Hvilken effekt har forskjellige grepsbredder på nevromuskulær aktivering og prestasjon i benkpress hos godt trente mosjonister?

Av
Kandidatnummer 121, Kristoffer Birkeland
Kandidatnummer 205, Mikkel Frodahl
Kandidatnummer 118, Anders Omvik Hella

Idrett og kroppsoving
ID3-323

Idrett, fysisk aktivitet og helse
ID3-302
Desember 2013
Forord

Bacheloroppgaven vår ble presentert av benkpressfantomet Dag André Mo, som også er avdelingsleder ved Idrettssenteret i Sogndal. Problemstillingen var å undersøke muskelaktivering og prestasjon i benkpress ved tre forskjellige grepsbredder hos godt trente mosjonister. Oppgaven var en videreføring av en studie som ble gjennomført på aktive styrkeløftere i fjor.

Vi vil takke Dag André som var veilederen vår og som ga oss mulighet til å ta del i denne oppgaven. Samarbeidet har fungert bra. Vi har fått konstruktive tilbakemeldinger på arbeidet, som har vært til stor hjelp gjennom hele prosessen.

Vi vil også sende en takk til Atle Hole Sæterbakken og Vidar Andersen ved Høgskulen i Sogn og Fjordane som har vert behjelpelige med innsamling og analyse av data.

En takk sendes også til Høgskulen i Sogn og Fjordane og Idrettssenteret som har hjulpet oss med testlokale og lån av utstyr.

Uten forsøkspersonene kunne vi ikke ha gjennomført prosjektet, de skal ha honnør for godt oppmøte og innsatsen som ble lagt ned under testperioden.

Høgskulen i Sogn og Fjordane
Avdeling for lærerutdanning og idrett
Idrett, fysisk aktivitet og helse, og idrett og kroppsøving
Sogndal 2013

__________________________ ____________________________ _______________________
Anders Omvik Hella Kristoffer Birkeland Mikkel Frodahl
Sammendrag

Hensikten med denne studien var å se på hvilken effekt ulike grepsbredder hadde på nevromuskulær aktivering og prestasjon i benkpress hos godt trente mosjonister.

15 mannlige forsøkspersoner (alder 23,7 ± 2,02 år, vekt 81,7 ± 8,21 kg, høyde 180,3 ± 4,80 cm) med 5,5 ± 1,85 års erfaring med styrketrening ble testet i 6 RM ved smalt, middels og bredt grep i benkpress. Myoelektrisk aktivitet ble målt ved hjelp av EMG målinger av musklene; pectoralis major (sternale og claviculere hodet), triceps brachii, deltoideus anterior, deltoideus posterior, deltoideus medius, biceps brachii og latissimus dorsi.

Testresultatene viste signifikant lavere aktivering i triceps brachii ved bredt sammenlignet med middels (p=0,003) og smalt grep (p=0,014). Det var ingen signifikant forskjell mellom smalt og middels grep (p=1,000). Videre ble det funnet signifikant høyere aktivering i biceps brachii ved bredt til middels grep (p<0,001), bredt til smalt grep (p<0,001) og middels til smalt grep (p=0,005). Det ble ikke funnet noen signifikant forskjell i muskelaktiviteter mellom grepsbreddene i latissimus dorsi, pectoralis major(claviculere og sternale hodet) og deltoideus(anterior,medius og posterior). Funnene viste signifikant kortere løftetid fra bredt til middels grep (p=0,049). Det ble ikke funnet signifikant forskjell i løftetiden mellom bredt og smalt grep (p=0,134) og mellom smalt og middels grep (p=1,000). I forhold til prestasjon ble det funnet signifikant mindre belastning fra smalt til middels (p<0,001) og bredt grep (p<0,001). Det ble ikke funnet signifikant forskjell mellom middels og bredt grep (p=1,000).

Vi konkluderer med at endring i grepsbredder påvirker muskelaktivitet og prestasjon hos godt trente mosjonister. Bredt grep vil være gunstig for å øke prestasjonen. Ved et smalt grep vil en derimot kunne løfte ved en lavere belastning, og allikevel få bedre eller samme effekt av treningen.
Innhold

Forord ... 2

Sammendrag ... 3

1.0 Innledning .. 6

1.1 Valg av tema .. 6

1.2 Begrepsavklaring .. 6

2.0 Teori .. 8

2.1 Benkpress .. 8

2.1.1 Grepsbredder .. 8

2.2 Tidligere studier ... 8

2.2.1 Muskelaktivering ... 8

2.2.2 Prestasjon .. 10

2.3 Treningsstatus og muskelaktivering ... 10

2.4 Oppsummering av teori og problemstilling ... 10

3.0 Metode ... 12

3.1 Forsøkspersoner (FP) .. 12

3.2 Inklusjonskriterier .. 12

3.3 Forberedelser ... 12

3.4 Testprosedyre .. 12

3.4.1 Test av 6RM ... 13

3.4.2 EMG .. 14

3.5 Statistisk analyse .. 15

4.0 Resultat .. 16

4.1 Muskelaktivering, prestasjon og løftetid .. 16

5.0 Diskusjon .. 19

5.1 Triceps brachii .. 19

5.2 Biceps brachii .. 19

5.3 Pectoralis major ... 20
5.4 Andre muskler ... 20
5.5 Løftetid .. 21
5.6 Prestasjon .. 21
5.7 Metodiske utfordringer ... 22
 5.7.1 Utstyr ... 22
 5.7.2 Antall repetisjoner (RM) ... 22
 5.7.3 Grepsbredder ... 22
 5.7.4 Forsøkspersoner og treningsstatus ... 23
 5.7.5 Festepunkt elektroder ... 23
5.8 Feilkilder ... 23
6.0 Konklusjon og praktiske implikasjoner ... 24
7.0 Litteraturliste ... 25
8.0 Vedlegg .. 27
1.0 Innledning

