High-Frequency Trading

En ønsket utvikling?

av Martin I. Thon og Kjetil K. Torsvik

Veileder: Jøril Mæland

Utredning i fordypnings-/spesialområdet: Finansiell Økonomi

NORGES HANDELSHØYSKOLE

Denne utredningen er gjennomført som et ledd i masterstudiet i økonomi og administrasjon ved Norges Handelshøyskole og godkjent som sådan. Godkjenningen innebærer ikke at høyskolen innestår for de metoder som er anvendt, de resultater som er fremkommet eller de konklusjoner som er trukket i arbeidet.
Sammendrag

Denne masterutredningen omhandler handelsmetoden High-frequency trading (HFT) og ulike strategier som benyttes i forbindelse med metoden. Utredningen ser på hvordan likviditet og effisienz blir påvirket av HFT.

Vi har sett på ulike strategier som kan anvendes ved bruk av HFT og som påvirker markedet på ulike måter. Det ble gjennomført en spørreundersøkelse hvor formålet var å avdekke holdninger til HFT og bevisstheten rundt HFT på Oslo Børs. Respondentene i undersøkelsen var alle aktører i finansbransjen som har tilknytning til Oslo Børs. Av de 20 aktørene som ble spurt var det bare halvparten som ønsket å svare på vår undersøkelse. Av de som svarte, var det en høy prosentandel som ikke hadde informasjon eller ville svare på visse spørsmål rundt HFT. Gjennom intervjuer, litteratursøk og spørreundersøkelsen gjorde vi følgende funn:

- Likviditeten i markedet blir bedre ved økt bruk av HFT.
- Det er uklart om effisienz bedres for investorene.
- Volum på børsar hvor HFT anvendes har økt betraktelig.
- Flere markedsplasser investerer i handelsplattformer som tilrettelegger for HFT, blant annet har Oslo Børs gjort dette.
- Det er et økende tilbud i utlandet for co-location. Oslo Børs tilbyr ikke dette direkte, men indirekte gjennom sitt strategiske samarbeid med London Stock Exchange som har et co-location tilbud.
- Aktører i markedet ønsker mer transparens om hvilke aktører som benytter HFT. Oslo børs ser ingen grunn til at dette skal være offentlig informasjon.
- Flash trading er en handelsmetode som har fått mye negativ oppmerksomhet på grunn av sin likhet med front running. Flash trading er ikke et tilbud i Norge, siden det ikke tilfredsstiller Oslo Børs sitt krav om transparens.
- Det er høyest økning av aktører som benytter HFT i USA. Stadig flere markedsplasser i verden legger til rette for HFT og det forventes en økning i bruk av HFT.

Ut i fra disse punktene konkluderer vi at; en økning av HFT er ønskelig både for Oslo Børs, som tjener mer på økt volum, og investorer som får tilbudt bedre likviditet.
Forord

Denne masterutredningen er vårt avsluttende arbeid på Norges handelshøyskole. En slik oppgave byr på mange utfordringer og vi har selv følt at vi har vært gjennom en modningsprosess.

Utredningens tema kom vi frem til etter å ha fattet interesse i en pågående rettssak mot to investorer som er anklaget for å ha manipulert en aksjebudsjett og dermed også markedet. Vi ønsket selv bedre kunnskap om slike aksjebudsjetter og handelsmetoden HFT som aksjebudsjetter kan bruke til handel av finansielle verdipapirer på forskjellige børs. I løpet av skriveprosessen har vi også funnet ut at dette er en lite dokumentert handelsmetode i Norge. Vårt mål er å hjelpe med å belyse handelsmetoden og de forskjellige aspektene rundt bruken av HFT.

Oppgaven har gitt oss mange utfordringer underveis, og innhenting av informasjon har vært en av disse utfordringene. Vi har foretatt flere intervjuer og sendt ut en spørreundersøkelse for å finne ut mer om HFT og holdninger norske aktører innen finansbransjen har til denne handelsmetoden. Vi håper at vi klarer å formidle disse holdningene på en riktig måte, og at lesere finner oppgaven interessant.

Vi vil avslutningsvis rette en takk til vår veileder; førsteamanuensis Jørl Mæland ved Norges Handelshøyskole for alle innspill, faglig støtte og råd hun har kommet med gjennom hele prosessen.

Bergen, desember 2010

Kjeil K. Torsvik

Martin I. Thon
Innholdsfortegnelse

<table>
<thead>
<tr>
<th>Kapittel</th>
<th>Innhold</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Sammendrag</td>
</tr>
<tr>
<td>3</td>
<td>Forord</td>
</tr>
<tr>
<td>5</td>
<td>Figurer</td>
</tr>
<tr>
<td>1</td>
<td>Innledning</td>
</tr>
<tr>
<td>2</td>
<td>Metode</td>
</tr>
<tr>
<td>3</td>
<td>High-frequency trading teori</td>
</tr>
<tr>
<td>3.1</td>
<td>Fremvekst av HFT</td>
</tr>
<tr>
<td>3.2</td>
<td>Algoritmer i HFT</td>
</tr>
<tr>
<td>3.3</td>
<td>HFT og likviditet</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Market maker</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Maker-taker modellen / likviditetsrabatt</td>
</tr>
<tr>
<td>3.4</td>
<td>Handelsstrategier</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Statistisk arbitrasje</td>
</tr>
<tr>
<td>3.4.2</td>
<td>“Oppdeling”</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Aggressiv strategi</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Forskjellige aksjeklasser med samme utsteder</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Kalman filter</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Likviditetsarbitrasje</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Hvordan utnytte korrelasjon</td>
</tr>
<tr>
<td>3.5</td>
<td>Hvordan evaluere ytelsen til en HFT strategi</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Sammenlignbare forholdstall</td>
</tr>
<tr>
<td>3.6</td>
<td>Markedseffisiens og HFT</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Flash trading</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Dark pools</td>
</tr>
<tr>
<td>3.8</td>
<td>HFT på børs</td>
</tr>
<tr>
<td>3.8.1</td>
<td>HFT i USA</td>
</tr>
<tr>
<td>3.8.2</td>
<td>HFT på London Stock Exchange</td>
</tr>
<tr>
<td>3.8.3</td>
<td>HFT på Oslo Børs</td>
</tr>
<tr>
<td>4</td>
<td>Resultater og analyse</td>
</tr>
<tr>
<td>4.1</td>
<td>HFT og utfordringer for fremtiden:</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Flash crash</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Handel på feil informasjonsgrunnlag</td>
</tr>
<tr>
<td>4.2</td>
<td>Utvikling av finansmarkedene</td>
</tr>
<tr>
<td>5</td>
<td>Konklusjon</td>
</tr>
<tr>
<td>6</td>
<td>Begreper og forkortelser</td>
</tr>
<tr>
<td>7</td>
<td>Bibliografi</td>
</tr>
<tr>
<td>8</td>
<td>VEDLEGG</td>
</tr>
<tr>
<td>8.1</td>
<td>Vedlegg 1: Intervjuer</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Intervju med Nordnet og Netfonds</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Intervju med Jarle Johansen, Finanstilsynet</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Intervju med Thomas Borchgrevink v. markedsovervåkning Oslo Børs</td>
</tr>
<tr>
<td>8.2</td>
<td>Vedlegg 2: SPØREUNDERSØKELSE</td>
</tr>
<tr>
<td>8.3</td>
<td>Vedlegg 3</td>
</tr>
</tbody>
</table>
Figurer

Figur 1: Utøvelsetid i forhold til holde periode ... 12
Figur 2: Profitt fordelt på servicetilbydere i et finansmarked .. 19
Figur 3: Bollinger bands ... 23
Figur 4: Predator strategi ... 29
Figur 5: Maximum drawdown, måling fra bunn til topp .. 35
Figur 6: Dark Pools ... 40
Figur 7: Utvikling av HFT markedsandelør i USA ... 43
Figur 8: Aktører på børs i USA .. 43
Figur 9: LSE spread på ordrebok fra jan 00 til juli 2009 .. 48
Figur 10: Hva legges i begrepet HFT? .. 58
Figur 11: Brukere av HFT på Oslo Børs? .. 59
Figur 12: HFT og volum på Oslo Børs ... 60
Figur 13: HFT og risiko .. 61
Figur 14: HFT bruk offentlig informasjon? ... 62
Figur 15: Tilfører HFT likviditet? .. 64
Figur 16: HFT og effisiens ... 64
Figur 17: Flash crash 6.mai 2010 ... 70
"High-frequency trading" (HFT) er en ny måte å handle finansielle verdipapirer i finansmarkedet. Handlemetoden er lite omtalt i Norge. HFT inkluderer flere ulike handelsstrategier, og felles for strategiene er at handlene har høy frekvens og rask utførelse.

I utredningen vil vi først forklare hva HFT er. Vi beskriver hvordan HFT ble til og hvordan den har utviklet seg frem til i dag. Videre vil vi utvikle strategier innen HFT, og hvordan HFT har påvirket markedene bli forklart. Vi har sett på hvordan HFT fungerer i USA, England og i Norge. Investeringsbanker i USA er regnet som pionerer på området HFT; det var amerikanske selskaper som utviklet HFT og de har kommet lengst i utviklingsprosessen. Det er fra amerikanske marked er vi har kunnet hente mest informasjon om emnet. England og Norge ligger litt lengre bak USA, ikke nødvendigvis rent teknologisk, men erfaringsmessig. HFT har blitt aktivt brukt i handel i over 10 år på amerikanske børs. HFT har vært grunnlaget for mye spekulasjon ved krakk eller enkeltstående hendelser som episoden 6. mai 2010 hvor Dow Jones børsen i USA falt kraftig i løpet av sekunder. Siden de fleste som benytter HFT nekter å la seg intervjuere eller snakke om HFT oppstår mye spekulasjon rundt HFT og påvirkningen dette har på finansmarkedet.

Ved å studere det amerikanske markedet kan vi lære av deres utvikling på området. Dette gjør at Norge kan bli bedre rustet mot potensielle fremtidige problemer ved utvidet bruk av HFT. Rettsaken mot Svend Egil Larsen og Peder Veiby, som er dømt for markedsmanipulasjon (saksnr: 10-094868MED-OTIR/05 Oslo tingsrett høsten 2010), er den første saken hvor en HFT aktør er den ene handelsparten i en handel. Dommen i denne saken gir grunnlag for å stille spørsmål om det norske rettsvesen er oppdatert på den teknologiske utviklingen i finansmarkedet. Dette skal vi prøve å belyse i denne utredningen.

Forkjempere for HFT mener at denne handlemetoden tilbyr bedre likviditet og effisiens til markedet, og at markedene derfor blir bedre ved at HFT eksisterer. Verdipapirene HFT aktører handler i, vil få høyere omløphastighet og vil blir mer riktig priset ved at prisavvik raskere blir justert. Kritikere mener at likviditet blir forvekslet med volum og at det er bare likviditet så lenge markedsutsiktene er gode. HFT vil bare forsterke eventuelle nedganger og
tilfører ingen verdi til finansmarkedene mener andre kritikere. Problemstillingen vår ble derfor: Hva er HFT og er dette en ønsket utvikling for Oslo Børs? Dette ville vi finne ut ved å spørre kvalifiserte personer i Norge som hadde kunnskap om finansmarkeder og handelsmetoder.
Problemstilling:
Hva er high-frequency trading? Er dette en ønsket utvikling for Oslo børs?

2 Metode

Vi har valgt en kvalitativ metode og har tilegnet oss informasjon om Oslo Børs både gjennom intervjuer og gjennom en spørreundersøkelse (vedlegg 2).

Reliabilitet er et mål på hvor pålitelig datamaterialet er. Andre faktorer som er viktig å ta hensyn til er stabiliteten og ekvivalensen til datamaterialet.

Stabilitet refererer til graden av samsvar mellom data om samme fenomen som er samlet inn ved hjelp av samme undersøkelsesopplegg, på ulike tidspunkt (Grønmo, 2004).

I vår datainnhenting har vi benyttet intervjuer i ulike sammenhenger. Noen av intervjuene er gjort for å få generell kunnskap om HFT. I en slik sammenheng har stabiliteten vært mindre avgjørende, da bred kunnskap har vært viktigere enn spesifikk forskning på et spesielt del- emne. I sammenheng med vårt forsøk på å belyse hvordan aktører på Oslo Børs ser på HFT, har stabiliteten vært mer avgjørende.

Selv om reliabiliteten er høy, er det ikke sikkert at disse data er relevante eller treffende for det vi har til hensikt å studere (Grønmo 2004). Datamaterialet kan ha lav validitet, selv om reliabiliteten er høy. I spørreundersøkelsen og intervjuene er det derfor viktig at spørsmålene vi stiller gir svar som kan brukes til å belyse vår problemstilling korrekt.

Analysen vår er utført på bakgrunn av finansiell teori, fagartikler, dybdeintervjuer og en spørreundersøkelse. Det er svært mange forskjellige meninger om bruken av HFT er bra eller dårlig for utvikling av markedet. Vi har forsøkt å samle inn informasjon som gjenspeiler begge holdningene til utviklingen. Dette er gjort for å få et balансert syn på hva man mener HFT gjør med markedene. Gjennom Norges Handelshøyskole sine databaser har vi funnet artikler som omtaler emnet og spesielt hvordan markedene i USA har blitt påvirket av dette. De fleste artiklene omhandler markedene i USA, men vi har også funnet noen for London.

Det er meget få artikler som behandler dette emnet i forhold til norske markeder. Informasjonen vi har funnet frem til er kvalitativ og vi har derfor basert denne delen av oppgaven på kvalitativ metode.
For å få dypere kunnskap om emnet i Norge har vi kontaktet banker, meglere, investorer og rådgivere, som alle har mer inngående kunnskap om emnet. Intervjuene er gjennomført både via telefon og per e-post. Dybdeintervjuene er brukt i beskrivelsen av hvordan aktørene mener HFT har påvirket Oslo Børs de seneste årene. I vår spørreundersøkelse spurte vi 20 kjente norske investeringsbanker og meglere om deres holdninger til HFT. Kriterier for å bli respondent i vår spørreundersøkelse var at de var norske aktører med tilknytning til Oslo Børs. Spørreundersøkelsen var anonym og bestod av ti spørsmål som alle handlet om hva de mente inngikk i HFT og om deres holdninger i forhold til bruk av HFT på Oslo Børs. Av de spurte var det bare halvparten som ønsket å svare på spørsmål om HFT.

Etter en samtale med Per Eikrem, kommunikasjonsdirektør på Oslo Børs, kom det frem at selv Oslo Børs har vanskeligheter med å teste hvem som står for HFT og volumet de representerer. En kvantitativ test på hvordan likviditet og effisiens har blir påvirket av HFT sitt inntog på Oslo Børs var derfor lite egnet. Vi valgte da kvalitativ innhenting av informasjon. Hadde vi klart å gjennomføre en kvantitativ analyse ville det gitt oppgaven enda en dimensjon, men dette er per dags dato ikke mulig. Derfor vil dette være en god problemstilling for fremtidig masterutredninger, da slik data trolig vil bli tilgjengelige etter hvert.
High-frequency trading (HFT) er blitt et samlebegrep som inneholder forskjellige måter å handle på og ulike strategier for kjøp og salg av finansielle verdipapirer. Felles for disse er at handelen gjøres hyppig og svært raskt. De aller fleste forbinder HFT med automatiserte handlestrategier gjennomført av programmer på kraftige datamaskiner. Programmer som gjennomfører HFT er ofte karakterisert ved at de handler svært fort og holder på aksjer i svært kort tid. Programmene som kjøres på disse kraftige datamaskinene analyserer markedsdata ved å anvende algoritmer for å utnytte handlemuligheter. Disse handlemulighetene kan være tilgjengelige i alt fra bare en brøkdel av et sekund til flere timer. Strategien ved HFT er ikke å finne lavt prisede eller feilprisede aksjer på bakgrunn av fundamentalanalyse, for å høste gevinst når prisene på disse endrer seg over et langsiktig perspektiv. Ved HFT handler det om å høste bare en brøkdel av en krone pr aksje i løpet av kort tid, faktisk helt ned i millisekunder, basert på arbitrasje eller bare veldig små svingninger i en aksje.

En annen karakteristikk av HFT er at de kan sende ut hundrevis eller tusenvis av ordrer i markedet de opererer i, hvert sekund. De går så inn og ut av kortsiktige posisjoner mange ganger hver dag, altså handler de med høy frekvens. Med tusenvis av slike kortsiktige posisjoner vil disse ørene som de tjener per aksje akkumuleres til signifikante positive resultater ved handelsstopp hver dag. HFT benytter kvantitative investeringsprogrammer på datamaskiner for å eie disse kortsiktige posisjonene i finansielle instrumenter som for eksempel aksjer, opsjoner, futures, ETF (Exchange Traded Funds), valuta og alle andre instrumenter som er mulig å handle elektronisk med (Alldrigde, 2010).

