Opsjonsbasert avløning av leiarar

Av Erlend Thinn Solheim

Masteroppgåve i profilen økonomisk styring
Rettleiar: Førsteamanuensis Eirik Gaard Kristiansen

Denne utredningen er gjennomført som et ledd i masterstudiet i økonomisk-administrative fag ved Norges Handelshøyskole og godkjent som sådan. Godkjenningen innebærer ikke at høyskolen innstår for de metoder som er anvendt, de resultater som er fremkommet eller de konklusjoner som er trukket i arbeidet.
Samandrag

Denne oppgåva ser på aksjebasert avløning av leiarar, avgrensa til tildeling av opsjonar til leiarar. Først vert arbeidskontrakta mellom leiar og selskap drøfta i lys av prinsipal-agentteori. Så følgjer ein diskusjon om ulike kriterier for avløning, som rekneskapstal og aksjekurs. Deretter konsentrerer eg meg om opsjonsteori og nytteteori for å gi lesaren eit grunnlag for å setje seg inn i opsjonsprisingsmodellen til Hall & Murphy. Så held eg fram med å analysere opsjonsprogramma til Schibsted, Telenor og Orkla. Oppgåva vert avslutta med ei verdsetjing av opsjonane tildelt konsernsjefen i Orkla.
Forord

Eg har vald å skrive om opsjonsbasert avløning av leiarar då dette er eit tema eg synes er veldig interessant. Det er høgst dagsaktuelt, og opsjonsprogram til leiarar er titt og ofte diskutert i media. Ei sak som har vore mykje framme den siste tida er leiarar i USA som ser ut til å ha tilbakedatert opsjonsprogram. Det vil seie at dei har satt opsjonstildelinga til ein dag der aksjekursen var låg, og innløysingskursen på opsjonane har vorte bestemt av denne låge kursen. Det er nordmannen Erik Lie som har stått bak denne avsløringa. Eg vil anbefale interesserte i å ta ein titt på artikken til Lie. Artikkelen ligg på internett, referanse er gitt i litteraturlista.

Når det gjeld arbeidet med denne oppgåva er eg mange ein takk skyldig. Eg vil spesielt framheve medstudent Are R. Stangeland. Eg har hatt stort utbytte av og satt stor pris på mange gode diskusjonar samt interessante vinklingar og innspel han har kome med.
Innhaldsliste

SAMANDRAG .. 2
FORORD ... 3
1. INNLEIING... 5
2. PRINSIPAL-AGENTTEORI... 6
3. IKKJE-FINANSIELLE MÅLTAL ... 10
4. FINANSIELLE MÅLTAL ... 10
 4.1 REKNESKAPSTAL... 10
 4.2 AKSJEKURS ... 11
5. LEIAROPSJONAR .. 12
6. GENERELT OM OPSJONAR .. 13
 6.1 KJØPSOPSJONAR.. 14
 6.2 SALGSOPSJONAR .. 15
 6.3 PARAMETRAR I BLACK & SCHOLES... 16
 6.4 EUROPEISKE OPSJONAR ... 18
 6.5 AMERIKANSKE OPSJONAR .. 18
7. LITT OM OPSJONSPRISING.. 19
8. PRESENTASJON AV NYTTETEORI ... 22
 8.1 LITT OM RISIKOAVERSJONSPARAMETRAR.. 26
 8.2 PRAKTISK ESTIMERING AV CRRA ... 27
9. TYPAR OPSJONSPROGRAM .. 28
 9.1 OPSJONAR TIL FAST VERDI ... 28
 9.2 FAST ANTAL OPSJONAR ... 29
 9.3 EINGANGSTILDELING AV OPSJONAR - MEGAGRANT ... 29
10. REFORHANDLING AV OPSJONSAVTALAR.. 30
11. OPSJONSPROGRAM FOR ULIKE NORSKE BEDRIFTER... 31
 11.1 SCHIBSTED .. 31
 11.2 TELENOR ... 32
 11.3 ORKLA ... 33
12. ANALYSE AV OPSJONSPROGRAMMA .. 34
13. OPSJONSPRISINGSMODELLEN TIL HALL & MURPHY (2000).. 38
14. VERDSETJING AV DEN SISTE OPSJONSTILDELINGA TIL KONSERNSJEFEN I ORKLA 41
 14.1 SVAKHETER VED MODELLEN OG ANALYSEN .. 47
15. LÆRDOMMAR OG KONKLUSJON.. 50
LITTERATURLISTE .. 51
1. Innleiding

I oppgåva fokuserer eg på aksjebasert avløning av leiarar ved hjelp av opsjonar. Det vil seie at leiaren får kjøpe aksjer til underkurs dersom aksjekursen har nådd ei viss grense. Det er somme særtrekk ved leiaropsjonar som skil dei frå vanlige opsjonar. Mellom anna kan ikkje ein leiar selje opsjonane sine, han kan ikkje kvitte seg med risikoen ved opsjonane, og ofte er ein del av formua til leiaren avhengig av om selskapet går bra eller ikkje ved at han eig aksjer i eige selskap. Dette fører til at verdien av opsjonane til leiaren vert vanskelig å fastsetje.

Prising av opsjonar er veldig aktuelt, i og med at norske selskap no må rapportere etter internasjonale rekningsreglar kalla IFRS. Dette medfører at opsjonane skal verdsetjast til verkelig verdi. Då kan ein spørje seg om det er verdien for leiaren eller verdien for selskapet ein skal ha som utgangspunkt for verdsetjinga. Det er viktig at lesaren har klart for seg at verdien av opsjonstildelinga er ulik for leiar og selskap. Verdien for eit selskap som gjev ein opsjon til leiaren er lik verdien selskapet alternativt kunne seld opsjonen for i marknaden. Dette er den prisen ein investor ville betalt for opsjonen. Men særtrekkva ved leiaropsjonar fører altså til at leiaren verdset opsjonane sine lågare enn selskapet og investorar. For leiarar og investorar finnast ein mykje brukt opsjonsprisingsformel kalla Black & Scholes (B&S) etter dei som utleia han. På grunn av særtrekkva ved leiaropsjonar overestimerer B&S verdien av dei. For å verdsetje opsjonar til leiaren treng ein då ein modifisert modell. To anerkjente amerikanske forskarar, Hall & Murphy, har på heimesida si lagt ut ein modell som verdset opsjonar gitt til leiarar. På slutten av oppgåva vil eg bruke modellen til å verdsetje ei opsjonstildeling til konsernsjefen i Orkla.

Først skriv eg om prinsipal-agentteori som ein presentasjon av ulike problem ein står ovanfor når ein skal fastsetje avløningssystem for leiaren. Eit viktig spørsmål er korleis ein skal måle prestasjonen til leiaren. Her kan ein bruke ulike vurderingskriterier. Det er vanlig å skilje mellom finansielle og ikkje-finansielle. Oppgåva fokuserer på finansielle kriterier, der eg kort nemner ulike rekningskapi stilli brukt til avløning. I resten av oppgåva konsentrerer eg meg om opsjonsbasert avløning. Først presenterer eg opsjonsteori for å gjere lesaren kjend med omgrepa eg bruker seinare i oppgåva. Så presenterer eg nytteteori. Ein viktig komponent i verdsetjinga av opsjonar til leiarar er leiar sin risikomotvillighet. Det er her nytteteori kjem inn. Nytteteori gjev eit godt rammeverk for å forstå kvifor leiarar er risikomotvillige og kva konsekvensar det har for leiar sin verdsetjing av opsjonar. Så bruker eg teorien eg har presentert og kunnskapen eg har fått til å sjå på og kommentere opsjonsprogramma til
Schibsted, Telenor og Orkla. Til slutt i oppgåva bruker eg Hall & Murphy sin opsjonsprisingsmodell for leiarar til å verdsetje opsjonar gitt til konsernsjefen i Orkla.

2. Prinsipal-agentteori

Prinsipal-agentteori er ein generell teori som seier noko om korleis kontraktar mellom prinsipal og agent bør utformast. Prinsipalen (oppdragsgivar) gjev agenten (den som tek på seg oppdraget) ei oppgåve. Ofte er agenten sin innsats vanskelig å observere og dermed vanskelig å kontrollere. Dette fører til at agenten handlar i eigeninteresse, det vil seie at han gjer det som er best for seg sjølv og ikkje det som er best for prinsipalen. Prinsipalen kan stole på at agenten er samvitsfull, eller han kan utforme ei kontrakt som gjer at prinsipal og agent jobbar fram mot felles mål.

Spørsmålet vert difor korleis aksjonærane skal få leiinga til å gjere det som er det beste for seg. Korleis utforme ei kontrakt slik at både leiaren og aksjonærane arbeider mot felles mål?

Under har eg diskutert moment ein bør tenke på og ta omsyn til når ein skal lage ei god insentivkontrakt. Dei er i hovudsak henta frå forelesningsnotat til Hvide (2002).
1) Selskapet er mindre risikomotvillig enn leiaren. Selskapet krev difor mindre kompensasjon enn leiaren for å bære risiko. Når det gjeld opsjonsbasert avløning fører dette til at selskapet betre kan ta på seg risikoen i aksjekursen knytt til forhold leiaren ikkje kan påvirke, til dømes konjunkturutvikling, rentenivå og oljepris. Leiaren krev større økonomisk kompensasjon enn selskapet dersom han må bære denne risikoen. Dersom ein klarer å lage eit opsjonsprogram der selskapet tar risikoen for faktorar i aksjekursen som leiar ikkje kan påvirke vert opsjonsprogrammet meir verd for leiaren, og kostnaden for selskapet vert relativt sett mindre.

2) Leiaren påvirker selskapsverdien og kor godt firmaet går ved å bestemme kor bra han arbeider. Jo større og „riktigare” innsats sett frå aksjonærane si side, jo betre vil selskapet gå. Dersom leiaren har lite betalt, kan det medføre at han tar det meir med ro enn om han har sjansen til å få masse betalt dersom han legg seg i selane. Ein må vere merksam på at det i praksis er mange andre faktorar enn leiaren sin innsats som påvirker selskapsverdien. Gjerne faktorar leiaren ikkje kan påvirke, som nemnt under punkt 1. Leiaren kan ha flaks eller uflaks, alt etter som. Uansett kor hardt han arbeider kan han ikkje påvirke det.

