Employing Endogenous Access Pricing to Enhance Incentives for Efficient Upstream Operation

Kenneth Fjell
Debashis Pal
David E. M. Sappington
SNF
Samfunns- og næringslivsforskning AS
- er et selskap i NHH-miljøet med oppgave å initiere, organisere og utføre eksternfinansiert forskning. Norges Handelshøyskole, Universitetet i Bergen og Stiftelsen SNF er aksjonærer. Virksomheten drives med basis i egen stab og fagmiljøene ved NHH og Institutt for økonomi (UiB).

SNF er Norges største og tyngste forskningsmiljø innen anvendt økonomisk-administrativ forskning, og har gode samarbeidsrelasjoner til andre forskningsmiljøer i Norge og utlandet. SNF utfører forskning og forskningsbaserte utredninger for sentrale beslutnings-takere i privat og offentlig sektor. Forskningsorganisasjonen kan på termen opplosse forskningssamtakene i den lang- og kortsiktige luften. Alle publikasjoner er offentlig tilgjengelig.

SNF
Institute for Research in Economics and Business Administration
- is a company within the NHH group. Its objective is to initiate, organize and conduct externally financed research. The company shareholders are the Norwegian School of Economics and Business Administration (NHH), the University of Bergen (UiB) and the SNF Foundation. Research is carried out by SNF’s own staff as well as faculty members at NHH and the Department of Economics at UiB.

SNF is Norway’s largest and leading research environment within applied economic/administrative research. It has excellent working relations with other research environments in Norway as well as abroad. SNF conducts research and prepares research-based research reports for major decision-makers both in the private and the public sector. Research is organized in programmes and projects on a long-term as well as a short-term basis. All our publications are publicly available.
Working Paper No 09/13

Employing Endogenous Access Pricing to Enhance Incentives for Efficient Upstream Operation

by

Kenneth Fjell
Debashis Pal
David E. M. Sappington

SNF project no 1411
“Satsing i tele og media”

THE ECONOMICS OF MEDIA AND TELECOMMUNICATIONS

This report is one of a series of papers and reports published by the Institute for Research in Economics and Business Administration (SNF) as part of its telecommunications and media economics program. The main focus of the research program is to analyze the dynamics of the telecommunications and media sectors, and the connections between technology, products and business models. The project “Satsing i tele og media” is funded by Telenor AS, TV2 Gruppen AS and the Norwegian Broadcasting Corporation (NRK).

INSTITUTE FOR RESEARCH IN ECONOMICS AND BUSINESS ADMINISTRATION
BERGEN, JANUARY 2013
ISSN 1503-2140

© Materialet er vernet etter åndsvierkloven. Uten uttrykkelig samtykke er eksemplarfremstilling som utskrift og annen kopiering bare tillatt når det er hjemlet i lov (kopiering til privat bruk, sitat o.l.) eller avtale med Kopinor (www.kopinor.no) Utnyttelse i strid med lov eller avtale kan medføre erstatnings- og straffeansvar.
Employing Endogenous Access Pricing to Enhance Incentives for Efficient Upstream Operation

by

Kenneth Fjella, Debashis Palb, and David E. M. Sappingtonc

Abstract

Endogenous access pricing (ENAP) is an alternative to the more traditional form of access pricing that sets the access price to reflect the regulator’s estimate of the supplier’s average cost of providing access. Under ENAP, the access price reflects the supplier’s actual average cost of providing access, which varies with realized industry output. We show that in addition to eliminating the need to estimate industry output accurately and avoiding a divergence between upstream revenues and costs, ENAP can enhance the incentive of a vertically integrated producer to minimize its upstream operating cost.

Keywords. Endogenous access pricing, regulation, vertical integration.

JEL Classifications. L22, L51.

a Norwegian School of Economics (kenneth.fjell@nhh.no).
b University of Cincinnati (debashis.pal@uc.edu).
c Corresponding Author.
Department of Economics, University of Florida, Gainesville, FL 32611-7140.
Email: sapping@ufl.edu; Voice: (352) 392-3904; Fax: (352) 392-2111.
1 Introduction

In many settings, a regulated firm that sells an essential input at a stipulated price also competes downstream against firms that purchase the input. To illustrate, the owner of a telecommunications network often sells network access to rival retailers of telecommunications services. It is apparent that the established price of the input (the “access price”) will affect the outcome of the retail competition between the input supplier and the input buyers in such settings. A high access price can advantage the input supplier by increasing the marginal cost of its retail competitors.

It may be less apparent that the procedure employed to set the access price also can have important implications for industry performance. In particular, endogenous access pricing (ENAP) can offer advantages relative to the more traditional procedure for setting an access price, a procedure that we call exogenous access pricing (EXAP). Under EXAP, before retail competition takes place, a regulator sets a specific access price at which retail rivals can secure access to the network of the incumbent vertically integrated provider (VIP). This access price reflects the regulator’s estimate of the VIP’s average cost of supplying access.\(^1\) Under ENAP, the regulator explains before retail competition begins how the access price will ultimately be determined, but does not specify a specific, immutable access price. Under ENAP, the unit price that is ultimately charged for access to the incumbent’s network is the incumbent’s realized average cost of supplying access, i.e., the ratio of the VIP’s realized total cost of supplying access to the number of units of access actually supplied.

Fjell et al. (2010) demonstrate that ENAP can help to offset an artificial competitive advantage that EXAP provides to a vertically integrated supplier over its non-integrated retail rivals.\(^2\) To explain this advantage most simply, consider a setting in which: (i) the

\(^1\)Thus, the access price is set to ensure that the VIP’s expected revenue from supplying access is equal to the VIP’s cost of supplying access. Klumpp and Su (2010) refer to this common feature of EXAP as implementing a revenue-neutral access price.

\(^2\)Fjell et al. (2010) also explain how ENAP can be implemented in practice. The authors note that the regulator can set an initial access price equal to the expected average cost of supplying access in the coming year. This initial price is the unit price charged for access throughout the year. Then, once the actual cost of supplying access and the amount of access supplied during the year are measured, an additional access
only industry production cost is the fixed cost of constructing the VIP’s network; and (ii) exactly one unit of the VIP’s input is required to produce each unit of retail output. The VIP faces no marginal cost of retail production under EXAP in this setting. In contrast, the VIP’s non-integrated rivals face a marginal cost equal to the established access price. This cost asymmetry can enable the VIP to serve a relatively large share of the retail market in equilibrium.

ENAP reduces the VIP’s incentive to expand its retail output. Increased output by the VIP reduces the access price ultimately charged to retail rivals, and thereby reduces the VIP’s wholesale profit. In fact, the VIP effectively faces the same marginal cost as the rivals under ENAP. Consequently, its artificial cost advantage is eliminated, and so the VIP expands its output less aggressively under ENAP than under EXAP.