En som benytter seg av HFT har behov for å handle verdipapirer svært raskt. Dette må ikke forveksles med begrepet ”low-latency trading” altså å handle med lav forsinkelse. Generelt refererer ”lav forsinkelse” til hastigheten det tar fra man legger inn ordren til at handelen faktisk blir utført, eller registrert. Det er ikke nødvendigvis slik at denne ordren er sendt ut fra en aktør som benytter HFT. På den andre siden vil HFT referere til rask omsetning av kapital som behøver lav forsinkelse for å få fortjeneste. ”Low-latency” kan altså være en helt egen strategi når det kreves en høy hastighet på utøvelse for å utnytte arbitrasje på øyeblikkelige prisforskjeller (Alldrigde 2010).
Det er viktig å skille mellom elektronisk handel, algoritmisk handel og systematisk handel.

- Elektronisk handel refererer til muligheten til å overføre ordrene elektronisk i forhold til for eksempel over telefon, post eller personlig. Dette er et uttrykk som er på vei bort siden nesten all handel på børsene i dag skjer elektronisk. På Oslo Børs er all handel elektronisk.

- Systematisk handel: Systematisk handel refererer til datamaskinstyrte handelsposisjoner som kan holdes i en måned, en dag eller bare et minutt, og som derfor kan være HFT. Et eksempel på systematisk handel kan være et dataprogram som går daglig, ukentlig eller til og med månedelig og som holder posisjoner over natten. Et slikt system er ikke et HFT system.
Et sant HFT system vil gjøre en hel rekke beslutninger, alt fra identifisering av underprisede eller overprisede verdipapirer, beste porteføljeallokering til utøvelse av handelen. Det som best skiller HFT systemene fra de andre systemene er de korte holdetidene i hver posisjon. Holdetiden vil variere, men aldri lenger enn en dag og aldri over natten. På grunn av deres raske utøvelse vil de fleste HFT systemene være fullautomatiske og vil inneholde både systematisk og algoritmisk handel.

Figur 1: Utøvelsetid i forhold til holde periode

(Aldrigde, 2010)
3.1 Fremvekst av HFT

Før i tiden ble handelen på Wall Street utført på en ganske enkel måte. For å gjennomføre en handel ville kjøpere og selgere samle seg på meglergulvet og forhandle til de ble enige om en pris.

Datastyrt handel ble kjent som systematisk handel ettersom det var systemet på datamaskinen som prosesserte data og utøvet kjøps- og salgsbeslutninger. For å forsikre optimal utførelse av systematisk handel, ble algoritmer skreddersydd til å etterligne etablerte beslutningsstrategier til tradisjonelle investorer. Dette førte videre til at begrepet algoritmisk handel ble til. Algoritmer kan bestemme hvordan datamaskinen skal prosessere en handel, gitt nåværende markedsforhold. Algoritmen kan være programmert til at de skal føre en aggressiv strategi på ordrer, for eksempel handle hvis en aksjekurs har en pris som de mener er nær riktig pris ut i fra deres beregninger. Algoritmen kan også bestemme om det skal være en stor handel eller mange små handler. Denne typen algoritmisk handel går som regel ikke ut på porteføljeallokering men på å ta raske kjøps- eller salgsbeslutninger uten å beholde noen aksjer over natten. Det er tre viktige grunner for ikke å holde sine posisjoner over natten:

13
2. HFT tillater full transparens over det man har på plasseringskontoen og tar bort behovet for å binde opp kapital.

3. Aksjeposisjoner som sies over natten og er lånefinansiert, får en rentekostnad som refereres til som en overnatts rentekostnad (carry rate). Denne renten er normalt satt rett over London InterBank Offered Rate (LIBOR). Når det da er volatilitet i LIBOR og det eksisterer en mulighet for (hyper)inflasjon, gjør dette at kostnadene ved å holde posisjoner over natta kan være stigende og derfor uprofitable for investorer. HFT strategier unngår derfor å beholde sine posisjoner over natta, og gjør at investorene får betydelige besparelser, noe som trengs i et tett/trangt lånemarkedet med høye renter.

Nøyaktighet, å kunne gjøre en handel umiddelbart uten tvil, tilbakeholdenhet eller forsinkelser, har spilt en avgjørende rolle ved bankers og andre investeringshus sine valg om å bytte fra mennesker til maskiner som den utøvende handleren.

De raske datamaskinene og tekniske algoritmene kan raskt prosessere store mengder informasjon som de finner i alle ordrene og prisbevegelsene til forskjellige verdipapirer i markedet. De kan handle på en høy frekvens basert på slike mønstre som de finner i dataene. Dette kalles "statistisk arbitrasje" og betyr at det er en ubalanse i forventede verdier til et verdipapir. Etter hvert som inntjeningen fra disse statistiske arbitrasjestrategiene ble allment kjent, ble de veldig populære. Dette ble starten på et innovasjonskappløp som fremdeles pågår. Det selskapet som klarer å ligge foran resten av markedet vil mest sannsynlig høste størst gevinst fremover. Fundamentalanalyse, teknisk analyse og investors syn på makro/mikro-utsikter har som regel vært investors hovedgrunnlag for å investere i en aksje
(Aldrigde 2010). Flere aspekter ved fundamentalanalyse og markedets mikrostruktur er benyttet i HFT modellene. For eksempel; ”hendelses arbitrasje” består av å handle på et momentum som oppstår etter en prisjustering, justeringen skjer ofte på grunn av ny fundamental informasjon om verdiapapiret. Tidspunktet når denne annonseringen kommer ut er vanligvis kjent på forhånd, men innholdet blir ikke kjent før selve annonseringen. Ved HFT hendelses-arbitrasje kan fundamentalanalyse bli brukt til gjetninger på den fundamentale verdien av de økonomiske variablene som skal bli annonser, for slik å bedre HFT prosessen (Hendershott et al. 2010).

Konkurranse mellom de forskjellige aktørene handler mye om hastighet. Den som klarer å kjøre en kvantitativ modell raskest vil først identifisere og handle på markedsineffisien og vil da tjene mest. I tillegg til dette er det viktig å få ned tiden det tar fra man plasserer en ordre til at ordren er registrert i markedet det handles i. For å øke handlehastigheten har investorer både begynt å kjøpe raskere og kraftigere datamaskiner som skal utføre handelen og investere i utvikling av teknologisk infrastruktur. Med dagens teknologi har man allerede utarbeidet svært raske fiberoptiske forbindelser, noe som gjør at infrastrukturens begrensninger er lysets hastighet. Investorer har derfor begynt å kjøpe serverplasser så nært den aktuelle markedsplassen som mulig, dette kalles co-location, slik at signalforsinkelsen blir redusert. Teknologisk utvikling har gjort det mulig for børser å tilpasse seg den nye teknologidrevne kulturen, og de tilbyr markedsplasser som er tilrettelagt for rask handel.

Etter hvert som nye markedsplasser har fremkommet, har normale datamaskiner ikke klart å holde tritt med Wall Street sine maskiner. Kraftrige algoritmer utøver millioner av order i sekundet og kontrollerer dusinvis av offentlige og private markeder samtidig. Algoritmer kan oppdage en trend lenge før vanlige investorer kan reagere, og slik endre ordre og strategier innen millisekunder.
3.2 Algoritmer i HFT

Vi skal nå se på hva algoritmene kan inneholde. Det finnes mange forskjellige variabler som settes inn i slike algoritmer og ved siden av hastigheten på handlene og co-location er dette det viktigste instrumentet i kampen om å slå markedet. Av den grunn er algoritmene svært hemmelige og godt beskyttet av eierne. Et eksempel på dette så vi da en ansatt i en stor investeringsbank stjal en slik algoritme med hensikt å selge den til andre aktører eller å bruke den selv. Investeringsbanken sørget for å få tyven arrestert meget raskt etter at tyveriet ble oppdaget (Goldstein, 2010).

Selv om sammensettingen av de forskjellige variablene og handlemønstrene til algoritmene er hemmelige, vet vi at vanlige aspekter som investorer legger inn i sine algoritmer kan være: Pris og volum, tid, fyll rate/utøvelsesrate, transaksjonskostnader, aggresjon og usynlighet, og vi vil definere disse begrepene og deres betydning for HFT slik:

Pris og volum: Pris og volum er nært beslektet da det er disse to sammen som bestemmer likviditet. Pris er selvsagt et viktig kriterium siden det er viktig å få så lav pris som mulig. Hvis man derimot bare har muligheten til å handle små mengder til den ønskede prisen (altså at det er dårlig likviditet) vil potensiell profitt være begrenset.

Tid: Hvor raskt en handel kan utføres er nøkkelen til suksess innen HFT, jo forttere du kan handle desto mer sannsynlig er det at man kan treffe ønsket tilbudt pris. Timing er også viktig, mange algoritmber beregner når det er mest sannsynlig at store kjøpsorderer finnes i markedet (for eksempel er det ofte mange kjøpsorderer på slutten av dagen).

Mange algoritmer bruker Time Weighted Average Price (TWAP) til å beregne gjennomsnittsprisen på et verdipapir over et spesifisert tidsrom.

Fyll-rate/Utøvelses-rate: Her beregnes sannsynligheten for at en ordre vil bli utøvd. Mange algoritmer bruker statistiske analyser og historiske benchmarks til å kalkulere utøvelsesrate prosenten og noen algoritmer kan til og med garantere at deres utøvelsesrate vil være over et visst nivå (for eksempel over 50 %).
Transaksjonskostnader: Hele kostnaden ved å utøve en handel må beregnes når man benytter HFT strategier, siden disse kostnadene må være lavere enn profitten per transaksjon for at algoritmen skal være suksessfull. Slike transaksjonskostnader tar ikke bare med gebyrer, provisjoner og skatter, men også estimerte ”latente” kostnader som alternativkostander, prisbevegelser ved utøvelse, flytende kjøp/salg spreads og mange flere ofte immaterielle og ”bevegende” mål.

Aggresjon og Usynlighet: Et algoritmisk handelsprogram vil selv kunne beregne de ovennevnte kriteriene og bestemme om de skal handle. Det varieres mellom handelsstrategier som aggressivt, passivt, om ordren skal deles opp eller om ordrene skal sendes ut i intervaller (”waving”). Med en aggressiv strategi vil man generere markedsordrer som treffer eksisterende kjøps- eller salgsbud, noe som gjør at de kan absorbere likviditet ved en gitt pris. På den andre siden vil passive strategier generere begrensede ordrer ved enten å delta på nåværende bud, eller et antall ”ticks” over eller under nåværende spread.

Alle elementene over er nøkler til å kjøre suksessfulle algoritmestrategier. Hvis disse strategiene i tillegg blir kjørt på en høy frekvens, altså flere ordrer per sekund, må flere faktorer som hastighet og forsinkelser tas med i beregningen. Det er først da de vil bli karakterisert som HFT strategier (TheHighFrequencyTradingReview 2010).
3.3 HFT og likviditet

Det er relevant å se på hvordan HFT påvirker likviditeten, fordi dette påvirker den enkelte investors mulighet til å få omsatt sine aksjer.

En definisjon på likviditet er: Hvor fort en investor kan selge eller kjøpe et stort kvantum av aksjer uten at det påvirker prisen ved lav transaksjonspris.

Definisjonen viser at det er flere aspekter som påvirker likviditeten:

- Hvor lang tid tar det før investoren får omsatt aksjene i markedet.
- Transaksjonskostnader: Hva kostnadene er ved å gjennomføre handelen.
- Elastisitet: Hvor mye prisen endrer seg ved salget/kjøpet.

Alle faktorene skal ses med hensyn på at det selges et stort kvantum av aksjer (Norges Bank, 2008).

En annen definisjon på likviditet er at det er likviditet hvis en får umiddelbart tilgang til aksjer til en riktig markedspris (TRADEWORX INC, 2010).

Begge definisjonene legger vekt på at aksjene investoren ønsker å selge/kjøpe skal være tilgjengelige for salg/kjøp når ordren legges. Definisjonen fra Norges Bank er mer omfattende ved at den tar hensyn til kvantum og tidsaspektet.

Et av hovedargumentene fra tilhengerne av HFT er at HFT er nyttig for aksjemarkedene, at det øker likviditeten i markedet, og at investorer får omsatt sine aksjer raskere og til en riktig pris. Transaksjonskostnader vil som regel bli redusert ved økt bruk av HFT, da HFT innebærer veldig mange handler pr dag.

Ved at HFT aktørene benytter seg av statistisk arbitrasje (utredes i neste kapittel), vil informasjon om priser spre seg raskt. Dette fører til at effekter fra langtidsinvestorer blir spredt mellom korrelerte aksjer. En slik spredning fører til en rettferdig prising av aksjer i en sektor.
HFT er en viktig del av økosystemet til markedet og er med på å gjøre det mer effektivt. Under vises en matrise på hvordan profitt fordeler seg mellom de forskjellige servicetilbyderne i markedet:

<table>
<thead>
<tr>
<th>Service tilbyder</th>
<th>Profittmargin</th>
<th>Service tilbudt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aksjemegler</td>
<td>1-5 cps (cents per share)</td>
<td>Markedstilgang, finansiering, ordre kanalisering, clearing</td>
</tr>
<tr>
<td>Børs</td>
<td>0.02-0.1 cps</td>
<td>Matching av kjøpere og selgere</td>
</tr>
<tr>
<td>HFT</td>
<td>0.1 cps</td>
<td>Likviditet og effektiv prising, dybde i ordrebok</td>
</tr>
<tr>
<td>Regulator f.eks. SEC</td>
<td>0.05 cps</td>
<td>Sikrer rettferdighet og gjennomsiktighet</td>
</tr>
</tbody>
</table>

Figur 2: Profitt fordelt på servicetilbydere i et finansmarked (Aldrigde 2010)

Det som skiller HFT fra andre servicetilbydere i dette markedet er at HFT aktørene risikerer sin egen kapital når de utfører market makingen. En slik risiko av kapital skjer selv om profittmarginene er små hver gang. Store inntekter genereres først når dette gjøres millioner av ganger hver dag.

Det er ikke gitt at HFT aktørene tilfører likviditet til markedet. En aktør som handler med en passiv strategi vil redusere aksjer i markedet, fordi de kjøper flere aksjer enn de selger, og dermed minses likviditeten. Aktive strategier går ut på å matche det som ligger i ordreboken, noe som fører til at handler som ikke har blitt utført, blir utført. Dette gir en bedre likviditet til markedet med forbehold om at det faller innfor de rammene definisjonen setter opp for likviditet.

Man kan måle om HFT tilfører likviditet hvis handleren kan gjennomføre en ordre uten å påvirke pris og dermed ikke gjøre aksjen mer volatil. Antall aksjer som selges og kjøpes bør også være balansert, siden for stor spredning vil føre til økt volatilitet. HFT vil være nyttig for markedet der handler som ellers ikke ville blitt gjennomført, blir gjennomført av HFT. Jo lenger HFT aktøren må holde på aksjene, desto større likviditet har blitt tilført, ved en minimal turnover er ikke nytten like stor. Grunnen til dette er at handelen ville blitt gjennomført selv uten innblanding av HFT aktøren (Brogaard, 2010).
3.3.1 Market maker

Et firma som tilbyr likviditet i aksjemarkedet ved at de tilbyr både en salgskurs og kjøpskurs kalles en "market maker”. En børs har som regel flere selskaper som fungerer som ”market makers” i forskjellige aksjer. Dette gjør at investorer som ønsker å selge/kjøpe aksjer får omsatt aksjene enklere, siden ”market makers” sørger for at det alltid vil ligge ordrer i ordreboken i visse aksjer. ”Market makeren” holder en viss mengde aksjer slik at den alltid kan tilby salgs av aksjer. Ved at selskapene som er ”Market makers” tilbyr likviditet, får de likviditetsrabatt på handel i aksjene (S.E.C, 2000).

Dette er interessant i forbindelse med HFT siden de forskjellige aktørene som tilbyr ”market making” i samme aksje, konkurrerer om de samme kundene. Derfor blir hastighet og høy frekvens viktige konkurransefaktorer. De med den raskeste datamaskinen vil kunne gjennomføre flest handler, og ved at det tildelas likviditetsrabatt for hver aksje som er solgt/kjøpt, tjener de også raskest penger. Den andre inntektskilden til ”market makers” er utnyttelse av forskjellen mellom kjøps- og salgskurs.

Denne servicen gjør at markedet blir mer likvid, siden det i ”alle” aksjer alltid vil være en salgspris og en kjøpspris. Dette gjelder spesielt for aksjer som vanligvis har et lite volum og lav likviditet.

3.3.2 Maker-taker modellen / likviditetsrabatt

Børser gir store meglarhus rabatt for å tilby likviditet til markedet. Dette gjelder for både salg og kjøpsordre. Vanlig praksis i USA er at meglarhusene får en ¼ penny for hver aksje de klarer å omsette i markedet (Wold, 2009).