4) Leiarar liker ikkje å jobbe hardt uten kompensasjon. Jo hardare ein vil at leiaren skal arbeide, jo meir kompensasjon må ein gi. Ein kan tenke seg at leiaren krev ekstra kompensasjon berre utover ein viss minsteinnsats som han alltid legg ned. Leiar vil alltid vere interessert i å gjere ein god jobb på grunn av rykte, personlig tilfredshet, prestisje, interessant leiarjobb og personlig utvikling. Sagt med andre ord, ein leiar er som regel alltid på jobb frå klokka 8 til 16. Poenget med bonusbasert avløning er difor å få leiar til å gjere ein innsats utover den innsatsen han vil gjere uansett. Til dømes ved å få han til å jobbe i helgene, ta upopulære avgjerder sett frå medarbeidarane si side, jobbe overtid, konsentrere seg om arbeidsoppgåvane aksjonærane helst vil at han skal drive med og gjerne prioritere jobben
framfor eigeninteresser som familie, fritid og ferier. Det er denne ekstrainnsatsen ein må kompensere leiaren for, som vist på figuren.

![Diagram](image)

Leiar gjer alltid ein minimumsinnsats opp til punktet K. Om styret ønskjer større innsats enn K må selskapet betale bonus til leiaren.

I tillegg til momenta Hvide (2002) nemner, har eg vald å ta med to til.

6) Agenten handlar i eigeninteresse. Dersom leiaren vert lite overvaka kan han, som i dømet ovanfor, velje å investere i store prosjekt som gjev han stor personlig prestisje i staden for å investere i prosjekt som er mest lønsame for aksjonærane. Eit av føremåla med ei insentivkontrakt er at ho skal gjere at prinsipalen og agenten jobbar fram mot felles mål.

7) Eingangsspel i marknaden. Eingangsspel i marknaden betyr at leiaren har valet mellom å jobbe for selskapet eller ikkje. Dersom han takkar ja vert han verande i selskapet i uoverskuelig framtid. Ein ser med andre ord vekk frå at leiaren kanskje snart skal bytte jobb og difor er avhengig av å ha skaffa seg eit godt rykte. Dersom leiar gjer ein dårlig jobb vil
marknaden ofte fange det fort opp i praksis. I tillegg vil det å kunne miste jobben disiplinere leiaren. Å få sparken medfører både finansielle og ikkje-finansielle kostnadar. Finansielle kostnadar i den forstand at han taper løn, og kanskje opsjonar han enno ikkje har opptent. Ikkje-finansielle kostnadar fordi han til dømes får dårlig rykte eller prestisjenederlag for han sjølv.

Som ei løysing på prinsipal-agentproblemet er det vanlig å gi leiaren prestasjonsavhengig løn, han får betalt etter kor mykje han arbeider og kor godt selskapet går. Å gi prestasjonsavhengig løn gjev leiaren gode insentiv til å auke selskapsverdien. Då ser vi at han både tilfredsstiller sine eigne interesser ved å bli rikare, og aksjonærene sine interesser ved at aksjene deira vert meir verd. Det fører til mindre kontrollkostnadar, i og med at leiaren jobbar fram mot det han skal gjere, nemlig å auke selskapsverdien.

Det kan imidlertid vere andre forklaringsmodellar enn prinsipal-agentteori som er med på å bestemme korleis ei kontrakt vert utforma og korleis Leiaren vert betalt. Prinsipal-agentteori tek utgangspunkt i at leiaren vil gjere innsats fordi han får bra betalt. Andre forklaringsmodellar kan ta utgangspunkt i rettferd og sosiale reglar. I Noreg har det tradisjonelt vore eit likskapsideal når det gjeld løn. Det vil seie at det har vore ei sosial norm at leiadar ikkje skal tene mykje meir enn vanlige tilsette. I andre kulturar er dette omvendt, som i USA. Her vart det i ei undersøking slått fast at leiadar i snitt tener 109 gonger meir enn gjennomsnittlig arbeidsløn (Milgrom m. fl. 1992) I Noreg ligg kanskje snittet på 10-15. Kan hende passar prinsipal-agendeitori betre som forklaringsmodell i USA enn i Noreg?

Til no er vi samde om at det er lurt å gi leiaren både fastløn og prestasjonsavhengig løn, og at den prestasjonsavhengige løna vert knytta opp mot selskapsverdien. Spørsmålet vidare vert korleis ein skal finne gode måltal som seier noko om kor god prestasjon leiaren har gjort og dermed kor stor utbetaling han skal få. Til det treng ein ulike vurderingskriterier. Ein kan stille fleire krav til vurderingskriteria. Mellom anna at dei faktisk måler prestasjonen til leiaren, at dei er lett forståelige, lett lar seg berekne, at ein kan samanlikne dei over tid, at dei er etterprøvbare, objektive og vanskelige å manipulere. Ein snakkar gjerne om to typar kriterier, finansielle og ikkje-finansielle.
3. Ikkje-finansielle måltal

Her kan nemnast medarbeidartrivsel, læring og vekst, kundelønsem, auke av
kundeportefølje, evne til å halde på kundar og kor nøyde kundar selskapet har. Mange av dei
ikkje-finansielle indikatorane let seg vanskelig talfeste. Difor kan vere problematisk å bruke
dei i praksis. Det finst teoriar og metodar som legg vekt på å måle ikkje-finansielle
indikatorar. Her er Balanced Scorecard, kalla balansert målstyring på norsk, eit godt døme.

4. Finansielle måltal

4.1 Rekneskapstal

Avløning basert på rekneskapstal vil seie at leiaren får bonus etter kor gode rekneskapstala er.
Det vanligaste er å sjå ulike rekneskapstal i forhold til kvarandre, og sjå på utviklinga av disse
forholdstala over tid. Det finns mange ulike tal ein kan basere leiarbonus på. Vanlige tal å
bruke er ROI (return on investment, totalrentabilitet), RI (residual income, inntekt utover
normalinntekt) og ROS (return on sales, resultatgrad).

Eit viktig poeng ved bruk av rekneskapstal, og for så vidt andre typer målekriterier, er at ein
får meir av den innsatsen som vert løna. Leiar har ein tendes til å jobbe fram mot det han vert
målt på og nedprioritere arbeidsoppgåver det ikkje vert retta merksemot. Dersom bedrifta
ønskjer høgast mogleg ROI over tid må bedrifta innrette belønningssystemet etter det. Difor
er det i praksis vanlig å bruke fleire rekneskapstal og målekriterier samstundes som grunnlag
for å rekne ut bonus til leiar.

Fordelen med å bruke rekneskapstal for leiaravløning er at dei alltid er tilgjengelige. Med det
meiner eg at alle selskap kan bruke rekneskapstal for avløning, kort og godt fordi alle selskap
må utarbeide rekneskap. Spesielt for små og mellomstore bedrifter eksisterer ikkje nokon
pålitelig marknadsverdi sidan dei ikkje er børsnoterte. Då vert rekneskapstala ofte einaste
alternativ dersom ein skal basere leiavløninga på finansielle tal.

Ein generell ulempe med rekneskapen er at han bygger på historiske tal og ikkje alltid på
verkelig verdi. Dette kjem igjen i forholdstala leiar vert løna etter. Det er òg ofte enkelt for
leiari å manipulere rekneskapstal. Når ein skal føre rekneskap er ein avhengig av å gjere mange anslag på verdiane til selskapet. Til dømes kor mykje eit varelager av moteklede er verdt eller kor lang avskrivingstida på produksjonsutstyr skal vere. Dette er spørsmål der ein skal legge beste estimat til grunn. Sidan det er så stor uvisse i estimata frå før vert det vanskelig å overprøve skjønnet til leiaren. Ein kan tenke seg eit rederi som skriv av skipa sine over 20 år, som representerer beste estimat. Leiaren kan seie at frå no av er 30 år beste estimat, sjølv om det ikkje er det. Forlenginga av avskrivingstida med 10 år fører til reduserte årlige avskrivingar ved at investeringskostnaden vert ført over fleire år. Dette fører igjen til at årsresultatet går opp på kort sikt.

4.2 Aksjekurs

Å bruke aksjekurs som avløningskriterie vil seie at leiaren får betalt etter kor høg aksjekursen er, eller kor mykje aksjekursen aukar. Å bruke aksjekurs som grunnlag for bonus gjev ofte gode insentiv til leiaren å handle i eigarane sin interesse. For dersom aksjekursen aukar mykje vil leiaren få høg bonus samtidig som aksjonærane tener meir. Ein gjer formua til leiar direkte avhengig av prestasjonen til selskapet.

Måtar å avlønne ein leiar ved hjelp av aksjekurs er å gi han aksjer eller opsjonar på å kjøpe aksjer i det selskapet han er leiar i. Ofte vil ein velje å gi leiar opsjonar i staden for aksjer. Å gi aksjer viser seg i praksis å bli svært dyrt for selskapet fordi leiaren må ha ein viss eigardel før insentiva vert store nok. Leiaren skal ha mange aksjer før formua vert påvirka mykje ved aksjekursoppgang. (Jensen m. fl. 1990). Dessutan er ein ofte oppteken av kursoppgang, ikkje kor høg kursen er i seg sjølv. Difor har det vore lurt å gi opsjonar i staden for aksjer. Då gjev selskapet verdistiginga av aksja til leiaren utan at leiaren får aksja. Opsonar er billigare å gi leiaren enn aksjer.

Ein kan stille spørsmål ved kor godt mål aksjekursen er for leiarprestasjonar. Det viktigaste å vere klar over her er at det er fleire faktorar enn leiaren sin prestasjon som påvirker aksjekursen. Som eg har nemnt før, så er generelle konjunkturar, rentenivå, pris på råvarer og etterspurnad etter produkta med på å bestemme aksjekursen. Eit anna moment er kor godt marknaden klarer å fange opp leiarprestasjonane, det vil seie kor velfungerande marknaden er.
Ein måte å få isolert leiareffekten på er å samanlikne auke i aksjekurs med auke i kursen for andre, samanliknbare bedrifter. Bedriftene er samanliknbare dersom dei er i same bransje, er nokolunde likt finansiert og organisert, er omtrent like store og driv til same risiko. Dersom aksjekursen for vårt selskap stig med femten prosent, medan aksjekursen for samanliknbare selskap stig fem prosent, kan ein, dersom ein legg godviljen til, tilskrive leiaren dei ti prosentpoenga i meiravkastning.

