**</td>
<td>-10.0 (0.00)**</td>
</tr>
<tr>
<td>ADF - Fisher, (\chi^2) - stat.</td>
<td>36.3 (0.20)</td>
<td>61.3 (0.00)**</td>
<td>116.3 (0.00)**</td>
<td>106.6 (0.00)**</td>
<td>138.4 (0.00)**</td>
</tr>
<tr>
<td>PP - Fisher, (\chi^2) - stat.</td>
<td>29.9 (0.47)</td>
<td>48.9 (0.02)*</td>
<td>113.0 (0.00)**</td>
<td>46.3 (0.03)*</td>
<td>127.8 (0.00)**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Null: Unit root</th>
<th>(\Delta^2 c_p)</th>
<th>(\Delta^2 u_l c)</th>
<th>(\Delta^2 p_i)</th>
<th>(\Delta^2 u_r)</th>
<th>(\Delta^2 e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levin-Lin-Chu, t-stat.</td>
<td>-21.2 (0.00)**</td>
<td>-18.1 (0.00)**</td>
<td>-18.3 (0.00)**</td>
<td>-7.74 (0.00)**</td>
<td>-22.24 (0.00)**</td>
</tr>
<tr>
<td>Im-Pesaran-Shin, W-stat.</td>
<td>-20.4 (0.00)**</td>
<td>-16.8 (0.00)**</td>
<td>-21.4 (0.00)**</td>
<td>-13.5 (0.00)**</td>
<td>-23.2 (0.00)**</td>
</tr>
<tr>
<td>ADF - Fisher, (\chi^2) - stat.</td>
<td>335.1 (0.00)**</td>
<td>267.5 (0.00)**</td>
<td>360.8 (0.00)**</td>
<td>206.8 (0.00)**</td>
<td>387.2 (0.00)**</td>
</tr>
<tr>
<td>PP - Fisher, (\chi^2) - stat.</td>
<td>1043 (0.00)**</td>
<td>830.8 (0.00)**</td>
<td>2496 (0.00)**</td>
<td>288.5 (0.00)**</td>
<td>3385 (0.00)**</td>
</tr>
</tbody>
</table>

Note: The Levin-Lin-Chu test assumes common unit root processes (see Levin, Lin and Chu, 2002). The Im-Pesaran-Shin test (Im, Pesaran and Shin, 2003), the Fisher-ADF test and the Fisher-PP test (Maddala and Wu, 1999, and Choi, 2001) assume individual root processes. P-values are given in parentheses, * and ** denote significance at the 5% and 1% level, respectively. \(\Delta \) and \(\Delta^2 \) denote that the variable is in first and second difference, respectively.

The null hypothesis of non-stationarity is not rejected for any of the variables that enter the long run part of the model, i.e. log of consumption prices (\(c_p \)), log of unit labor cost (\(u_l c \)) and log of import prices (\(p_i \)). While the log of exchange rates between USD and each country's local currency (\(e \)) show signs of being stationary, the unemployment rates are clearly not. The same tests on the first differences are for the most part rejected. However, according to the Im-Pesaran-Shin test and the two Fisher tests, the null of unit root for the inflation rates are not rejected. The Levin-Lin-Chu test rejects the null with a significance level below 1 percent, while the test statistics of the Im-Pesaran-Shin test has a p-value equal to 0.07. In addition to the variables in Table 1, we use the price of crude oil measured in dollars, and ADF-tests reveal that this variable is \(I(1) \). Keeping in mind that these tests have low power, on most parts the unit root tests support the stationarity assumptions when it comes to the growth rates entering the dynamic part of equation (7). Furthermore, the tests also reveal that the variables in levels, which are entering the long run part of (7), are non-stationary.

9 As for the coordination indices these are sometimes constant for long periods, and as such are not applicable to unit root testing. However, as they are indices and therefore bounded processes, they will not introduce spurious non-stationarity to the model.
Pedroni (1999) suggests a suite of seven tests designed to test the null hypothesis of no cointegration in dynamic panels with multiple regressors and a rank equal to 1. The first four tests are based on the within panel estimator (see Hsiao, 1986). The last three tests are labeled Group Mean Panel Tests by Pedroni, and are calculated by pooling along the between dimension. The tests allow for heterogeneity of the long-run coefficients and autoregressive parameters under both the null and the alternative.