Meglarhusene som får slike rabatter har programmert datamaskinene til å gjøre ekstremt mange handler i aksjer som har høyt volum og lav pris. Algoritmen kjører en strategi som kan generere høyest mulig inntekt fra likviditetsrabatten. Å tjene penger på selve aksjene er ikke noe nødvendighet, siden ved å kjøpe og deretter å selge samme aksje umiddelbart genererer de en ½ penny for hver aksje. Dette kan best illustreres med et eksempel:

En stor investor ønsker å kjøpe aksjer til en pris i intervallet 10 til 10,05 kr og legger ut et bud på f.eks. 100 aksjer til kr 10. Han får kjøpt dette, og legger dermed ut et bud på 500 aksjer til samme kurs. Slike handler vil en rabattdatamaskin fange opp, og den kjøper 100 aksjer til kr. 10,01. Det fører til at de får en inntekt på ¼ penny per aksje. Umiddelbart snur rabattdatamaskinen seg rundt, og legger ut 100 aksjer til 10,01 som blir solgt til den store investor. Dermed genererer rabattdatamaskinen en ¼ penny til.

Total har meglarhuset som får likviditetsrabatt tjent ½ penny per aksje omsatt, altså en inntekt på $ 2. Dette ser ikke veldig mye ut, men dette kan gjøres millioner av ganger og generere høyere inntekter (Blodget, 2009).
3.4 Handelsstrategier

Siden HFT er et samlebegrep kan det være mange forskjellige strategier og anvendelser av algoritmer som benytter seg av HFT. Vi skal her se litt nærmere på ulike strategier som kan inngå i HFT:

- Statistisk arbitrasje: Her ser man etter arbitrasjemuligheter i uregelmessigheter mellom grupper av aksjer som ligner på hverandre.
- Oppdeling: Strategi for å kunne kjøpe/selge store blokker med aksjer uten å påvirke markedsprisen.
- Aggressiv strategi: Utnytte handlemetoden til en investor.
- Par handel: Ligner statistisk arbitrasje, men bare mellom to aksjer eller beslektede instrumenter med samme utsteder.
- Volatilitets handel: Utnytter i hvilken grad en pris endres og ikke selve prisen på aksjer. En vanlig metode for å gjøre dette er ”Kalman filter”.
- Likviditetsarbitrasje: Her ser man etter arbitrasjemuligheter i aksjer som tilbyr en rabatt fordi de er illikvide.
- Utnytte korrelasjon, ved at det er flere aksjer enn det er makroøkonomiske parametre som påvirker aksjene. Dette fører til korrelasjoner mellom aksjene.

3.4.1 Statistisk arbitrasje

En slik metode kan hjelpe med vanskelig mønstergjenkjennelse og være nyttig ved sammenligning av priser for å komme frem til en systematisk handelsbeslutning (Aldrigde 2010). Dette er årsaken til at statistisk arbitrasje ligner på analyse metoden.

Graden av brudd på det historiske forholdet kan bli målt av antall standardavvik forholdet har flyttet seg vekk fra det historiske gjennomsnittet til verdiene som karakteriserer forholdet i utgangspunktet. For eksempel kan den interessante variablen være pris. Hvis prisforholdet mellom valutaene USA/CAD har økt over en kort periode med to eller flere standardavvik over den gjennomsnittlige historiske prisskjellen i forhold til USA/CHF nivået, vil en statistisk arbitrasjestrategi anta at dette er et uvanlig stort hopp i forholdet USA/CAD. Strategien vil derfor sannsynliggjør at USA/CAD skal reverseres tilbake mot historiske nivåer i nær fremtid. Handlestrategien vil derfor bli å innta en kort posisjon i USA/CAD. Hvis denne tilbakegangen faktisk oppstår vil strategien ha fått gevinst. Hvis den ikke oppstår vil en innlagt ”stop loss” bli aktivert, og strategien bokfører et tap (Aldrigde 2010).

Statistisk arbitrasje handler ikke bare om å oppdage statistiske uregelmessigheter i prinsnivåer. Det kan også brukes på andre variabler som korrelasjoner mellom to verdipapirer og tradisjonelle fundamentale forhold. Statistisk arbitrasjestrategier kan ”trenes” opp til å være dynamiske og tilpasse seg markedsforholdene. Gjennomsnittet til en variabel en aktør vurderer, hvor identifiserte statistiske forhold antas å være intakt, kan være beregnet som et bevegelig vektet gjennomsnitt hvor de siste observasjonene blir gitt mer vekt enn de tidligere observasjonene i beregningen. Til sammenligning kan standardavviket brukt i beregningen være beregnet ved å anvende bare et begrenset antall av de nyligste observasjonene, som da vil gjenspeile hvordan de økonomiske forholdene er nå (Aldrigde 2010).

Svakheter ved statistisk arbitrasjeforhold er at de ofte er tilfeldige eller uakte. I tillegg til de faktorene som tas med i beregningen av statistiske forhold, vil statistisk arbitrasjestrategier være påvirket av flere markedsforhold:

1. Det vil finnes en sannsynlighet for konkurs i de selskapene som utgir en eller begge av de valgte finansielle instrumentene det finnes et statistisk arbitrasjeforhold mellom. Tøffe markedsforhold, uventede endringer i lovgivning eller ulovlige handlinger som terrorhendelser kan ramme og ødelegge for selskaper over natta.

2. Transaksjonskostnader kan redusere all fortjeneste man kan få av statistisk arbitrasje handel, spesielt for investorer som benytter seg av en høy gjeldsgrad eller som har begrenset kapital.

De fleste vanlige statistiske arbitrasjestrategiene som bare bygger på statistiske forhold uten noe økonomisk bakgrunn klarer som regel å gi rimelige resultater. Statistisk arbitrasje basert på økonomiske modeller har derimot lengre levetid, siden de er basert på solide økonomiske prinsipper. Statistisk arbitrasjestrategier med økonomiske beregninger kan kalles fundamentale arbitrasjemodeller siden de utnytter avvik fra fundamentale økonomiske prinsipper.

Prisen på verdipapirer som handles hyppig vil være relatert på en eller annen måte, men de kan spre seg utover flere aktivaklasser og ha individuelle navn. Når det gjelder aksjer kan selskaper som utsteder disse tilhøre samme industri og derfor responsere likt til endringer i markedet. Alternativt, kan aksjer være utstedt av samme selskap, siden selskaper ofte utsteder aksjer i forskjellige klasser som gir forskjellige stemmeretter. Til og med aksjer av samme klasse utgitt av samme selskap, men som handles på forskjellige børs kan gi lønnsomme arbitrasjemuligheter ved avvik i pris i løpet av en dag.

Strategier som oppdeling (iceberging) og ordreintervaller, går ut på at man deler opp store ordrer til mange små deler, og sender dem i små pakker til markedet ved spesifiserte intervaller. Dette gjøres for å hindre påvirkning av markedspris. Hvis disse intervallene er tilstrekkelig "tilfeldig" sendt ut, vil de gjøre at den store handelen fra investoren ikke blir avslørt. Dette gjør at andre handlere og investorer som venter på store innkommende ordrer ikke ser den store ordren og prisen vil ikke bli endret som en følge av dette.

La oss si at en investor ønsker å kjøpe 1000 aksjer til maks kr 15,00. Aksjen handles til kr 14,50 i markedet nå. Mange investorer legger da ut en ordre på 1000 aksjer med pris 15,00 kr og dermed vil han mest sannsynlig få aksjen til denne prisen, men da betale mer enn markedspris. Alternativt kunne investoren brukt en oppdelingsalgoritme som vil dele opp investorens ordre til for eksempel 10 x 100 bolker. Dette kalles iceberging, fordi markedet bare vil se en ordre på 100 aksjer, altså toppen av isberget. Poenget er å få kjøpt mange aksjer uten at aksjeprisen påvirkes nevneverdig. Algoritmen kan så programmeres til å gå i markedet og kjøpe disse så billig som mulig med en maks pris på kr 15,00. Algoritmen tester markedet med for eksempel 100 aksjer til kr 14,40, den blir ikke kjøpt da det er under markedspris. Algoritmen prøver med nye 100 aksjer til kr 14,50, denne ordren går gjennom. Hvis investoren ikke får kjøpt 100 nye på kr 14,50 legger han ut 100 nye aksjer til kr 14,55 og denne blir kjøpt. Slik kan investoren holde på helt til han har kjøpt sin ordre på 1000 aksjer uten å måtte betale kr 15,00 for alle.

Her kommer HFT inn. En HFT vil typisk kunne oppdage at en investor har lagt ut en slik bulkordre og vil prøve å utnytte dette. HFT aktøren kan ikke se at noen legger ut oppdelte ordrer, men de kan mistenke det og så teste det. De ser at 100 ordrer ble solgt for kr 14,50, og så ble 100 nye ordrer solgt for kr 14,55 rett etterpå. Dette gjør at de mistenker oppdeling av ordren. HFT vil da gå i markedet og prøve å finne hva som er maksprisen til denne algoritmen. HFT sender ut en ordre på kr 17,00 for aksjen, men får ingen svar og den kansellerer ordren umiddelbart. Den tester kr 16,98 men får ingen handel og dermed kansellerer ordren igjen. HFT sender så ut nye ordrer som de kansellerer umiddelbart helt til de kommer til kr 15,00 pr aksje, hvor de får solgt 100 aksjer. De har nå slått fast hva som er makspris. HFT går da i markedet og kjøper opp så mange aksjer de klarer under dette nivået. Det som skjer er at investoren med oppdelingsalgoritmen ikke vil få solgt flere aksjer til under
kr 15,00 fordi HFT har kjøpt opp aksjene til disse prisene. HFT på sin side vil tilby alle sine aksjer til kr 15,00 til investoren, noe investoren nå kjøper da det ikke finnes andre alternativer. På denne måten vil investoren ”tape” mellomlegget av markedsprisen i utgangspunktet og hans egen makspris, og tilsvarende har HFT tjent dette. Dette er ikke risikofritt for HFT meglernen. Han løper en risiko siden han ikke vet hvor mange investoren skal kjøpe. Dette betyr at han kan bli sittende igjen med mange aksjer som han da må selge unna før markedet stenger, til prisen som er i markedet på det tidspunktet (Hirsch, 2009).

3.4.3 Aggressiv strategi

En HFT aktør forsøker å utnytte andre investorer, ved å predikere hvordan andre investorer kommer til å handle, basert på informasjon hentet i markedet. En slik strategi kan være aggressiv fordi HFT aktøren presser prisen ned/opp ved å handle tilsvarende aksjer som investoren prøver å kjøpe/selge.

En type aggressiv handelsstrategi kalles predatorstrategi. Denne strategien fungerer best når en meglør har informasjon om at andre skal selge aksjer som han også eier, for eksempel at et stort institusjonelt fond som et hedgefond eller pensjonsfond, må selge aksjer fordi de har kommet for nær eller over sine grenser for hvor mye de kan holde av verdipapiret. Meglern kan få denne typen informasjon fra analyser som HFT algoritmene har hentet inn i de forskjellige markedene. Det institusjonelle fondet må altså likvidere sine aksjer raskt og vil selge aksjene i markedet uten mulighet for å vente på gunstig pris.

Vi kan ta for oss et eksempel hvor vi har en meglør med en enkel predatorstrategi (alternativt kan det være flere predatorer). Her vil megleren velge optimal strategi etter hvilken likvideringsstrategi det institusjonelle fondet, som må selge aksjer, har. Vi antar at det institusjonelle fondets totale posisjon vil reduseres til null og forblir konstant etter dette. For å gjøre eksempelen i avsnittene under mer oversiktlig, kaller vi det institusjonelle fondet som må selge aksjer for Hedge og selskapet med predator algoritmen for Predator.

Hedge vil selge sine aksjer i et bestemt selskap på grunn av den nødvendige likvideringen, og dette oppdager predator algoritmen. Predator begynner dermed også å selge sine aksjer i samme selskap. Dette fører til at prisen på aksjen faller, og Hedge får en lavere
gjennomsnittskurs enn hvis ikke *Predator* hadde solgt samtidig. *Predator* vil helst ”front runne” *Hedge* ved å selge først og så kjøpe tilbake aksjene etter at *Hedge* har presset ned prisen ytterligere. Men siden *Hedge* og *Predator* har like rask handlehastighet vil de selge samtidig. Hvis *Predator* er en HFT aktør derimot, vil den muligens kunne selge først fordi de har analysert seg frem til at *Hedge* skal selge sine aksjer uansett pris. Prisen faller ikke bare fordi *Hedge* selger, men også fordi *Predator* selger sine aksjer. *Predator* selger aksjer helt til *Hedge* har kvittet seg med sin beholdning, da kjøper *Predator* tilbake aksjene ved en lavere kurs. Dette betyr at *Predator* nå får flere aksjer for samme investeringsbeløp som tidligere. Grunnet etterspørselen fra *Predator* vil aksjen bli presset til et nytt likevektsnivå. Det er to grunner til at *Predator* får en profit som følge av at *Hedge* selger:

1. *Predator* kan selge sine aksjer for en gjennomsnittspris som er høyere enn prisen han kan kjøpe de tilbake for, etter at *Hedge* har gått ut av markedet.

2. *Predator* kan kjøpe flere aksjer billig og ende opp med flere aksjer enn han i utgangspunktet hadde, helt frem til han når full kapasitet. Siden prisen på *Predators* eksisterende posisjon har gått ned, kan det se ut som om *Predator* har tapt penger på en ”mark-to-market” basis da likvidasjonen fant sted. I realiteten vil det å ha en posisjon som taper penger på en ”mark-to-market” basis være problematisk og dette kan være med på å friste *Predator* til å selge.

*Predator*strategien er med på å gjøre likvidasjonen ekstra dyr for *Hedge*. Når likviditeten trengs av *Hedge*, vil likviditeten være lavere på grunn av det faktum at markedet blir ”ensidig” siden *Predator* også selger sine aksjer. *Hedge* sin overskuddslikviditetskostnad utgjør like mye som det *Predator* tjener på å være predator. Vi kan også merke oss at *Predator* ikke utnytter langtidsinvestorene. Pris ”overshootingen” impliserer at langtidsinvestorene kjøper og selger aksjer til samme pris. Derfor har det ingenting å si for langtidsinvestorene om predatoren angriper byttet sitt eller ikke (Brunnermeier & Heje Pedersen, 2005).

En lignende strategi brukt ved HFT er å plassere små ordrer som blir trukket tilbake rett etter at andre har bydd over deres tilbud. Slik lurer de vanlige handlere ved at de byr opp prisen på aksjen, som så blir kjøpt til en høyere pris etter hvert som serien med små ordrer blir utøvd for
å fylle den store transaksjonen. Senere i prosessen vil "predator algoritmen" gå short i aksjen på den høyeste prisen den har nådd, fordi de antar at den vil gå tilbake til likevekten.

![Diagram](image)

Figur 4: Predator strategi

Panel A viser hvordan *Hedge* likviderer sin posisjon bestående av 8 aksjer. Panel B viser hvordan predatorstrategien fungerer. Her ser vi hvordan *Predator* selger og deretter får kjøpt flere aksjer for samme investeringsbeløp (Brunnermeier & Heje Pedersen, 2005).

3.4.4 Forskjellige aksjeklasser med samme utsteder

Noen selskap har flere aksjeklasser for selskapet sitt. Dette er vanligvis A og B aksjer der for eksempel A-aksjene gir flere stemmeretter enn B-aksjene på en generalforsamling. Målet med denne typen arbitrasje er å finne prisforskjeller som kommer fra informasjon som har blitt sluppet av selskapet. Dette kan oppstå ved at en av aksjeklassene er mer omsettelig enn den andre klassen, og dermed blir informasjonen implementert raskere i den aksjen som er mest likvid. Over tid regner man med at denne forskjellen vil utjevne seg, og dermed kan en HFT aktør kjøpe den aksjen som burde stige og selge den aksjen som burde synke i verdi.

Forskjellen mellom hvor fort aksjeklassene klarer å inkorporere informasjon skaper altså muligheten for informasjonsarbitrasje. Et problem med denne måten å handle på er at i den illikvide aksjen er et lavt daglig volum noe som kan føre til at det er vanskelig å få handlet i aksjen.
3.4.5 Kalman filter

Kalman filter er en matematisk metode som benyttes for å estimere mulige fremtidige verdier på for eksempel en aksje. Filteret benytter historiske data til å predikere verdiene, og oppdateres hele tiden ved at nye observasjoner blir inkorporert i den matematiske modellen. Kalman filteret kan deles inn i to deler; Tidsoppdateringsligninger og evaluering.

- Tidsoppdateringsligningens oppgave er å predikere nåværende status og kovarians for å lage a priori estimater for hva som skal skje i neste tidsperiode (forhåndsdefinert hva som er periodene).
- Evalueringen samler inn tilbakemeldinger og resultater og inkorporerer dette inn i a priori estimatet for å få et forbedret a posteriori estimat (Welch & Bishop, 2006).

Denne metoden brukes innenfor HFT. For eksempel tre aksjer, A, B og C, som alle er korrelerte. Hvis A øker med et tick og B øker med et tick, så kan man forutse på bakgrunn av korrelasjonen at C vil gå opp et tick.

For at det skal være mulig å handle på slike korrelasjoner må korrelasjonene være på mellom 0,5 og 0,8 (absolutes verdier). Disse korrelasjonene er også gjeldende for andre typer statistisk arbitrasjemetoder.