5. Leiaropsjonar

Ein ulempe med å gi opsjoner er at leiar kan bli veldig risikomotvillig sidan han har stor del av formua sin bunde opp i selskapet og sidan han ikkje kan diversifisere vekk risikoen ved så mykje formue på spel. Ein annan ulempe med opsjonsprogram er at dei veldig lett vert veldig kompliserte. Dersom dei vert for kompliserte kan ein miste noko av motivasjonseffekten. Ein tredje ulempe er at det er veldig vanskelig å designe bra opsjonsprogram, det vil seie opsjonsprogram som gjev dei beste insentiva til leiar til ein lågast mogleg kostnad for selskapet og aksjonærane.

Før eg skriv meir om leiaropsjonar, vil eg presentere litt opsjonsteori og nytteteori for å gi lesaren ein betre bakgrunn for å setje seg inn analysedelen på sluten av oppgåva.

6. Generelt om opsjoner

6.1 Kjøpsopsjonar

Ein kjøpsopsjon på ei aksje er ein rett, men ikkje plikt til å kjøpe aksja til ein forhåndsavtalt pris på eit gitt tidspunkt eller i eit gitt tidsrom. Den forhåndsavtalte prisen kallast K, og tida til siste utøvelsetidspunkt kallast T.

Ein vil berre bruke opsjonen dersom aksjekursen er høgare enn kontraktsprisen på tidspunktet. Berre då gjev opsjonen gevinst. Matematisk sett er det vanlig å skrive at

$$C_T = \max(S_T - K, 0)$$

Der C_T er utbetalinga frå opsjonen, S_T er aksjekursen ved innløysing og K er kontraktsprisen. Vi ser at ein kjøpsopsjon berre gjev utbetaling dersom aksjekursen er høgare enn det vi må betale for å få aksja. Vidare ser vi at det er avgrensa kor mykje ein kan tape på ein opsjon, utbetalinga frå ein opsjon kan aldri vere negativ. Det meste vi risikerer å tape er det vi i si tid betalte for opsjonen. Det er difor vanlig å seie at opsjonar har oppsidepotensial men lite nedsidepotensial. Når ein leiar får opsjonar unngår han å tape pengar i den forstand at han kan risikere ei utbetaling av eigne midlar. I og med at leiaren berre kan få gevinst frå opsjonane, vil dei ha økonomisk verdi for han. Det å få tildelt opsjoner vil ein leiar alltid setje pris på. Ein kan tenke seg at aksjekursen i dag er 100, og at ein har ein kjøpsopsjon på aksja med innløysingskurs på 90. Når opsjonen vert brukt kjøper ein aksja til 90 og sel aksja i marknaden til 100, slik at ein får 10 kroner utbetalt.

Formelt kan dette skrivast

$$C_T = \max(100 - 90, 0) = \max(10, 0) = 10$$

Under har eg brukt eit utbetalingsdiagram. Diagrammet viser kor mykje ein får utbetalt for ulike verdier av aksjekursen ved innløysing. Dersom aksjekursen er 100, ser vi at vi får utbetalt 10.
6.2 Salgsopsjonar

Ein salgsopsjon er rett men ikkje plikt til å selje aksja.

Utbetalinga frå ein salgsopsjon skrivast

\[C_T = \max(K - S_T, 0) \]

For at opsjonen skal ha verdi må aksjekursen vere lågare enn kontraktsprisen. Viss aksjekursen er 100 og kontraktsprisen er 110, får vi difor 10 utbetalt. Salgsopsjonar er så vidt eg veit aldri brukt som leiarsalgspris. Det ville i så fall gitt gale insentiveffekter. Å gi salgsopsjonar til ein leiar er det same som å betale leiaren betre jo meir aksjekursen synker. Difor vil eg i resten av oppgåva konsentrere meg om kjøpsopsjonar.

6.3 Parametrar i Black & Scholes

Kontraktsprisen (K)
Ofte kalla innløysingskursen. Dette er prisen kjøparen må betale for underliggande aktivum når opsjonen kjem til oppgjer.

Når ein skal prise ein opsjon, er det viktig å sjå på forholdet mellom kontraktsprisen og aksjekursen. Dersom ein kjøpsopsjon har ein kontraktspris som er lågare enn aksjekursen i dag, vil den opsjonen alltid vere meir verd enn ein tilsvarande opsjon der kontraktsprisen er høgare enn dagens aksjekurs. Førstnemnte opsjonstype, at K<S, er vanlig å kalle for ein „in the money-opsjon” Omvendt, når K>S, vert opsjonen kalla „out of the money”. Når K=S vert opsjonen kalla „at the money”, forkorta ATM. Det viser seg at dei fleste opsjoner til leirar er ATM-opsjonar, det vil seie at kontraktsprisen er lik aksjekursen ved tildelingstidspunktet.

Når det gjeld leiaropsjoner, ligg skilnaden på gode og dårlige leiarinsentiv ofte i kontraktsprisen. Kontraktsprisen er saman med tid til forfall dei einaste parametrane selskapet kan påvirke når dei utformer opsjonsavtalen, så det er viktig at ein tenker nøye på kor høg kontraktsprisen skal vere og om han eventuelt skal indeksjusterast.

Aksjekursen (S)
S₀ er aksjekursen i dag, og tilsvarande vert S₇ brukt om aksjekursen på innløysingstidspunktet. Ein av føresetnadane i opsjonsprismodellar er at aksjekursen i dag gjenspeiler forventa aksjekursverdi, eller at forventa auke/nedgang i aksjekursen ligg innbakt i dagens aksjekurs. S₀ er difor ein parameter når opsjonen skal verdsetjast.

Risikofri rente (r)
Avkastning ved risikofri plassering. Ein måte å plassere risikofritt er i bank, eller å kjøpe statsobligasjonar.

Tid til forfall (T)
Tid til forfall vil seie kor lenge det er til siste dag ein kan bruke opsjonen. Vanlig tid til forfall er 3 til 9 månader for opsjoner omsett på Oslo børs. Etter lenger tida til forfall er, etter meir er aksjekursen forventa å svinge. I og med at vanlige opsjoner berre har gevinstpotensiale og
ikkje tapspotensiale for eigaren, vil lengre tid til forfall føre til større uvisse i aksjekursen og dermed høgare verdi på opsjonen.

Utbytte (δ)

Medan eigaren av aksja får utbytte, er det ikkje tilfelle for ein som har ein opsjon på aksja. Dersom aksja betaler ut utbytte vert opsjonen mindre verd enn dersom aksja ikkje betaler ut utbytte. Difor vert det meir attraktivt å ha aksja i staden for ein opsjon på aksja. Eit anna mykke brukt ord for utbytte er dividende.

Volatilitet (σ)

I praksis bruker ein alle tre måtane å finne volatiliteten på samstundes. For å gjere det godt i opsjonsmarknaden har det vorte hevda at det er viktig å ha gode anslag på volatiliteten.
6.4 Europeiske opsjonar

Det som kjenneteikner europeiske opsjonar er at dei må innløysast på eit gitt tidspunkt T. Dette er den klart vanligaste opsjonstypen. På Oslo Børs vert det berre omsett kjøps- og salgsopsjonar av europeisk type.

6.5 Amerikanske opsjonar

Amerikanske opsjonar må innløysast på eller innan eit tidspunkt T. Den som eig opsjonen kan då sjølv velje når i perioden han vil løye inn opsjonen, i motsetning til europeiske opsjonar. Amerikanske opsjonar vil ha lik eller større verdi enn ein europeisk opsjon på same aksje og same tid til forfall. Dette fordi det gir auka fleksibilitet for eigaren av den amerikanske opsjonen å kunne løyse inn opsjonen når han vil. Dessutan må ein ta utbyttet av underliggande aktivum i betraktning. Aksjer har typisk utbytte ein gang for året, og det er pengar som aksjeeigaren får. Som eg har nemnt tidligare, så får ikkje eigaren av ein opsjon aksjeutbytte. Om ein har ein amerikansk opsjon, vil det difor kunne løne seg å utøve opsjonen for å få aksja, og i neste omgang få utbytte frå aksja. Viss underliggande aktivum ikkje betaler ut utbytte, er det eit velkjent resultat frå teorien at ein amerikansk og europeisk opsjon er like mykje verd. Det vil seie at ein investor aldri løyser inn den amerikanske kjøpsopsjonen før forfallstidspunktet.

6.6 Asiatiske opsjonar

For asiatiske opsjonar er det aksjekursen og/eller kontraktsprisen vi lar variere. Utbetalinger frå ein asiatisk opsjon avhenger av gjennomsnittlig aksjekurs fram til forfall eller gjennomsnittlig kontraktspris. Gjennomsnittlig aksjekurs kan til dømes bli berekna daglig eller på siste fredagen i kvar månad. Gjennomsnittlig kontraktspris kan reflektere gjennomsnittet av ein indeks, til dømes ein aksjeindeks. Dersom marknaden går opp 10% vert øg kontraktsprisen justert opp 10%.

På eitt område har asiatiske opsjonar ein stor fordel i forhold til europeiske og amerikanske opsjonar. Fordelen er at asiatiske opsjonar er mindre utsette for kursmanipulasjonar. Det kan
tenkast at leiren sender ut eit positivt signal om ei ny kontrakt det er uvisst om at selskapet vil få, og dermed auke aksjekursen akkurat når han skal løyse inn opsjonane. Om selskapet ikkje fekk kontrakta er det ingen som arresterer leiren i ettertid, sjølv om aksja var overprisa etter annonseringa. Dette problemet unngår ein i stor grad ved asiatiske opsjonar, for den forhøga kursen får lite å seie på den totale innløysingskursen som var eit gjennomsnitt av mange tidligare aksjekursar. Etter fleire aksjekursar som inngår i gjennomsnittsbereknin, etter lågare volatilitet, og opsjonen vert billigare. billigare i den forstand at prisen reflekterer lågare forventa utbetalning. Den som har opsjonen har med andre ord mindre insentiv for å drive opp aksjekursen på eit bestemt tidspunkt for å få størst mogleg utbetalning.