While macro panels typically exhibit cross-sectional dependence, the panel unit root tests and the Pedroni panel data cointegration tests all assume cross-country independence. As shown in Banerjee et al. (2004) and Banerjee and Carrion-i-Silvestre (2004) using Monte Carlo simulations, falsely assuming cross-sectional independence causes severe size distortions. We have computed the Pedroni tests using RATS codes written by Peter Pedroni, where inclusion of time dummies in order to control for this type of cross-sectional dependence is optional. The test statistics of the seven tests, both with and without time dummies, are shown in Table 2 in the same order as in Pedroni (1999). As can be seen from the table, the null of no cointegration is clearly rejected when time dummies are not included, while the tests are inconclusive when time dummies are included.

Table 2: Panel cointegration tests

<table>
<thead>
<tr>
<th>Pedroni (1999) Panel cointegration tests</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogeneous intercepts included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedroni stats.</td>
<td>-1.9[0.06]*</td>
<td>2.5[0.01]**</td>
<td>2.3[0.02]**</td>
<td>2.1[0.04]**</td>
<td>3.8[0.00]***</td>
<td>3.5[0.00]***</td>
<td>3.4[0.00]***</td>
</tr>
<tr>
<td>Heterogeneous intercepts and time dummies included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedroni stats.</td>
<td>2.1[0.04]**</td>
<td>-0.7[0.46]</td>
<td>-1.7[0.08]*</td>
<td>-1.7[0.09]*</td>
<td>-0.1[0.92]</td>
<td>-1.9[0.06]*</td>
<td>-1.8[0.07]*</td>
</tr>
</tbody>
</table>

Note: Tests 1-4 are based on the within panel estimator (see Hsiao, 1986). Tests 5-7 use the between dimension, see Pedroni (1999). The test are performed using Pedroni’s RATS code (Pedroni, 2006). P-values are given in parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level, respectively.

Also the Pedroni tests have low power, especially when 39 time dummies (as is the time dimension of our data set) are included. The tests nevertheless give some support to the assumption that the variables of the long run part of (7) are in fact cointegrated.

4.2. Nickell-bias

Nickell (1981) shows that OLS estimation may be inconsistent when applied to models that include fixed effects and a lagged dependent variable. The bias is of the order 1/T, where T is the number of

10 We are indebted to Professor Pedroni for providing us with the latest version of the code.
observations along the time dimension of the panel. The panel data set used in this paper is an unbalanced dataset, and the time dimension varies from 21 to 37 when lags of variables are included.11 Hence, it is likely that the ‘Nickell bias’ will be very small. Moreover, Judson and Owen (1999) largely confirm this and show that OLS estimation of dynamic fixed effects models perform well for $T \geq 30$, i.e. with a T dimension similar to ours. Even when $T = 20$, the fixed effects estimator was almost as good as the alternatives (GMM and Anderson-Hsiao).

4.3. Poolability

The pooled panel data regression is valid only under the assumption that the slope coefficients are homogeneous across countries. As shown by Pesaran and Smith (1995), if homogeneous coefficients are falsely imposed, the pooled estimator is inconsistent even if T approaches infinity. The test statistics of all homogeneity restrictions in our pooled model is: $\chi^2(105) = 301.26 [0.00]$. Hence, the test clearly rejects the null of homogeneous coefficients. However, as pointed out by Baltagi (1995, Ch. 4) the pooled model can yield more efficient estimates at the expense of bias, and one must therefore balance the two concerns.

We have chosen to assume homogeneous coefficients. Our main objective in this analysis is to investigate the role of coordination in wage bargaining for price setting. Therefore, existing price equations constitute the most important benchmark in this process. We believe that the effect of coordination is best assessed if our price model otherwise replicate reasonably well the findings of others. The estimation results presented in the next section show that the pooled model is in fact in line with other empirically specified price equations, both in single country studies and when using a panel of countries. This indicates that the estimator of the pooled model probably has very little bias.