3.4.6 Likviditetsarbitrasje

Ved klassisk aktivaprisingslitteratur skal et finansielt verdipapir som gir besvær til en fremtidig investor, for eksempel i form av begrenset likviditet, tilby en høyere avkastning for å kompensere investoren for uleiligheten. Lavere likviditetsnivåer gjør det vanskeligere for investorer å komme seg ut av sine posisjoner, noe som kan føre til tap. På en annen side, hvis likviditet faktisk er priset inn i aktivafortjenesten, vil perioder med begrenset likviditet være med å tilby raske investorer meget profitable investeringsmuligheter. I følge flere studier, som for eksempel Amihud og Mendelson (1986), kan mindre likvide aksjer gi høyere gjennomsnittlig avkastning. Med det menes det ikke å handle illikvide aksjer basert bare på det at de er illikvide, men at den relativt høye gjennomsnittlige fortjenesten kommer mer som
en slags kompensasjon til fremtidige investorer for risikoen de påtar seg ved å holde disse mindre likvide aksjene.

Til sammenligning har Pástor og Stambaugh (2003), funnet ut at i hvert fall en andel av den observerte illikviditeten av finansielle verdipapirer kan spores tilbake til markedssårsaker. Hvis disse markedssårsakene er priset inn i de individuelle aksjeavkastningene, så vil markeds illikviditetsarbitrasjestrategier kunne gi konsistente positive unormale avkastninger på en risikojustert basis. De har også funnet ut at når man snakker om aksjer, vil aksjer der avkastningen er høyt eksponert mot variabilitet i markedets likviditet faktisk gi høyere avkastning enn aksjer som er isolert fra markedets likviditet.

Statistisk arbitrasjemuligheter oppstår på grunn av at langtidsinvestorer påvirker prisen på verdipapirene de ønsker å akkumulere eller likvidere. Siden verdipapirer er korrelerte med hverandre, vil en slik prispåvirkning spre seg til andre verdipapirer ved siden av de som er direkte påvirket av investoren. Statistiske arbitrasjemeglere sikrer at prispåvirkningen blir forflyttet systematisk over flere aksjesektorer, basert på korrelasjonsstrukturen i markedet. Når statistisk arbitrasjemeglere gjør dette, vil de øke likviditeten ved å forsikre seg om at prisen er rettferdig over flere sektorer og offentlig tilgjengelig informasjon blir konsistent reflektert. Statistisk arbitrasje er ikke uten risiko. Risikoen avhenger av evnen til markedsprisene til å gå tilbake til historiske eller forventede priser (Aldrigde, 2010).

3.4.7 Hvordan utnytte korrelasjon

Verdipapirer er korrelerte over flere markeder og aktivklasser. Korrelasjon kan oppstå av strukturelle eller statistiske grunner. Strukturelle korrelasjoner oppstår når et verdipapir er avledet av et annet. For eksempel:

- Når Telenors aksjer endres i pris, må kjøps og salgsopsjoner også endres i pris på grunn av deltaen til opsjonene.
- Når Telenor endres i pris, vil aksjer som følger indekser hvor Telenor er, som Oslo Børs, også endres i respons.
- Ved prisendring på et derivat, må også andre derivater som følger samme indeks, for eksempel Oslo Børs future kontrakter og verten til andre ETF’s, også bevege seg.
Statistiske korrelasjoner oppstår fordi verdipapirene er drevet av systematiske faktorer som inflasjon, regulerende politikk, valutapriser, økonomisk vekst osv. Siden det er langt færre systematiske drivere enn det er verdipapirer som er avhengige av dem vil korrelasjon mellom verdipapirer garantert eksistere (TRADEWORX INC, 2010).

Strukturell korrelasjon har en tendens til å være sterk, stødig og robust. Hvis dette ikke er tilfellet ville det oppstå ineffisens og arbitrasjemuligheter i markedet. Strukturell korrelasjon vil være gjeldende fordi det er færre makroøkonomiske faktorer som påvirker verdipapirmarkedet enn det er verdipapirer som omsettes på børsen. Som følge av dette vil aksjer i for eksempel samme bransje eller industri korrelere med hverandre, fordi de er avhengig av de samme makroøkonomiske variablene. På grunn av dette vil profitable muligheter basert på strukturell korrelasjon ofte være lett å identifisere, og det er stor konkurranse om å få utnyttet disse mulighetene. Konkurranse forhinder at den strukturelle pris divergensen blir for stor, noe som fører til at slike muligheter forsvinner fort og at det ikke blir mulig med store bets.

Den flyktige naturen til disse mulighetene betyr at man trenger enorme hastigheter for at man skal kunne få tak i dem før koncurrenter. Slike muligheter er ofte HFT's hovedtype handel, siden HFT spesialiserer seg på hastighet.

3.5 Hvordan evaluere ytelsen til en HFT strategi

Det finnes et utall av forskjellige handelsstrategier i investeringsverdenen, men de deler som regel et særpreg som gjør at de kan sammenlignes; avkastning og risiko, målt ved volatilitet. Avkastningen kan måles på forskjellige måter, per time, dag, månedelig, kvartalsvis eller årlig for å nevne noen. Det er derfor viktig at de strategiene man sammenligner, blir sammenlignet med samme avkastningsfrekvens.

De forskjellige HFT strategiernes avkastning kan sammenlignes ved å anvende flere ytelses mål. Årlig gjennomsnittlig avkastning kan for eksempel brukes. En gjennomsnittlig avkastningsverdi er en grei måte å finne sannsynlighetsfordelingen til avkastningen på. Høyere gjennomsnittlige avkastninger er som regel mer ønskelig enn lavere avkastninger, men gjennomsnittlige avkastning sier ingenting om spredningen av fordelingen/grupperingen av avkastningen rundt gjenomsnittet, et mål som kan være kritisk for investorer som er risiko-averse.

Volatiliteten til avkastningen måler spredningen av avkastningen rundt gjennomsnittlige avkastning, og er oftest beregnet som standardavviket til avkastning. Volatilitet, eller standardavviket, brukes ofte som en referanse på risiko. Standardavviket derimot, summerer gjennomsnittlige avvik fra snittet og tar ikke høyde for risikoen av ekstremt negative påvirkninger som kan ta vekk flere år med god ytelse (Bodie, 2009).

Et populært mål på ”tail risk” eller ”hale risiko”, altså en type risiko som oppstår når sannsynligheten for at en investering vil bevege seg mer enn tre standardavvik fra snittet er større enn det som er vist ved normaldistribusjon. Når en portefølje av investeringer settes sammen blir det antatt at distribusjonen av avkastningene vil følge et normalt mønster. Ved denne antagelsen vil sannsynligheten for at avkastningen vil bevege seg mellom gjennomsnittet og tre standardavvik, enten positiv eller negativ, være 99,97 %. Dette betyr at sannsynligheten for at avkastningen skal bevege seg mer enn tre standardavvik vil være 0,03 %, så godt som 0. Men, hale risiko konseptet betyr egentlig at distribusjonen ikke vil være normal, men skeiv, og vil ha tykkere hale. Den tykkere halen vil øke sannsynligheten for at en investering vil bevege seg mer enn tre standardavvik (Aldrigde, 2010).
3.5.1 Sammenlignbare forholdstall

De vanligste målene vil være Sharpe ratio, Jensen’s Alpha og Treynor. Sharpe ratio er mest sannsynlig det mest brukte innen sammenligning av ytelse. Noe av grunnen til dette er at det inneholder tre ønskelige mål: gjennomsnittlig avkastning, standardavvik og kapitalkostnad.

Den vanlige formelen for å finne Sharpe ratio er $SR = \frac{r_p - r_f}{\sigma_p}$ hvor r_p er forventet eller realisert, dersom en skal evaluere strategier en har utført, portefølje avkastning. r_f er risikofrirente og σ_p er porteføljenes standardavvik. Her vil det derimot være litt endring på denne formelen når det gjelder HFT siden de nesten uten unntak lar være å beholde sine posisjoner over natta. Derfor vil posisjonenes holdekostnader (carry cost) være tilnærmet 0. Dette gjør at ”High frequency” Sharpe ratioen vil i praksis kunne utregnes slik: $SR = \frac{r_p}{\sigma_p}$.

Sharpe ratio fungerer bra i forhold til HFT med tanke på å velge ut gjennomsnittlig varianseffektive verdipapirer.

Andre mål som brukes, men som ikke trenger å omdefineres for å bruke med HFT vil være:

- **Jensen’s alpha**: En risikojustert metode for å måle ytelse ut over det som er beregnet ved CAPM (Capital Asset Pricing Model), gitt porteføljenes beta og gjennomsnittlig markedsavkastning. Måletallet man da får er porteføljenes alpha.

 $Jensens\ Alpha = \alpha_p = r_p - [r_f + \beta_p (r_m - r_f)]$

 $\beta_p =$ beta til porteføljen, $r_m =$ forventet markedsavkastning.

Dette forholdstallet fungerer bra hvis avkastningen er normal distribuert og at investorene ønsker å dele sine beholdninger mellom en handlestrategi og en markedsportefølje. Forholdstallet kan lett manipuleres ved å belåne handelsstrategien. Implisitt tar Jensen’s alpha med i betraktningen variabiliteten til avkastningene som beveger seg likt med valgte indekser.

- **Treynor ratio** måler tjent avkastning utover det som kunne ha blitt tjent på en risikofri investering for hver enhet markedsrisiko. Det er altså et risikojustert mål på avkastning basert på systematisk risiko. Treynor ratio er veldig likt Sharpe ratio, men en viktig
forskjell er at Treynor ratio bruker beta, og ikke standardavviket, som et mål på volatilitet. \[Treynor = \frac{r_p - r_f}{\beta_p} \] (Bodie, 2009)

Markedseffisienshypotesen sier at prisen på verdipapirer reflekterer all tilgjengelig informasjon. For eksempel vil prisene på aksjer være avhengig av hvor mye informasjon som er tilgjengelig i effisiente kapitalmarkeder. Hvis alle har full tilgjengelighet på all informasjon på markedet, vil konkurransen i dette markedet være perfekt. Perfekt vil her si at aksjekursen er lik nåverdien av fremtidige kontantstrømmer fra aksjen. Dersom et marked er effisient med hensyn på informasjon, vil ikke handlestrategier som utnytter informasjonsforskjeller klare å produsere en alpha avkastning.

Det er tre forskjellige grader av effisiens. Informasjonen graderes etter hvor mye informasjon som er tilgjengelig.

- Svak effisiens er at markedsprisen reflekterer all informasjon lagret i historiske data.
- Halvsterk effisiens er at markedsprisen reflekterer all informasjon lagret i historiske data, og i tillegg all tilgjengelig offentlig informasjon
- Sterk effisiens er at all informasjonen er tilgjengelig, inkludert privat informasjon. (Bodie, 2009)

I et effisient marked endres kun markedspriser hvis det kommer ny informasjon til markedet. Siden ny informasjon ikke er predikerbar vil det heller ikke være mulig å predikere aksjeprisen.

Siden aksjer vil være priset på bakgrunn av tilgjengelig informasjon i markedet, er det ønskelig at et marked har sterkest mulig effisiens. Hvis et marked oppfyller hypotesen om effisiens, vil det ikke være mulig å tjene penger på små feilprisinger i markedet slik som ”kvante” modeller innenfor HFT gjør.

HFT aktørene som benytter slike kvantemodeller forsøker å tjene penger på misprising i aksjer. Hvis en slik strategi fungerer, blir det tvil om markedseffisienshypotesen holder. Aktørene som forsøker å utnytte dette handler på mikrosekunder, og forsøker å fange opp den minste feilprisingen. Informasjon i store mengder behandles ekstremt raskt for å klare å utnytte en eventuell misprising.
Ved at HFT aktørene benytter seg av en kvantestrategi betyr det at informasjon vil komme fortere til markedet på grunn av den korte behandlingstiden på informasjonen. Dette kan føre til at markedene blir mer effisiente, siden mer informasjon blir fortere inkorporert i aksjeprisen, og eventuelle feilprisinger blir oppdaget umiddelbart og utjevnet. HFT aktørene kan gjennom slike strategier være med på å senke volatiltilen i markedet, siden aksjer vil være priset på all informasjon som er tilgjengelig i markedet, og dermed vil de være mer stabile.

3.6.1 Flash trading

Et annet fenomen innenfor temaet markedseffisien er "flash trading". Flash ordrer er en del av HFT som gjør at noen investorer får muligheten til å se ordre f.eks. 0,03 sekunder før resten av markedet. Investorene får tilgang til denne informasjonen ved at de betaler en avgift til børsen de ønsker slik informasjon fra og som tilbyr flash-tjenesten. Ved at de bruker superraske datamaskiner som kan behandle store mengder data på kort tid, vil investorene/datamaskinene kunne kjøp og selge aksjer før vanlige investorer får muligheten til å se og reagere på ordren. Dette vil skape en fordel ved at maskinene har mulighetene til å se hvilke retning markedet beveger seg, og eventuelt reagere på bevegelsene. Slike flash ordre tilbys ikke på alle børser verden over (Kolakowski, 2009). USA har flere markedsplasser for aksjer noe som har ført til konkurranse mellom markedsplassene og de forskjellige børsene har brukt Flash trading som lokkemiddel (Johansen, 2010).

Første form for flash ordre var når handelen på børsen foregikk på "gulvet". Da det kom inn en ordre ble den først gitt ut muntlig til alle meglerne som var på gulvet, før ordren ble tastet inn i systemet slik at den ble tilgjengelig for alle som fulgte med på børsen. Meglerne på gulvet hadde muligheten til å kjøpe eller selge før det ble lagt inn i systemet der alle kunne se ordren. Flash handel slik som vi kjenner det i dag begynte for ca. et tiår siden på Chicago Board Option Exchange, Chicagos største børs. Det har videre utviklet over flere børser som for eksempel Nasdaq og Bats (Garcia, 2009).

En slik handel kan foregå på følgende måte: det legges inn en kjøpsordre på 5000 til kr. 100,50 på aksje X. I markedet ligger det salgsordre 5000 aksjer til kr. 100. Dette ville egentlig ført til at investoren som la inn kjøpsorden skulle få kjøpt aksjen til kr. 100, men ved at flash ordre eksisterer vil datamaskinen få informasjonen før andre investorer. Dermed kjøper

Flash ordre kan sammenlignes med ”front running” som er ulovlig. Dette er at aksjemeglere bruker informasjon fra kilder som ikke er kjent for markedet, og tjener penger på dette. Et eksempel kan være at en megl er har en klient som ønsker at de skal kjøpe aksjer i et selskap for dem, men før de kjøper til sin klient kjøper de seg opp selv. Prisen øker for klienten, mens megl eren tjener penger på denne differansen. På denne måten tjener megl eren penger på informasjon som kun er kjent for han.

Flash handel ble allment kjent gjennom media i USA i løpet av sommeren 2009 og det førte til store debatter om flash trading skulle være lovlig eller burde forbys. SEC kom med et forslag 17. september 2009 om at slik handel burde forbys. Mange av børsene som var tilbydere av flash trading valgte å slutte med dette da SEC kom med forslaget om å forby slik type handel. En av de få børsene som fortsatt tilbyr flash ordre heter Directe Edge. Forslaget om et forbud har skapt sterke reaksjoner blant dem som har interesser for at dette skal være lovlig (Anderson, 2010).

Flash handling kan føre til at det blir et ujevnt marked der visse investorer får en fordel fremfor meglere som ikke har tilgangen til å få se ordren før markedet.

Fordeler med flash trading er at det vil redusere kostnadene til de som ønsker å selge aksjer. For at en aksje skal bli ”flashet” må selgeren ønske det, og dette gjøres for å spare tid og penger. Hvis ordren ikke blir flashet påløper det en "routing fee", dette er en avgift børsen/megl eren? tar for å sende ordren til en annen børs der markedsprisen er lavere, og når ordren kommer frem kan prisen ha endret seg.

Flash trading er ikke mulig i Norge, siden det europeiske transparency-direktivet ikke tillater flash ordrer i Norge eller i resten av Europa (Eikrem, 2010).
3.6.2 Dark pools

Investeringsbanker tilbyr tjenester som ligner på dark pools i forhold til anonymitet, i form av handel gjennom deres tradingdesk. Ved å handle gjennom investeringsbanker vil ofte kostnadene bli mye høyere enn handel gjennom dark pools. Dette gjør at institusjonelle investorer ofte velger dark pools.

Det er tre forskjellige kategorier slik handler kan deles inn i:

- Handelsplasser der det er full anonymitet, der selger og kjøper ikke vet hvem som er deltagere i handelen
- Markedsplassen bestemmer prisen etter at alle dagens kjøps- og salgsbud er kommet inn. Dette kan ofte være markedsprisen. Her vil det være full anonymitet mellom kjøper og selger.
- Forhandlingsbaserte dark pools der markedsplassen setter sammen selger og kjøper som deretter forhandler seg i mellom om sluttprisen.