1.1 Valg av tema
Styrketrening er innenfor vår interesse, og benkpress er en av de mest brukte øvelsene for å styrke overkroppen. Det foreligger ulike oppfatninger av hvilke muskler som er sentrale ved forskjellige grepsbredder i benkpress. Vi var spesielt interesserte i bidraget til triceps brachii, deltoideus anterior og pectoralis major. Dette kan gi grunnlag for hvilken effekt ulike grep i benkpress har på muskelaktiviteten i involverte muskler. Resultatene kan ha betydning for mosjonister, da de ofte benytter seg av denne øvelsen i treningsarbeidet. Funnene kan således være med på å bedre treningsutbyttet til denne gruppen.

1.2 Begrepsavklaring

Agonist
Muskel som jobber i en bestemt retning.

Antagonist
Muskel som jobber mot agonist (motsatt virkning).

Biacromial bredde
Antropologisk mål av skulderbredde.

Co-aktivering
Når muskelen (antagonisten) er aktivert samordnet med en annen muskel.

Ekstensjon
Leddet rettes ut (Raastad et al., 2010).

Fleksjon
Leddet bøyes (Raastad et al., 2010).

EMG
Electromyography/elektromyografi er en metode som blir brukt til å registrere den elektriske aktiviteten i musklene, ved bruk av elektroder som festes på musklene til forsøkspersonen. Den måler overflateaktivering.

Isometrisk muskelaksjon
Kraftutvikling lik (iso-) muskelengde (-metrisk). Med muskelengde menes her avstanden
fra utspring til feste. I praksis vil dette si at musklene utvikler kraft uten av det skjer en rotasjon i leddet. Selv om ikke muskellengden endres vil en forkortning av muskelbuken forekomme, da noe av kraften vil forlenge senen (Raastad et al., 2010).

Kraft (N)
Newton er en måleenhet for kraft. En kraft på 1 N er med andre ord den kraften som trengs for å akselerere en masse på ett kilogram en meter per kvadratsekund.

Kontraksjon
Muskelen trekker seg sammen.

MVC
Maksimal frivillig muskelspenning.

RM
Repetisjon maksimum (Raastad et al., 2010). For eksempel 6RM er den belastningen man maksimalt klarer og løfte 6 ganger.

Synergist
Muskelen som jobber i samme retning og støtter agonisten.

Økologisk validitet
Muligheten til å generalisere situasjonen og resultat. Overførbarhet til hverdagen (Thomas et al., 2011).
2.0 Teori

2.1 Benkpress

For å styrke overkroppen er benkpress kanskje en av de mest brukte øvelsene. I tillegg til å være en av de mest populære styrkeøvelsene er også benkpress en konkurranseøvelse i idretten styrkeløft. Benkpress er sentral for utviklingen av musklene pectoralis major, deltoideus anterior og triceps brachii (Raastad et al., 2010).

2.1.1 Grepsbredder

Graden av aktivering en øvelse gir i en muskel eller i deler av muskelen, er sentral for å stimulere til økt muskelvekst og styrke. En økt forståelse av hvilke variasjoner i den aktuelle øvingen som kan optimalisere dette stimuliet, vil derfor være av praktisk betydning i treningsarbeidet (Trebs et al., 2010). I benkpress har man i tillegg til variasjoner i helling på benken også variert grepsbredden for å rette fokus mot de forskjellige hovedmuskene i øvelsen. I følge McLaughlin (1985) kan en liten forskjell på grepsbredden i benkpress føre til signifikante forandringer i muskelaktivering. Andre studier som har undersøkt effekten av ulike grepsbredder i benkpress har også vist at grepet har betydning for muskelaktiviteten i de musklene som er involvert i øvelsen (Barnett et al., 1995; Clemons og Aron, 2007; Lehmann, 2005). I et prestasjonsperspektiv kan et bredere grep føre til kortere arbeidsvei, som vil gjøre det gunstig å løfte mer (McLaughlin, 1985; Madsen og McLaughlin, 1984). Årsak er trolig at pectoralis major blir strukket mer optimalt, som igjen fører til en større kraftutvikling (McLaughlin, 1985). Wagner et al. (1992) har gjort funn på at den optimale grepsbredden i forhold til kraftutvikling ligger mellom 130 – 235% av biacromial bredde.

2.2 Tidligere studier

Det foreligger få studier som har undersøkt muskelaktivitert og prestasjon ved ulike grepsbredder i benkpress. Under vil studiene som er relevante og aktuelle innenfor dette temaet bli presentert.

2.2.1 Muskelaktivitert

I en studie gjort av Clemons og Aaron (1997) ble det undersøkt hvilken effekt grepsbredder hadde på den myoelektriske aktiviteten i muskler involvert i benkpress. Studien ble gjennomført på 12 menn (22år ± 2,6) med et snitt på 7,1 års erfarer med styrketrening. Aktiviteten ble målt i 1RM og det ble brukt 4 forskjellige grepsbredder. Grepsbreddene ble regnet prosentvis av biacromial bredde, hvor G1 var 100%, G2 130%, G3 165% og G4 190%.
Det ble brukt samme vekt (1RM av G1) i alle grepsbreddene. Muskelaktivitet (EMG) ble målt i pectoralis major, deltoideus anterior, triceps brachii og biceps brachii. Det ble målt signifikant (P≤0.05) lavere aktivering i alle musklene ved G1 og G2 sammenlignet med G4 relatert til % MVIC (Maximal Voluntary Isometric Contraction). I pectoralis major, deltoideus anterior og triceps brachii ble det målt signifikant større aktivering relatert til % MVIC enn i biceps brachii. Triceps brachii ble målt mer aktiv i forhold til % MVIC enn pectoralis major.