7. Litt om opsjonsprising

Begge disse formlane er basert på replikering. Å replikere kontantstraumen til ein opsjon vil seie å setje saman ei portefølje av andre verdipapir som gjev ein kontantstrøm som er nøyaktig lik kontantstrømen til opsjonen i neste periode uansett tilstand. Derom replikeringsportefølja kan lagast (og der er den sentrale føresetnaden i modellen) vil alle, uansett risikopreferanser, vere samme om verdien av opsjonen: Nøyaktig kostnadane ved replikeringsportefølja. Ein har fleire måtar å lage den same kontantstrømen på. Det vert då ikkje rasjonelt at kontantstrømen skal ha ulik verdi. Dette kallast prinsippet om ingen arbitrasje: Marknaden og investorar vil alltid prise dei to kontantstrømene likt. Så kan ein spørre seg når neste periode er. Her kan ein gjere ulike føresetnadar. Jo kortare tid, jo betre modell. For å få eit eksakt resultat må ein justere replikeringsportefølja heile tida: kontinuerlig. Denne kontinuerlige justeringa eller rebalanseringa av portefølja er hovudprinsippet bak B&S. For å få til dette føreset B&S at ein kan rebalansere kostandsfritt (ingen transaksjonskostnadar), at ein kan rebalansere heile tida (børsane stenger aldri), at ein til einkvar tid veit korleis underliggande aktivum kan bevege seg (ein veit ikkje kva tilstand som vil inntreffe, men ein har ein modell som seier korleis tilstandar som er moglege, dvs beskriver den statistiske prisprosessen til underliggande og dei andre papira). I tillegg føreset
Ein at aksjekursen er lognormalfordelt, volatiliteten er konstant, at ein kan låne og plassere til same rente, at det finnast eit tilstrekkelig antal andre verdipapir som gjer at ein kan setje saman replikeringsportefølja i alle tilstandar, at ein kan både kjøpe og utstede alle papir og at papira er delelige for å kunne lage alle porteføljer.

Eg vil no illustrere prinsippet om opsionsprising basert på replikering med eit enkelt døme, ein toperiodisk binomisk opsionsprisingsmodell. I neste periode kan aksjeprisen gå opp eller ned med ein faktor på høvesvis 1,25 og 0,8. Desse faktorane reflekterer volatiliteten til aksja. Dagens aksjekurs er 100, og kontraktsprisen er 100. Vidare foreset eg at den kontinuerlige risikofrie renta i perioden er 6% og at aksja ikkje gjev utbytte i perioden. Merk at eg ikkje har gjort føresetnad om sannsynet for oppgang eller nedgang i aksjeprisen! Nedanfor har eg teikna korleis aksjeprisen og opsionsverdien endrar seg frå i dag til neste periode.

<table>
<thead>
<tr>
<th>Tidspunkt</th>
<th>t=0</th>
<th>t=1</th>
<th>t=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilstand</td>
<td>d</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>Kjøp A aksjer</td>
<td>-100 Δ</td>
<td>80 Δ</td>
<td>125 Δ</td>
</tr>
<tr>
<td>Lån B risikofritt</td>
<td>B</td>
<td>−B · e^{0,06}</td>
<td>−B · e^{0,06}</td>
</tr>
<tr>
<td>Sum</td>
<td>-100 Δ + B</td>
<td>80 Δ − B · e^{0,06}</td>
<td>125 Δ − B · e^{0,06}</td>
</tr>
<tr>
<td>Opsjon</td>
<td>C₀</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

![Diagram showing a binomial options pricing model](image-url)
Verdien av den replikerande portefølja må vere lik verdien av opsjonen i kvar tilstand. Vi får då to likninger: 80 Δ = 0 samtidig som 125 Δ = 25. Løysing av likningssystemet gjev Δ=0,5556 og B=41,856. Då vert C₀ = 100Δ – B = 13,70. Oppsummert kan ein seie at ved å verdsetje porteføljar av verdipapir ein kjenner prisen på, kan ein finne prisen på nye og eksotiske verdipapir. Kontantstraumane vert dei same, og ein investor vil då prise verdipapira likt. Ein kan mellom anna bruke opsionsprisingsteori til å finne verdien av garantere bankspareprodukt.

Når ein skal verdsetje opsjonar til ein leiaren er det imidlertid fleire moment ein må ta med:

Ingen marknad
Leiaren kan ikkje selje opsjonane fritt i marknaden. Han må halde på dei i lengre tid, fire til ti år er vanlig. Dersom leiaren bestemmer seg for å slutte, får han ikkje den gevinsten han ellers kunne fått ved å selje opsjonane.

Ingen risikoreduksjon mogleg
Normalt er det ein klausul i opsjonsprogrammet om at leiaren ikkje får shorte aksjer i selskapet eller på annan måte redusere den finansielle risikoen ved opsjonane sine. Dersom det ikkje var klausul om dette kunne det tenkast at leiaren valde å kjøpe salgsopsjonar som ville gi utbetaling dersom selskapet hadde gått dårlig, det vil seie når kjøpsopsjonane ikkje hadde gitt utbetaling. Eit anna dome er at leiaren kunne ha shorta aksja. Å shorte vil seie å låne aksja, selje ho og få pengar i dag, for så på eit framtidig tidspunkt å kjøpe aksja tilbake og gi ho tilbake til eigaren. Dersom aksjekursen går ned, vil leiaren få gevinst.

Leiar sin formue
Leiarar er som regel risikomotvillige, det vil seie at dei vil ha betalt for å ta risiko. Jo meir risikomotvillig ein leiaren er, jo meir vil han ha i kompensasjon for å ta risiko. Jo mindre formue, jo meir er formua til leiaren avhengig av opsjonstildelina. Som vi ser fører dette til større risiko for leiaren, og han vil difor verdsetje opsjonstildelina mindre enn dersom han...
hadde stor formue. Generelt finst tre typer risikopreferanser. Ein kan vere risikosøkande,
risikonøytral eller risikomotvillig (risikoavers). Eg vil forklare kva som ligg i dei tre omgrepa
ved hjelp av eit enkelt døme.

Vi tenker oss eit enkelt lotteri. Vi kaster ein mynt. Dersom det vert mynt, får vi 10 kroner.
Dersom det vert kron, får vi ingen ting. Sidan det er like stort sannsyn for mynt og kron, får vi
i gjennomsnitt 5 kroner pr. kast. Så spør vi om kor mange kroner vi er villige til å akseptere å
få med sikkerhet framfor å delta i det risikable lotteriet. Dersom vi vil ha 5 kroner er vi
risikonøytrale. Då ser vi på forventa gevinst, og ser heilt vekk frå risiko. Dersom vi er villige
til å akseptere mindre enn 5 kroner, er vi risikoaverse. Og omvendt, dersom vi krev meir enn
5 kroner, er vi risikosøkande.

8. Presentasjon av nytteteori

Nytteteori inngår som ein viktig del av opsjonsprisinga til Hall & Murphy. Eg vil difor ha ein
gjennomgang av grunnleggende nytteteori for å forklare omgrep som sikkerhetsekvivalent og
risikoaversjonsparameter. Disse vert brukt seinare i oppgåva under verdsetjing av opsjonar.
Eg vil illustrere med noko så enkelt som eit myntkastspel.

I det ein kaller eit rettferdig spel må ein betale den forventa verdien for å få vere med i spelet.
Til dømes er det rimelig å betale 1 krone dersom vi får utbetalt 2 kroner viss vi kastar mynt,
og ingen ting viss vi kastar kron. Vi definerer ein tilfeldig variabel X, der X er utbetalinga frå
spelet. Forventningsverdien E[X] vert som følger:

\[
E[X] = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1
\]

E[X] vert 1 krone. Det vil seie at viss vi gjennomfører spelet mange ganger vil vi i
gjennomsnitt få utbetalt 1 krone. Dersom det koster 1 krone å få vere med i spelet ser vi at vi
ikkje vinn eller taper noko på å vere med dersom vi spelar mange ganger. Dette vert kalla eit
rettferdig spel.
Ein av dei første som kom med problem der ein måtte tenke på nytte var Nicolas Bernoulli (1700-1782). Kan ein bruke forventa utbetaling for å verdsetje følgjande spel?

Eit kronestykke vert kasta. Vert det mynt får spelaren ingen utbetaling, men får kaste ein gang til. Straks det vert kron stansar spelet og spelaren får ei utbetaling på 2^n kroner, der n er antal kast til første kron.

Vi rekner ut forventningsverdien til spelet til Bernoulli.

$$E[X] = \frac{1}{2} \cdot 2 + \left(\frac{1}{2}\right)^2 \cdot 2^2 + \left(\frac{1}{2}\right)^3 \cdot 2^3 + \ldots = 1 + 1 + 1 + \ldots = \infty$$

Forventninga får uendelig mange ledd. Vi må med andre ord ta med uendelig mange ledd for at sannsyna for alle utfalla skal summere seg til ein. Ein vil få svært stor utbetaling frå spelet dersom ein spela svært mange gangar fordi det i teorien ikkje er ei øvre grense for kor mykje ein kan få utbetalt. Vi konkluderer med at forventningsverdien ikkje eksisterer. Sjølv om det er eit svært liten sannsyn for svært stor utbetaling, er det ingen som vil vere villige til å betale særlig mykje for å delta i spelet. Viss vi tenker litt på problemet ser vi at verdien for oss av å spele dette spelet bør bestemmast på bakgrunn av nytte, ikkje forventa utbetaling. Spørsmålet vert difor korleis vi skal klare å måle nytte.

For å kunne måle og samanlikne nytte bruker ein ofte nyttefunksjonar. Det er ei samling matematiske funksjonar som har visse eigenskapar. Ein eigenskap ein ønsker er at meir er betre. Det vil seie at nytten aukar når vi får meir av noko. Denne eigenskapen medfører at nyttefunksjonen sin førstederiverte må vere positiv, det vil seie at nyttefunksjonen har positivt stigningstal.

Ein annan viktig eigenskap er at jo meir ein har, jo mindre vil det vere verd å få meir. Vi kan tenke oss at ein person har ei formue på 1000 kroner. Dersom han vinn 1000 kroner, vil han typisk få større nytte av den ekstra tusenlappen enn ein person som har formue på 1.000.000 kroner og vinn 1000 kroner. Dette vert i litteraturen kalla avtakande grensenytte, som er det
same som å seie at den andrederiverte av nyttefunksjonen er negativ. Stigningstalet til nyttefunksjonen er altså positivt, men avtakande når formuen auker.