(Weidner, 2007)
Systemet ble utviklet av store investorer i USA, som hedgefond, pensjonsfond og forsikringsfond. Dette er aktører som ofte selger- og kjøper store blokker av aksjer, noe som vil påvirke aksjekursen hvis de skal handle i det vanlige markedet. Det har de siste årene kommet mange nye slike dark pools i USA, og diskusjonen oppstår om hvor mange av handelsplassene som vil overleve. Den kritiske faktoren som vil avgjøre dette er likviditet. Får ikke aktørene omsatt sine aksjer i en bestemt dark pool vil ordren måtte bli lagt ut i det offentlige markedet, noe som vil svekke posisjon til den illikvide dark poolen. Hvis det blir for mange dark pools kan dette føre til illikviditet blant dem, noe som kan føre til konsolideringer blant dark pools.

Det er mange forskjellige dark pools som opererer i USA. I vår tabell er et utvalg av forskjellige dark pools som fantes per oktober 2008 (Fitz-Gerald, 2008).

Fordelen for bankene som administrerer dark pools er at de får både inntekter fra kjøper og selger, i tillegg slipper de å betale kurtsje eller andre kostnader til børsen.
3.8 HFT på børs

3.8.1 HFT i USA

HFT har sitt utspring i USA og allerede i 1998 var det mulig med elektronisk handel. Overgangen til elektronisk handel skulle gjøre handel mer tilrettelagt for privatpersoner, men store investeringsbanker utnyttet dette ved å handle med datamaskiner og algoritmer.

HFT ble ikke kjent for mannen i gata før sommeren 2009, da en Goldman Sachs (GS) ansatt stjal en hemmelig algoritme fra GS. GS saksøkte den tidligere ansatte for tyveriet av algoritmen, og den tidligere ansatte saksøkte GS for at han ikke fikk innsyn til sin personlige ansatt fil. Saken mellom GS og den tidligere ansatte fikk satt lys på HFT, og alle de forskjellige formene for HFT i USA. Dette gjelder både automatiske ”market makers”, ”flash trading” og dark pools (Prime Brokerage, 2010).

Handelsvolumet av aksjer i USA har fra 2005 til 2009 steget med 164 %. Mye av dette kan tilskrives økningen av HFT handel på de amerikanske børsene. Det er gjort undersøkelser på hvor mye av handelen som foregår ved hjelp av HFT, og estimatene/resultatene som er kommet frem er at 50 – 70 % av volumet skjer gjennom HFT. Daglig handel fra 1999 til 2009 målt i antall aksjer handlet daglig har økt fra 671 000 (1999) til 9 367 000 (2009). Dette er en stor økning selv etter endringene som har skjedd i markedet og at antall aksjer som er notert har økt (Osaki, 2010). Inntektene vedrørende HFT ble først estimert til å være 21 milliarder dollar, dette estimatet har senere blitt endret til 8 milliarder dollar for 2009. Selv om HFT står for en ganske stor andel av volumet på de amerikanske børsene, er det en meget liten andel av aktørene som bruker HFT. Estimatene sier at det er så få som to prosent av aktørene som
benytter seg av HFT. Disse aktørene er til gjengjeld ofte store markedsaktører som de store investeringsbankene (Goldman Sachs, Citibank, Barclays), de største hedgefondene og de største aksjefondene (Tabb, Lati, & Sussman, 2009), (Gehm, 2010).

HFT tjener også på konkurranse mellom forskjellige børsen i USA. De forskjellige børsene betaler ofte en slags inngangsbonus, som for eksempel et par ører, til de som ankommer børsen først for å handle i gitte aksjer. Dette er en form for likviditetsrabatt. Disse små betalingene, spredt over millioner av aksjer, gjør at HFT investorer kan få profitt bare ved å handle enorme mengder aksjer, selv om de kjøper og selger med beskjedne tap.
3.8.1.1 “Co-location”

Det økende fokuset på handelshastighet blant HFT aktørene, har ført til at aktørene har begynt å kjøpe serverplass ved siden av børsens egne servere. Co-location ble først tilbudt i USA, der børsene solgte serverplasser til meglerhusene som ønsket økt hastighet. Serverne ble lokalisert i samme rom som børsens servere. Kortere distanse til børsens servere sørget for enda raskere tilgang til markedsplussene og informasjonen som blir sendt ut trengte ikke reise langt før den kunne bli behandlet av HFT aktørene sine algoritmer. Konkurransen mellom meglerhusene om serverplass har gått så langt at det diskuteres å innføre lik kabellengde på alle som har co-location. Dermed får alle meglerhusene med co-location informasjonen samtidig (Jacob Goldstein, 2010).

Kritikere av co-location mener at dette ikke kan være rettferdig ovenfor markedsaktørene som ikke har tilgang til co-location. Børsen selv mener dette er rettferdig, siden alle har muligheten til å kjøpe co-location ved at de opererer etter første mann til mølla prinsippet. Diskusjonen om rettferdighet går dermed ut på at ikke alle investorer har kapitalet det kreves for å investere i co-location og at dette blir forbeholdt de kapitalsterke som dermed får ytterligere konkurransefortrinn.

I forbindelse med co-location og HFT utviklet seg også et produkt som blir kalt ”direkte markedstilgang” (DMT), der medlemmer av børsen som har co-location selger direkte tilgang til børsen til blant annet HFT aktører. HFT aktørene som kjøper DMT slipper å gå gjennom megleren for å gjøre handelen og det er ingen som overvåker handlene. Det er de som selger DMT som får sitt navn på handelen. Problemet med dette er at det er ingen som kontrollerer handlene til kundene av DMT og de får handle fritt på børsen uten noen form for risikokontroll. SECs leder Mary L. Schapiro har følgende sammenligning i en rapport:

“Unfiltered access is similar to giving your car keys to a friend who doesn't have a license and letting him drive unaccompanied”. (S.E.C, 2010)

SEC har nå foreslått at forhold knyttet opp mot DMT skal reguleres på en mer kontrollert måte, ved at selgerne av DMT må implementere systemer som kontrollerer risiko bedre. Kort oppsummert vil dette være programmer som kontrollerer pre-handelsordrer, slik at ikke det blir sendt ordrer som er feil eller bryter regler.
SEC har i løpet av det siste året sendt ut høringer både på reguleringer av DMT og flash trading i USA. Tiltakene viser at det er en del forhold innenfor HFT som trenger en nøye gjennomgang i USA. Dette er for å sikre et rettferdig og transparent marked for alle investorer som deltar og ønsker å delta. SEC har nå tatt grep for å sørge for at dette er tilfellet. Hvilke regler og lover som blir gjeldende er i skrivende stund ikke helt klart, men NASDAQ sluttet å tilby flash handel umiddelbart etter at SEC la ut en høring om forbud.

Utviklingen i USA på HFT området er verdensledende, og USA burde derfor også ta føringen når det gjelder reguleringer og forbud mot forhold som fører til urettferdighet mellom markedsaktørene.
3.8.2 HFT på London Stock Exchange

London Stock Exchange (LSE) er en av verdens mest internasjonale børser med rundt 3 000 selskaper fra over 70 land som handler på deres marked. LSE er også en av verdens eldste børser som kan vise til handel 300 år tilbake. Over 400 selskaper, hovedsakelig investeringsbanker og aksjemeglere er medlemmer av LSE. Det antas at ca 35 - 40 medlemmer av disse driver med HFT (London Stock Exchange plc, 2010).

For første kvartal i 2010 var ca 33 % av antall handler og 32 % av verdi handlet et resultat av at minst én aktør av handelen var en HFT. Dette dekker også ordreboks utøvelser i Londons egen handlesektor i forhold til aksjer og strukturerte produkter. Beregninger viser at 8 % av antall handler og 9 % av handler som tilfører verdi har vært utført hvor begge sidene har vært HFT.

HFT kan være en bidragsyter til at gjennomsnittlig transaksjonsstørrelse på London Stock Exchange (LSE) har falt. Det er vanskelig å avgjøre hvor stor påvirkning HFT har alene, siden det er flere selskaper som driver med algoritmisk handel uten at det er karakterisert som HFT.

Fra år 2000 til 2009 vet man at det har vært økt bruk av HFT på LSE. I denne perioden er det registrert at det har vært en økning på over 147 millioner handler (noe som tilsvarer en økning på 1820 %), samtidig som gjennomsnittlig handelsstørrelse har blitt redusert med 854 % i samme periode (London Stock Exchange Group, 2010). Selv om man ikke kan se hvilke handler som relateres til HFT, og at det er flere faktorer som spiller inn, vil det være naturlig å anta at HFT har vært med på å påvirke denne statistikken. Det har vært en lignende utvikling i USA og der har forskning vist at HFT har en påvirkning på antall handler og handelsstørrelse.

I forhold til organiserte og gjennomsiktige derivatmarkeder, er markedsandelsprosenten som kan knyttes til HFT lav sammenlignet med kontantmarkedet. Derivatkontraktene som er mest attraktive for HFT aktører er de som har et stort antall deltakere, høy volatilitet og har høy likviditet. Slike kontrakter er mest sannsynlig indeks future kontrakter, og vil ha små forskjeller (tight spreads) mellom kjøp- og salgstilbud, noe som gjør at HFT kan gå inn og ut av posisjoner ofte og ikke sitte igjen med noen aksjer på slutten av dagen (flat ordre bok).
LSE selv tror at HFT utgjør en liten, men voksende, prosentandel av markedsandelen uten at det har en uheldig effekt på kvaliteten på derivatene. De tror også at det er mer sannsynlig at HFT vil gi mer likviditet noe som vil gjøre at investorer for et bedre bilde av priser (London Stock Exchange Group, 2010).

Vi skal her se litt videre på hvordan London Stock Exchange ser på HFT sin påvirkning på forskjellige faktorer:

- **Markedsstruktur**
 HFT har i utgangspunktet ikke noen kontroll over hvor stor minimum prisendring kan være, men ved at algoritmene kan dele opp store ordrer til mange veldig små bolker, vil de redusere både handelsstørrelser og spreads. Dette vil igjen føre til et press for å redusere tick størrelser. I følge LSE kan det være fordelaktig å definere en grense for minimum tick størrelse, da det ikke er ønskelig med uendelig lave tick størrelser som ikke vil være fordelaktig for deltakere i markedet. Hittil har markedet satt minimum tick størrelse selv og siden det har fungert effektivt har LSE ikke tro på at man trenger regulatorer som bestemmer tick størrelsene.

- **Kjøp-salg spread:**
 Det er mulig at spreads er mindre på grunn av HFT, men det kan argumenteres for at smalere spreads kommer av andre faktorer også. Grafen under viser at LSE sin spread på ordreboken. Generelt har spreaden falt gjennom det siste tiåret, selv om det er en merkbar økning sent i 2008, noe som sikkert kommer av flere faktorer men hvor en av disse må være finanskrisen.
LSE order book time-weighted best bid offer spreads

Figur 9: LSE spread på ordrebok fra jan 00 til juli 2009

(London Stock Exchange Group, 2010)

- **Volatilitet og prisformasjoner**

Foreløpig forskningsrapporter gjort på handel på FTSE100 aksjer som handles på LSE indikerer at HFT selskaper mest sannsynlig skaper likviditet når det er dyrt i markedet. Når andre er villige til å komme med likviditet, vil HFT deltakerne øke deres likviditetsetterspørsel. Dette kan bety at HFT hjelper å glatte ut likviditeten over tid.

Forskningen indikerer også at HFT selskaper ikke har noe sammenheng/forhold til tidligere volatilitet. Resultatene kan fortelle oss at HFT mest sannsynlig vil dempe heller enn øke volatiliteten. Hvordan den faktiske sammenhengen er, er fremdeles et åpent empirisk spørsmål. Resultatene fra forskning har ikke gitt noen bevis på at HFT aktørene er skadelige mot underliggende transaksjonskostnader og prisvolatilitet (London Stock Exchange Group, 2010).

I følge LSE vil en økningen av HFT på børsene gi følgende fordeler:

- HFT tilbyr likviditet og effisien til markedet hvor handel er fragmentert over flere markedsplasser, for eksempel at et verdipapir handles både på Oslo Børs, NYSE og LSE. Hvis det handles i samme verdipapir på konkurrerende markeder, kan små pris differanser oppstå. Ved å prøve å utnytte disse differansene vil HFT aktører bidra til å
få kursene, som er fordelt på de forskjellige markedsplassene, tilbake til utgangspunktet og holde de kursene på de forskjellige markedsplassene i likevekt. Dette vil også være tilfellet i andre derivater som handles på børsen.

- HFT aktører har vist seg å være tilpasningsdyktige til markedsendringer og ved prising av nye produkter. Likviditeten de tilbyr kan være verdifulle når det gjelder effektivt oppbygging av et nytt marked. Ved at HFT handler i nye produkter, noe som skaper likviditet i dette produktet, vil det tiltrekke seg andre aktører.

- Nye HFT aktører som ikke er medlemmer av børsen vil kanskje bruke eksisterende megleres DMT og på denne måten skape mer handler og jobbmuligheter for de eksisterende meglene.
LSE tilbyr “co-location” til de som er villig til å betale for dette. Ifølge LSE øker det tilgangen til markedet og tilgjengelighet til likviditet, forbedrer ytelsen i forhold til algoritmisk handel, gir mulighet til å reagere raskere og reduserer handelsrisiko. Selve verts-serverne ligger "så nær som fysisk mulig til markedet".

Eneste problemet med dette kan være at det er begrenset med antall plasser for selskaper som vil plassere sine servere nær LSE sine. Så langt er det plass til flere, og LSE kjører en første mann til mølla strategi for å sikre rettferdighet. Fremover vil LSE prøve å frigjøre mer plass i sine datasenter for å møte fremtidig pågang og de har nylig gjort plass til flere servere i sine server rom (London Stock Exchange plc, 2010). I følge LSE ser de ingen behov for videre regulering av Co-location markedet, da dette er et tilbud aktører kan velge å benytte seg av. Det er også konkurranse mellom de som tilby plass på sine serverer, noe som fører til at de reduserer priser for å tiltrekke seg kunder (London Stock Exchange Group, 2010).

LSE benytter også DMT, men de foretrekker å kalle det ”sponsored access”. Selskapene som er medlemmer av LSE kan tilby sine kunder dette produktet i likhet med USA og Norge. Finanstilsynet i England gjennomfører i 2010 en full gjennomgang av DMT for å se om det tilfredsstiller alle krav om transparens. DMT fungerer på samme måte på LSE som på Oslo Børs og i USA, ved at det er de som selger DMT som blir ansvarlig for handlene. De får ansvaret fordi kunden som gjennomfører handelen får utstederen av DMT sin ”handels-id”. Et tiltak som kan innføres for og lettere identifisere de som handler gjennom DMT, er at de får sin egen ”handels-id”, og ikke kan skjule seg bak utstederen av DMT (London Stock Exchange Group, 2010).
3.8.3 HFT på Oslo Børs

Oslo Børs ASA ble grunnlagt i 1819 og opererer i dag de eneste regulerte verdipapirmarkedene i Norge. Energisektoren, inkludert all olje- og gassrelatert virksomhet, utgjør mer enn 50 % av de totale verdien på Oslo Børs. Oslo Børs er også verdens ledende børs innenfor fiskeri- og havbruksnæringen, og et betydelig antall shippingselskaper er notert der. Oslo Børs har de siste årene bygget opp et bredt nettverk for distribusjon av norske aksjer både lokalt og internasjonalt (Oslo Børs ASA, 2010).

Samtidig som Oslo Børs flyttet sine servere til London, byttet de handelssystem til TradeElect. Dette er det samme handelssystemet som LSE benytter i 2010, og dette systemet legger bedre til rette for automatisert handel. Dette gjøres blant annet for å etterkomme kundekrav til oppgraderingen og for å bedre konkurransedyktigheten til Oslo Børs. Raskere system vil føre til flere handler, noe som gjør markedet mer likvid og mer effektivt, i følge kommunikasjonsdirektør ved Oslo Børs, Per Eikrem.

Algoritmebasert handel på Oslo Børs per oktober 2010, er løselig anslått til mellom 25 og 35 prosent av alle handlene. Oslo Børs har ingen tall på hvor mange av disse aktørene som benytter HFT. I rapporter fra en børskonferanse, holdt i London i 2010, kommer det frem at på børsen Nasdaq OMX er 7 % av volumet av handler i Norden HFT. Nasdaq OMX er verdens største børselskap, og de tilbyr også handel i mange norske aksjer.
3.8.3.1 “Co-location”

Oslo Børs tilbyr også DMT til sine kunder. Når vanlige investorer plasserer ordrer over nettet regnes dette som DMT i Norge. Det er meglerhuset/banken sitt navn som kommer opp på transaksjonen når en privat investor handler på Oslo børs. Dette er derfor ikke dirkete sammenlignbart med forholdene i USA. Der er det HFT aktørene som utnytter DMT. For at HFT aktører ikke skal kunne handle direkte i markedet uten noe form for risikokontroll, ønsker SEC å regulere HFT tilgang til DMT. I Norge er det noen reguleringer ved bruk av DMT, som for eksempel hvor stort avvik en order kan ha fra aksjekursen. Flere reguleringer er på dette tidspunkt ikke nødvendig i følge Oslo Børs, siden det er svært få/ingen HFT aktører som benytter DMT i Norge (Oslo Børs ASA, 2008).
3.8.3.2 Rettsaken mot Svend Egil Larsen og Peder Veiby

I Norge ble blikket først rettet mot algoritmisk handel da det var klart at Larsen og Veiby ble tiltalt for markedsmanskripsjon etter handel mot en automatisk market maker (en aksjerobot). Denne saker er interessant opp mot HFT siden handelsmetoden de har benyttet for å manipulere markedet ligner bemerkelsesverdig mye på kjente HFT strategier.