Lehman (2005) så på effekten av ulike grepsbredder i forhold til den myoelektriske aktiviteten i utvalgte muskler i benkpress. Forsøkspersonene (FP) bestod av 12 friske menn (26,3år ± 1,5) med over 6 måneders treningserfaring. EMG ble målt ved isometrisk hold i 5 sekunder ved 3 forskjellige grepsbredder. To av grepsbreddene (middels og bredt) ble regnet ut prosentvis av biacromial bredde, hvor henholdsvis middels var 100% og bredt var 200%. Smalt grep tilsvarte en håndbreddes avstand mellom hendene. FP valgte en belastning de kunne løfte 12 ganger. Muskelaktiviteten (EMG) ble målt på biceps brachii, triceps brachii og pectoralis major (claviculare og sternale hodet). Det ble ikke funnet noen signifikante (P≤0.05) forskjeller i muskelaktiviteten ved de forskjellige grepsbreddene.

Studien til Barnett et al. (1995) undersøkte effekten forskjellige grepsbredder samt helninger i benken hadde for utvalgte muskler i og rundt skulderleddet. Studien ble gjennomført i et smithstativ. FP var 6 menn (23,7år ± 1,1) med minimum 2 års erfaring med styrketrening. Testingen ble gjennomført med 1 repetisjon i alle øvelsene, hvor belastningen var 80 % av antatt 1RM. Øvelsene ble utført med 4 forskjellige helninger på benken samt ved 2 forskjellige grepsbredder. Grepsbreddene ble regnet ut prosentvis av biacromial bredde, hvor G1 var 100% mens G2 var 200%. EMG elektroder ble plassert på triceps brachii, pectoralis major (claviculare og sternale hodet), deltoideus anterior og latissimus dorsi. Funnene viste at triceps brachii var signifikant (P≤0.05) mer aktiv ved smal grepsbredde. Samme funn ble gjort på det claviculare hodet av pectoralis major.

Gjelsvik og Gjengedal (2012) undersøkte muskelaktivering ved ulike grepsbredder hos eliteløftere i benkpress. FP var 12 menn (34,3år ± 14,1) som var aktive styrkeløftere både nasjonalt og internasjonalt. EMG ble målt ved 3 forskjellige grepsbredder, hvor smalt var biacromial bredde (42cm ± 3,5), bredt var foretrukket konkurransegrep (79cm ± 8) og middels grep var snittet av disse grepene. Resultatene viste kun signifikant (P≤0.05) høyere aktivering av biceps brachii ved bredt grep.
2.2.2 Prestasjon

Wagner et al. (1992) undersøkte hvilken effekt grepsbredde hadde på prestasjonen i maksimal benkpress. Inklusjonskriteriene i studien var å løfte 125 % av egen kroppsvekt. Det ble gjennomført 1RM i 6 grepsredder. Grepsreddene ble regnet ut i fra biacromial bredde hvor G1 var 95%, G2 130%, G3 165%, G4 200%, G5 235% og G6 270%. Det ble ikke registrert EMG på noen muskler, men kraft på de ulike grepene ble målt i Newton (N). Man fant signifikant høyere kraft (N) (P≤0.05) på styrke ved grepsreddene G3 og G4 sammenlignet med de andre grepene.

2.3 Treningssstatus og muskelaktivering

Trening fører til forandringer i musklene og sentralnervesystemet (Dahl og Rinvik, 2010; Raastad et al., 2010). I begynnelsen av en styrketreningstid er styrkeøkning målt som endring av 1RM i treningen selv, ofte større enn den økningen vi finner i tverrsnittsereal i de aktuelle muskelgruppene (Raastad et al., 2010). Dette forklarer med at vi får mer kraft ut av den muskelmassen vi har til rådighet, ved forbedret evne til å aktivere musklene (Raastad et al., 2010; Enoksen et al., 2007). Kraftutvikling og muskellengde påvirker derfor hverandre. I tillegg kan forbedret evne til å samordne agonister, synergister og antagonister ved maksimal mobilisering påvirke muskelstyrken i komplekse øvelser (Dahl og Rinvik, 2010; Raastad et al., 2010). Dette kan forklares med at teknikken i øvelsen blir bedre. Teknikk er en avgjørende faktor for forskjellen i aktivering mellom trente og utrente. Dette kalles nevral adaptasjon (Raastad et al., 2010; Enoksen et al., 2007).

Muskelens evne til å utvikle kraft påvirkes av muskellengden. Større strekk i hver muskelfiber fører til mindre kraftutvikling (Raastad et al., 2010, Enoksen et al., 2007). Dette kan føre til at flere motoriske enheter rekrutteres for å utvikle ønsket kraft (Barnett et al., 1995). Økt rekruttering av motoriske enheter fører til sterkere EMG signal (Raastad et al., 2010).