4.4. Non-spherical errors

The OLS estimator assumes spherical errors. Consequently, we must test the assumption of homoskedasticity and error independence in the panel regressions. We consider three cases of non-spherical errors, namely serially correlated errors, contemporaneous correlations and panel heteroskedasticity.

Because of the dynamic nature of our model specification the test for first order auto regressive errors in Table 3 indicates serially uncorrelated errors. However, there will most likely be contemporaneous

11 See the appendix for the regression period for each country.
correlations in a macro panel like ours. Therefore, we have included time dummies in order to correct for such cross-country dependence. In addition, we have included the price of crude oil as a proxy for economic shocks in the global economy. Furthermore, in the column labeled M2 in Table 3 we also present a Cross-Section SUR (PCSE) estimator. This estimator allows for unrestricted and unconditional correlation between the contemporaneous residuals.

A panel homoskedasticity test using a likelihood ratio test between the log-likelihood value of the fixed effects specification with complete parameter heterogeneity ($l_{\text{restricted}}$), where the residual variances are restricted to be equal, and the sum of the log-likelihood values from the separate (unrestricted) models ($l_{\text{unrestricted}}$), i.e.:

$$\chi^2(14) : -2(l_{\text{restricted}} - l_{\text{unrestricted}}) = 59.5 \ [0.00]^{**},$$

where the p-value is given in square brackets. The null of homoskedasticity across countries is clearly rejected, so we should use estimation techniques that are robust to panel heteroscedasticity. We have used the estimated residuals of the single country analysis to correct for the cross-country heteroskedasticity prior to the panel estimation. The correction is done by multiplying all variables for each country with the respective estimated residual variance. In Figure 3 we show the density distributions of the residuals for each country before and after this correction. As we can see, the correction envelopes reasonably well distributed residuals. The SUR (PCSE) estimation in M2 in Table 3 is conducted on unadjusted data because this estimator is robust to panel heteroscedasticity.
4.5. Identification

Unit labor costs (ulc) and the price of imports (pi) are explanatory variables in our consumer price equation (7). As the consumer price variable itself might influence unit labor costs, the ulc variable could be treated as an endogenous variable in the estimation of (7). Similarly, according to the pricing to market theory importers may set their prices dependent on the consumer prices in the country they are operating in. This may entail the use of instrumental variables to correct for potential simultaneity problems.

However, the Durbin-Wu-Hausman test indicates that both unit labor costs and price of imports are exogenous variables. The test has two steps; first we estimated an equation for Δulc using its own lags and an index of the degree of employment protection (EP), level and lagged, as instruments (lags of Δcpi were found to be insignificant). An equation for Δpi was estimated using Δpi_{t-2}, Δe, and Δpo_t as instruments. Second, we included the estimated residuals from the two above equations as explanatory variables in the equation for Δcp separately. The residuals from the Δulc equation had a t-value equal to 0.52 (t-probability: 0.60), and the residual from the Δpi equation returned a t-value equal to 0.18 and a t-probability of 0.86. Hence the residuals had no significant effect on Δcp indicating that Δulc
and Δpi may be treated as exogenous variables. In M4 in Table 3 we nevertheless report an IV estimator where we treat Δulc and Δpi as endogenous variables.

5. Empirical Results

The sample comprises 468 observations, but 14 of them are accounted for by including impulse dummies to control for large residuals (t-values between 4.6-25.7) due to special events in the sample period. The estimation results are as summarized in Table 3.

Model M1 is estimated using OLS with heteroskedasticity-corrected standard errors (see Section 4.4). In model M2 we present a Cross-Section SUR (PCSE) estimation. While the model in M1 corrects for cross-sectional heteroskedasticity, the SUR (PCSE) estimation in M2 also corrects for contemporaneous correlations between countries. Since the standard errors of the coefficients are only moderately changed, the results from this estimation suggest that the problems with contemporaneous correlations in model M1 are rather small.

In M3 we exclude the CO variable and include four dummies instead. $DCO=2$ is 1 when $CO=2$ and zero otherwise, $DCO=3$ is 1 when $CO=3$ and zero otherwise, and so on. When $CO=1$ all dummies are zero. Hence, the corresponding coefficients measure the estimated effect on consumer prices by moving from $CO=1$ to another level. While the effect of increased coordination is restricted to be the same regardless of the initial level of coordination in M1, the separate effects are estimated freely in M3.