Although they do not analyze ENAP explicitly, Boffa and Panzar (2012) demonstrate the merits of an institutional arrangement that delivers incentives similar to those that arise under ENAP. The authors consider a setting in which retail suppliers jointly own an upstream asset (e.g., a telecommunications network). The fraction of the asset that each retail supplier owns is equal to the supplier’s (endogenous) share of equilibrium retail output. This ownership structure provides strong incentives for all suppliers to expand their retail output, in part to reduce the upstream unit cost of production (in light of the prevailing scale economies) and thereby increase upstream profit.

In order to focus on other issues of interest, these pioneering studies of ENAP (and co-ownership of upstream assets) assume that the upstream supplier operates at minimum cost. To develop a complete assessment of the merits of ENAP, it is important to analyze the incentives that ENAP and EXAP provide for cost minimization. The primary purpose of this research is to demonstrate that ENAP often provides stronger incentives for efficient

surcharge or access rebate is implemented. The surcharge or rebate is calculated to ensure that the final unit price paid for access is the realized average cost of supplying access. This procedure is consistent with the *ex post* adjustment mechanism that the Australian Competition and Consumer Commission (ACCC) included in its access pricing policy for the Australian telecommunications industry in 2003. The mechanism adjusted access charges for unconditioned local loop service (ULLS) on the basis of the realized demand for ULLS (ACCC 2003).
upstream operation than does EXAP.

To understand the rationale for this additional potential benefit of ENAP, recall that the VIP enjoys an artificial retail cost advantage under EXAP. Higher upstream costs enhance this advantage because higher upstream costs increase the prevailing access charge. Under conditions that we identify below, this potential strategic advantage of higher upstream costs can outweigh the direct burden of higher operating costs, and the VIP’s profit can increase as its upstream production costs rise.

This potential strategic advantage of higher upstream costs does not arise under ENAP. As noted above, the access price declines as the VIP expands its retail output under ENAP. Consequently, the VIP effectively perceives a marginal cost of expanded retail output under ENAP that it does not perceive under EXAP. As we demonstrate below, ENAP induces all retail rivals to perceive the same marginal cost of retail production regardless of the level of upstream cost, and so increased upstream costs do not increase the VIP’s strategic advantage over its retail rivals. Consequently, ENAP often provides stronger incentives than EXAP for upstream cost minimization.

The formal development of this conclusion proceeds as follows. Section 2 describes our model. Section 3 demonstrates that the VIP typically will not intentionally inflate its upstream operating cost under ENAP. Section 4 identifies conditions under which the VIP will find upstream cost inflation to be profitable under EXAP. Section 5 reviews the potential advantages of ENAP, discusses extensions of our model, and provides concluding observations. The Appendix presents the proofs of all formal conclusions.

2 The Model

We consider a setting in which a vertically integrated provider (VIP) competes with \(N \) retail rivals to sell a homogenous product to consumers. The VIP is also the sole supplier of an essential input (e.g., access to the VIP’s network). Exactly one unit of the input is required to produce each unit of the retail product. For simplicity, we abstract from retail
production costs other than the cost of acquiring the essential input from the VIP. The unit cost of acquiring the input is simply the regulated access price, w, that is charged for the input.

The VIP incurs a fixed cost, F, to produce the input. This fixed cost might be viewed as the cost the VIP incurs to build and maintain its network. The minimum fixed cost required for operation is F^*. If the VIP finds it profitable to do so, it can increase F above F^*, to a maximum of \bar{F}. Such cost inflation serves only to increase the VIP’s upstream operating cost—it does not reduce the VIP’s downstream cost or improve network performance. Therefore, cost inflation provides no direct value to the VIP. However, as demonstrated below, such cost inflation may benefit the VIP by increasing the access price that is charged to retail rivals.

$\bar{F} - F^*$ can be viewed as the maximum amount of cost inflation the VIP can undertake without detection, and thus without penalty. For analytic simplicity, we assume that additional cost inflation would be detected with sufficiently high probability and penalized sufficiently severely that the VIP never increases F above \bar{F}. To ensure that industry operation is potentially profitable, F^* is assumed to be less than the maximum variable profit that can be secured in the industry.

The access price that is charged for the essential input varies with the prevailing access pricing regime. Under exogenous access pricing (EXAP), the access price is $w = \frac{F}{Q^e}$, where Q^e is the quantity of the input that is supplied in response to the access price w.
Q^e denotes the level of total industry output that the regulator expects to be produced. The regulator announces Q^e and F is observed before the industry producers choose their outputs under EXAP. Consequently, the producers consider the identified access price to be fixed and exogenous when they choose their retail outputs.

Under endogenous access pricing (ENAP), the regulator announces that the access price will be $w(Q) = \frac{F}{Q}$, where Q is the level of industry output that ultimately arises. Therefore, under ENAP, each producer realizes that an increase in its retail output will cause the access price that ultimately prevails to decline, *ceteris paribus*.

We will let q_0 denote the VIP’s retail output and q_i denote the output of retail rival $i \in \{1, \ldots, N\}$. The VIP’s profit (π_0) is the sum of the revenue it secures from providing access to its retail rivals ($w \sum_{i=1}^{N} q_i$) and its retail profit, less its fixed cost of production (F). The VIP’s retail profit is the product of its output (q_0) and the prevailing market-clearing retail price, $P(Q)$, where $Q = \sum_{j=0}^{N} q_j$.\(^8\) Formally, the VIP’s profit is:

$$
\pi_0(q_0, q_1, \ldots, q_N, w, F) = P(Q) q_0 + w \sum_{i=1}^{N} q_i - F.
$$

The corresponding profit (π_i) of retail rival $i \in \{1, \ldots, N\}$ is the product of the rival’s retail output (q_i) and its profit margin ($P(Q) - w$). Formally:

$$
\pi_i(q_0, q_1, \ldots, q_N, w) = [P(Q) - w] q_i \quad \text{for} \quad i \in \{1, \ldots, N\}.
$$

The timing in the model is as follows. First, the regulator announces the access pricing regime that will be implemented. Second, the VIP chooses $F \in [\underline{F}, \overline{F}]$. Third, the regulator observes F and reports her observation (truthfully). This report determines the prevailing access pricing rule ($w(Q) = \frac{F}{Q}$) if the regulator has implemented ENAP. If she has implemented EXAP, the regulator also announces the industry output she expects to be produced (Q^e), which determines the access price that will prevail ($w = \frac{F}{Q^e}$). Fourth, the VIP and its N retail rivals choose their outputs simultaneously and independently. Finally,

\(^8\)Thus, $P(Q)$ represents the inverse demand curve for the retail product.
the market clearing price is determined, the firms sell their outputs at this price, and the N retail rivals deliver the required access payments to the VIP.