2.4 Oppsummering av teori og problemstilling

Som tidligere beskrevet foreligger det begrenset med forskning som tar for seg forskjeller i muskelaktivering ved ulike grepbredder innenfor benkpress. Av de studiene som er henvist til er det mye forskjellig metodebruk med tanke på inklusjonskriterier, grepbredder, belastning, antall løft og muskler som er målt. Metodebruken i tidligere studier er ikke tilfredsstillende med tanke på å generalisere funnene, dermed blir de også vanskelig å sammenligne. Vi vil ta utgangspunkt i en metode som er enkel å reproducere med klare inklusjonskriterier for at vi skal kunne generalisere funnene våre. Vi har derfor valgt å følge studiedesignt til Gjengedal og Gjelsvik (2012) med andre inklusjonskriterier. Dette kan legge til rette for en bredere forståelse av benkpress.

Vår problemstilling:
«Hvilken effekt har forskjellige grepbredder på nevromuskulær aktivering og prestasjon i benkpress hos godt trente mosjonister?»
3.0 Metode

3.1 Forsøkspersoner (FP)
15 FP ble rekruttert fra Høgskulen i Sogn og Fjordane. Alle FP var menn, da vi ønsket en homogen gruppe. Ingen FP ble ekskludert i løpet av perioden.

Tabell 3.1: Tabellen viser alder, vekt, høyde og år aktiv hos FP (verdier er oppgitt i gjennomsnitt ± standardavvik).

<table>
<thead>
<tr>
<th>Alder(år)</th>
<th>Vekt(kg)</th>
<th>Høyde(cm)</th>
<th>Erfaring styrketrening(år)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,7 ± 2,02</td>
<td>81,7 ± 8,21</td>
<td>180,3 ± 4,80</td>
<td>5,5 ± 1,85</td>
</tr>
</tbody>
</table>

3.2 Inklusjonskriterier
Det ble stilt krav om at FP måtte være godt trent og at de regelmessig praktiserte øvelsen benkpress. FP måtte kunne løfte 125% av egen kroppsvekt, eller 125 kg i 1 RM ved foretrukket grepsbredde. Alle FP måtte være skadefrie. Dersom det oppstod skade eller sykdom under testperioden ble FP ekskludert.

3.3 Forberedelser
FP ble informert om at de ikke kunne nyte alkohol eller trene relevant muskulatur innen 48 timer før test. Det ble også opplyst om at det ikke var tillatt med noen form for hjelpemidler som drakt, hansker, nyrebelte, støttereimer eller kalk. Før prosjektet startet fikk FP utlevert et informasjonsskriv (vedlegg 1), i tillegg til en samtykkeerklæring (vedlegg 1) til deltakelse i studien. FP kunne når som helst og uten grunn trekke seg fra studien. Undersøkelsen var i samsvar med Høgskulen i Sogn og Fjordane sine etiske retningslinjer og Norsk Lov.

3.4 Testprosedyre
FP gjennomførte to tilvenningstester ved alle de tre ulike grepsbredene for å finne 6RM i samtlige grep. Ved den første tilvenningen ble i tillegg 1RM testet for å bekrefte at FP imøtekom inklusjonskriteriene. Tilvenningstestene ble gjennomført med fem dagers mellomrom, samt fem dagers opphold til eksperimentell test. Resultatene fra tilvenningstesten ble notert i et testskjema (vedlegg 2), og brukt som grunnlag for belastning på den eksperimentelle testen. Ved første tilvenning ble grepsbredene regnet ut i tillegg til innsamling av høyde og vekt.
Smalt grep (bilde 1) ble beregnet ut fra avstanden mellom armhulene hos hver FP.
FP stod her med ryggen mot en tavle med strake armer horisontalt ut til siden, og håndflaten vendt ned mot gulvet. Deretter markerte man med tusj i skjæringspunktet mellom latissimus dorsi og triceps brachii og målte avstanden mellom punktene. Bredt grep ble standardisert til 81cm (bilde 2), som er avstanden mellom de ytterste ringene på stangen (styrkeløftstang), og er den maksimale bredden man kan benytte i konkurrancesammenheng innenfor styrkeløft. Middels grep (bilde 3) var snittet av smalt og bredt grep. Rekkefølgen på grepsbreddene hos hver FP ble randomisert i «counterbalanced order». Den samme rekkefølgen ble brukt både på tilvenning og eksperimentell test.

![Bilde 1: Smalt grep (40,8cm±1,90)](image1)

![Bilde 2: Bredt grep (81cm)](image2)

![Bilde 3: Middels grep (60,8cm±1,05)](image3)

3.4.1 Test av 6RM

All testing ble gjennomført på en flat treningsbenk (Pivot 430 flexibenk), med en standard 20kg olympisk stang (Leoko) i tillegg til et powerrack multivektstativ (Pivot 480).

Oppvarmingsprosedyre og test av 6RM var den samme på tilvenningstestene og eksperimentell test. Oppvarmingen på første tilvenningstest ble beregnet ut ifra FP sin estimerte 6RM. På andre tilvenning og eksperimentell test ble oppvarmingen beregnet ut ifra FP sin faktiske 6RM på den første randomiserte grepsbredden. Oppvarming med stang var valgfritt før belastning ble lagt til. Første serie var 10 repetisjoner på 50%, andre var 4
repetisjoner på 70%, tredje var 2 repetisjoner på 80%, og til slutt 1 repetisjon på 90%. Det ble gitt tre minutters pause mellom hvert oppvarmingssett.

FP fikk hjelp til avløft om det var ønskelig. Det ble stilt krav om at løftet startet og sluttet med full ekstensjon i albueleddet på alle repetisjoner. Stangen måtte berøre brystkassen. Spretting av stangen var ikke tillatt. Hver repetisjon skulle også ha så jevn hastighet som mulig, og det var ikke tillatt å ha pause på toppen. Pause mellom test av hvert grep var fem minutter. Hver FP ble testet til 6RM ble funnet i alle de tre grepsbreddene.