As explained in the previous section, Δpi and Δulc were found to be exogenous variables using the Durbin-Wu-Hausman test. Therefore, in models M1-M3 we have treated both Δulc and Δpi as exogenous variables. In model M4 we nevertheless show the results of IV estimation treating Δulc and Δpi as endogenous variables. All exogenous variables, dummies and $\Delta pi_{t-1}, \Delta pi_{t-2}, \Delta ulc_{t-1}, \Delta e, \Delta po_{t-1}, EP$ (an index of the degree of employment protection), EP_{t-1}, BRR (the benefit replacement ratio) and BRR_{t-1} are instruments in this regression. The Sargan-test for the model specification M4 supports the validity of the instruments. Moreover, treating Δulc and Δpi as endogenous variables does not change the results noticeably.
Table 3: Panel estimation results of the determinants of consumer prices in 15 OECD countries, 1964(-80) — 2000. The dependent variable is Δcp

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.122 (4.5)**</td>
<td>0.133 (3.8)**</td>
<td>0.103 (3.9)**</td>
<td>0.107 (4.1)**</td>
</tr>
<tr>
<td>$(cp-uc)_{t-1}$</td>
<td>-0.039 (-3.2)**</td>
<td>-0.041 (-2.7)**</td>
<td>-0.039 (-3.2)**</td>
<td>-0.038 (-2.8)**</td>
</tr>
<tr>
<td>$(uc-pi)_{t-1}$</td>
<td>-0.018 (-4.0)**</td>
<td>-0.014 (-3.5)**</td>
<td>-0.018 (-4.0)**</td>
<td>-0.019 (-4.2)**</td>
</tr>
<tr>
<td>Δcp_{t-1}</td>
<td>0.271 (7.9)**</td>
<td>0.260 (6.8)**</td>
<td>0.272 (7.9)**</td>
<td>0.291 (5.3)**</td>
</tr>
<tr>
<td>Δcp_{t-2}</td>
<td>0.091 (3.0)**</td>
<td>0.086 (2.1)**</td>
<td>0.093 (3.1)**</td>
<td>0.090 (3.0)**</td>
</tr>
<tr>
<td>Δuc</td>
<td>0.387 (18.1)**</td>
<td>0.411 (17.7)**</td>
<td>0.386 (17.9)**</td>
<td>0.358 (6.0)**</td>
</tr>
<tr>
<td>Δpi</td>
<td>0.028 (2.2)*</td>
<td>0.018 (1.1)</td>
<td>0.027 (2.1)*</td>
<td>0.031 (1.5)</td>
</tr>
<tr>
<td>Δur</td>
<td>-0.025 (-3.3)**</td>
<td>-0.030 (-3.6)**</td>
<td>-0.025 (-3.2)**</td>
<td>-0.026 (-5.3)**</td>
</tr>
<tr>
<td>Δpo</td>
<td>0.021 (3.6)**</td>
<td>0.021 (1.7)</td>
<td>0.022 (3.6)**</td>
<td>0.021 (2.5)*</td>
</tr>
<tr>
<td>Δe_{t-1}</td>
<td>0.034 (4.6)**</td>
<td>0.042 (4.6)**</td>
<td>0.034 (4.6)**</td>
<td>0.033 (6.1)**</td>
</tr>
<tr>
<td>CO_{t-1}</td>
<td>0.0020 (3.2)**</td>
<td>0.0025 (3.6)**</td>
<td>0.0019 (4.1)**</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$DCO=2_{t-1}$</td>
<td>0.0061 (1.3)</td>
<td></td>
</tr>
<tr>
<td>$DCO=3_{t-1}$</td>
<td>0.0083 (1.9)</td>
<td></td>
</tr>
<tr>
<td>$DCO=4_{t-1}$</td>
<td>0.0100 (2.4)*</td>
<td></td>
</tr>
<tr>
<td>$DCO=5_{t-1}$</td>
<td>0.0115 (2.7)*</td>
<td></td>
</tr>
<tr>
<td>Std. error in %</td>
<td>0.90</td>
<td>0.94</td>
</tr>
<tr>
<td>$N_{AR,1}$</td>
<td>-0.286 [0.78]</td>
<td>0.026 [0.56]</td>
</tr>
<tr>
<td>Sargan test $\chi^2 (7)$ =</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Note: The columns marked M1 and M3 show estimation using OLS with heteroskedasticity-corrected standard errors (see Section 4.4). Cross-Section SUR (PCSE) estimation on unadjusted data is presented in column M2. M3 is identical to M1 except that there are dummy variables instead of the coordination variable CO. Estimation using IV on heteroskedasticity-corrected series and treating Δpi and Δuc as endogenous variables is shown in column M4. All exogenous variables, dummies and Δpi_{t-1}, Δpi_{t-2}, Δuc_{t-1}, Δcp, Δur, Δpo, Δe_{t-1}, Δe_{t-1}, EP, EP_{t-1}, BRR and BRR_{t-1} are instruments relative to this regression. t-values are given in parentheses and p-values are given in square brackets. * and ** denote significance at the 5% and 1% level, respectively. $N_{AR,1}$ has a standard normal distribution under the null of no 1. order autoregressive errors. The Sargan test (Sargan, 1964) is χ^2 distributed under the null of valid instruments, and the degrees of freedom are given in the parenthesis.