Nedanfor har eg teikna grafen for nyttefunksjonen \(U(X) = \sqrt{X} \), der X er sluttformua til investor.

Det var ikkje eit tilfeldig val å bruke kvadratrota av X som ein nyttefunksjon. Etter litt rekning finn vi at han tilfredsstiller kriteria eg lista opp.

\[
U(X) = \sqrt{X}
\]

\[
U'(X) = \frac{1}{2\sqrt{X}} \quad > 0 \text{ for alle } X>0
\]

\[
U''(X) = -\frac{1}{4X\sqrt{X}} \quad <0 \text{ for alle } X>0
\]
Av grafen ser vi at nyttefunksjonen heile tida stig, men at stigninga reduserast etter meir vi aukar sluttformua. Det er rimelig å anta at vi ikkje kan ha negativ sluttformue, så difor må X vere større enn 0.

Ein annan nyttefunksjon som tilfredsstiller dei to kriteria er den logaritmiske nyttefunksjonen

\[U(X) = \ln(X) \]

No kan vi gå tilbake til verdsetjinga av myntkastspelet. Dersom vi foreset at investor har ein logaritmisk nyttefunksjon, kan vi på bakgrunn av det finne kor mykje investor er villig til å betale for spelet. Rekner først ut forventa nytte:

\[
E[U(X)] = \sum_{i=1}^{n} \left[\frac{1}{2} \cdot \ln(2) \cdot \ln(2^3) + \left(\frac{1}{2} \right)^2 \cdot \ln(2^3) + \ldots + \left(\frac{1}{2} \right)^n \cdot \ln(2^n) \right] = \ln(2) \cdot \sum_{i=1}^{n} \left(\frac{1}{2} \right)^i \cdot i
\]

\[
E[U(X)] = 2 \cdot \ln(2) = \ln(4)
\]

Poenget med ein nyttefunksjon er at han gjer det mogleg å velje mellom ulike spel/lotteri basert på forventa nytte. Dersom ein ønsker å sette ein pris på eit spel må ein samanlikne nytten med lotteriet opp mot nytten av ein fast sum. Denne faste summen er sikkerhetsekvivalenten.

Sikkerhetsekvivalenten er definert som følger:

\[
E[U(X)] = U(CE_X)
\]

Innsatt får vi at \(\ln(4) = \ln(CE_X) \Rightarrow CE_X = 4 \)

Vi finn at sikkerhetsekvivalenten er fire. Det vil seie at investor er villig til å bytte bort myntkastslotteriet mot å få 4 kroner i handa. Dette er låg verdi. Men ln-funksjonen er ein veldig seint veksande funksjon, så han verdset kasta med små sannsyn og samtidig store utbetalinger veldig lite. Ln-funksjonen symboliserer med andre ord ein veldig risikoavers leiar. Sikkerhetsekvivalenten er avhengig av korleis nyttefunksjon vi har. Det kan visast at
dersom vi har en kvadratrotnyttetfunksjon så vil sikkerhetsekvivalenten bli i underkant av 6 kroner. Vi trekker konklusjonen at jo meir risikoavers, jo mindre sikkerhetsekvivalent.

Vi ønskjer oss eit generelt mål på risikoaversjon. Det vil seie at vi berre ved å sjå på nyttefunksjonen kan gjere oss opp ei meining om kor risikoavers leiar er. Ein risikoaversjonsparameter er eit slikt mål.

8.1 Litt om risikoaversjonsparametra

Generelt har ein mange døme på risikoaversjonsparametra. Den heilt enklaste å forstå er ein preferansemodell basert på forventa nytte og varians. Ein seier at jo større avkastning, jo betre. I tillegg seier ein at etter meir risiko som er tilknytta avkastninga, jo mindre vert avkastninga verd. Ein kan da tenke seg følgjande enkle modell:

\[U(X) = E[X] - \rho \cdot Var(X) \]

Her får \(\rho \) tolking som ein risikoaversjonsparameter. For ein person som er risikonøytral vil parameteren bli lik null. For ein risikomotvillig person vil parameteren bli større enn 0. Jo meir risikomotvillig, jo høgare vil verdien på \(\rho \) vere. Definisjonen av ein risikoavers investor: Ved lik utbetaling vil investor alltid foretrekke det alternativet med minst risiko knytta til seg. Vi ser at dette stemmer når \(\rho > 0 \).

Andre typar nyttefunksjonar har andre typar risikoaversjonsparametra knytta til seg. Opsjonsprisingsmodellen til Murphy føreset konstant relativ risikoaversjon, forkorta CRRA. Det står for constant relative risk aversion.

RRA er definert som

\[RRA(X) = -\frac{U''(X)}{U'(X)} \cdot X \]

Risikoaversjonsparameteren vi får frå denne definisjonen kallast Arrow-Pratts relative risikoaversjonskoeffisient.
Konstant relativ risikoaversjon medfører at ein prosentvis auke av formua fører til ei viss prosentvis auke av marginalnytten uavhengig av kor stor formua var i starten. Det vil seie at vi får like stor prosentvis endring i marginalnytte om vi starter med 100 og får 101, eller om vi starter med 10.000 og får 10.100. 1% tillegg på formua gjev med andre ord like stor endring i marginalnytte uavhengig av startformua.

Eit spesialtilfelle er nyttefunksjonen \(U(X) = \ln(X) \). Her finn vi at \(RRA = 1 \). Denne verdien av risikoaversjonsparameteren har ei veldig grei tolking. Dersom vi dobler leiaren sin sluttformue vil marginalnytten halverast. Dette er enkelt å vise. Viss formua er 100, får vi at marginalnytten \(U'(X) = 0,01 \). Dersom vi dobler formua til 200, vert marginalnytten 0,005.

Ein annan vanlig brukt nyttefunksjon med konstant RRA er

\[
U(X) = \frac{1}{1-\beta} X^{1-\beta} \quad \text{for } \beta \neq 1
\]

Dette er ein potens-nyttefunksjon. Derivasjon av nyttefunksjonen og innsetting gjev at \(RRA(X) = \beta \). Vi ser nyttefunksjonen medfører CRRA fordi risikoaversjonsparameteren er uavhengig av formua \(X \).

Generelt er ein meir risikoavers etter høgare verdi ein har på risikoaversjonskoeffisienten.

Dersom ein leiar har \(\beta = \frac{3}{4} \) veit vi han er meir risikoavers enn ein leiar med \(\beta = \frac{1}{2} \).

8.2 Praktisk estimering av CRRA

Dersom ein antar konstant relativ risikoaversjon kan ein prøve å finne risikoaversjonsparameteren sin. Det gjer ein ved hjelp av eit tenkt lotteri (Gollier, 1999): Kor mykje er ein villig til å betale av formua si for å unngå å delta i eit lotteri der ein kan vinne eller tape \(\alpha % \) av formua med likt sannsyn? Vi kaller andelen ein er villig til å betale for \(\xi \). Ein får då følgande likning

\[
0,5 \cdot \frac{(1+\alpha)^{1-\beta}}{1-\beta} + 0,5 \cdot \frac{(1-\alpha)^{1-\beta}}{1-\beta} = \frac{(1-\xi)^{1-\beta}}{1-\beta}
\]

Innsetjing av \(\alpha = 10\% \) og \(\alpha = 30\% \) og ulike verdier av \(\beta \) gjev følgande tabell over \(\xi \):

27
Dersom formua til leiaren er 10.000 kroner, les vi frå tabellen at han vil vere villig til å betale 50 kroner for å unngå å delta i eit lotteri der han vil ende opp med enten 11000 eller 9000 kroner gitt at risikoaversjonsparameteren er lik 1.

9. Typar opsjonsprogram

9.1 Opsjonar til fast verdi

Opsjonsprogrammet strekker seg som oftastr over fleire år. Leiaren får tildelt opsjonar til ein verdi på til dømes 1 million kroner kvart år. Ein annan variant er at leiaren får opsjonar til ein fast prosentdel av kva leiaren fekk utbetalt i fastløn året før.

Fordelen med dette programmet er at det er enkelt å forstå, og at selskapet veit kor høg kompensasjon leiaren får nokre år fram. Selskapet har med andre ord god kontroll på kor kostbart opsjonsprogrammet vert.

Det er imidlertid ei stor ulempe med å gi leiaren opsjonar til fast verdi. Ulempen er at dersom selskapet går bra vil leiaren få færre opsjonar neste år. Dersom selskapet går dårlig vil leiaren få fleire opsjonar. Ein kan då hevde at leiaren vert betalt dersom selskapet går dårlig, og straffa dersom selskapet går bra.
9.2 Fast antal opsjonar

Her får leiaren eit fast antal opsjonar kvart år. Vi antar at kontraktsprisen på opsjonane er den same som aksjekursen når opsjonane vert gitt til leiaren, det vil seie ATM-opsjonar.

Dette alternativet gjev ein sterkare samanheng mellom utbetalning og yting til leiaren enn å få opsjonar til fast verdi kvart år. For dersom leiaren aukar verdien av selskapet i dag, vert det å få opsjonar til neste år meir verd. Og omvendt, dersom leiaren gjer sitt til at selskapet minker i verdi, vert opsjonane til neste år mindre verdt.

9.3 Eingangstildeling av opsjonar - megagrant

Medan dei to første opsjonsprogramma strekker seg over fleire år, er megagrant-opsjonsprogram ei eingangstildeling av mange opsjonar. I staden for å få opsjonar over til domes tre år får leiaren alle opsjonane med ein gang. Dette gjev svært gode insentiv til leiaren for å få opp selskapsverdien. Særleg stort vert insentivet rett etter at opsjonane er tildelte.

Dersom leiaren gjer ein god jobb og auker selskapsverdien mykje, vil leiaren bli rik. Det er fordel med eingangstildeling av opsjonar. Dersom selskapet går bra, vil leiaren ha gode insentiv til å få opp aksjekursen ytterligare.