3.4.2 EMG
EMG målinger ble kun gjort på eksperimentell test. Før oppvarmingen ble det festet elektroder på FP. Elektroderne ble plassert på FP dominante side. Plassering og målinger ble gjort som anbefalt, etter SENIAM’s (European recommendations for surface electromyography, 1999) gjeldende retningslinjer. Områdene for plassering ble preparert av testleder som barberte vekk hår, fjernet epitelvev med sandpapir, renset huden med desinfiserende væske, samt elektrodegele ble benyttet for å styrke signalene (Hermens et al., 2000). Denne prosedyren ble utført i tett samarbeid mellom to testledere, for å sikre riktig plassering av elektroden på de spesifikke musklene. Elektroder (11mm kontakt diameter) med en senter-til-senter avstand på 2.0 cm ble plassert i den antatte muskelfiberretningen etter SENIAM’s anbefalinger (Hermens et al., 2000). Selvklebrige elektroder (dri-stick silver circular sEMG Electrodes AE-131, NeuroDyne Medical, USA) ble festet på triceps brachii, biceps brachii, deltoideus anterior, deltoideus medius, deltoideus posterior, pectorialis major claviculare hodet, pectoralis major sternale hodet og latissimus dorsi (vedlegg nr.3).

De ubearbeidede EMG-signalene ble forsterket og filtrert ved hjelp av en forforsterker, lokalisert så nær elektroden som mulig, for å minimalisere støy indusert fra eksterne kilder. Signalene var høy og lav passfiltrert (maksimal avskåret frekvens satt til 8-600 Hz). RMS-signalene (effektverdiene) ble konvertert ved hjelp av et hardware circuit network (gjennomsnittskonstant på 12ms, frekvens respons 450 kHz, totalfeil ± 0,5%) fra det ubearbeidende EMG-sinalet. Det konverte RMS-sinalet ble innsamlet med en hastighet på 100Hz ved hjelp av en 16-bit A/D converter med en CMRR (common mode rejection ratio) på 106db.

Gjennomsnittet av EMG målinger fra de seks repetisjonene i hver grepsbredde ble benyttet i videre statistiske analyser. For å kunne normalisere EMG data ble MVC målinger utført i 8
øvelser. MVC ble utført i benkpress (pectoralis major, deltoideus anterior), biceps curl (biceps brachii) og triceps press (triceps brachii), alle disse øvelsene ble utført med 90º i albueledd. Resterende øvelser var sidehev med 45º i skulderleddet (deltoideus medius), omvendt flyes (deltoideus posterior) og strake nedtrekk (latissimus dorsi) med 90 º i skulderleddet. MVC ble gjennomført på eksperimentell test etter test av 6RM. FP hadde to forsøk på hver øvelse. Holdetiden var 3 sekunder. Forsøk nummer to ble gjennomført når FP selv følte seg klar. Forsøket med høyest aktivering ble brukt for videre sammenligningsgrunnlag for analysen.

3.5 Statistisk analyse
For å analysere forskjellen i EMG aktivitet, 6RM og løftetid for de tre grepsbreddene, ble enveis ANOVA med Bonferroni justering i gruppesammenligninger benyttet. Signifikant nivået var satt til P ≤0.05. SPSS (versjon 19.0; SPSS, Inc Chicago, IL, USA) ble benyttet for å analysere data.
4.0 Resultat

4.1 Muskelaktivering, prestasjon og løftetid

Det ble funnet signifikant høyere aktivering i triceps brachii (fig. 4.1) fra bredt til middels grep (p=0,003) og fra bredt til smalt grep (p=0,014). Det var ingen signifikant forskjell mellom smalt og middels grep (p=1,000).

![Diagram Triceps](image)

Figur 4.1 viser normaliserte verdier av EMG (% av MVC) for triceps brachii ved smalt- (78,15±22,67), middels- (76,56±20,82) og bredt grep (69,50±20,77). Tallene er presentert som gjennomsnitt og standardavvik.

*Signifikant forskjell p<0,05.

Det ble funnet signifikant lavere aktivering i biceps brachii (fig. 4.2) fra bredt til middels grep (p<0,001), bredt til smalt grep (p<0,001) og fra middels til smalt grep (p=0,005).

![Diagram Biceps](image)

Figur 4.2 viser normaliserte verdier av EMG (% av MVC) for biceps brachii ved smalt- (14,50±16,71), middels- (21,67±23,20) og bredt grep (31,07±25,36). Tallene er presentert som gjennomsnitt og standardavvik.

*Signifikant forskjell p<0,05.
Løftetiden (fig. 4.3) var signifikant lengre fra bredt til middels grep (p=0,049). Det ble ikke funnet signifikant forskjell i løftetiden mellom bredt og smalt grep (p=0,134) og mellom smalt og middels grep (p=1,000).

![Diagram](image)

Figur 4.3 viser løftetid(sek) ved smalt- (2,73±0,52), middels- (2,77±0,59) og bredt grep (2,44±0,46).
Tallene er presentert som gjennomsnitt og standardavvik.*Signifikant forskjell p<0,05.

Det var signifikant mindre belastning (fig. 4.4) ved smalt i forhold til middels grep (p<0,001) og ved smalt sammenlignet med bredt grep (p<0,001). Det ble ikke funnet signifikant forskjell mellom middels og bredt grep (p=1,000).

![Diagram](image)

Figur 4.4 viser belastning(kg) ved smalt- (84,50±10,56), middels- (91,00±11,25) og bredt grep (91,00±11,17).
Tallene er presentert som gjennomsnitt og standardavvik.*Signifikant forskjell p<0,05.