3 Endogenous Access Pricing

We begin our assessment of the relative impacts of ENAP and EXAP on the incentives for upstream cost minimization by examining the outcomes that arise under ENAP. Equation (1) implies that since $\sum_{i=1}^{N} q_i = Q - q_0$ and $w = \frac{F}{Q}$, the VIP’s profit-maximizing output under ENAP is determined by:

$$\frac{\partial \pi_0}{\partial q_0} = P(Q) + q_0 P'(Q) - \frac{F}{Q^2} [Q - q_0] = 0$$

$$\Rightarrow P(Q) + q_0 P'(Q) - \frac{F}{Q} + \frac{q_0 F}{Q^2} = 0.$$ \hspace{0.5cm} (3)

Similarly, from equation (2), entrant i’s profit-maximizing output under ENAP is determined by:

$$\frac{\partial \pi_i}{\partial q_i} = P(Q) + q_i P'(Q) - \frac{F}{Q} + \frac{q_i F}{Q^2} = 0 \text{ for } i = 1, \ldots, N.$$ \hspace{0.5cm} (4)

It is apparent from equations (3) and (4) that the VIP and each retail rival will produce the same level of output in equilibrium under ENAP. Formally, employing a “$\bar{\cdot}$” above a variable to denote an outcome under ENAP and using a “\ast” to denote an equilibrium outcome, equations (3) and (4) imply:

$$\bar{q}_0^* = \bar{q}_i^* = \frac{\bar{Q}^*}{N + 1} \text{ for } i = 1, \ldots, N.$$ \hspace{0.5cm} (5)

Each retail supplier produces the same equilibrium output under ENAP because the VIP and each retail rival effectively face marginal cost $\bar{\bar{w}} = \frac{F}{Q}$ under ENAP. The VIP faces this marginal cost because its wholesale profit under ENAP is:

$$\bar{\bar{w}} \sum_{i=1}^{N} \bar{q}_i - F = \frac{F}{Q} \left[\bar{Q} - \bar{q}_0 \right] - F = - \left[\frac{F}{Q} \right] \bar{q}_0 = - \bar{\bar{w}} \bar{q}_0.$$ \hspace{0.5cm} (6)

Therefore, should the VIP attempt to raise its rivals’ unit cost of retail production by artificially inflating its fixed cost of production, the VIP effectively raises its own operating cost
symmetrically. Consequently, such cost inflation increases the VIP’s cost without providing any strategic advantage. As a result, the VIP generally will refrain from such cost inflation under ENAP, as Proposition 1 reports.

Proposition 1. Suppose \(P''(Q) \leq 0 \) and \(P'''(Q) \) is negative or sufficiently small in absolute value for all \(Q \geq 0 \). Then the VIP always operates with the cost-minimizing technology under ENAP, i.e., \(\hat{F}^* = F \).

The structure imposed on the market demand curve in Proposition 1 is sufficient, but not necessary, to ensure that the VIP does not inflate its upstream operating cost \((F) \) under ENAP. The structure promotes diminishing increases in the VIP’s profit as \(F \) increases. An increase in \(F \) increases the rivals’ marginal cost of production and thereby induces them to reduce their output. The output reduction raises the market-clearing retail price, which enhances the VIP’s profit, *ceteris paribus*. When the inverse demand curve is concave, successive reductions in rival output produce successively smaller increases in the market price, generating diminishing increases in the VIP’s profit.

4 Exogenous Access Pricing

Although upstream cost inflation typically is not profitable for the VIP under ENAP, such inflation can provide strategic benefits to the VIP that outweigh the corresponding costs under EXAP. To facilitate the identification of conditions under which the VIP will find it profitable to intentionally inflate its costs under EXAP, it is convenient to consider the setting in which the industry demand curve is linear.\(^9\)

Assumption 1. \(P(Q) = a - bQ \), where \(a > 0 \) and \(b > 0 \) are parameters.

We employ backward induction to determine the equilibrium outcomes under EXAP in this setting. Lemma 1 identifies the output that each industry supplier will produce under

\(^9\)Klumpp and Su (2010) also analyze a setting in which the demand for the retail product is linear and access costs are the only costs of retail production.
EXAP, given an established access price. Lemma 2 characterizes \(\hat{w}(F) \), the access price that will prevail under EXAP when the VIP’s fixed cost is \(F \).\(^{10}\) Lemma 3 specifies the VIP’s profit under EXAP as a function of \(F \). Finally, Proposition 2 characterizes the VIP’s profit-maximizing fixed cost under EXAP.

Lemma 1. Suppose Assumption 1 holds. Then given access price \(\hat{w} \), the equilibrium output of the VIP under EXAP is \(\hat{q}^*_0 = \frac{a + \hat{w}N}{b[N+2]} \). The equilibrium output of each of the \(N \) rivals under EXAP is \(\hat{q}^*_i = \frac{a-2\hat{w}}{b[N+2]} \) for \(i = 1, ..., N \).

Recall that under EXAP, the access price is \(\hat{w} = \frac{F}{Q^e} \). Therefore, to characterize \(\hat{w} \), it is necessary to specify the total output the regulator expects to arise in equilibrium (\(Q^e \)). To abstract from forecasts of industry activity that are (intentionally or unintentionally) biased, we assume the regulator estimates the equilibrium output correctly, so \(Q^e = \hat{Q}^* \).\(^{11}\) Lemma 2 characterizes the access price that will be implemented under EXAP in this case.\(^{12}\)

Lemma 2. Suppose Assumption 1 holds. Then when the VIP’s fixed cost is \(F \), the access price that will be set under EXAP is \(\hat{w}(F) = \frac{1}{2N} \left[a(N+1) - \sqrt{\hat{G}(F)} \right] \) where \(\hat{G}(F) \equiv a^2 [N+1]^2 - 4bFN[N+2] \).

Having identified the access price and the outputs that will arise under EXAP for any given level of fixed cost \(F \in [\underline{F}, \bar{F}] \), we can now employ equation (1) to specify the VIP’s equilibrium profit under EXAP, given \(F \).

Lemma 3. Suppose Assumption 1 holds. Then for a given fixed cost, \(F \), the VIP’s equilibrium profit under EXAP is:

\(^{10}\)Throughout the ensuing analysis, we will employ a “^*” above a variable to denote an outcome under EXAP.

\(^{11}\)The concluding discussion considers alternative possibilities.

\(^{12}\)As the proof of Lemma 2 reveals, the access price identified in the lemma is the smallest root of a quadratic equation. The smallest root is chosen because it is associated with the largest level of industry welfare.
\[
\hat{\pi}_0^*(F) = \frac{1}{4bN^2[N + 2]^2} \left\{ 2aN[N + 4]\sqrt{\hat{G}(F)} + 4bFN^2[N + 4][N + 2]
\right.
\left.
- 2a^2N[N^2 + 3N + 4] \right\} - F.
\]

It can be verified that \(\hat{\pi}_0^*(F) \geq 0\) as \(F \leq \frac{3a^2[N - 2]}{16bN}\). Therefore, the VIP’s profit-maximizing fixed cost under EXAP, \(\hat{F}^*\), is as specified in Proposition 2.

Proposition 2. Suppose Assumption 1 holds. Then the VIP operates with the cost-minimizing technology under EXAP if it faces fewer than three retail rivals (i.e., \(\hat{F}^* = F\) if \(N < 3\)). In contrast, if the VIP faces three or more rivals and \(F\) is sufficiently small (e.g., \(F < \frac{a^2}{16}\)), then the VIP will set \(\hat{F}^* = \min\left\{ \frac{3a^2[N - 2]}{16bN}, F \right\} > F\) under EXAP.