In the estimations, the price of crude oil is included both as a level and differenced variable. The price of oil may act as a proxy for the price of intermediate goods. This is relatively established in empirically estimated price equations. How it should be implemented theoretically in the analysis in Section 2 is however not clear. It is nevertheless found to have an insignificant effect on prices in the long run, and therefore excluded from the long-run relationships. The exchange rate between the USD and the local currency (E) is included as an explanatory variable in the short-run part of the models. We believe that changes in the exchange rate against the USD and changes in the world market price of oil may correct for some common shocks in the panel. In addition we have included time dummies.
The outcomes of the estimations demonstrate that changes in consumer prices in the short run are determined by changes in the price of imports (insignificant in M2 and M4), unit labor costs, the unemployment rate, the price of oil (insignificant in M2) and the lagged exchange rate. Higher unit labor costs, price of imports and price of oil, and a depreciation of the exchange rate are empirically estimated to increase inflation. A short-run effect of the unemployment rate indicates evidence in favor of a pro-cyclical markup.

The long-run solution of M1 is shown in Table 4. The results are in line with the common finding in the literature; in the long run there is a roughly 50-50 percent weight on unit labor costs and import prices, respectively. This means that an increase in either the unit labor costs or the price of imports of one percent increases the level of consumer prices by approximately 0.50 percent. In the table c_i is a country-specific constant.

Table 4: Long-run solution of model M1 in Table 3. Long-run t-values in parentheses

<table>
<thead>
<tr>
<th>LONG-RUN SOLUTION: M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$cp = c_i + 0.53 \text{ (-)} ulc + 0.47 \text{ (3.2)} pi + 0.053 \text{ (2.5)} CO$</td>
</tr>
</tbody>
</table>

More interestingly for the focus of this paper is the long-run coefficient of 0.053 with a corresponding t-value equal to 2.5 on CO. This implies that a movement from, say, 2 to 3 on the coordination score, will increase the level of consumer prices by 5.3 percent. Correspondingly, a complete decentralization of wage bargaining, i.e. a movement from 5 to 1 on the index, is thus supposed to decrease the level of consumer prices by approximately 21 percent in the long run. Nevertheless, the effect of a change in coordination is slow. The loading coefficient indicates an increase in the price level following a unit increase in the coordination index of only 0.20 percent the following year. Half of the deviation from the long run solution is corrected for after approximately 11.5 years. As can be seen from M3, the restrictions in M1 of a monotonically increasing effect of increased coordination on consumer prices are clearly not rejected, formally: $\chi^2(4) = 0.76$ which corresponds to a p-value equal to 0.94. However, coordination has a slightly stronger estimated impact on consumer prices in M3 as compared to M1.