Det var ingen signifikante forskjeller i latissimus dorsi (p=0,550-0,828), deltoideus anterior (p=0,692-1,000), deltoideus medius (p=1,000-1,000), deltoideus posterior (p=0,762-1,000), pectoralis major – sternal (p=0,072-0,266), pectoralis major – clavicula (p=0,062-1,000)
mellom de tre grepsbreddene. Det ble funnet tendens til høyere aktivering i pectoralis major – clavicula ved middels i forhold til bredt grep (p=0,062).

Tabell 4.5 viser normaliserte verdier av EMG (% av MVC) ved de forskjellige grepsbreddene. Tallene er presentert som gjennomsnitt ± standardavvik. *Signifikant forskjell p<0,05.

<table>
<thead>
<tr>
<th></th>
<th>Smalt grep</th>
<th>Middels grep</th>
<th>Bredt grep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latissimus dorsi</td>
<td>25,70 ± 19,17</td>
<td>27,71 ± 19,38</td>
<td>29,73 ± 21,31</td>
</tr>
<tr>
<td>Deltoideus anterior</td>
<td>115,76 ± 43,08</td>
<td>119,23 ± 47,92</td>
<td>115,17 ± 45,95</td>
</tr>
<tr>
<td>Deltoideus medius</td>
<td>28,50 ± 16,09</td>
<td>29,02 ± 14,43</td>
<td>29,09 ± 13,22</td>
</tr>
<tr>
<td>Deltoideus posterior</td>
<td>13,41 ± 11,91</td>
<td>11,05 ± 5,73</td>
<td>10,62 ± 5,17</td>
</tr>
<tr>
<td>Pectoralis major - clavicula</td>
<td>107,35 ± 36,41</td>
<td>107,99 ± 29,65</td>
<td>101,68 ± 28,52</td>
</tr>
<tr>
<td>Pectoralis major - sternal</td>
<td>125,99 ± 34,62</td>
<td>118,25 ± 28,58</td>
<td>111,97 ± 22,86</td>
</tr>
</tbody>
</table>
5.0 Diskusjon

Studien vår hadde som hensikt å kartlegge muskelaktivering og prestasjon i benkpress ved forskjellige grepsbredder hos godt trente mosjonister. Vi fant signifikante forskjeller i aktuell muskulatur ved å endre grep. I tillegg fant vi signifikante forskjeller i andre parameter som løftetid og prestasjon.

5.1 Triceps brachii
Det ble funnet signifikant høyere aktivering i triceps brachii fra bredt til middels grep (p=0,003) og fra bredt til smalt grep (p=0,014). Dette samsvarer med en studie gjort av Barnett et al. (1995). De konkluderer med at arbeidsveien i albueleddet er lengre ved et smalere grep. Ved en større strekk i triceps brachii mister hver enkelt muskelfiber kraft på grunn av overlappingsforholdet mellom aktin og myosinfilamentene, noe som fører til at flere muskelfibre blir rekruttert. Den økte kraftutviklingen fører til sterkere EMG signaler (Raastad et al., 2010; Enoksen et al., 2007).

Clemons og Aron (1997) observerte at triceps brachii hadde signifikant høyere aktivering (i forhold til % MVIC) enn pectoralis major, i alle grepsbreddene. Grunnen til dette kan tenkes å være styrkeforholdet mellom de to musklene.

5.2 Biceps brachii
Biceps brachii ble signifikant høyere aktivert fra smalt til middels grep (p=0,005), smalt til bredt grep (p<0,001) og middels til bredt grep (p<0,001). Det er gjort få studier på biceps brachiis aktivering i øvelsen, derfor er sammenligningsgrunnlaget tynt. De studiene som har målt biceps brachii har ikke funnet signifikant forskjell i aktiveringen (Lehmann, 2005; Clemons og Aron, 1997). Clemons og Aaron (1997) har ikke diskutert funnene som ble gjort på biceps brachii, ettersom de mener denne muskelen ikke var en sentral bidragsyter i øvelsen. Pagnani et al. (1996, referert i Lehman, 2005) mener dette kan skyldes at behovet for
skulderstabilitet øker i takt med grepsbredden. Økt aktivering i biceps brachii kan forklares ved at det lange hodet bidrar i stabiliseringen sammen med deltoideus anterior når utoverrotasjonen i skulderleddet øker (Lehman, 2005).

5.3 Pectoralis major
Vi fant ingen signifikant forskjell i muskelaktiveringen av pectoralis major, men kan se en tendens til høyere aktivering av det claviculare hodet fra bredt til middels grep (p=0,062). Flere studier viser til at pectoralis major blir mer aktivert ved et bredt grep enn ved smalt grep (Cook og Stewart, 1981; McLaughlin, 1985; Rasch, 1982).

Grunnen til at vi ikke har funnet noen signifikant forskjell i muskelaktiveringen i pectoralis major kan tenkes å være at våre FP gjennom regelmessig trening, har utviklet et høyt tverrsnittareal i muskelen. I følge Raastad et al. (2010) trengs det derfor færre motoriske enheter for ønsket kraftutvikling, fordi godt trente får mer kraft ut av den muskelmassen de har til rådighet.

5.4 Andre muskler
Vi har også undersøkt EMG aktivitet i musklene latissimus dorsi, deltoideus posterior, deltoideus anterior og deltoideus medius. Ingen av disse musklene viste signifikante forskjeller i forhold til grepsbredden.