The conclusions in Proposition 2 reflect the following considerations. The VIP experiences a gain and a loss when it increases its fixed cost of production above \(F\). The gain stems from the more pronounced strategic advantage the VIP enjoys in its interaction with retail competitors. The enhanced strategic advantage arises because the access price under EXAP (\(\hat{w} = \frac{F}{Q^e}\)) increases as \(F\) increases, *ceteris paribus*. Under EXAP, the VIP’s rivals incur marginal cost \(\hat{w} > 0\), whereas the VIP’s marginal cost of retail output is 0. Therefore, the VIP’s marginal cost advantage increases as \(F\), and thus \(\hat{w}\), increases. This increased cost advantage increases the VIP’s share of retail output and thus the VIP’s profit, *ceteris paribus*.

The loss the VIP incurs when it increases \(F\) above \(F\) is the fraction of the increase in \(F\) the VIP is required to bear. Under EXAP, the VIP’s expected wholesale profit (i.e., the difference between its revenue from supplying access and the corresponding cost) is:

\[
\hat{w} \sum_{i=1}^{N} \hat{q}_i^* - F = \frac{F}{Q^e} [Q^e - \hat{q}_0^*] - F = - \left[\frac{\hat{q}_0^*}{Q^e} \right] F.
\]

\(^{13}\)See the proof of Proposition 2.

\(^{14}\)Notice from Lemma 1 that the VIP’s retail output increases whereas the output of each retail rival declines as \(\hat{w}\) increases under EXAP.
Equation (7) implies that the VIP bears the fraction $\frac{\tilde{a}^*}{q_F}$ of the fixed cost it implements.

These observations imply that when the VIP faces few retail rivals, it bears a relatively large share of the cost of increasing F while securing an increased retail cost advantage that is of relatively limited value because the VIP faces few rivals. Consequently, as Proposition 2 reports, the VIP refrains from artificial inflation of its fixed cost of production when it faces few (i.e., less than three) retail rivals. In contrast, when the VIP faces many retail rivals, the cost advantage it secures from increasing F is relatively valuable and the fraction of the increase in F it bears is relatively small. Consequently, the VIP may find it profitable to increase F above its minimum feasible level, F^*. Indeed, the VIP will undertake such cost inflation unless F is so large (e.g., $F > \frac{a^2}{16b}$) that even when $F = F^*$, the prevailing access price is sufficiently high that the VIP produces a large share of equilibrium retail output. In this case, an increase in F above F^* obligates the VIP to bear a large fraction of the increase in F while enhancing a strategic cost advantage that is of limited value because rivals are producing relatively little output.

5 Conclusions

We have shown that endogenous access pricing (ENAP) can provide stronger incentives for upstream cost minimization than exogenous access pricing (EXAP). ENAP enhances the VIP’s incentive to reduce its upstream operating cost because it effectively induces the VIP to perceive the same marginal cost of production that its retail rivals face. Consequently, upstream cost increases do not endow the VIP with the same competitive advantage under ENAP that they provide under EXAP.

In principle, a regulator might attempt to limit a firm’s incentive to inflate its production cost under EXAP by linking the established access price to an estimate of the firm’s minimum feasible operating cost (F^*) rather than to the firm’s observed cost (F). However, it can be difficult to derive an accurate estimate of F^* in practice.15 Our findings suggest that ENAP

15Kahn et al. (1999) recount the difficulties that regulators encountered in attempting to estimate the minimum possible cost of providing telecommunications services in the United States. Also see Weisman (2002).
may be an attractive alternative to EXAP quite generally, but particularly when it is difficult to derive precise estimates of the VIP’s minimum possible operating cost.

Our formal analysis has considered a simple setting for expositional and analytic convenience. More general results can be derived. For instance, Proposition 1 (which states that the VIP will not intentionally inflate its production costs under ENAP) continues to hold in many settings where the VIP and its rivals operate with positive marginal production costs. Furthermore, although the exact conditions under which the VIP will inflate its fixed cost of production under EXAP are more complex when industry suppliers incur positive marginal production costs, these conditions reflect the basic message of Proposition 2. In particular, the VIP often will set \(F \) above \(\bar{F} \) when it faces many retail rivals, but will tend to set \(F = \bar{F} \) when it faces few rivals.

A VIP may inflate its upstream production cost even under ENAP if such cost inflation offers direct benefits to the VIP. For example, inflated upstream operating costs might take the form of higher wages, benefits, and perquisites for company officials. Even in this case, though, the incentives for cost inflation remain more pronounced under EXAP than under ENAP, for the reasons identified above.

The VIP typically refrains from cost inflation in our model under ENAP even though the VIP can increase \(F \) above \(\bar{F} \) with impunity. This finding implies that the VIP typically will not raise \(F \) above \(\bar{F} \) under ENAP if doing so risks a financial penalty. In contrast, the VIP often will continue to increase \(F \) above \(\bar{F} \) under EXAP when doing so risks financial

16 This is the case, for example, if market demand is linear and the VIP’s marginal cost of retail production \((c_0)\) is no less than the marginal cost of the retail rivals \((c)\). If \(c_0 < c\), the possibility arises that an increase in the equilibrium access charge caused by an increase in \(F \) under ENAP might benefit the VIP by particularly disadvantaging its less efficient retail rivals. Of course, the relatively strong incentive for upstream cost inflation persists under EXAP even when \(c_0 < c\).

17 The same forces that arise in our model with retail quantity competition seem likely to persist in the presence of retail price competition. Product differentiation may diminish these forces to some extent under both price and quantity competition, though. The effective cost advantage that vertical integration confers upon the VIP under EXAP can be less profitable for the VIP when product differentiation reduces the intensity of competition between the VIP and its retail rivals. Consequently, the VIP may be less inclined to incur higher upstream costs under EXAP in the presence of retail product differentiation.

18 Sappington and Sibley (1993) and Blackmon (1994) analyze such regulatory “abuse.”
penalty, provided the expected penalty is not too pronounced.19

In closing, we note one additional advantage that ENAP offers relative to EXAP. The access price that is established under EXAP varies with the level of industry output the regulator expects to arise in equilibrium. If the regulator over-estimates (under-estimates) actual industry output, the access price established under EXAP will generate access revenue below (in excess of) the VIP’s fixed cost of production (i.e., \(F \frac{E}{Q_e} \hat{Q}^* \lesssim F \) as \(Q^e \gtrsim \hat{Q}^* \)).

This fact has two primary implications. First, the VIP may not secure the intended level of wholesale profit under EXAP, whereas ENAP ensures that wholesale revenue matches wholesale cost. Second, EXAP can invite strategic lobbying to influence the regulator’s estimate of equilibrium industry output. Such lobbying serves no purpose under ENAP because the access price that is ultimately established varies only with the realized level of industry output, not with the regulator’s estimate of this output.