12 See inter alia, Ashworth and Byrne (2003), Asteriou et al. (2002), Boug et al. (2006) and Bårdsen et al. (1998).
On the whole, these results are quite remarkable, and suggest that the low level of real wages in countries with a coordinated wage bargaining system at least partly stems from higher prices. Seen together with empirical wage-equations, the results indicate that there are two separate effects of coordination on unemployment; first, coordination increases the (price) markup over wages, which lowers demand and increase unemployment, second, coordination lowers the wage markup over prices, which raises demand and decrease unemployment. This suggests that increased coordination of wage bargaining has a clear negative effect on real wages and an ambiguous effect on unemployment, consistent with the empirical evidence cited in the introduction.

6. Conclusions
The objective of this paper was to investigate the hypothesis that coordination of wage bargaining increases the level of consumer prices since union coordination may influence on entry barriers and competition in product markets. The empirically specified price equations estimated in this paper are based on panel data for 15 OECD countries observed from the 1960s to 2000. The main finding is a significant long-run coefficient (0.053, t-value 2.5) of the coordination variable CO. A movement from a completely coordinated regime to a fully uncoordinated regime will according to these empirical results decrease the long-run price level by 21 percent.

Furthermore, the results indicate that the level of consumer prices in the short run is determined by the price of imports, unit labor costs, the unemployment rate, the price of oil and the exchange rate. In the long run, the price level is affected positively by unit labor costs and the price of imports. The long-run coefficients of unit labor costs and the price of imports reconcile very well with the common findings in the literature, i.e. that the two variables are approximately of equal importance for the consumer prices.

The finding in this paper may offer an explanation for why empirical research on the impact of coordination of wage bargaining on unemployment has been inconclusive. While increased coordination reduces wage claims, and hence lowers unemployment, it also increases the price markup, which raises unemployment. However, it is worth noting that the empirical evidence referred to in the introduction suggests that the best macroeconomic performance is associated with a very high level of coordination of wage bargaining. If so, the moderating effect coordination at this level has on wages outweighs the adverse effect it has on prices.
The price effect from union coordination can serve as an explanation for the sustainability of the coordinated regimes in many countries. A common characteristic of countries with a coordinated regime is that the employer organizations are encouraging the system, at least implicitly, and in the light of these findings it is easy to see why. As coordination moderates the pay claims and increases prices, the firms in these coordinated regimes may consider themselves better off due to decreased real wages. At the same time, there are most certainly institutional variations in the labor markets across the panel that can lead to different national effects of a hypothetical change in the degree of coordination. Exploring these aspects is beyond the realm of the focus of this paper.
References

European Industrial Relations Review (EIRR). Monthly publication.

Nickell S, Nunziata L, Ochel W, Quintini G (2001). The Beveridge Curve, Unemployment and Wages in the OECD from the 1960s to the 1990s. LSE, Centre for Economic Performance (CEP).

Appendix

The data consist of annual time series from 1960 for some countries and up to 2000 for all, for a selection of variables for the 15 OECD countries indicated in the table below. Some of the variables do not exist for the whole period, and similarly some countries' variables are not available. The longest time series is for the period 1964-2000, and the shortest is for the period 1980-2000. Consequently, we possess an unbalanced panel data set.

Most of the data (except for the CO variable) used in this paper is retrieved from or constructed by using the Organisation for Economic Co-operation and Development (OECD) Economic Outlook and Main Economic Indicators (MEI) Databases.13

List of countries in the data sample

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>REGRESSION PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1968-2000</td>
</tr>
<tr>
<td>Austria</td>
<td>1968-2000</td>
</tr>
<tr>
<td>Belgium</td>
<td>1972-2000</td>
</tr>
<tr>
<td>Canada</td>
<td>1964-2000</td>
</tr>
<tr>
<td>Denmark</td>
<td>1972-2000</td>
</tr>
<tr>
<td>Finland</td>
<td>1971-2000</td>
</tr>
<tr>
<td>France</td>
<td>1972-2000</td>
</tr>
<tr>
<td>Ireland</td>
<td>1980-2000</td>
</tr>
<tr>
<td>Italy</td>
<td>1966-2000</td>
</tr>
<tr>
<td>Japan</td>
<td>1965-2000</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1973-2000</td>
</tr>
<tr>
<td>Norway</td>
<td>1976-2000</td>
</tr>
<tr>
<td>Sweden</td>
<td>1968-2000</td>
</tr>
<tr>
<td>UK</td>
<td>1966-2000</td>
</tr>
<tr>
<td>USA</td>
<td>1966-2000</td>
</tr>
</tbody>
</table>