I følge Iraj et al. (2011) er deltoideus anterior en av hovedbidragsgyterene i benkpress. Clemons og Aaron (1997) fant ingen signifikante forskjeller i aktiveringen av pectoralis major og deltoideus anterior, noe de begrunner med at disse musklene kan ha en nokså lik oppgave underveis i løftet.

Kun studien til Barnett et al. (1995) har tidligere tatt for seg muskelaktiveringen i latissimus dorsi. Funnene deres viste lav aktivitet i muskelen ved alle grepsbreddene. Derimot fant de en
tendens til høyere aktivitet før avløft. Ettersom latissimus dorsi er en ekstensor av skulderleddet konkluderte studien med at ingen pressøvelser kan brukes som treningsøvelse for denne muskelen. Det samme gjelder deltoideus posterior.

Få studier har undersøkt forskjeller mellom ulike grep i benkpress på deltoideus medius. Dette gjelder også muskler som latissimus dorsi og deltoideus posterior. Det eneste studiet som tar for seg alle disse musklene er Gjelsvik og Gjengedal (2012). Deres resultat på eliteløftere samsvarer med våre funn i disse musklene. Årsaken til at vi inkluderte så mange muskler, var for å kartlegge musklene som virker inn på skulderen, da dette leddet sammen med albueleddet er sentralt i utførelsen av benkpress.

5.5 Løftetid

Funn viste at løftetiden ved middels grep var signifikant (P=0.049) høyere enn ved bredt grep. Forskjellene var derimot forholdsvis små, noe tydeliggjøres at det ved smalt og middels kun var 1,45 % forskjell. Forskjellen mellom smalt og bredt var 10,23 % og forskjellen mellom middels og bredt var 11,93 %. Dette støttes av Wagner et al. (1995) som viser til at arbeidsveien blir kortere når grepsbredden øker. Madsen og McLaughlin (1984) skriver at stangbanen kommer nærmere skulderen jo mer grepsbredden øker, og dermed blir arbeidsveien mindre. Det er derfor naturlig å tro at det er sammenheng mellom arbeidsvei og løftetid.

5.6 Prestasjon

Belastningen ved smalt grep var signifikant (P<0.001) lavere enn ved både middels og bredt grep. McLaughlin (1985) kommenterte i sin studie at et bredere grep førte til en strekk i pectoralis major som gjorde at kraftutviklingen ble større. Derfor er det nærliggende å anta at et smalere grep vil føre til mindre optimale arbeidsforhold for pectoralis major, noe som fører til mindre kraftutvikling. Dette blir støttet av studien til Barnett et al. (1995) som viser til at en ved G2 (200% av biacromial bredde) løfter mer enn ved G1 (100% av biacromial bredde). Dette samsvarer godt med våre funn.

Wagner et al. (1992) konkluderte i sin studie med at grepsbreddene som lå nærmest FP sitt foretrekkende grep var mest optimalt for å prestere godt i øvelsen. I vår studie observerte vi at flest FP foretrakk et middels eller bredere grep når man skulle teste IRM på tilvenningstestene. Dette støttes av spesifisitetsprinsippet (Raastad et al., 2010).
5.7 Metodiske utfordringer

Når man sammenligner våre funn med tidligere studier så er det flere faktorer som spiller inn, som også kan påvirke resultatene.

5.7.1 Utstyr

5.7.2 Antall repetisjoner (RM)

5.7.3 Grepsbredder

I forhold til andre studier som har blitt gjort på grepsbredder og muskelaktivering i benkpress, er det brukt andre utregninger enn det vi har benyttet oss av. Definisjonen av smalt, middels og bredt grep i studiene varierer, i tillegg til at det er stor forskjell i antall grep som blir brukt. Utfordringen vil dermed være at grepene kan bli nokså like. Med dette som bakgrunn er det vanskelig å sammenligne våre funn mot andre studier. Wagner et al. (1992) viser at kraftutviklingen også kan reduseres ved for bred grepsbredde. For å unngå en unaturlig og utsatt stilling i håndleddet valgte vi at både det smale og brede grepet ikke skal overdrives.
Utregningene av grepsbreddene våre er enkle og kan lett benyttes i treningssammenheng, noe som også er med på å øke den økologiske validiteten.

5.7.4 Forsøkspersoner og treningsstatus
I utvalget av FP så har det i tidligere studier variert en del i både antall og treningserfaring. Det har blitt brukt et utvalg på 6, 12 og 24 FP. Om man skal finne signifikante forskjeller er det lettere om en har en stor gruppe. Cohen (1988) omtaler dette som «statistical power». Få studier har også vært konkrete på inklusjonskriteriene. Treningserfaringen spriker blant annet fra seks måneder til syv år. Dette sier lite om styrken til FP. Derfor valgte vi og sett et krav om den faktiske styrken til FP slik at det er mulig å generalisere funnene til en gruppe på et gitt treningsnivå.

5.7.5 Festepunkt elektroder
Vi har brukt SENIAMS retningslinjer for å feste elektrodene i vår studie. Ettersom de andre studiene ikke har oppgitt det samme, er det grunn for å tro at resultatene kan vike på grunn av dette. Hermens et al. (2000) sier at små forskjeller i elektrodeplaseringene kan gi store utslag ved EMG måling. Underhudssett er også en faktor som kan påvirke målingene.

5.8 Feilkilder
Med tanke på resultatene som ble oppnådd i studien er det viktig å ha et kritisk blikk til feilkilder, eller andre forhold som kan ha påvirket våre funn. Muskulær tretthet kan ha virket negativt på løftene og forhindre optimal prestasjon. For å unngå lik muskulær tretthet hos FP, randomiserte vi testene våre. Det var andre personer i testlokalet under forsøket som kan ha vært et forstyrrende element for FP. Vinklene i albueleddet varierer hos FP, noe som også kan tolkes som en feilkilde. Derfor burde vi kanskje inkludert albuevinkel som et parameter i studien.