19Because ENAP can reduce the VIP’s incentive to inflate its upstream production cost, ENAP may mitigate the incentive of the VIP to over-invest in quality (via increasing the fixed cost of upstream production) that Klumpp and Su (2010) demonstrate can arise under EXAP.
Appendix

Proof of Proposition 1.

From (1) and (5), the VIP's equilibrium profit under ENAP is:

\[\pi_0^* = q_0^* P(Q^*) + \frac{F}{Q^*} \sum_{i=1}^N q_i^* - F = \left[\frac{Q^*}{N+1} \right] P(Q^*) + \frac{F}{Q^*} \left[\frac{NQ^*}{N+1} \right] - F \]

\[= \left[\frac{Q^*}{N+1} \right] P(Q^*) + \frac{NF}{N+1} - F = \frac{1}{N+1} [Q^* P(Q^*) - F] . \tag{8} \]

From (3) and (5), equilibrium industry output under ENAP is given by:

\[P(Q^*) + \left[\frac{Q^*}{N+1} \right] P'(Q^*) - \left[\frac{N}{N+1} \right] \frac{F}{Q^*} = 0 \]

\[\Rightarrow P(Q^*) + \left[\frac{Q^*}{N+1} \right] P'(Q^*) - \left[\frac{N}{N+1} \right] \frac{F}{Q^*} = 0 \tag{9} \]

\[\Rightarrow Q^* [N+1] P(Q^*) + (Q^*)^2 P'(Q^*) - NF = 0 \tag{10} \]

\[\Rightarrow Q^* P(Q^*) = \frac{NF - (Q^*)^2 P'(Q^*)}{N+1} . \tag{11} \]

(8) and (11) provide:

\[\pi_0^* = \frac{1}{N+1} \left[\frac{NF - (Q^*)^2 P'(Q^*)}{N+1} - F \right] = - \frac{1}{[N+1]^2} \left[(Q^*)^2 P'(Q^*) + F \right] \]

\[\Rightarrow \frac{d\pi_0^*}{dF} = - \frac{1}{[N+1]^2} \left\{ \left[(Q^*)^2 P''(Q^*) + 2Q^*P'(Q^*) \right] \frac{\partial Q^*}{\partial F} + 1 \right\} . \tag{12} \]

(12) implies that if \(P''(Q^*) \leq 0 \) and \(\frac{\partial Q^*}{\partial F} \leq 0 \), then \(\frac{d\pi_0^*}{dF} < 0 \), and so the VIP will set \(F = F \) under ENAP. To determine when \(\frac{\partial Q^*}{\partial F} \leq 0 \), let:

\[h(Q^*) \equiv Q^* [N+1] P(Q^*) + (Q^*)^2 P'(Q^*) \]

\[\Rightarrow h'(Q^*) = [N+1] P(Q^*) + Q^* [N+1] P'(Q^*) + (Q^*)^2 P''(Q^*) + 2Q^* P'(Q^*) \]

\[= [N+1] P(Q^*) + Q^* [N+3] P'(Q^*) + (Q^*)^2 P''(Q^*) \]

\[\Rightarrow h''(Q^*) = [N+1] P'(Q^*) + [N+3] P'(Q^*) + Q^* [N+3] P''(Q^*) \]

\[+ (Q^*)^2 P'''(Q^*) + 2Q^* P''(Q^*) \]

\[= [2N+4] P'(Q^*) + Q^* [N+5] P''(Q^*) + (Q^*)^2 P'''(Q^*) . \tag{13} \]
(13) implies that \(h''(\cdot) < 0 \), and so \(h(\cdot) \) is a concave function of \(Q^* \), under the maintained conditions. From (10), \(Q^* \) is determined by \(h(Q^*) = NF \), and so (10) will have at least one real root when \(F \) is sufficiently small. Furthermore, when (10) has two real roots, the larger root of (10) decreases as \(F \) increases, and so \(\frac{\partial Q^*}{\partial F} < 0 \), when \(h(\cdot) \) is a concave function of \(Q^* \).

It remains to verify that the larger root of (10) is the relevant root in cases where (10) has two roots. To do so, let \(Q_1^* \) and \(Q_2^* \) denote two distinct roots of (10), with \(Q_1^* < Q_2^* \). We will show that \(\frac{\partial^2 x_0}{\partial (q_0)^2} \bigg|_{Q_1^*} > 0 \), and so the smaller root does not correspond to a profit-maximizing level of output for the VIP.

From (9):
\[
g(Q^*) = g_1(Q^*) - g_2(Q^*) = 0,
\]
where:
\[
g_1(Q^*) = P(Q^*) + \left[\frac{Q^*}{N+1} \right] P'(Q^*) \quad \text{and} \quad g_2(Q^*) = \left[\frac{N}{N+1} \right] \frac{F}{Q^*}.
\]
Observe that:
\[
g_2'(Q^*) = - \left[\frac{N}{N+1} \right] \frac{F}{(Q^*)^2} < 0 \quad \Rightarrow \quad g_2''(Q^*) = \left[\frac{N}{N+1} \right] \frac{2F}{(Q^*)^3} > 0.
\]
Therefore, \(g_2(Q^*) \) is a decreasing, convex function of \(Q^* \).

Also observe that:
\[
g_1'(Q^*) = \left[1 + \frac{1}{N+1} \right] P'(Q^*) + \left[\frac{Q^*}{N+1} \right] P''(Q^*) < 0
\]
\[
\Rightarrow \quad g_1''(Q^*) = \left[1 + \frac{1}{N+1} \right] P''(Q^*) + \left[\frac{1}{N+1} \right] P'''(Q^*) + \left[\frac{Q^*}{N+1} \right] P'''(Q^*) \leq 0.
\]
Therefore, \(g_1(Q^*) \) is a decreasing, concave function of \(Q^* \) under the maintained conditions, and so, from (14), \(g(Q^*) \) is a concave function of \(Q^* \).

We now establish that \(g'(Q_1^*) > 0 \). To do so, consider the interval \([Q_1^*, Q_1^* + \epsilon] \), where \(\epsilon > 0 \) is arbitrarily small. (14) implies that \(g(Q_1^*) = 0 \). Furthermore, \(g(Q^*) > 0 \) for all \(Q^* \in (Q_1^*, Q_1^* + \epsilon) \) since \(g(Q^*) \) is a concave function of \(Q^* \). Therefore, \(g'(Q_1^*) > 0 \).