13 By using Xvision Fame 8.0.2, a programme licensed by SunGard Data Management Solutions.
Description of variables

CP – Consumer prices
The CP variable is constructed by using a Purchasing Power Parity index (PPP) and multiplying it with the consumer price index for USA (CPI\textsubscript{US}), which is 1 in 2000. The PPP variable is a price relative which measures the number of units of each country’s currency that are needed in the country to purchase the same quantity of an individual good or service as 1 USD will purchase in the US, i.e. $PPP_i = \frac{P_i}{P\text{US}}$, where P_i and $P\text{US}$ are the price levels in country i and in US, respectively. The calculation gives us:

$$CP_i = PPP_i \cdot CPI\text{US} = \frac{P_i}{P\text{US}} \cdot \frac{P\text{US}}{P\text{US,2000}} = \frac{P_i}{P\text{US,2000}}$$

The denominator ($P\text{US,2000}$) is the price level in the US for year 2000 and is simply a constant, which just adds to the constant in the regression.

CO – Wage Setting Coordination Scores
These data are retrieved from Professor Lane Kenworthy’s dataset

The coordination scores consist of an index from 1-5:\(^{14}\)

\begin{itemize}
\item 1 = Fragmented wage bargaining, confined largely to individual firms or plants (Canada, Ireland 1960-69 and 1981-87, New Zealand since 1988, United Kingdom since 1980, United States)
\item 2 = Mixed industry- and firm-level bargaining, with little or no pattern-setting and relatively weak elements of government coordination such as setting of basic pay rate or wage indexation (Australia since 1992, France, Italy in most years)
\end{itemize}

3 = Industry-level bargaining with somewhat irregular and uncertain pattern-setting and only moderate union concentration (Denmark in most years since 1981, Finland in a few years, Sweden since 1994)

Government wage arbitration (Australia prior to 1981, New Zealand prior to 1988)

4 = Centralized bargaining by peak confederation(s) or government imposition of a wage schedule/freeze, without a peace obligation (Belgium and Finland in most years, Ireland 1970-80 and 1987-93)

Informal centralization of industry- and firm-level bargaining by peak associations (Italy since 1993, Netherlands since 1983, Norway in some years, Switzerland) Extensive, regularized pattern-setting coupled with a high degree of union concentration (Germany, Austria since 1983)

5 = Centralized bargaining by peak confederation(s) or government imposition of a wage schedule/freeze, with a peace obligation (Denmark 1960-80, Ireland since 1994, Norway in some years, Sweden 1960-82)

Informal centralization of industry-level bargaining by a powerful, monopolistic union confederation (Austria prior to 1983)

Extensive, regularized pattern-setting and highly synchronized bargaining coupled with coordination of bargaining by influential large firms (Japan)

PI – Price of imports
The ratio of import value in local currency and import volume is used as a proxy for the price of imports.

PO – Price of oil
The world dated price of Brent crude oil in USD per barrel multiplied with the average annual exchange rate between the local currency and USD, so that the variable proxies the price of oil in local currency.
UR – Rate of unemployment
The OECD standardized unemployment rate gives the number of unemployed persons as a percentage of the civilian labour force.

ULC – Unit Labor Costs
ULC is an index of unit labour costs (2000=100) provided by the OECD.

E – Exchange Rate
E is the exchange rate given by USD ($)/Local currency; average spot rates.

EP – Employer Protection
The data comprise an index of the degree of employer protection. Data provided by Dr. Luca Nunziata, Nuffield College, University of Oxford, UK, see Nunziata (2005). The series are extended with the 1995 value to year 2000.