Påtalemyndighetene mente at Larsen og Veiby har lagt inn ordre som hadde hensikt til å manipulere kursen, og dermed ikke var reelle posisjoner som de skulle holde over tid. De gjør også et poeng av dette i tiltalen. En av politiets begrunnelse for at det kunne være manipulasjon var at de kun satt i posisjonene i kort tid (OSLO TINGRETT, 2010).

Det som gjør denne saken spesiell er at motparten i handlene var en datamaskin fra Timber Hill. Denne maskinen var programmert til å fungere som en market maker, der den skulle tilby likviditet i aksjene. Larsen og Veiby klarte å finne ut hvordan algoritmen fungerte og handlet deretter på dette mønsteret. Den 27.september 2010 begynte rettsaken mot Svend Egil Larsen og Peder Veiby i Oslo tingrett. De tiltales for markedsmanskripsjon og i tiltalen mot dem inngår følgende punkter om hvordan de har utført kursmanipulasjon:

- "ved å ha inngitt handelsordre eller foretatt transaksjoner som gir eller er egnet til å gi uriktige eller villedende signaler om tilbudet, etterspørselen på finansielle instrumenter og/eller i strid med akseptabel markedspraksis eller uten legitim begrunnelse (vphl) § 3-8 (2), nr. 1)"
- "ved å inngi handelsorder og transaksjoner som innebærer reversering av posisjoner i løpet av et kort tidsrom og utgjør en betydelig andel av det daglige omsetningsvolumet i verdipapiret og disse medfører en betydelig endring i kursen"
• "ved å inngi handelsorder og foreta transaksjoner i løpet av et kort tidsrom og medfører kursendring som på et senere tidspunkt reverseres”

(OSLO TINGRETT, 2010)

Aktører med kjennskap til saken og denne type handel har gjengitt hvordan disse manipulerende handlene har blitt gjennomført. Se vedlegg 3 for eksempel på handelsmetode.

I USA har saken fått oppmerksomhet både gjennom finansblogger og i artikler fra Financial Times. I USA går reaksjonene ut på at Larsen og Veiby har kun gjort det datamaskinene gjør med day-tradere hver dag, altså å tjene en liten profitt på hver handel som gjøres mange ganger.

Veiby og Larsen ble dømt til henholdsvis 120 og 90 dager betinget fengsel, med to års prøvetid. De ble dømt for manipulasjon av aksjemarkedet etter Verdpapirhandelloven § 17-3 (1) jf. § 3-8 (1). Saken ble anket av de tiltalte.

De tiltalte har dermed blitt dømt for å gjøre handler mot en aksjerobot som ikke har hatt en godt nok programmert algoritme. Timber Hill hadde heller ikke overvåket utførte handlinger av algoritmen tilstrekkelig, slik at handlene ikke ble oppdaget. En ansatt som skal overvåke aksjerobotene kalles en pilot. Piloten vil da ha flere dataskjermer hvor aksjerobotens gjennomførte handler vil registreres og vises på skjermen som en linje. Denne linjen inneholder nøkkelinformasjon om den enkelte handelen. En slik aksjerobot kan handle veldig mange handler per dag, noe som vil gjøre at det hele tiden vil være en konstant strøm av innkommende linjer på pilotens skjerm. Veiby og Larsens order skjedde med noen få minutters mellomrom, noe som betyr at det mest sannsynlig ville kommet mange andre linjer med handler på pilotens skjerm i mellomtiden. Dette ville gjort det vanskelig for piloten å se en eventuell sammenheng i handlene som de tiltalte gjorde. Slike aksjeroboter er programmet med visse grenser, slik at handler i store volum eller hyppige handler ville kommet opp som en alarm på pilotens skjerm. Veiby og Larsens handler må ha vært så små og innfremkente av disse at de ikke utløste noen alarmer og ble dermed ikke sett på som mistenkelig av systemet (Meidell, 2010).

Det var Oslo Børs sin markedsøvervåkning som ga beskjed til Timber Hill om at handlene skjedde. Timber Hill endret da algoritmen slik at det skulle bli vanskeligere å gjennomføre
transaksjoner som lignet de Veiby og Larsen hadde gjort. Timber Hill er en profesjonell aktør som er kjent med risikoen det er å delta som rollen som market makers. Så lenge det er en suksessrate på over 50 % vil man fortsette å tilby market making (Meidell, 2010).

Diskusjonen rundt denne saken har vært intens, og mange mener at det er helt feil at Veiby og Larsen skal bli tiltalt for å ha funnet en svakhet hos en profesjonell aktør. Det er lite sannsynlig at en rasjonell investor ville reagert slik som aksjeroboten til Timber Hill gjorde, og hvis det hadde vært et menneske som var handelsmotpart istedenfor en maskin, ville det trolig ikke blitt en rettsak.

Selv om handlene til Veiby og Larsen er beskrevet korrekt av Oslo tingrett, og at de faktisk har påvirket kursen på aksjene de har handlet i, vil det fremdeles være et spørsmål om dette er unormalt i forhold til dagligdags handel på Oslo Børs eller noe annen børs. Når det investeres i aksjer vil aktørene i et marked delta fordi de tror de kan oppnå profit. Gjøres det feil i markedet, vil det finnes aktører som utnytter dette for å gjøre profit og det er ingen som vil stoppe opp og spørre om det var en feil eller forlange pengene tilbake. Veiby og Larsen forsøkte å oppnå hurtig profit ved å utnytte en svakhet hos en annen aktør. De hadde forstått hvordan aktøren handlet gjennom å se på handler i markedet og prøvde å utnytte dette. Informasjon var tilgjengelig for alle andre aktører i finansmarkedet og var ikke basert på innside informasjon eller på annet ulovlig vis.

Denne gangen var det to ”trege” (i et HFT perspektiv) mennesker som oppdaget og utnyttet denne dårlig konstruerte algoritmen. Hva hadde vært utfallet om det hadde vært en av de store aktørene sine HFT algoritmer som hadde funnet den, for eksempel en av Goldman Sachs algoritmer? Da hadde det vært datamaskin mot datamaskin, hvor den med best algoritme ville kunne tjent penger. Denne HFT aktøren ville ha kapasiteten til å utføre det Veiby og Larsen gjorde mye raskere og med langt større hyppighet enn de to. Dette ville trolig påført Timber Hill store tap. Et slikt scenario vil sannsynligvis ikke kunne skje, da et slikt volum ville blitt lagt merke til og den ansvarelige megleren ville nullet ut all handel, for å se hva som hadde skjedd (Meidell, 2010). Spørsmålet er om det hadde blitt noen rettsak av dette?

I denne saken har Veiby og Larsen straffet for at de har forstått hvordan en profesjonell markedsaktør har opptrådt og utnyttet av seg av dette. Ved at de tiltalte her har blitt dømt, sender det ut signaler om at ikke alle markedsaktører behandles likt. Hvis du overlater dine
handler til en algoritme, så vil du være beskyttet av rettsvesenet. Burde ikke alle markedsaktører behandles likt? Skal markedsaktører som ikke tenker rasjonelt beskyttes fra å tape penger?

Et annet interessant element i denne saken er at selskapet Timber Hill ikke har gått til sak mot Veiby og Larsen. Det er politiet ved Økokrim som har tiltalt Veiby og Larsen for manipulasjon. Timber Hill var så lite interessert i saken at de ikke møtte opp i rettssalen.

Kritikken mot denne dommen går ut på at det Veiby og Larsen har gjort, er det HFT aktører gjør mot day-tradere hver eneste dag. Nemlig å tjene penger på små kursbevegelser og på forskjellen mellom kjøp- og salgskurs. Transaksjonene ble gjennomført på få minutter, men ser man dette opp mot en HFT aktør vil ikke dette være spesielt raskt. Likheten mellom transaksjonene til Veiby og Larsen og en HFT aktør er måten det er lagt inn små ordre på kort tid. Ved å gjøre dette kan de sjekke om det er likviditet i markedet til å få kjøpt aksjer til en høyere pris, og dermed presse prisen opp. En HFT aktør opptrer på samme måte ved å forsøke tjene penger på momentum i en aksje, og deretter selge seg ut når aksjen har steget i pris. Prisen vil bli presset opp av at HFT aktøren etterspør mange aksjer, og da gevinsten er stor nok selger den seg ut.

I følge Matre, førsteamanuensis ved Det juridiske fakultet i Bergen, har det vært lite fokus på aktører i markedet som omsetter aksjer. Fokuset har vært rettet mot selskapsspesifikke forhold som innsidehandel. Denne rettsaken får kanskje satt fokus på hvilke metoder som benyttes ved transaksjoner på Oslo Børs. Fokus på eventuelt innsidehandel er viktig, men et fokus på aktører som legger inne ordre som ikke er «reelle» for å påvirke kursen i en gunstig retning er også viktig. Finansmarkedet i Storbritannia reguleres av samme lovdirektiv som resten av Europa gjennom MiFID. Det har ikke vært noen lignende saker, verken i Storbritannia eller i USA. Dette er en av grunnene til at denne tiltalen har fått oppmerksomhet utenfor Norge.

HFT aktører sender ordre til markedet for å teste om det er noen som vil kjøpe eller selge til en pris som er høyere/lavere enn det som står i ordredybden. Som beskrevet under iceberging tester HFT aktørene også ordredybden. Alt dette er med på å presse markedsprisen i den retningen HFT aktørene ønsker, og kan sammenlignes med det handelsmønsteret som Larsen og Veiby benyttet seg av.
Tiltalen mot Veiby og Larsen for manipulasjon av en aksjerobot kan være med på å skremme investorer fra å handle på Oslo Børs. Risikoen for at deres strategi skal bryte en norsk lov, ved at de handler med sine HFT strategier og dermed bli bundet opp i en rettssak, gjør at de vil tenke seg om to ganger før de kommer til Oslo Børs. Selv om de ville blitt frikjent, ville en rettssak koste både tid og penger, noe som ingen rasjonell aktør ønsker.

Til slutt tar vi med et sitat fra Jan Erik Meidell, tidligere ansatt i Timber Hill med ansvar for utvikling av deres aksjeroboter i Europa, når han svarte på om han syns det Veiby og Larsen hadde gjort var greit:

"- Klart det er greit. Den som er med på leken må tåle steken"
4 Resultater og analyse

I spørreundersøkelsen spørte vi utvalgte aktører i det norske finansmarkedet om hva de mente inngikk i HFT. Før spørreundersøkelsen hadde vi kommet frem til at HFT er måte å handle på som krever stor datakapasitet, må være algoritmisk handel, ha lav forsinkelse og har evnen til å handle et stort antall aksjer på svært kort tid. Sammenlignes svarene fra spørreundersøkelsen, er respondentene stort sett enige med definisjonen vi hadde kommet frem til.

![Diagram illustrasjon](image)

Figur 10: Hva legges i begrepet High-frequency trading? (Flere valg mulige)

De aller fleste har krysset av for at de forbinder algoritmisk handel med HFT, sammen med mange handler per sekund og at HFT eier aksjene i kort tid. Det som er overraskende er at bare 11,1% av de spurte har svart at de forbinder HFT med market making, noe som viser seg å være en stor del av HFT bruken til de store aktørene. Det er ingen av respondentene som forbinder HFT med fundamental analyse. Bruk av HFT krever ikke nødvendigvis store investeringer. Dette kommer an på om man skal utvikle egne algoritmer, betale for co-location for å få ned signalforsinkelsen eller investere i det beste av maskinvare. Skal alt gjøres innad i bedriften vil det kreve store investeringer. Det var bare 11,1% av de spurte i spørreundersøkelsen som forbandt store kapitalbehov med HFT.
I spørreundersøkelsen kom det frem at alle de spurte mente at det var aktører på Oslo Børs som benyttet seg av HFT. Her kom det frem at 33,3 % trodde at HFT brukerne utelukkende var utenlandske aktører, mens 44,4 % mente at brukere av HFT også kunne innebære norske brukere. Hele 22,2 % vet ikke hvem som står for handel ved bruk av HFT på Oslo Børs, noe som kan være med på å forklare hvorfor mange av de spurte ønsker at denne type informasjon skal være offentlig tilgjengelig.

Gjennom vårt intervju med Meidell, kom det frem at Timber Hill allerede i 1994 vurderte å begynne med HFT på Oslo Børs. Dette ble ikke gjennomført fordi det var for lite handel på Oslo Børs, og det var mulig å flytte en aksje for eksempel 5 % med en handel på bare kr 50 000. Dette gjorde at børsen ikke var stabil nok til for å benytte seg av HFT. Meidell tror at dette fremdeles brukes som et av hovedargumentene for å ikke å benytte HFT på Oslo Børs av andre aktører. Videre presiserer han at likviditeten ikke er god nok til å tiltrekke seg flere HFT aktører. Det er også for lite penger i omløp til at HFT aktørene skal klare å utnytte sine strategier til det fulle. En gjennomsnittlig handel for en HFT aktør (for eksempel Timber Hill) er på kr 100 000-200 000 og oppover. På Oslo børs er dette å regne som store handelsordrer. Det er per i dag kun noen få aksjer som har den likviditeten og volumet som vil gjøre en HFT strategi mulig (Meidell, 2010).

Noe som kan føre til mer HFT handel på Oslo Børs, er at der allerede er noen få aktører som benytter seg av HFT. Dette kan tiltrekke flere HFT aktører til Oslo Børs fordi det allerede er noen få fungerende HFT aktører der, dette kalles gjerne en momentum effekt. En HFT aktør vil ofte være et tegn på at det finnes likviditet i markedet. Selv om det ikke i utgangspunktet
er god likviditet, vil en HFT aktør bidra til å øke likviditeten og volumet, noe som gjør det mer attraktivt for andre aktører å komme inn i markedet med HFT. Oslo børs tror også selv at HFT vil øke i fremtiden, og mye av dette er på bakgrunn av utskiftning av handelssystemet og flytting av servere til London. Ved å ha servere i London ønsker Oslo Børs å tiltrekke seg flere internasjonale aktører, samtidig tror de at antall norske HFT aktører vil øke i fremtiden (Eikrem, 2010).

Ut i fra spørreundersøkelsen ser vi at de fleste respondentene tror at per i dag utgjør HFT mellom 0-40 % av volumet.

![Figur 12: HFT og volum på Oslo Børs](image-url)
Det ble spurt om hvilken risiko HFT innebærer for dem som benytter seg av dette. 44,4 % av respondentene forbinder HFT med høy risiko og bare 11,1 % forbinder HFT med lav risiko.

![Diagram](image)

Figur 13: HFT og risiko

En aktør (Tradeworx) som benytter HFT på Wall Street, sier at de har hatt to eller tre dager med tap ved bruk av HFT, men aldri gått ut av en hel uke eller en måned i tap (CBS, 2010). Dette betyr at erfaringer basert på amerikanske marked er tilsier at det er lav risiko forbundet med HFT, altså motsatt av hva ca 90 % av respondentene har svart. En av de største risikoene med HFT er at selskapene investerer sin egen kapital i aksjene de handler i, basert på informasjon de har samlet fra markedet. Med de kraftige datamaskinene og med minimal signalforsinkelse, får de denne markedsinformasjonen meget raskt og klarer å analysere den raskere enn sine konkurrenter. Selv om de kan analysere dataene raskere, betyr ikke at de vet hvordan markedene kommer til å utvikle seg, og det vil derfor alltid være en risiko for å tape investert kapital i forbindelse med denne type handel.

Av alle selskaper i USA som bruker HFT var Tradeworx det eneste selskapet som var villig til å la seg bli intervjuet av det prestisjetunge magasinet ”60 minutes” (CBS, 2010). Dette viser hvor mye hemmelighold og kontroverser det er rundt temaet HFT. Vi spurte respondentene om de ønsker at informasjon om hvem som bruker HFT skulle vært offentlig tilgjengelig.
66,7 % av de spurte ønsker at dette skal være offentlig tilgjengelig informasjon. Det er også viktig å merke seg at 33,3 % ikke ønsker at HFT skal være offentlig informasjon. Dette viser at det også i Norge er aktører som, i likhet med USA, ønsker at denne typen informasjon skal være hemmelig. At noen av respondentene ønsker hemmelighold kan være for å skjule bruk av HFT og fordelen dette medfører for selskapet. Oslo Børs ser ingen spesiel grunn til å gjøre informasjonen om hvem som handler med HFT offentlig. Det er heller ikke nødvendig å gi informasjon om at det er en HFT aktør som er den ene parten i en handel (Eikrem, 2010).