From (1) and (5):
\[
\frac{\partial \pi_0}{\partial q_0} = P(Q^*) + q_0 P'(Q^*) - \frac{F}{(Q^*)^2} \sum_{i=1}^{N} q_i^*
\]
\[
\Rightarrow \quad \frac{\partial^2 \pi_0}{\partial (q_0)^2} = 2P'(Q^*) + q_0 P''(Q^*) + \frac{2F}{(Q^*)^3} \sum_{i=1}^{N} q_i^*
\]
\[
\Rightarrow \quad \frac{\partial^2 \pi_0}{\partial (q_0)^2} \bigg|_{q_0 = q_i^* = \frac{Q_1^*}{N+1}} = 2P'(Q_1^*) + \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) + \frac{2F}{(Q_1^*)^3} \left[\frac{N Q_1^*}{N+1} \right]
\]
\[g'(Q_1^*) = \left[1 + \frac{1}{N+1} \right] P'(Q_1^*) + \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) + \frac{N}{N+1} \frac{F}{(Q_1^*)^2} \]

\[= \left[\frac{N+2}{N+1} \right] P'(Q_1^*) + \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) + \frac{N}{N+1} \frac{F}{(Q_1^*)^2} \]

\[= \frac{N}{N+1} \left[P'(Q_1^*) + \frac{F}{(Q_1^*)^2} \right] + \left[\frac{2}{N+1} \right] P'(Q_1^*) + \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) . \] (19)

Since \(g'(Q_1^*) > 0 \), (19) implies:

\[P'(Q_1^*) + \frac{F}{(Q_1^*)^2} > 0 . \] (20)

From (18):

\[\frac{\partial^2 \pi_0}{\partial (q_0)^2} \bigg|_{q_0 = q_i = \frac{Q_1^*}{N+1}} = \left[\frac{2N}{N+1} \right] P'(Q_1^*) + \left[\frac{2}{N+1} \right] P'(Q_1^*) \]

\[+ \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) + \frac{2F}{(Q_1^*)^2} \frac{N}{N+1} \]

\[= \frac{2N}{N+1} \left[P'(Q_1^*) + \frac{F}{(Q_1^*)^2} \right] + \left[\frac{2}{N+1} \right] P'(Q_1^*) + \left[\frac{Q_1^*}{N+1} \right] P''(Q_1^*) . \] (21)

(19) and (21) provide:

\[\frac{\partial^2 \pi_0}{\partial (q_0)^2} \bigg|_{q_0 = q_i = \frac{Q_1^*}{N+1}} = \frac{N}{N+1} \left[P'(Q_1^*) + \frac{F}{(Q_1^*)^2} \right] + g'(Q_1^*) . \] (22)

(20) and (22) imply that \(\frac{\partial^2 \pi_0}{\partial (q_0)^2} \bigg|_{q_0 = q_i = \frac{Q_1^*}{N+1}} > 0 \), since \(g'(Q_1^*) > 0 \). \[\square \]

Proof of Lemma 1.

Differentiating (1) and (2) provides:

\[\frac{\partial \pi_0}{\partial q_0} = a - 2bq_0 - b \sum_{j=1}^{N} q_j \quad \text{and} \quad \frac{\partial \pi_i}{\partial q_i} = a - bq_i - bQ_0 - b \sum_{j=1}^{N} q_j - w . \] (23)

In equilibrium, \(\frac{\partial \pi_0}{\partial q_0} = \frac{\partial \pi_i}{\partial q_i} = 0 \). Therefore, from (23):
\[a - 2b q_0 = b \sum_{j=1}^{N} q_j = a - b q_i - b q_0 - w \]

\[\iff b q_i = b q_0 - w \implies b \sum_{i=1}^{N} q_i = N b q_0 - w N. \quad (24) \]

Since \(\frac{\partial \sigma_0}{\partial q_0} = 0 \) in equilibrium, (23) and (24) provide:

\[a - 2b q_0 - N b q_0 + w N = 0 \implies \hat{q}_0^* = \frac{a + w N}{b [N + 2]}. \quad (25) \]

(24) and (25) provide:

\[b N \hat{q}_i^* = N b \left[\frac{a + w N}{b (N + 2)} \right] - w N = \frac{a N + w N^2 - w N [N + 2]}{N + 2} \]

\[= \frac{a N - 2w N}{N + 2} \implies \hat{q}_i^* = \frac{a - 2w}{b [N + 2]} . \quad (26) \]

Proof of Lemma 2.

(25) and (26) imply:

\[\hat{Q}^* = q_0^* + \sum_{i=1}^{N} \hat{q}_i^* = \frac{a + w N}{b [N + 2]} + N \frac{a - 2w}{b [N + 2]} = \frac{a [N + 1] - w N}{b [N + 2]} . \quad (27) \]

Therefore, when \(Q^e = \hat{Q}^* \):

\[w = \frac{F}{\hat{Q}^*} = \frac{b F [N + 2]}{a [N + 1] - w N} \implies N w^2 - a [N + 1] w + F [N + 2] b = 0 \]

\[\Rightarrow \tilde{w}(F) = \frac{a [N + 1] - \sqrt{a^2 [N + 1]^2 - 4 b F N [N + 2]}}{2 N}. \quad (28) \]

The smallest root here reflects the fact that the lower access price generates larger industry output and welfare. A real solution to (28) exists because:

\[a^2 [N + 1]^2 - 4 N F [N + 2] b \geq 0 \iff F \leq \frac{a^2 [N + 1]^2}{4 b N [N + 2]} . \quad (29) \]

Observe that \(\frac{a (N + 1)^2}{4 b N [N + 2]} > \frac{a^2}{4b} \), since \([N + 1]^2 > N [N + 2] \).
Proof of Lemma 3.

For expositional ease, we suppress the dependence of \(\hat{\tilde{w}}(\cdot) \) and \(\hat{G}(\cdot) \) on \(F \) in the ensuing analysis. From (1), (25), (26), and (27):

\[
\hat{\pi}_0^* = \hat{q}_0^* \left[a - b \hat{Q}^* \right] + \hat{\tilde{w}} \sum_{i=1}^{N} \hat{q}_i^* - F
\]

\[
= \frac{a + \hat{\tilde{w}} N}{[N+2]b} \left[\frac{a + \hat{\tilde{w}} N}{N+2} \right] + \hat{\tilde{w}} \left[\frac{N(a - 2 \hat{\tilde{w}})}{b(N+2)} \right] - F = \frac{H}{b[N+2]^2} - F \quad (30)
\]

where \(H = [a + \hat{\tilde{w}} N]^2 + [N + 2] \hat{\tilde{w}} N [a - 2 \hat{\tilde{w}}] \)

\[
= a^2 + N^2 \hat{\tilde{w}}^2 + 2a N \hat{\tilde{w}} + a N^2 \hat{\tilde{w}} + 2a \hat{\tilde{w}} N - 2 N^2 \hat{\tilde{w}}^2 - 4 \hat{\tilde{w}}^2 N
\]

\[
= a^2 + a N \hat{\tilde{w}} [N + 4] - \hat{\tilde{w}}^2 N [N + 4]
\]

\[
= a^2 + a N [4 + N] \left[a(N + 1) - \sqrt{\hat{G}} \right] - N [N + 4] \left[a^2(N + 1)^2 + \hat{G} - 2a(N + 1) \sqrt{\hat{G}} \right]
\]

\[
= \frac{1}{4N^2} \left[4 N^2 a^2 + 2 a N^2 [N + 4] \right] \left[a(N + 1) - \sqrt{\hat{G}} \right]
\]

\[
- N [N + 4] \left[a^2(N + 1)^2 + \hat{G} - 2a(N + 1) \sqrt{\hat{G}} \right]
\]