BRR – Benefit Replacement Ratio
The data comprise an index of benefit replacement ratio. Data provided by Dr. Luca Nunziata, Nuffield College, University of Oxford, UK, see Nunziata (2005). The series are extended with the 1995 value to year 2000.
Recent publications in the series Discussion Papers

379 E. Lund Sagen and F. R. Aune (2004): The Future European Natural Gas Market - are lower gas prices attainable?
380 A. Langørgen and D. Rønningen (2004): Local government preferences, individual needs, and the allocation of social assistance
381 K. Telle (2004): Effects of inspections on plants’ regulatory and environmental performance - evidence from Norwegian manufacturing industries
382 T. A. Galloway (2004): To What Extent Is a Transition into Employment Associated with an Exit from Poverty
383 J. F. Bjørnstad and E. Ytterstad (2004): Two-Stage Sampling from a Prediction Point of View
384 A. Bruvoll and T. Fæhn (2004): Transboundary environmental policy effects: Markets and emission leakages
386 N. Keilman and D. Q. Pham (2004): Empirical errors and predicted errors in fertility, mortality and migration forecasts in the European Economic Area
387 G. H. Bjørnland and H. Hungnes (2005): The commodity market
389 B. Halvorsen (2004): Accounting for differences in choice opportunities in analyses of energy expenditure data
393 F. R. Aune, S. Kverndokk, L. Lindholt and K.E. Rosendahl (2005): Profitability of different instruments in environmental policy effects: Markets and emission leakages
396 Z. Jia (2005): Spousal Influence on Early Retirement Behavior
397 P. Frøenger (2005): The elasticity of substitution of superlative price indices
399 J. Larsson and K. Telle (2005): Consequences of the IPPC-directive’s BAT requirements for abatement costs and emissions
400 B. Halvorsen and Runa Neshbakken (2004): Accounting for differences in choice opportunities in analyses of energy expenditure data
403 F. R. Aune, S. Kverndokk, L. Lindholt and K.E. Rosendahl (2005): Profitability of different instruments in environmental policy effects: Markets and emission leakages
406 Z. Jia (2005): Spousal Influence on Early Retirement Behavior
407 P. Frøenger (2005): The elasticity of substitution of superlative price indices
411 J. Larsson and K. Telle (2005): Consequences of the IPPC-directive’s BAT requirements for abatement costs and emissions
412 R. Aaberge, S. Bjerve and K. Doksum (2005): Modeling Concentration and Dispersion in Multiple Regression
414 K. R. Wangen (2005): An Expenditure Based Estimate of Britain's Black Economy Revisited
415 A. Mathiassen (2005): A Statistical Model for Simple, Fast and Reliable Measurement of Poverty
416 F. R. Aune, S. Glomsrud, L. Lindholt and K.E. Rosendahl: Are high oil prices profitable for OPEC in the long run?
418 D. Fredriksen and N.M. Stolen (2005): Effects of demographic development, labour supply and pension reforms on the future pension burden
419 A. Alstadsæter, A-S. Kolm and B. Larsen (2005): Tax Effects on Unemployment and the Choice of Educational Type
420 E. Bjørn (2005): Constructing Panel Data Estimators by Aggregation: A General Moment Estimator and a Suggested Synthesis
421 J. Bjørnstad (2005): Non-Bayesian Multiple Imputation
422 H. Hungnes (2005): Identifying Structural Breaks in Cointegrated VAR Models
423 H. C. Bjørnland and H. Hungnes (2005): The commodity currency puzzle
447 G. Liu (2006): A causality analysis on GDP and air emissions in Norway
451 P. Frenger (2006): The substitution bias of the consumer price index
452 B. Halvorsen (2006): When can micro properties be used to predict aggregate demand?
454 G. Liu (2006): On Nash equilibrium in prices in an oligopolistic market with demand characterized by a nested multinominal logit model and multiproduct firm as nest
456 L-C Zhang (2006): On some common practices of systematic sampling
457 Å. Cappelen (2006): Differences in Learning and Inequality
461 T. Ericson (2006): Time-differentiated pricing and direct load control of residential electricity consumption
464 K.M.Heide, E. Holmøy, I. F. Solli and B. Strom (2006): A welfare state funded by nature and OPEC. A guided tour on Norway's path from an exceptionally impressive to an exceptionally strained fiscal position
466 S. Hol (2006): The influence of the business cycle on bankruptcy probability
467 E. Reed Larsen and D.E. Sommervoll (2006): The Impact on Rent from Tenant and Landlord Characteristics and Interaction
468 Suzan Hol and Nico van der Wijst (2006): The financing structure of non-listed firms