I følge Anders Skaar, daglig leder i Nordnet, vil de alltid ønske mest mulig gjennomsiktighet og transparens i aksjemarkedet da de mener dette gir et mest mulig rettferdig marked. Han sier at Nordnet har merket en reduksjon av handler fra de mest aktive day-traderne, men om dette stammer fra økt bruk av HFT eller jevnt synkende volatilitet på Oslo Børs er ukjent. I intervjuer med både Nordnet og Netfonds, som er to av de største internettmeglerne i Norge, spurte vi om de trodde HFT ville ta over for de vanlige day-traderne på Oslo Børs, siden HFT vil være raskere til å utnytte nye muligheter og gjøre at spreaden i kursjer blir mindre. Her var begge enig i at det er blitt tyngre tider for day-traderne, men i en så dynamisk bransje vil det alltid være noen som klarer å tilpasse seg til nye vilkår. I følge Nordnet har de faktisk opplevd en kraftig vekst i det segmentet av day-trader som har lavere antall handler per måned, enn de aller mest aktive. Denne veksten kommer av at det hele tiden kommer nye produkter som er lette å forstå og handle i (Skaar, 2010), (Andersson, 2010). Oslo Børs tror også at det kan bli vanskeligere å være day-trader ved økt HFT handel (Eikrem, 2010).
Amerikanerene har nå begynt å bli mer oppmerksom på bruk av HFT på børsene rundt om i USA. Flere og flere går ut og krever innsyn i hvem som bruker HFT og hvordan markedene påvirkes. Kravene er som regel rettet mot det amerikanske finanstilsynet, SEC. Den amerikanske senatoren Ted Kaufman har offentlig gått ut og krevd innsyn for almenheten rundt brukerek av HFT (CBS, 2010). Vi ser at dette ønsket om offentlighet samsvarer med svarene fra vår spørreundersøkelse. Det vil i Norge, i likhet med USA, være Finanstilsynet som må regulere markedet, og innføre krav om at hvilke aktører som benytter HFT skal være offentlig informasjon.

Når det foretas handler på en børs, for eksempel Oslo Børs, ser investoren ikke at handelsmotparten er en datamaskin. Det er bare mulig å se kjøps- eller salgsprisen som er tilbudt i det verdipapiret man ønsker å handle i. Spørsmålet blir da om en investor blir påvirket av å vite at man handler med en maskin og vil han da planlegge sin investeringsstrategi annerledes?

Når vi spurte om HFT tilførte likviditet til markedet, viste det seg at et flertall av de norske aktørene mente at HFT tilfører likviditet til markedet. 22,2 % svarte at HFT ikke tilfører likviditet. Dette stemmer godt overens med det HFT aktørene selv mener. Deres fremste argument er at de tilbyr likviditet ved å være både på kjøper- og selgersiden av en aksje. Nok en gang er det en relativt høy prosentandel, 22,2 %, som svarer alternativet: Vet ikke. Dette tyder på at det er lite informasjon rundt HFT og at dette er noe som er vanskelig å måle. I vårt intervju med Oslo Børs sin informasjonsavdeling kom det frem at de mente det var komplisert å finne ut nøyaktig hvor mye likviditet som blir tilført av de forskjellige aktørene. Selv om det ikke er gjort noe kjent forskning på dette feltet på Oslo Børs er dette blitt gjort i USA. Der har man kommet frem til at HFT bedrer likviditeten (Hendershott, Jones, & Menkveld, 2010).
Et annet spørsmål var om de trodde at HFT gjorde markedet mer effisient.

Tendensen blant norske aktører er at bare en tredjedel tror at HFT tilfører markedet effisiens, mens over halvparten mener at HFT ikke bidrar på dette området. Dette strider altså i mot argumentene mange bruker for å sette HFT i et bedre lys. En som argumenterer for at effisiens tilføres ved HFT er Steve Rubinow, Chief Information Officer (CIO) på New York børsen.
Han mener at enhver type innovasjon som fører til mer og raskere handel vil føre til bedre effisiens. Dette er fordi ny informasjon blir raskere reflektert i aksjeprisen (Jacob Goldstein, 2010).

I en undersøkelse gjort av Brogaard, en JD-PhD kandidat hos Northwestern University, Kellogg School og Management, har han undersøkt flere markedsaktører i USA for å finne ut hvem som bidrar mest til prisoppdagelse. Først kalkuleres prisutviklingen til aksjer med HFT og uten HFT (ikke-HFT). Hvis priser følger en ”Random Walk”, kan endring i pris representeres som en vektor for gjennomsnittlig bevegelse. Brogaard bryter så ned denne vektoren for gjennomsnittlig bevegelse inn i flere komponenter og slik finnes variansen til forskjellige markedsaktørers prisbaner. Markedsaktørenes varians er å regne som deres bidrag til informasjonen i prisoppdagelsesprosessen. Informasjonsdelingen til en aktør er målt som aktørens bidrag til den totale variansen til en pris(komponent). I 73 aksjer, av totalt 116, har aksjer med HFT sin informasjonsdeling vært større enn informasjonsdelingen til ikke-HFT aksjer. Av de 73 aksjene, er det 36 aksjer hvor HFT har statistisk signifikant mer informasjon i deres kurser (quotes) i forhold til ikke-HFT aksjer. Av de 43 selskapene hvor ikke-HFT aksjer har en større informasjonsdeling enn aksjer med HFT, er det bare 12 selskaper hvor informasjonsforskjellene er statistisk signifikant. I tillegg er HFT sitt bidrag til prisoppdagelse 0,58, hvor maks er 1, sammenlignet til ikke-HFT sin 0,42 og forskjellene er statistisk signifikant. Dette betyr at i kurser, som ved handler, er HFT viktig i prisoppdagelsesprosessen (Brogaard, 2010). Dette viser at HFT øker informasjonen i aksjen slik at aksjen kan bli riktigere priset og dermed blir markedet også mer effisient.

Problemet med at HFT tilfører markedet effisiens er at HFT kan være programmert til å handle bare på gode nyheter, eller kan skrus helt av hvis megleren tror noe skikkelig galt skal skje, for eksempel et krakk i markedet. Dette betyr at HFT tilbyr en form for betinget effisiens, som bare tilbys i gode tider.
4.1 HFT og utfordringer for fremtiden:

Det har vært store teknologiske fremskritt på børsene rundt om i verden de siste årene. Fra det først ble lagt til rette for elektronisk handel sent på nittitallet i USA, til i dag hvor 50-70 % av all aksjehandel skjer med kraftige datamaskiner, smarte algoritmer, høy hastighet og høy frekvens. Utviklingen på andre markedsplasser har kommet etter, men er ikke kommet like langt som USA.

Børsene vi har undersøkt legger til rette for at det skal være mulig å bruke HFT. Det er ingen tvil om at dette er en utvikling som er kommet for å bli. Børsene ønsker denne utviklingen velkommen da det generer mer handel. Argumentasjon for HFT er at det vil skape et marked som både er mer transparent, effisient og likvid.

At børsene ønsker videre utvikling på det teknologiske planet ser vi ved at de implementerer nye systemer som gjør det enklere og raskere å bruke HFT. Oslo Børs innførte for eksempel TradeElect den 12.april 2010, et system som gjorde at børsposter ble redusert fra definerte poster som kunne være 50 aksjer i en post eller 100/200 per post, til 1 aksje = 1 post. Dette systemet er også raskere enn forgjengeren. Oslo Børs har et strategisk samarbeid med LSE og TradeElect er innført av begge. LSE har allerede gått videre til et nytt system som heter ”Millenium” fordi de mener at TradeElect allerede er for tregt. LSE sitt nye system har en handelshastighet på 0,13 millisekund, mens TradeElect har en handelshastighet på 2,7 millisekund. Det er stor sannsynlighet for at Oslo Børs vil gå over til dette systemet på grunn av det strategiske samarbeidet med LSE, sier kommunikasjonsdirektør Eikrem.

En slik teknologisk utvikling kommer ikke uten kritikere. Det er flere som mener at markedet blir urettferdig i og med at datamaskiner kan handle mye raskere enn mennesker. En av de mest fremstående kritikerne er Joseph Saluzzi, investor og medstifter av et amerikansk meglerfirma, som mener at HFT aktørene ”stjeler” fra den vanlige investor. Saluzzi ønsker at SEC tar grep og regulerer HFT bedre enn de hittil har gjort. Han kommer spesielt med to forslag for hvordan dette kan gjøres

- Innføre minimum ordregyldighet på minst ett sekund. Dette vil hindre HFT aktørene fra å kunne kansellere og endre ordre for å utnytte betalingsviljen hos andre investorer.
Gjeninnføre "curb trading" programmer med grense på 2 %. Dette betyr opphold i handelen hvis børsen går ned for eksempel 2 % i løpet av en forhåndsdefinert tid. Det kan også være handelspause i en aksje, ved svingninger utover en definert grense.
(Saluzzi, 2008)

På Oslo Børs har slike forhåndsdefinerte grenser eksistert over lang tid, og begrepet børspbause er kjent for de fleste investorer. For at børsene skal være et attraktivt marked for andre enn de med kraftige datamaskiner må det undersøkes om markedet er rettferdig for alle investorene som deltager.

Utviklingen av dark pools vil mest sannsynlig fortsette, fordi dette reduserer store deler av investorenes kostnader, risiko og prisbåndene. Dark pools er et nyttig instrument for store aktører som ønsker å handle uten å påvirke markedene med sine investeringer. Dersom dark pools blir regulert til full transparens vil flere av de store institusjonelle investorene gå tilbake å handle gjennom investeringsbankene, selv om dette vil være dyrere enn handel gjennom dark pools. For de store institusjonelle investorene verdsettes anonymitet høyt. Store investorer er villig til å betale for å benytte investeringsbanker/dark pools, for å unngå tapet de kan bli påført ved å legge ut store order i det offentlige markedet. Oslo Børs tilbyr handel med skjult volum gjennom deres egne systemer som et alternativ til dark pools, og på denne måten slipper store handler å påvirke markedene. I følge Oslo Børs er det et lavt volum av norske aksjer som handlers gjennom dark pools. Som en konsekvens av dette, merker Oslo Børs lite til konkurransen som dark pools utgjør (Eikrem, 2010).

Det amerikanske markedet for dark pools og HFT er verdensledende. Det er her mulig at det er en sammenheng mellom stor HFT andel, og økende ønske om å benytte dark pools for ikke å bli påvirket av HFT. I Norge er ikke dette et problem enda. Hvis det blir en økning i andelen av volumet som blir omsatt ved HFT på Oslo Børs, kan dette være med på å flytte større deler av handelen i Norge over til dark pools. Dette kan føre til at det blir en økning i antall dark pools som konkurrerer mot hverandre, noe som kan flytte handel vekk fra Oslo Børs og dermed svekke deres posisjon i finansmarkedet.

Ved at det foretas transaksjoner som er gjemt vekk fra markedet, vil ikke aksjeprisen reflektere all informasjonen om handel i aksjen. Det er viktig at regelverkene som blir utviklet i fremtiden sørger for at det fremmer et marked som kan bli mer effisient og transparent, og at
alle markedsaktører har muligheten til å konkurrere på like premisser. Regler som regulerer HFT for mye vil hindre utviklingen av børsen som markedsplass, og aktører som vil omsette kapital vil gå til andre markedsplasser som ikke er like strengt regulert som en børs som for eksempel forskjellige dark pools.

Vi tok opp temaet med ”falsk likviditet” i intervjuer med Nordnet, Netfonds og Oslo Børs. Responsen fra alle tre var at ”falsk likviditet” ikke er noe uvanlig. I finansmarkeder er det ingen garantier for likviditet, og at en redusjon eller bortfall av likviditet alltid vil være en risiko man må ta høye for når man handler på børs.

Paul Krugman, Nobelprisvinneren i økonomi har analysert en rekke av disse HFT strategiene. Han klarer ikke å se at noen økonomisk verdi i strategiene, faktisk tror han mer på at de ødelegger verdi.
"The stock market is supposed to allocate capital to its most productive uses, such as by helping companies with good ideas raise money. It's hard to see, however, how traders who place their orders one-thirtieth of a second faster than anyone else do anything productive. There is a good case that such activities are actually harmful. HFT probably degrades the stock market's function, because it's a kind of tax on investors who lack access to super computers and at-exchange connectivity - which means that the money Goldman spends on those computers actually has a negative effect on national wealth. As economist Kenneth Arrow said in 1973, speculation based on private information imposes a 'double social loss', by using up resources and undermining markets." – Paul Krugman (Nasser, 2009)
4.1.1 Flash crash

En annen hendelse som har ført til kritikk, er hendelsen som skjedde 6. mai 2010 i USA. Etter en urolig dag på børsene i USA grunnet økonomiske og politiske nyheter angående den europeiske gjeldskrisen, sank plutselig børsene med 5-6% i løpet av få minutter. Børsen returnerte så til nivået før fallet like raskt. Enkelte aksjer som for eksempel Accenture kunne man få handlet til 1 penny i få sekunder før den igjen kom opp til normalnivået på rundt 40 USD. Hendelsen har fått tilnavnet "flash crash".

En lignende transaksjon har blitt gjennomført i løpet av de 12 siste månedene før denne hendelsen men da ble salget gjennomført i løpet av 5 timer. Salget på bare 20 minutter skapte et massiv salgspress som flyttet seg over til aksjemarkedet. HFT aktørene som først hadde kjøpt opp slike kontrakter, prøvde så å selge dem tilbake til markedet på grunn av det store utsalget. Dette førte til at ytterligere økt tilbud men det fantes ikke etterspørsel i markedet.

En viktig lærdom som man kan ta fra denne hendelsen, er at automatisk utøvelse av store salgsorder kan utløse ekstreme prisbevegelser i et stresset marked, spesielt hvis den automatiske salgsalgoritmen ikke tar pris i betraktning. Denne hendelsen har vist at høyt handelsvolum ikke nødvendigvis er en pålitelig indikator på likviditet i markedet, spesielt i tider med mye volatilitet.

For å skape tillit til markedene er det viktig at det ikke inntreffer slike hendelser som skaper frykt hos investorene. Det er også uheldig at det er på grunn av HFT og automatisk handel at dette skjedde. At SEC kan tilskrive ”skylden” til HFT gjør at det blir enda mer negativ oppmerksomhet rundt dette. Dette kan føre til at flere investorer vil holde seg unna markeder hvor de vet at mye av handelen gjøres av HFT.
4.2 Utvikling av finansmarkedene

Mange aktører er blitt gode på HFT på grunn av deres raske tilgang på data gjennom for eksempel co-location eller hyperraskt nett. Utviklingen i USA har ført til at hastighet er en faktor som ikke lenger er like lett å tjene penger på. Hastigheten på informasjon vil nå en øvre grense og dermed må det konkurreres på andre markeder eller på andre premisser. Co-location er også et marked i utvidelse og flere er villig til å betale prisen det koster å komme nærmere børsserverne. Det er stadig flere børser som investerer kapital i nye handelssystemer og serverplass for muligheten til co-location.

Bruken av HFT sprer seg mot alle typer aktivaklasser og til flere land. En aktivaklasse som det kan handles i med HFT er kraft, som for eksempel gjennom den nordiske børsen Nord Pool Spot der kraft omsettes som i aksjemarkedet. For at HFT skal være mulig må det kunne være mulig å handle i sanntid og markedsplassen må ha et høyt nok handelsvolum. På Nord Pool Spot brukes blant annet Nasdaq OMX sitt handelssystem.

Ved å studere andre markeder rundt om i verden, ser vi at det er flere som legger til rette for HFT. I januar 2010 innførte for eksempel Japan et nytt handelssystem som er raskt nok til at HFT vil være mulig. Handelshastigheten vil der gå ned fra flere sekunder til 10 millisekunder (Osaki, 2010).

Et annet eksempel er India. Selv om de ikke tillot algoritmisk handel før i 2008, har Bombay Stock Exchange (BSE) allerede investert nye i nye handelssystemer som øker både antall handler som kan gjennomføres og hastigheten på oppdatering av priser. Dette viser at flere børser ser behovet for utvikling av handelssystemene for at de fortsatt skal være konkurransedyktige. I en rapport utgitt av BSE kommer det frem at en av hovedårsakene til utviklingen av handelssystemet er at de ønsker flere utenlandske investorer. Dette mener de vil gi mer stabilitet og likviditet. Grunnen til dette er at med flere investorer og HFT handel vil det bli mer omsetning på børsen (Arcana, 2010).

Over hele verden kan man altså finne børser som gjennomfører capitalintensive investeringer i nye handelssystemer. Dette vil senke handelshastigheten og tilrettelegge for automatisert handel. Dette gjøres på bakgrunn av at børsene ønsker å tiltrekke de største investorene, hvor
mange benytter seg av HFT. Har ikke børsen systemer som takler HFT vil de heller ikke klare å tiltrekke seg de investorene som er mest attraktive. Økt omsetning vil gi økt fortjeneste for børsene. Foreløpig har heller ikke myndighetene lagt noen stor begrensninger på HFT handel. Dette kan tolkes som et tegn på at HFT er en ønsket utvikling.