\[
= \frac{1}{4N^2} \left[4 N^2 a^2 + 2 a N^2 [N + 4] [N + 1] - \left[2a N^2(N + 4) \sqrt{\hat{G}} \right. \right.
\]

\[
- a^2 N [N + 4] [N + 1]^2 + 2 a N [N + 4] [N + 1] \sqrt{\hat{G}}
\]

\[
- N [N + 4] \left[a^2(N + 1)^2 - 4 b N F(N + 2) \right]
\]

\[
= \frac{1}{4N^2} \left[4 N^2 a^2 + 2 a N^2 [N + 4] [N + 1] - 2 a^2 N [N + 4] [N + 1]^2
\]

\[
- 2a N^2 [N + 4] \sqrt{\hat{G}} + 2 a N [N + 4] [N + 1] \sqrt{\hat{G}} + 4 b F N^2 [N + 4] [N + 2] \}
\]

\[
= \frac{1}{4N^2} \left[-2 a^2 N [N^2 + 3N + 4] + 2 a N [4 + N] \sqrt{\hat{G}} + 4 b F N^2 [N + 4] [N + 2] \right]. \quad (31)
\]

(30) and (31) provide the expression for \(\hat{\pi}_0^*(F) \) specified in the lemma. ■
Proof of Proposition 2.

Differentiating \(\hat{\pi}_0^*(F) \) provides:

\[
\hat{\pi}_0^*(F) = \frac{1}{4 b N^2 [N + 2]^2} \left[a N [4 + N] \frac{\hat{G}'(F)}{\sqrt{G}} + 4 b N^2 (N + 4) (N + 2) \right] - 1
\]

\[
= \left[\frac{1}{4 b N^2 [N + 2]^2} \right] \left[-4 a N^2 [N + 4] [N + 2] \frac{\hat{G}}{\sqrt{G}} + 4 b N^2 [N + 4] [N + 2] \right] - 1
\]

\[
= \frac{4 N^2 [N + 4] [N + 2] b}{4 b N^2 [N + 2]^2} \left[-\frac{a}{\sqrt{G}} + 1 \right] - 1 = \frac{N + 4}{N + 2} \left[-\frac{a}{\sqrt{G}} + 1 \right] - 1. \quad (32)
\]

(32) implies:

\[
\hat{\pi}_0^*(F) \geq 0 \Leftrightarrow \left[\frac{N + 4}{N + 2} \right] \left[-\frac{a}{\sqrt{G}} + 1 \right] \geq 1
\]

\[
\Leftrightarrow -\frac{a}{\sqrt{G}} + 1 \geq \frac{N + 2}{N + 4} \Leftrightarrow -\frac{a}{\sqrt{G}} \geq \frac{N + 2}{N + 4} - 1 \Leftrightarrow -\frac{a}{\sqrt{G}} \geq -\frac{2}{N + 4}
\]

\[
\Leftrightarrow \frac{a}{\sqrt{G}} \leq \frac{2}{N + 4} \Leftrightarrow \frac{\sqrt{G}}{a} \geq \frac{N + 4}{2} \Leftrightarrow \sqrt{G} \geq \frac{[N + 4] a}{2}
\]

\[
\Leftrightarrow \hat{G} \geq \frac{[N + 4]^2 a^2}{4} \Leftrightarrow [a (N + 1)^2 - 4 N F [N + 2] b] \geq \frac{[N + 4]^2 a^2}{4}
\]

\[
\Leftrightarrow a^2 \left[(N + 1)^2 - \frac{(N + 4)^2}{4} \right] \geq 4 b N F [N + 2]
\]

\[
\Leftrightarrow a^2 \left[4 (N + 1)^2 - (N + 4)^2 \right] \geq 16 b N F [N + 2]
\]

\[
\Leftrightarrow a^2 [3 (N + 2) (N - 2)] \geq 16 b N F [N + 2] \Leftrightarrow F \leq \frac{3 a^2 [N - 2]}{16 b N}. \quad (33)
\]

(33) implies that \(\frac{\partial \pi^*_0}{\partial F} < 0 \) (and so \(\hat{F}^* = F \)) if \(N \leq 2 \). In contrast, if \(N \geq 3 \), then \(\hat{F}^* = \min \left\{ \max \left(F, \frac{3 a^2 [N - 2]}{16 b N} \right), F \right\} \). Consequently, \(\hat{F}^* > F \) if \(F < \frac{3 a^2 [N - 2]}{16 b N} \). This will be the case if \(F < \frac{a^2}{16 b} \), since \(r(N) \equiv \frac{N - 2}{N} \) is an increasing function of \(N \) with \(r(3) = \frac{1}{3} \).
References

Kenneth Fjell
Employing endogenous access pricing to enhance incentives for efficient upstream operation
SNF Working Paper No 09/13

Debashis Pal

David E.M. Sappington

Harald Nygård Bergh

Harald Nygård Bergh

Do premium channels decrease program variety?
SNF Working Paper No 39/12

Håkon Sæberg

Multi-purchasing in the linear city
SNF Working Paper No 28/12

Kjetil Andersson

Empirical evidence on the relationship between mobile termination rates and firms’ profit
SNF Working Paper No 27/12

Øystein Foros

Bjørn Hansen

Julie Eliassen Brannfjell

Informasjonstjenester på nett – en riktig oppgave for en offentlig kringkaster?
SNF Working Paper No 24/12

Kim Ø. Lea

Netthandel: Litteraturgjennomgang innenfor emnet internetthandel og prissammenligning
SNF Working Paper No 23/12

Armando J. Garcia-Pires

Hans J. Kind

Lars Sørgard

Elisabeth Heimdal Nes

Avisprodukter til nettbrett - redningen for den norske avisbransjen?
SNF Working Paper No 19/12

Harald Nygård Bergh

Ad-avoidance technology: who should welcome it?
SNF Working Paper No 17/12

Harald Nygård Bergh

Competition between Content Distributors in Two-Sided Markets
SNF Working Paper No 11/12