Ein ønsker verken å gi leiaren insentiv til å bli veldig risikosøkande eller gi han dårlige insentiv dersom aksjekursen er mykje lågare enn kontraktsprisen. Ein måte å løyse insentivproblema på er å reforhandle opsjonsavtalen. Det vil eg skrive om i neste avsnitt.

heilt. Spesielt vil insentiva til leiar bli låge dersom selskapet går dårlig på grunn av ein nedkonjunktur, for leiaren kan ikkje påvirke konjunkturar. Då vil han kanske slutte, byrje i eit nytt selskap og få nye opsjonar. Ofte er dette det einaste alternativet til reforhandling av opsjonsavtalen. Ein annan fare med ei megagrant-tildeling er at selskapet var overprisar då leiaren byrja i jobben. Kan hende hadde den førra leiaren hausa opp aksjekursen for å få størst mogleg verdi på opsjonane sine rett før han slutta.

Ved nedgang, uansett årsak, er tildeling av eit fast antal opsjonar å føretrekke, sidan leiaren får utdelt nye opsjonar kvart år, som har innløysingskurs lik aksjekursen. Då vil han på ein måte starte med blanke ark kvart år, og ha like store insentiv til å få aksjekursen opp.

10. Reforhandling av opsjonsavtalar

11. Opsjonsprogram for ulike norske bedrifter

Eg vil først skrive litt om og analysere opsjonsprogramma til Schibsted, Telenor og Orkla. Til slutt vil eg verdsetje opsjonane til konsernsjef Opedal i Orkla.

11.1 Schibsted

Schibsted skriv følgende om opsjonsprogrammet sitt i årsrapporten:

„Ledelsens opsjonsprogram ble etablert i 2000. Hvert års tildeling opptjenes over tre år og må utøves innen ett år etter utgangen av opptjeningsperioden. Opsjonsprogrammet omfatter Schibsteds konsernledelse samt ledere i enkelte datterselskaper. (…) Personer som er omfattet av opsjonsordningen tildeles en mulighet til å opptjene opsjoner med like deler (1/3) over en treårsperiode. Innløsningskurs fastsettes basert på gjennomsnittlig børskurs en uke før og etter offentliggjøring av selskapets 1. kvartalstall i tildelingsåret.”

Vidare

„Opsjonsprogrammet omfatter i dag konsernsjefen, konserndirektørene og administrerende direktør og sjefredaktør i Aftenposten, VG, Svenska Dagbladet, Aftonbladet. Formålet med Opsjonsprogrammet er å bidra til økt eierskap hos ledelsen i Schibsted og derved at ledelsen og aksjonærer har sammenfallende interesser. For å øke aksjeeiet, ble det i 2005 innført reinvesteringsplikt ved innløsning av opsjoner inntil et visst minimum eierskap i Schibstedaksjien oppnås. For konsernsjefen utgjør dette et krav om eierskap tilsvarende to årsloener, for konserndirektørene én årsloenn og for øvrige ledere som omfattes av programmet, en halv årsloenn. Ved vurderingen av om minimum eierskap er nådd skal brutto lønn og aksjenes markedskurs legges til grunn. Inntil minimumskravet er nådd må inntil 50 prosent av fortjenesten etter skatt på innløste opsjoner reinverteres i Schibsted-aksjen.

Ikke-opptjente opsjoner bortfaller ved fratreden og opptjente opsjoner må innløses innen korte tidsfrister ved avslutning av ansettelsesforholdet.”

Schibsted har oppretta ein eigen kompensasjonskomité:
Kompensasjonskomiteen forbereder saker for konsernstyret som gjelder avløning av toppledere i sentrale datterselskaper. Arbeidet omfatter spørsmål knyttet til lønn, bonus, opsjoner, sluttvederlag, fortidspensjon og alderspensjon. Kompleksiteten og kravet til grundighet innenfor disse områdene gjorde at konsernstyret så behov for å opprette en komité som kunne forberede disse sakene for konsernstyret.

Kompensasjonskomiteen har siden etableringa i 2004 bestått av Ole Jacob Sunde som leder, i tillegg til Monica Caneman og Alexandra Bech Gjørv. Kompensasjonskomiteen er i likhet med konsernstyret på valg hvert år.

11.2 Telenor

Følgande informasjon kjem fram i årsrapporten:

„Virkelig verdi måles ved bruk av Black-Scholes-modellen. Forventet levetid i modellen er justert på grunnlag av ledelsens beste estimater for virkningen av ikke-overførbarhet, utøvelsesrestriksjoner og forventet tidspunkt for utøvelse.”
"For virkelig verdi-beregninger er aksjekursen på tildelingstidpunktet benyttet. Black-Scholes opsjonsprisingsmodell ble konstruert for beregning av virkelig verdi av omsatte opsjetonar som ikke har begrensning med hensyn til opptjening eller overdragelse. I tillegg bygger modellen på subjektive forutsetninger om risikofri rente, volatilitet i den underliggende eiendelen, utbytte og forventet levetid. Konsernets opsjetoner har vesentlige forskjeller fra forutsetningen i Black-Scholes modellen, men siden antallet tildelte opsjetoner er begrenset sett i forhold til det totale antall aksjer er det forventet at valg av beregningsmodell ikke vil ha vesentlig effekt på konsernregnskapet.”

11.3 Orkla

Orkla skriv følgende om opsjonsprogrammet sitt på heimesida og i årsrapporten:

„Orklakonsernet har en opsjonsordning som omfatter cirka 120 ledere hvor den enkelte leder i fremtiden får rett til å kjøpe et antall Orkla-aksjer til en bestemt utøvelseskurs. Antall utstedte opsjetoner utgjorde ved årsskiftet 1.588.075. Opsjonsprogrammet er moderat i omfang da det representerer under 1 % av utesstående aksjer.”

„Orklakonsernet har en opsjonsordning for nøkkelpersoner. Opsjetoner utstedes normalt på 110% av børskurs for Orkla-aksjen. Løpetid er seks år, og opsjesjonen kan utøves i de tre siste årene. Ved opsjonsutøvelse har Orkla rett til alternativt å innløse opsjetoner ved å utbetalte et kontantbeløp som tilsvarer differansen mellom utøvelseskurs og aksjens kurs på utøvelsesdagen, men dette skjer unntaksvis.”

Om verdsetjinga av opsjonsprogrammet skriv Orkla følgende:

„Opsjetoner til ansatte verdsettes basert på opsjonens virkelige verdi på det tidspunktet opsjonsplanen vedtas (tildelingstidspunktet). Ved verdsettelse benyttes Black & Scholes-modellen.”
12. Analyse av opsjonsprogramma

Verken Telenor, Orkla eller Schibsted gjev megagranter, alle opsjonsprogramma går over fleire år. For Telenor og Schibsted vert 1/3 av opsjonane tildelte kvart år. Leiaren får rett til opsjonane, men får ikkje utøve alle samstundes. Dette er vanlig for leiaropsjonar. Det er vanlig å gjøre det slik for å gi leiaren insentiv til å satse på langsiktig lønsemd, og for å slippe å gje leiaren opsjonar dersom han slutter. Eit anna problem som kunne oppstå dersom opsjonane ikkje hadde ein slik venteperiode, er at leiaren ville utøve opsjonane ein dag aksjekursen var veldig høg for deretter å söke ny jobb i eit anna selskap.

Vi ser at alle programma har noko ein på engelsk kallar vesting period, det vil seie at ein får rett til opsjonane, men må vente med å utøve til det er gått eit visst antal år. Dette er for å sikre at leiaren tenker meir langsiktig og ikkje slutter i jobben. Det er ein vanlig klausul i opsjonskontraktnar at dersom leiaren slutter for han har fått overført opsjonane, så vert dei verdilause. Det med å tenke langsiktig er òg reflektert i varigheten på opsjonsprogrammet, det vil seie når opsjonane må utøvast for ikkje å bli verdilause. Varighet på opsjonsprogrammet til Telenor er sju år, Orkla seks år og Schibsted fire år.

For meg ser det ut som at Schibsted har lagt ned mest arbeid i å få eit best mogleg opsjonsprogram. Det kjem fram i årsrapporten at dei har oppretta ein eigen avløningskomité. Etter det eg kan sjå, er opsjonsprogrammet i Schibsted godt utfóroma. Då tenker eg spesielt på at opsjonsprogrammet gjeld berre toppleiarar som reelt sett har sjanse til å påverke selskapsverdien. Dette i motsetning til Orkla og Telenor, der over 100 leirarar har opsjonsprogram. Tidligare har eg skrive at opsjonsprogram og andre bonusordningar gjev insentiv til leiaren om å gjere ein god jobb berre dersom leiaren reelt sett kan påverke selskapsverdien. Å gi opsjoner til „alle” tilsette i bedrifter vil dífor ha liten verdi for selskapet. Dette vert framheva i artikkelen av Iver Bragelien (2005) der han skriv om bonustabbar. Ein av tabbane ifølge artikkelen er overdriven tru på indirekte motivasjonsfaktorar. Om at alle tilsette i same eining i eit stort selskap får same bonus skriv han følgande: „Slike ordninger satser på indirekte og ikke direkte motivasjonseffekter. Den enkelte ansatte vil ikke selv kunne påvirke belønningen nevneverdig ved å endre atferd”

Eit anna moment som gjer opsjonsprogrammet til Schibsted bra, er at innløysingskursen er avhengig av kursen ei veke før og ei veke etter offentliggjering av kvartalstal for 1. kvartal nå

Eit lurt trekk Schibsted har gjort er investeringsplikta til leiaren i Schibsted-aksja. Jo høgare opp i systemet ein er, jo større investeringsplikta i aksja har ein. Dette gjev ifølge teorien betre insentiveffekt, fordi større del av leiaren sin formue er bunde opp i selskapet, som fører til at leiar og aksjonærar får samanfallande interesser. Ein ulempe med å ha stor del av formua sin bunde opp i selskapet er at opsjonstildelingane vert mindre verdt. Dette vil eg vise i analysedelen der eg verdet opsjonane til konsernsjefen i Orkla.

Opsjonsprogrammet for 2003 og 2004 er enno meir komplisert. Det er ein form for barriereopsjon, det vil seie at opsjonen får verdi eller ikkje alt ettersom ei hendig inntreffer eller ikkje. Eg vil forklare opsjonsprogrammet ved hjelp av eit døme. Vi kan tenke oss at den gjennomsnittlige kursen 5 dagar før tildeling av opsjonar er 100. Dersom opsjonen vert utøvd etter eitt år, vert barrieren 100 * 1,0538 = 105,38. Det vil seie at opsjonen berre kan utøvast
dersom kursen om eitt år er høgare enn 105,38. Det neste vi gjer er å sjå på kontraktsprisen. Den er fastsett til å vere gjennomsnittlig aksjekurs 5 dagar før tildeling, som var 100. Dersom aksjekursen ved innløysing av opsjonen er 107, ser vi at vi får 107 – 100 = 7 utbetalte. Dersom kursen er 103, ser vi at opsjonen ikkje gjev utbetinging, fordi 103 er under barrieren.