Økt fragmentering av markedene bidrør til å gjøre det vanskelig å overvåke markedene. En aktør som kan handle samme verdipapir på mange forskjellige marked er vanskelig å overvåke, og en aktør som kan handle tusen aksjer i sekunder på mange marked er enda vanskeligere å overvåke, om ikke umulig. I SEC sin rapport om 6. mai 2010 sitt ”flash crash” sa de at hovedårsaken til at rapporten hadde tatt så lang tid å gi ut, var på grunn av vanskelighetene med å spore handlene på tvers av markedene. Her var det snakk om mange million handler på mange markeder i USA (S.E.C & C.F.T.C, 2010). Dette er med på å gjøre markedsovervåkning i USA betydelig vanskeligere enn i Norge. I Norge har vi bare ett regulert marked for omsetting av verdipapirer, og det vil følgelig gjøre overvåking lettere. Det er verdipapirer som er notert på Oslo Børs som også er notert på andre markedsplasser og disse vil være mer krevende å overvåke enn de som bare er notert i Norge. Dette blir en av de største utfordringene til myndighetene/organene som skal overvåke markedene fremover.

Investorene som vil bli rammet hardest av utviklingen innenfor HFT er de mest aktive day-tradere, som forsøker å generere profitt ved å handle på forskjellig spread. Utom disse vil en vanlig langtidsinvestor, som baserer sin investering på fundamentanalyser, ikke bli påvirket nevneverdig. En aksje som kommer med en god eller dårlig nyhet vil fortsatt få den reaksjonen (positiv eller negativ) som den burde ha. Forskjellen vil være at kursbevegelsen på grunn av nyheten vil skje forttere, siden HFT aktørene behandler dataen raskere enn vanlige investorer.
5 Konklusjon

I denne oppgaven har vi tatt for oss følgende problemstilling: Hva er High-frequency trading? Er dette en ønsket utvikling på Oslo Børs?

Det er en økende andel av aktørene på finansmarkedene som benytter HFT, og det handla\ldots

HFT aktørene har i de seneste årene investert i hardware og software som kan gjennomføre tusener av transaksjoner i sekundet. Antall omsatte aksjer på børsene hvor HFT benyttes har dermed økt betraktelig. Børsene investerer også mye for å kunne tilby en rask handelsplattform som er tilrettelagt for HFT. Dette gjør de for å tilrettelegge HFT aktører som vil øke likviditeten og volumet omsatt på børsen. Høyere volum på børsen gir bedre inntekter for børsen. Oslo Børs har også investert i raskere systemer av denne grunn. En annen årsak til oppdatering av sine systemer er at verdipapirene tilbys på flere markeder. Derfor er det viktig å tilby konkurransedyktige handelssystemer for at investorer skal fortsette å handle på Oslo Børs.

I amerikanske forskningsrapporter kommer det frem at HFT bedrer likviditeten i markedene hvor de handler. Vår egen spørreundersøkelse viser at hovedvekten av respondentene deler denne oppfatningen. Det vil aldri være noen garanti for likviditet, men gjennom market makers prøver børsene å holde likviditeten på et visst nivå. Hvis en market maker er en HFT, vil dette øke likviditetstilbudet. De vi intervjuet mente at likviditet aldri er garantert i et finansmarked og de er ikke enig i kritikken om at HFT utgjør en større trussel mot likviditet i dårlige tider.

Markedseffisiens er fremstilt som et av hovedargumentene for at HFT er en riktig utvikling av finansmarkedene. Argumentene er at økt handelshastighet vil føre til at informations pigs
markedene raskere blir reflektert i aksjeprisen. Våre respondenter i spørreundersøkelsen var ikke enig i dette, og kun 1/3 var enige om at effisiensen ble bedre ved økt andel av HFT.

Etter dybdeintervjuer med forskjellige aktører, kom det frem at det kun er noen få aktører som bruker HFT i Norge per 2010. Resultatene fra spørreundersøkelsen var entydige, og et klart flertall ønsket at informasjon om hvem som benyttet HFT skulle være offentlig. Oslo Børs ser derimot ingen grunn til at slik informasjon skal offentliggjøres.

Utviklingen av HFT er økende. Ut fra vår spørreundersøkelse og dybdeintervjuer kan vi konkludere med at dette er ønskelig fra både børsene og de fleste av investorene. Selv om det er kritikere som argumenterer mot utviklingen av HFT, har antall markedsplasser som investerer i utstyr som kan håndtere HFT økt. Stadig flere børser i verden tilbyr co-location. Deler av HFT handelen vil i fremtiden bli mer regulert av myndighetene. I USA har SEC kommet med flere løvforslag om regulering av markedene, for eksempel reguleringer ved bruk av dark pools. SEC har også løvforslag til hørings for å forby flash trading, men mesteparten av denne typen handel har allerede stoppet på grunn av løvforslaget. I Norge utgjør ikke dark pools en trussel for etablerte markedsplasser utenfor børsen og flash trading er ikke tillatt siden det ikke tilfredsstiller kravet som Finanstilsynet har til transparens.

Et annet moment som kan trekkes ut fra spørreundersøkelsen, er at det var en høy prosentandel som svarte «vet ikke» på spørsmålene. Dette kan tyde på at det generelt er et noe lavt kunnskapsnivå rundt temaet HFT.

Vi konkluderer med at HFT er en handelsmetode som står for et økende volum av totalt handelsvolum på Oslo Børs. Økningen er ønskelig både fra Oslo Børs, som tjener mer på høyt volum, og investorer som får tilbudt bedre likviditet. Oslo Børs har gjennom investeringer og strategiske samarbeid vist at de vil være med på utviklingen som skjer på de største markedsplassene. Utviklingen av HFT kan bli begrenset av eventuelle lovendringer som for eksempel sørger for en minimum gyldighetstid for hver enkelt ordre.
6 Begreper og forkortelser

CFTC: Commodity Futures Trading Commission: Et selvstendig agentbyrå med mandat til å regulere råvarefutures- og opsjonsmarkedet i USA. Målet er å beskytte markedsaktører og offentligheten fra svindel, manipulasjon og korrupsjon i forbindelse med salg av varer og finansielle Futures og opsjoner, samtidig som de jobber for åpne, konkurransedyktige og sunne finansielle marked for futures og opsjoner. (CFTC)

ETF: Exchange traded fund: fond bestående av aksjer og andre verdipapirer med det formål å følge kursen til en underliggende indeks. En ETF omsettes på børs og gir muligheten til å kjøpe seg inn i en utenlandsk aksjeindeks eller sektor like enkelt som man kjøper en aksje. (DnB Nor, 2009)

FTSE: En indeks som består av de mest omsettelige selskapene i UK som er notert på London Stock Exchange. FTSE100 vil da bestå av de 100 mest omsettelige selskapene.

MiFID: Den 1. november 2007 tredde en ny lovfinning i kraft for verdipapirmarkedet i Norge og EU. Lovfinningen bygger på et EU-direktiv med forkortelsen MiFID (Markets in Financial Instruments Directive), som innebærer at de fleste land i Europa får samme grunnleggende regler for bl.a. handel med finansielle instrumenter. (Nordnet, 2010)

SEC: United States Securities and Exchange Commission: er et amerikansk føderalt tilsyn som har ansvar for handelen med verdipapirer. SEC har eksistert siden 1934 og setter reglene for handel med obligasjoner, aksjer, derivat, råvarer og andre instrumenter som omsettes på registrerte børs. (S.E.C)

TICK: Refererer til minimum endring prisen på et verdipapir kan ha, enten opp eller ned.
7 Bibliografi

http://assetinternational.com/ai5000/channel/TECHNOLOGY_PRODUCTS/Adventures_in_Algorithmic_Trading.html

Andersson, B. (2010, Oktober 10). Ansatt i Netfonds Tradingdesk. (K. K. Torsvik, Intervjuer)

CFTC. (u.d.). www.cftc.gov. Hentet Oktober 27, 2010 fra about:
http://www.cftc.gov/About/MissionResponsibilities/index.htm

https://www.dnbnor.no/markets/aksjer/etf/?WT.mc_id=ppc_markets_2010_googleno_tekst_Borshandlet_fond_ETF_salget_Exact_&WT.srch=1

http://moneymorning.com/2008/07/10/dark-pools/

OSLO TINGRETT, 10-094868MED-OTIR/05 (OSLO TINGRETT Oktober 12, 2010).

8 VEDLEGG

8.1 Vedlegg 1: Intervjuer

8.1.1 Intervju med Nordnet og Netfonds

1. Hvordan ser dere på robot-trading?

2. Hvordan ser fremtiden til day-traderne ut?
 a. Vil aksjeboder ”stjele” deres muligheter for gevinster?

3. Har dere merket en nedgang i aktiviteten hos day-traderne eller evt nedgang i antall brukere?

4. Tror dere HFT tilfører mer likviditet til markedet?
 a. Er dere redd for at dette skal være ”falsk” likviditet, som kan forsvinne like fort som det kommer?

5. Tror dere HFT tilfører markedet bedre effisiens?

6. Ved dere om det er mange som bruker algoritmer via deres sider?

7. Bør brukeren av HFT være bedre regulert?
 a. Bør det være mer offentlig informasjon rundt hvem som bruker HFT?

8. Tror dere markedet blir mettet og at det hele tiden blir en kamp om å finne ”uberørte” markeder? (uberørt= uten HFT til nå)
8.1.2 Intervju med Jarle Johansen, Finanstilsynet

1. Vet dere om hvor mye handel som skjer gjennom HFT på Oslo Børs?

2. Er "flash trading" lovlig i Norge? Er det statistikk på hvor mange som bruker (betalter for å bruke) dette i Norge? Hvis det finnes, kan vi få tilgang til denne statistikken?

3. Finnes det et "engros marked" for handling av aksjer, også kalt "Dark Pools”, i Norge?

4. Er det, eller er det planlagt, restriksjoner mot former for HFT, som for eksempel flash trading (hvis dette er lovlig pr i dag)?

5. Har dere tenkt til å innføre tiltak mot flash trading slik SEC forsøker å gjøre i USA?

6. Har dere merket noen endringer i forbindelse med overgangen til TradElect som kan relateres til HFT?

7. Mener dere at HFT tilfører likviditet til markedet?

8. Har dere oversikt over hvor mange ordrer som blir kansellert på OB? Finnes det statistikk på dette fra før og etter bruk av TradElect?

9. Vet dere hvor vi kan følge rettsaken mot Svend Egil Larsen og studenten som er tiltalt for kursmanipulasjon mot en aksje robot (Timber Hill)?
8.1.3 Intervju med Thomas Borchgrevink v. markedsovervåkning Oslo Børs

1. I en artikkel i DN fra rettsaken Mot Veiby og Larsen kom det frem at HFT står for 25-30 % av volum på Oslo Børs? Stemmer dette?
 a. Vet dere hvor mange aktører som står for dette volumet?
 b. Er mange av disse norske?

2. Har dere regnet ut hvor mye aktivitet (verdi og volum) på OB HFT står for?

3. Tror du HFT kommer til å øke i fremtiden på Oslo Børs?
 a. Vil norske aktører som bruker HFT øke i fremtiden?

4. Dere samarbeider jo med LSEG. De har co-location til sine servere som da også vil få tilgang til dere? Hvordan påvirker det Oslo Børs?
 a. Nyter Oslo Børs godt av at LSEG tilbyr co-location?

5. Kan ”flash crash”, som skjedde 6.mai i USA skje i Norge?
 a. Når noe slik skjer kan jo likviditet stoppe helt opp pga at aktørene slår av sine maskiner?
 b. Vurderer man å ta i bruk curbs eller circuit brakers som de vurderer i USA?

6. En økende andel av aksjer omsettes på andre markedsplasser så kalte dark pools.
 a. Hva er Oslo Børs sitt syn på dark pools?
 b. Gjør ikke dark pools at markedet blir mindre effisient for andre aktører?
 c. Hva synes Oslo Børs om konkurranse fra dark pools i Norge

7. Tror du det er flere day-tradere som legger opp nå når det blir flere som har HFT muligheter på Oslo Børs? Ser du på dette som positivt eller negativt?

8. Burde det være mer åpenhet/offentlig hvem som bruker HFT, evt at man kan se at det er HFT som er i den andre enden av en handel?
9. Er det sånn at etter hvert som markedet får mange HFT brukere så vil markedet bli "mettet"? Slik at de gevinstmulighetene som først var pga færre HFT brukere ikke lenger er til stedet (ved for eksempel statistisk arbitrasje) og at HFT brukerne hele tiden vil jakte på nye "utappede" markeder?

10. Har dere merket noen endringer i forbindelse med overgangen til TradElect som kan relateres til HFT?

11. Har dere oversikt over hvor mange ordrer som blir kansellert på Oslo Børs? Finnes det statistikk på dette fra før og etter bruk av TradElect?
8.2 Vedlegg 2: SPØRREUNDETSØKELSE

Vi er to studenter fra Norges Handelshøyskole som skriver en masteroppgave om high-frequency trading. Vi håper at du kan ta deg tid til å svare på noen spørsmål. Alle svar er anonyme.

1) Hva legger du i begrepet High-Frequency trading? (føre valg mulige)
 - □ Mange handler per sekund
 - □ Kort holde tid
 - □ Basert på fundamentalanalyse
 - □ Market making
 - □ Algoritisk handel
 - □ Kraftige datamaskiner
 - □ Høy fortjeneste
 - □ Lav fortjeneste
 - □ Stort kapitalbehov
 - □ Annet, spesifiser her
 - □ Vet ikke

2) Hvis vi definerer HFT som algoritisk handel med svært kraftige maskiner som kan handle tusenvis av aksjer i sekundet, tror du bruken av HFT vil øke på Oslo Børs i fremtiden?
 - □ Ja
 - □ Nei
 - □ Vet ikke

3) Har du/din arbeidsgiver vurdert å benytte HFT?
 - □ Ja
 - □ Nei
 - □ Vet ikke

4) Tror du det er aktører på Oslo Børs som benytter seg av HFT i dag?
 - □ Ja
 - □ Nei
 - □ Vet ikke

5) Hvilken risiko ville du sagt HFT innebærer for dem som bruker det?
 - □ Lav risiko
 - □ Middels risiko
 - □ Høy risiko

6) Er du enig i påstanden: Det er bare utenlandske aktører som bruker HFT på Oslo Børs?
7) I USA er det ca 2 % av aktørene som benytter seg av HFT, men disse utgjør ca 50-70 % av volumet som handles i USA. Hvor stor andel av volumet tror du HFT står for på Oslo Børs?

○ 0-20 %
○ 21-40 %
○ 41-60 %
○ 61-80 %
○ 81-100 %
○ Vet ikke

8) Er du enig i påstanden: HFT tilfører Oslo Børs likviditet.

○ Enig ○ Uenig ○ Vet ikke

9) Er du enig i påstanden: HFT gjør at markedet er mer effesient?

○ Enig ○ Uenig ○ Vet ikke

10) Burde brukere av HFT på Oslo Børs være offentlig tilgjengelig informasjon?

○ Ja ○ Nei
8.3 Vedlegg 3

Eksempel på handelsmetoden Veiby og Larsen benyttet seg av for å handle mot Timber Hill sin aksjebot.

- Børsens handelssystem viser at en aktør er villig til å kjøpe 5.000 aksjer i et selskap til 9,70 kroner (kjøperkursen). Samtidig er 5.000 aksjer til salgs for 10,00 kroner (selgerkursen). Du kan i prinsippet ikke vite hvem som vil kjøpe og selge, men i praksis forstår du at det er samme aktør.
- Du kjøper 5.000 aksjer til 10,00 kroner.
- Etter dette endrer kursbildet seg. Kjøperkursen er nå 9,80 kroner, mens selgerkursen er flyttet til 10,10 kroner.
- Du kjøper 100 aksjer til 10,10 kroner.
- Igjen endres kursbildet. Kjøperkursen er 9,90 kroner, selgerkursen 10,20 kroner.
- Du kjøper 100 aksjer til 10,20 kroner.
- Igjen endres kursbildet. Kjøperkursen er 10,00 kroner, selgerkursen 10,30 kroner.
- Du kjøper 100 aksjer til 10,30 kroner.
- Igjen endres kursbildet. Kjøperkursen er 10,10 kroner, selgerkursen 10,40 kroner.
- Du kjøper 100 aksjer til 10,40 kroner.
- Igjen endres kursbildet. Kjøperkursen er 10,20 kroner, selgerkursen 10,50 kroner.
- Du kjøper 100 aksjer til 10,50 kroner.
- Igjen endres kursbildet. Kjøperkursen er 10,30 kroner, selgerkursen 10,60 kroner.
- Du selger så alle dine 5.500 aksjer til kurs 10,30 kroner.
- Gevinsten: 1.500 kroner. Gevinsten kommer fra det første (og største) kjøpet. De senere (og mindre) kjøpene har alt i alt gått i null. (Slettan, 2010)