Hans Jarle Kind

Bjørn-Atle Reme

Lars Sørgard

Johann Roppen

Ideutvikling i redaksjonelle og kommunale nettmedia
SNF Working Paper No 07/12
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Working Paper No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarle Møen</td>
<td>Publication bias in the returns to R&D literature</td>
<td>09/13</td>
</tr>
<tr>
<td>Helge Sandvig Thorsen</td>
<td></td>
<td>06/12</td>
</tr>
<tr>
<td>Simon P. Anderson</td>
<td>Media market concentration, advertising levels, and ad prices</td>
<td></td>
</tr>
<tr>
<td>Øystein Foros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hans Jarle Kind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Peitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruth Rørvik</td>
<td>Digital musikk for en digital generasjon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En analyse av forretningsmodellene bak Spotify og Wimp</td>
<td>01/12</td>
</tr>
<tr>
<td>Leif B. Methlie</td>
<td>An analysis of the interplay among the dimensions of the business model and their effects on performance</td>
<td>35/11</td>
</tr>
<tr>
<td>Sven A. Haugland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hans Jarle Kind</td>
<td>Newspaper differentiation and investments in journalism: The role of tax policy</td>
<td>32/11</td>
</tr>
<tr>
<td>Guttorm Schjelderup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Stähler</td>
<td>The Bergen wave and the media, 1990-2008</td>
<td>29/11</td>
</tr>
<tr>
<td>Stig Tenold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruth Rørvik</td>
<td>Hvordan finansiere journalistikk? – Jakten på bærekraftige forretningsmodeller i en digital mediehverdag</td>
<td>28/11</td>
</tr>
<tr>
<td>Jesper Hatletveit</td>
<td>Mergers in two-sided media markets: Pricing and welfare implications</td>
<td>24/11</td>
</tr>
<tr>
<td>Ole-Jakob S. Lillestøl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Øyvind Nøstdal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hans Jarle Kind</td>
<td>Indirekte pressestøtte: Momsfritak vs skattefradrag</td>
<td>21/11</td>
</tr>
<tr>
<td>Jarle Møen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armando J. Garcia Pires</td>
<td>Advertising, news customization and media pluralism</td>
<td>54/10</td>
</tr>
<tr>
<td>Armando J. Garcia Pires</td>
<td>Media plurality, news customization and the intensity of readers’ political preferences</td>
<td>53/10</td>
</tr>
<tr>
<td>Jarle Møen</td>
<td>Samfunnsøkonomiske perspektiver på pressestøtten</td>
<td>49/10</td>
</tr>
</tbody>
</table>
Kenneth Fjell

Endogenous Average Cost Based Access Pricing

Øystein Foros

Review of Industrial Organization

(2010) 36: 149-162

Armando J. Garcia

Media Bias, News Customization and Competition

Pires

SNF Working Paper No 14/10

Armando J. Garcia

Media Bias and News Customization

Pires

SNF Working Paper No 13/10

Øystein Foros

Mergers and partial ownership

Hans Jarle Kind

SNF Working Paper No 12/10

Greg Shaffer

Johann Roppen

Markedsfinansiering og privatisering av allmennkringkasting

SNF Working Paper No 11/10

Peder Dalbæk Bruknapp

Det norske TV-markedet – Hvorfor tilbyr distributørene kanalpakker, og vil sluttkompris påvirkes av distributørenes kostnadsendringer ved overgang til enkeltkanalvalg?

SNF Working Paper No 42/09

Kenneth Fjell

Online advertising: Pay-per-view versus pay-per-click with market power

SNF Working Paper No 32/09

Jonas Andersson

A simple improvement of the IV estimator for the classical errors-in-variables problem

SNF Working Paper No 29/09

Jarle Møen

Hans Jarle Kind

Telecommunications Policy 33 (2009) 486-494

Merete Fiskvik Berg

Gjeldsfinansiering av immateriell investeringer

Marit Bjugstad

SNF Working Paper No 26/09

Hans Jarle Kind

Tax responses in platform industries

Marko Koetheuerger

SNF Working Paper No 24/09

Guttorm Schjelderup

Øystein Foros

Entry may increase network providers’ profit

Hans Jarle Kind

Telecommunications Policy 33 (2009) 486-494

Merete Fiskvik Berg

Gjeldsfinansiering av immateriell investeringer

Marit Bjugstad

SNF Working Paper No 26/09

Hans Jarle Kind

Tax responses in platform industries

Marko Koetheuerger

SNF Working Paper No 24/09

Guttorm Schjelderup

Øystein Foros

Slotting Allowances and Manufacturers’ Retail Sales Effort

Hans Jarle Kind

Jan Yngve Sand

Southern Economic Journal, Vol. 76(1) 266-282

Jon Iden

Identifying and ranking next generation network services

Leif B. Methlie

SNF Report No 12/09

Kjetil Andersson

Network competition: Empirical evidence on mobile termination rates and profitability

Bjørn Hansen

SNF Working Paper No 09/09
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Martine Ryland</td>
<td>Hvordan påvirker termineringsavgifter små mobiloperatører som One Call?</td>
<td>SNF Working Paper No 08/09</td>
</tr>
<tr>
<td>Terje Ambjørnsen</td>
<td>Customer Ignorance, price cap regulation and rent-seeking in mobile roaming</td>
<td>SNF Working Paper No 05/09</td>
</tr>
<tr>
<td>Øystein Foros</td>
<td>Market shares in two-sided media industries</td>
<td>SNF Working Paper No 04/09</td>
</tr>
<tr>
<td>Ole-Chr. B. Wasenden</td>
<td>Journal of Institutional and Theoretical Economics 166 (2010) 205-211</td>
<td></td>
</tr>
<tr>
<td>Hans Jarle Kind</td>
<td>Should utility-reducing media advertising be taxed?</td>
<td>SNF Working Paper No 03/09</td>
</tr>
<tr>
<td>Magnus Frøysok</td>
<td>Muligheter og utfordringer i fremtidens rubrikkmarked på Internett</td>
<td>SNF Working Paper No 02/09</td>
</tr>
<tr>
<td>Johanne R. Lerbrekk</td>
<td>Markedssvikt i TV-markedet og behovet for offentlige kanaler - sett i lys av digitaliseringen av bakkenettet</td>
<td>SNF Working Paper No 01/09</td>
</tr>
<tr>
<td>Tore Nilssen</td>
<td>The Television Industry as a market of attention</td>
<td>SNF Arbeidsnotat 39/08 Nordicom Review 31 (2010) 1, 115-123</td>
</tr>
<tr>
<td>Per E. Pedersen</td>
<td>The effects of variety and bundling on choice and satisfaction: Applications to new telecommunication and media services</td>
<td>SNF Working Paper No 33/08</td>
</tr>
<tr>
<td>Herbjørn Nysveen</td>
<td>The interplay between competition and co-operation: Market players’ incentives to create seamless networks</td>
<td>SNF Working Paper No 22/08</td>
</tr>
<tr>
<td>Per E. Pedersen</td>
<td>An exploratory study of business model design and customer value in heterogeneous network services</td>
<td>SNF Report No 09/08, Bergen</td>
</tr>
<tr>
<td>Hans Jarle Kind</td>
<td>Structural conditions for business model design in new information and communication services – A case study of multi-play and MVoIP in Denmark and Norway</td>
<td>SNF Working Paper No 16/08, Bergen</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Publication Details</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Marko Koethenbuerger</td>
<td>Price-dependent profit-shifting as a channel coordination device</td>
<td>SNF Working Paper No 05/08, Bergen, Management Science, Vol. 8, August 2009, 1280-1291</td>
</tr>
</tbody>
</table>
Endogenous access pricing (ENAP) is an alternative to the more traditional form of access pricing that sets the access price to reflect the regulator’s estimate of the supplier’s average cost of providing access. Under ENAP, the access price reflects the supplier’s actual average cost of providing access, which varies with realized industry output. We show that in addition to eliminating the need to estimate industry output accurately and avoiding a divergence between upstream revenues and costs, ENAP can enhance the incentive of a vertically integrated producer to minimize its upstream operating cost.