Orkla er det einaste selskapet som gjev opsjonor som er out of the money (OTM), det vil seie at kontraktsprisen er høgare enn dagens aksjekurs. Dette er ein enkel måte å vise leiarane på at dei må auke selskapsverdien over ein viss terskel før opsjonane får verdi. Kontraktsprisen på opsjonane i Orkla er 110% av dagens kurs. Det vil seie at dersom dagens aksjekurs er 100 vil kontraktsprisen bli 110. Leiaren får med andre ord berre betaling dersom han auker selskapsverdien over ein viss minimumsterskel. Så kan ein lure på kor gode insentiv det gjev til leiaren å gi opsjonor som er OTM. Hall & Murphy (2000) diskuterer optimal kontraktspris for leiaropsjonar i artikkelen sin. Med optimal kontraktspris meiner ein dei kontraktsprisane som gjev størst mogleg insentiv, pluss minus 1%. Dei finn fram til følgande tabell:

<table>
<thead>
<tr>
<th>Prosent av formue i opsjonar</th>
<th>Prosent av formue i aksje</th>
<th>Risikoaversjon</th>
<th>Optimal utøvelsespris i prosent av aksjekurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>33</td>
<td>2</td>
<td>125-185</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>2</td>
<td>90-140</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>2</td>
<td>60-100</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>3</td>
<td>70-105</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>3</td>
<td>45-70</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>3</td>
<td>30-45</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>2</td>
<td>110-160</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>2</td>
<td>80-120</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>2</td>
<td>55-90</td>
</tr>
</tbody>
</table>

Frå tabellen ser vi at OTM-opsjonar ofte gjev like gode insentiv som at ATM-opsjonar. Så det er kanskje ikkje så dumt å gi leiaren OTM-opsjonar. Dei er billigare å utstedde enn ATM-
opsjonar, dei gjev like gode insentiv og synleggjer at leiar berre får betalt dersom han gjer ein bra jobb. Men i og med at kontraktsprisen vert sett såpass høgt, vil ein sterk nedgang i aksjekursen gjere reprising/reforhandling av opsjonsavtalen meir aktuell. Det er ulempen ved å utstede OTM-opsjonar.

Noko anna vi kan lese frå tabellen er at dei fleste intervalla inneheld ATM-opsjonar, som er den desidert vanligaste opsjonsordninga. Modellen kan dermed vere god på å forklare det som skjer i praksis.

I den neste delen av oppgåva vil eg bruke opsjonsprisingsmodellen til Hall & Murphy (H&M) til å verdsetje ei opsjonstildeling til konsernsjefen i Orkla.

For å finne verdien på opsjonen tek reknearket utgangspunkt i sikkerhetsekvivalent verdsetjing. Ein ser kor stor kompensasjon leiaren krev i fast sum i staden for å få opsjonane. Ein antar at leiaren har W kroner i startformue, s aksjer og ein aksjeopsjon. Sluttformua W til investor på tidspunkt T vert då

$$W_T = w \cdot (1 + r_f)^T + s \cdot S_T + \max(0, S_T - K)$$

Dersom leiaren fekk ν kroner i staden for opsjonen, ville sluttformua W' sett slik ut:

$$W'_T = (w + \nu)(1 + r_f)^T + s \cdot S_T$$

Disse alternativa vil bli like. Vi ser at ν er sikkerhetsekvivalenten, og dermed verdien for leiaren av å få ein opsjon tildelt. Det er verdien på ν modellen til H&M finn.

Det er mange parametrar som inngår i modellen til H&M. Eg vil kort kommentere kvar av dei.
Risikofri rente r_f

Dette er rente på ei risikofri plassering, til dømes statsobligasjonar. Når eg anslår risikofri rente finn eg ein statsobligasjon med omtrent same tid til fortall som opsjonen, og ser kor høg renta er.

Risikopremie R_m

Er definert som marknaden sin risikopremie, det vil seie forventa marknadsavkastning fråtrukke risikofri rente. Når ein skal gjere anslag på framtidig risikopremie bruker ein gjerne historisk risikopremie som grunnlag. Kjell Henry Knivsflå har i faget BUS 424 Strategisk reknepunktanalyse kome fram til at risikopremien på Oslo børs 1995-2005 er 3,7% pr år. Han har rekna risikopremien som gjennomsnittleg geometrisk avkastning utover risikofri rente på annualisert basis. I og med at risikopremien er venta å variere litt, vel eg å operere med eit anslag på 4%.

Beta β_E

Volatilitet σ

sjå på volatiliteten på dei opsjonane som har vore handla mest. Det er typisk opsjonar der kontraktsprisen er nær dagens aksjekurs.

Utbytte δ

Tid til forfall T
Kor lang tid det er til siste mulighet for å utøve opsjonen.

Avkastning frå CAPM r_E
Vert rekna ut som $r_E = r_f + (r_m - r_f) \cdot \beta_E$. Tradisjonelt brukast CAPM av ein veldig diversifisert investor til å prise verdipapir. Brukast i reknearket for å finne forventa aksjekurs på forfallstidspunktet.

Formue til leiaren w

Del i selskapet sin aksje a
Kor stor verdien av aksjene i selskapet er i forhold til totalformua til leiaren.

Risikoaversjon ρ
Føreset konstant relativ risikoaversjon.

I tillegg inngår kontraktspris K, og antal opsjonar tildelt N.
14. Verdsetjing av den siste opsjonstildelinga til konsernsjefen i Orkla

Orkla skriv om seg sjølv på heimesida si:

I note 24 til årsrapporten i 2005 skriv Orkla at dei bruker B&S til å verdsetje opsjonane. For å finne riktig verdi av opsjonane har dei brukt følgande estimat:

<table>
<thead>
<tr>
<th>Forventet utbytte yield (%)</th>
<th>2005 ¹</th>
<th>2006 ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forventet volatilitet (%)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Historisk volatilitet (%)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Riskofrirente (%)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Forventet levetid på opsjonen (år)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Vektet gjennomsnittlig aksjekurs (NOK)</td>
<td>220</td>
<td>168</td>
</tr>
</tbody>
</table>

¹ Forutsetninger for nye tildelinger i regrapapadret.

Vi ser at Orkla har brukt historisk volatilitet som grunnlag for berekninga. 25% vil då vere eit godt anslag på volatiliteten i aksja, og ein volatilitet eg kan bruke når eg skal verdsetje opsjonane til Opedal. Alternativt kan eg bruke implisitt volatilitet. Opsiomar på Orkla-aksja vert handla på Oslo Børs, og er blant dei mest handla opsjonane der. Dagens Næringsliv publiserer den implisitte volatiliteten. For opsjonar med løpetid 1 månad er volatiliteten ca. 31% i DN 3. juni. Opsiomar med løpetid 4 månadar har ein volatilitet på ca 29%. Det er viktig å vere klar over at opsjonane eg skal verdsetje har ei løpetid på 6 år i motsetning til 4 månader, slik at den implisitte volatiliteten treng ikkje vere det beste estimatet på volatiliteten. Konklusjonen vert difor at ein volatilitet på mellom 25% og 30% er rimelig.
I dagens næringsliv 3. juni 2006 finn eg at ein beta på Orkla-aksja er 0,90. Observasjonar for eitt år inngår i betaverdien.

Orkla betaler ut utbytte ein gang årlig. For dei siste 7 åra har normalt utbytte låge på om lag 2% kvart år. Den kontinuerlige renta vil vere litt mindre enn den utbytteprosenten eg rekna ut. Basert på dei historiske tala forventer eg ein årlig, kontinuerlig utbytterate på 2%.

For ein statsobligasjon utstedt av Den norske stat med forfall 16. mai 2011 er renta 4,02%. Eg bruker difor 4% som eit anslag på risikofri rente.

Etter å ha brukt reknearket til Hall & Murphy finn eg opsjonsverdi for leiaren som ein funksjon av dagens aksjekurs. Den øvste linja representerer teoretisk B&S-verdi. Den nedste linja viser kor mykje leiaren verdset opsjonane. Parametrane eg bruker er $r_f = 4\%$, $R_m = 4\%$, $\beta = 0,9$ ($\sigma = 0,25$ $\delta = 2\%$ $T = 6$ år $r_E = 7,6\%$ $K = 316,25$ $N = 50.000$ $w = 10.633.111$ $a = 65,65\%$ og $\rho = 2$.

Etter å ha køyrt simuleringa får eg følgande graf:
Vi ser at det er stort sprik mellom selskapet og leiars verdsetting. Dessutan ser det ut som at stigningstallet på B&S-linja auker med auka aksjekurs, medan stigningstallet for leiaren sin verdi avtar jo høgare aksjekursen er. Dette fører til at skilnaden mellom B&S-verdi og leiaren sin verdi vert større jo høgare aksjekursen er.

Nedanfor har eg tatt med eit utsnitt av reknearket. Eigenverdien er skilnaden mellom dagens aksjekurs og kontraktsprisen.