Ved å bruke overflate EMG kan signalene som registreres også inneholde feil. Signalene kan plukkes opp fra nærliggende muskler som kan påvirke resultatene (Saeterbakken et al., 2011). EMG aktiviteten i musklene kan også være upresis ettersom vi kun brukte en elektrode på flerhodete muskler. For å kunne sammenligne resultatene vil det også være sentralt at elektrodeplasseringen er lik mellom alle FP samt mellom andre studier en sammenligner med.
6.0 Konklusjon og praktiske implikasjoner

Endring av grepsbredde fører til endring i muskelaktivitet og prestasjon hos godt trente mosjonister. Resultatene våre viser signifikant mer aktivering av triceps brachii ved smalt og middels i forhold til bredt grep. Smalt eller middels grep kan brukes til å øke styrken og muskelmassen i triceps brachii. Det er også signifikant økning i aktivering av biceps brachii jo bredere grepet blir. Biceps brachii er så lite aktiv i forhold til MVC at benkpress ikke kan regnes som øvelse for å trene denne muskelen. FP løftet mer vekt ved middels og bredt grep sammenlignet med smalt. Belastningen var lik ved middels og bredt grep. Vi kan konkludere med at FP har høyest prestasjon på det grepet som er nærmest foretrukket grep. Biomekanisk sett kan vi si at det er mer gunstig med et bredere grep enn middels, for å øke prestasjonen.

Til slutt kan vi konkludere med at treningsfokuset avgjør hvilket grep man burde bruke. Det vil være mest hensiktsmessig å trene smalt grep dersom man vil øke styrken i triceps brachii. Om fokuset derimot er å løfte mest mulig, bør man bruke et bredt grep.

I rehabiliteringssammenheng kan smalt grep være å foretrekke ettersom belastningen på ligament, ledd og skjelett trolig blir mindre, siden totalbelastningen reduseres. Muskulært sett vil derimot treningen kunne være like effektiv.

8.0 Vedlegg

Vedlegg 1:

Forespørsel om deltakelse i forskningsprosjekt
«Benkpress med ulik grepsbredde»

Bakgrunn og hensikt:
Høgskulen i Sogn og Fjordane ønsker å gjennomføre et nytt forskningsprosjekt. Prosjektet har som hensikt å undersøke forskjellene muskelaktivering ved ulik grepsbredde i øvelsen benkpress.

Hva innebærer studien?
Som deltager i prosjektet vil du bli testet i 6 RM (det du klarer maksimalt 6 ganger) på 3 ulike grepsbredder (smalt, medium, bredt). Under testene vil man ha på seg elektroder som viser muskelaktiviteten i 8 ulike muskler (pectoralis major (claviculære og sternale del), latissimus dorsi, deltoideus (anterior, medius og posterior), biceps brachii og triceps brachii). I tillegg til selve testen kommer to tilvenningstester, en der vi går gjennom teknikk og finner din 1RM og en der vi finner din tilnærmet 6 RM på de forskjellige grepene. Tung styrketrening av bein, mage og rygg må ikke forekomme minst 3 døgn i forkant av testing.

Mulige fordeler og ulemper
Dette er en mulighet til å være med på ett forskningsprosjekt der en ønsker å finne mer informasjon om et element som ikke har tilstrekkelig vitenskapelig dokumentasjon. Her kan en også få innsikt i hvordan tester blir gjennomført samt hvordan det er å jobbe med bacheloroppgaver og testprosedyrer.

Hva skjer med testresultatene og informasjonen om deg?
Testresultatene og informasjonen som blirregistrert om deg har som formål å bli brukt for bachelor- og artikkelskriving. Alle opplysningene og resultatene vil bli behandlet uten navn og fødselsnummer eller andre direkte gjenkjenndeopplysninger. Det er kun autorisert personell knyttet til prosjektet som har tilgang til opplysningene vi får inn.
Det vil ikke være mulig å identifisere deg i resultatene av studien når disse blir publisert. Etter prosjektslutt vil alle identifikasjonslister bli slettet. Prosjektet er meldt til Personvernombudet for forskning, Norsk samfunnsvitenskapeligdatatjeneste AS.

Frivillig deltakelse

Kontakt veileder Dag Andre Mo på epost: dam@idrettsenteret eller telefon: 90613795 for mer informasjon.

Samtykke til deltagelse i studien

Jeg er villig til å delta i denne studien og har mottatt informasjon om prosedyrene

(Signert av forsøksperson, dato)

Jeg bekrefter å ha gitt informasjon om studien

(Signert, rolle i studie, dato)
Vedlegg 2: Testskjema

Test av 1RM

<table>
<thead>
<tr>
<th>Rep / belastning</th>
<th>KG</th>
<th>Godkjent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 x 70 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 80 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 90 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 102,5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 105 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oppvarming 6 RM

<table>
<thead>
<tr>
<th>Rep / Belastning</th>
<th>KG</th>
<th>Godkjent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 x 70 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 80 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 90 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eksperimeltell test

<table>
<thead>
<tr>
<th>Smalt grep</th>
<th>Middels grep</th>
<th>Bredt grep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 3:

Elektrodeplassing:

1. Pectoralis major
2. Deltoideus anterior
3. Triceps brachii
4. Biceps brachii
5. Latisimus dorsi
6. Deltoideus medius
7. Clavicular deltoid
8. Sternal deltoid