<table>
<thead>
<tr>
<th>Aksjekurs</th>
<th>Eigenverdi</th>
<th>Verdi pr. opsjon, B&S</th>
<th>Verdi pr. opsjon, H&M</th>
<th>Verdi, B&S</th>
<th>Verdi, H&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td>0</td>
<td>68</td>
<td>24</td>
<td>3 387 332</td>
<td>1 181 623</td>
</tr>
<tr>
<td>301</td>
<td>0</td>
<td>71</td>
<td>25</td>
<td>3 561 865</td>
<td>1 230 640</td>
</tr>
<tr>
<td>307</td>
<td>0</td>
<td>75</td>
<td>26</td>
<td>3 739 571</td>
<td>1 278 341</td>
</tr>
<tr>
<td>313</td>
<td>0</td>
<td>78</td>
<td>26</td>
<td>3 920 346</td>
<td>1 324 779</td>
</tr>
<tr>
<td>319</td>
<td>2,75</td>
<td>82</td>
<td>27</td>
<td>4 104 087</td>
<td>1 370 002</td>
</tr>
<tr>
<td>325</td>
<td>8,75</td>
<td>86</td>
<td>28</td>
<td>4 290 692</td>
<td>1 414 059</td>
</tr>
<tr>
<td>331</td>
<td>14,75</td>
<td>90</td>
<td>29</td>
<td>4 480 066</td>
<td>1 456 993</td>
</tr>
<tr>
<td>337</td>
<td>20,75</td>
<td>93</td>
<td>30</td>
<td>4 672 113</td>
<td>1 498 847</td>
</tr>
<tr>
<td>343</td>
<td>26,75</td>
<td>97</td>
<td>31</td>
<td>4 866 740</td>
<td>1 539 661</td>
</tr>
<tr>
<td>349</td>
<td>32,75</td>
<td>101</td>
<td>32</td>
<td>5 063 859</td>
<td>1 579 474</td>
</tr>
<tr>
<td>355</td>
<td>38,75</td>
<td>105</td>
<td>32</td>
<td>5 263 382</td>
<td>1 618 320</td>
</tr>
</tbody>
</table>
Aksjekursen på opsjonstildelingstidspunktet var 327, så då kan vi lese av tabellen at opsjonstildelinga var verd tilnærma 1,4 millionar kroner for Opedal, gitt dei føresetnadane eg har gjort om ulike parametrar i modellen.

Ein av parametrane det hersker uvisse om er volatiliteten. Til no har eg brukt 25%. Dersom eg endrar volatiliteten til 30%, som er lik dagens implisitte volatilitet, får eg denne grafen

![Graf](image)

For å sjå kor følsom verdsetjinga er i forhold til risikoaversjonsparameteren, prøver eg å sette han lik 3. Då får eg følgande graf (volatiliteten satt tilbake til 25%)
Vi ser her at leiaren verdset opsjonstildelinga svært lite i forhold til B&S-verdi. Ein risikoavversjonsparameter på 3 ser ut til å skildre ein svært risikoavers leiar. Kanskje er eit anslag på 2 mest rimelig?

Storleiken på formua til leiaren er det estimatet det knytter seg størst uvisse kring fordi det er vanskelig å få eit godt anslag på ho. Som regel er leiarar flinke til å „gøyme” verdiar for likningsmyndigheter for å slippe unna formueskatt og uønska merksemd. Difor vert ofte verkelig formue mykje høgare enn den likningsmessige formua.

I og med at det er stor uvisse kring formua til leiaren vil eg prøve å auke ho for å sjá kor sensitiv leiar si verdsetjing av opsjonen er i forhold til formua. Vi antar at Opedal har tidobbel formue i høve til likningsverdien på formua, og at verdien av aksjene inngår i likningsverdien av foruma. Då vert formua 36.572.200, der aksjene i selskapet er verdt 6.975.891 og dermed utgjer 19% av samla formue:
Vi ser her at formua til leiaren og del av formua i aksjer i selskapet påvirker leiar sin verdi av opsjonane svært mykje. Opsjonsprisen er med andre ord svært følsam når det gjeld leiar sin formue. Når leiaren har større formue fører det til at han verdset opsjonane mykje høgare. Det springande punktet i analysen vert difor å fastsetje formua til leiaren. Vi ser imidlertid noko interessant på figuren. Ved aksjekursar langt under dagens verdi vert faktisk leiaren sin verdsetjing av opsjonen høgare enn vedsetjinga ved B&S! Dette er eit resultat vi ikkje forventer frå teorien. Eg vil diskutere dette i neste avsnitt.

Under har eg teikna ein figur som viser korleis verdien på opsjonane svingar med formua til leiaren. Eg har brukt ein aksjekurs på 325 kroner pr aksje, som ligg tett opp til kursen på opsjonstildelingstidspunktet. Verdien av aksjene er 6.975.891 kroner.
Vi ser at verdien av opsjonane er større for leiar jo større formuen er og jo mindre del aksjene utgjør av formuen. Igjen får vi det resultatet at modellen overestimerer verdien av opsjonane.

14.1 Svakheter ved modellen og analysen

Då eg køyrte simuleringar for ulike verdiar av leiar sin formue og ulike delar av formua bunde opp i aksjer i selskapet, fekk eg eit uventa resultat. Det einaste eg har endra i figuren under er del av formue i aksjer, som eg har satt til 10%. Dette gjev følgjande resultat:
Her er faktisk den øvste linja leiars sin verdi på opsjonane! Dette kan sjå ut som ein svakhet ved modellen, for eit slikt resultat forventer vi ikkje frå teorien. Ifølge porteføljeteorin vil ein investor aldri prise eit verdipapir høgare enn marknaden, med mindre han har informasjon som få andre har om at aksja er prisa for lågt. Og det kan vi ikkje anta her. Dersom det ikkje vert handla vanlige aksjeopsjonar i marknaden, ville selskapet kunne tene pengar på å selje opsjonar til leiaren! For å kunne svare på kvifor modellen i enkelte tilfelle gjev eit slikt „galt” resultat må vi sjå på dei bakanforliggende føresetnadane for modellen og verknaden av dei. Her har Cai m. fl. (2004) ein god og lettlegg artikkel. Dei kommenterer manglar og svakheter ved Hall & Murphy sin modell og presenterer samtidig ein ny verdsetjingsmodell.

Opsjonsprisingsmodellen til Hall & Murphy føreset at leiaren har ein potensnyttefunksjon, at formua til leiaren er investert risikofritt og at aksjeprisen er lognormalfordelt. I artikkelen skriv Cai m. fl. at det er føresetnaden om at leiaren investerer heile formua si risikofritt som gir resultatet at leiaren kan verdsetje opsjonen høgare enn marknaden. Dei forklarer det slik: „This overvaluation in S1 models arises because an investor constrained to hold only the riskfree asset with outside wealth overvalues any marginal holding of a risky asset with an expected return higher than the riskfree return” Modellen til Hall & Murphy er ein S1-modell.
Modellen til Cai m. fl. let leiaren investere formua si både risikofritt og i marknadsportefølja, noko som virker meir realistisk.

At leiaren verdset opsjonane sine høgare enn marknadsverdi er altså ein svakhet ved modellen til H&M. Kanskje gir modellen best anslag på opsjonspris dersom volatiliteten er høg og leiaren har ein stor del av formuen sin bunde opp i aksjer i selskapet han styrer?

Ein ting eg har sett bort frå i analysen er at opsjonane kan utøvast før siste dag for utøving. Det vil seie at eg har antatt at opsjonane er europeiske når dei i røynda er amerikanske. I teorien er dette ein grei føresetnad. Dersom aksja ikkje betaler utbytte vil ein amerikansk og europeisk opsjon vere like mykje verdt, og bli utøvd på siste utøvelsesdag. Orkla-aksja betaler ut litt utbytte, men kanskje ikkje så stort at ein rasjonell investor vil velje å utøve opsjonen sin før forfall. Imidlertid har det vist seg i praksis at leiarane utøver opsjonane før forfall. Det er denne effekten eg ikkje har tatt omsyn til. Eg kunne kanskje funne ei forventa gjennomsnittlig løpetid, og bruke den som tid til forfall. Disse estimata hadde imidlertid blitt veldig usikre, så det beste er nok å bruke tida til forfall i analysen.

Eit anna faktum eg har sett bort frå er at opsjonane ofte vert verdilause dersom leiaren vel å slutte. Eg har difør lagt til grunn at leiaren vel å jobbe i Orkla dei 6 neste åra.
15. Lærdommar og konklusjon

Verdien leiaren set på opsjonar han får tildelt, er mykje påvirka av kor stor formue han har og kor stor del av formua han har plassert i aksjer. Dette stemmer med prinsipal-agentteori, nemlig at jo mindre fastløn ein leiar har, jo meir vil han krevje i kompensasjon for å ta på seg risiko, og jo større del av formua til leiar som er usikker, jo større risikopremie. Det var òg interessant å sjå at verdien av opsjonen for ein leiar minker når volatiliteten aukar. For ein investor er det jo omvendt.

I tillegg til å indeksere kontraktsprisen meiner eg det er lurt å berekne aksjekursen ved innløysing som eit gjennomsnitt av aksjekursane på månadlege noteringar det siste halve året før opsjonen vert utøvd. Dette for at leiaren ikkje skal få insentiv til å blåse opp selskapsverdien rett før han skal utøve opsjonane. Det sistnemnte har enkelte leiara blitt kritiserte for, nemlig at dei sender ut gode signal til marknaden rett før opsjonane skal innløysast, og dermed får ei stor utbetalning. Ein bør ha størst vekt på dei nyaste noteringane fordi dei gjev (eller bør gi) det beste billetet av den økonomiske stoda no.

Når det gjeld opsjonsprogram meiner eg det er best når opsjonstildelinga strekk seg over fleire år, slik at leiaren får tildelt nye indekserte ATM-opsjonar kvart år så lenge opsjonsprogrammet varer. På denne måten kan ein unngå reprisingsproblematikk, og sikrar at leiaren har insentiv til god innsats over tid sjølv om selskapet går dårlig.
Litteraturliste

Bragelien, Iver „10 bonustabber – Hvordan lære av teori og praksis?” Praktisk økonomi og finans 2005, hefte 2, s. 25-35

Caplow, L „The value of a statistical life and the coefficient of relative risk aversions” NBER working paper series juli 2003, national bureau of economic research

Gollier, C. „The economics of risk and time” Universitetet i Toulouse, 27. mai 1999

Hall, B. J. „What you need to know about stock options” Harvard business review march-april 2000 s. 121-129

Holden, Steinar „lederlønning og opsjoner” Finansavisen 13. mai 2000

Hvide, H. K. Forelesningsnotatar frå forelesning 4, FIN501 våren 2002

Jensen, M. C. og Murphy, K. J. „CEO incentives- it’s not how much you pay, but how” Harvard business review mai-juni 1990.

Knivsflå, Kjell Henry Forelesningsplansjar frå forelesning 19, BUS424 hausten 2005

Milgrom, P og Roberts J. „Economics of organization and management” Prentice Hall, New Jersey, 1992

Hall, B. J. og Murphy, K. J „Optimal exercise prices for executive stock options” AEA papers and proceedings, mai 2000