Næringslivets avstandskostnader
Bedre kunnskapsgrunnlag

av
Thor-Erik Sandberg Hanssen
Gisle Solvoll
Finn Jørgensen

Senter for Innovasjon og Bedriftsøkonomi (SIB AS)

SIB-rapport nr. 4/2007
Næringslivets avstandskostnader
Bedre kunnskapsgrunnlag

av
Thor-Erik Sandberg Hanssen
Gisle Solvoll
Finn Jørgensen
Handelshøgskolen i Bodø
Senter for Innovasjon og Bedriftsøkonomi (SIB AS)
Tlf. +47 75 51 76 32
Fax. +47 75 51 72 68

Utgivelsesår: 2007
ISSN-nr. 1890-3584
FORORD

Denne rapporten er skrevet i perioden januar-april 2007 på oppdrag av Norges forskningsråd, programstyret for forskningsprogrammet ”Næringslivets transporter og ITS”, (SMATRANS), og gir en kunnskapsoversikt over temaet næringslivets avstandskostnader.

Bodø, 29. april 2007
INNHOLD

FORORD ... 1

INNHOLD ... 2

1. INNLEDNING .. 3
 1.1 BAKGRUNN OG FORMÅL ... 3
 1.2 FREMGANGSMÅTE ... 3

2. NÆRINGSLIVETS AVSTANDSKOSTNADER – EN PRINSIPIELL DISKUSJON .. 7
 2.1 GENERALISERTE TRANSPORTEKSTNADER ... 8
 2.1.1 Transportkostnader og transportpriser ... 10
 2.1.2 Transporttid .. 12
 2.1.3 Tidskostnader ... 13
 2.1.4 Usikkerhet i transporttiden .. 15
 2.1.5 Skadekostnader ... 16
 2.1.6 Ulempeskostnader ved frekvensbaserte transportmidler .. 17
 2.1.7 Generaliserte transportkostnader – et regneeksempel .. 18
 2.2 GENERALISERTE TRANSPORTEKSTNADER VED INTERMODALE TRANSPORTER 18
 2.3 GENERALISERTE TRANSPORTEKSTNADER I ET VERDIJEDEPERSPektiv .. 20

3. NÆRINGSLIVETS AVSTANDSKOSTNADER – KUNNSKAPSSTATUS .. 22
 3.1 TRANSPORTEKSTNADER ... 22
 3.1.1 Innledning ... 22
 3.1.2 Transportkostnader - fisk ... 24
 3.1.3 Transportkostnader - veg ... 28
 3.1.4 Transportkostnader - sjø ... 33
 3.1.5 Transportkostnader - bane ... 36
 3.1.6 Transportkostnader - diverse ... 37
 3.2 TIDSKOSTNADER ... 40
 3.3 TRANSPORTEKSTNADER ... 43
 3.4 USIKKERHET I TRANSPORTEKSTNADER ... 46
 3.5 SKADEKOSTNADER .. 47
 3.6 ULEMPESKOSTNADER VED FREKVENSBASERTE TRANSPORTMIDLER 53
 3.7 GENERALISERTE TRANSPORTEKSTNADER VED INTERMODALE TRANSPORTER 54
 3.7.1 Spesielt om forflytning av containere .. 57
 3.8 GENERALISERTE TRANSPORTEKSTNADER I ET VERDIJEDEPERSPektiv .. 61
 3.9 MODELLVERKTØY ... 63
 3.9.1 NEMO ... 63
 3.9.2 SAMGODS ... 71
 3.9.3 LEFT .. 77

4. OPPSUMMERING ... 83
 4.1 KUNNSKAPSSTATUS OG AKTUELLE FORSKNINGSUTFORDRINGER ... 84

REFERANSER ... 86
1. INNLEDNING

Nedenfor redegjøres det for bakgrunn og formål med denne rapporten. I tillegg blir det gitt en beskrivelse av fremgangsmåten som er benyttet til utarbeidelsen av kunnskapsoversikten.

1.1 BAKGRUNN OG FORMÅL

Med utgangspunkt i Samferdselsdepartementets strategi for tele- og transportforskning og målene i Nasjonal transportplan (NTP) om effektiv, sikker og miljøvennlig transport, ble det høsten 2006 etablert et nytt forskningsprogram i Norges forskningsråd (NFR). Programmet har fått forkortelsen SMARTRANS.

Målsettingen med det nye programmet er at resultatene fra de prosjekter som gjennomføres skal bidra til:

− Å redusere næringslivets avstandskostnader.
− Å overføre gods fra veg til sjø og bane.
− Å utvikle smartere transporter, for å bidra til sikker, miljøvennlig og effektiv transport.

Første søknadsrunde med søknadsfrist 30. november 2006, var rettet inn mot å starte opp prosjekter som kunne gi kunnskapsoversikter på nærmere definerte områder, og således identifisere kunnskapshull der det senere kan være aktuelt å starte opp prosjekter som kan gi økt kunnskap på de aktuelle tema. Den foreliggende rapporten er en av 6 kunnskapsoversikter som er utarbeidet. Formålet med rapporten er å gi en kunnskapsoversikt innenfor det vi kan omtale som "næringslivets avstandskostnader". Hva vi legger i begrepet "næringslivets avstandskostnader" diskuteres i kapittel 2.

1.2 FREMGANGSMÅTE

Vi vil i dette avsnittet presentere litteratursøkingsprosessen vi har vært gjennom for å hente inn eksisterende kunnskap om næringslivets avstandskostnader.

Kildene vi har benyttet i arbeidet med denne rapporten kan deles inn i fire hovedgrupper:

− Norske forskningsinstitutt/konsulentfirma.
− Forskning i Sverige og Danmark.
− Internasjonale transport- og logistikktidsskrifter.
− Norske transport- og logistikktidsskrifter.
En nærmere presentasjon av hovedgruppene, sammen med søkeord vi har benyttet i kunnskapssøket presenteres i de neste avsnittene.

Norske forskningsinstitutt/konsulentfirma
For å skaffe oss et overblikk over de arbeid som er gjort omkring næringslivets avstandskostnader i Norges mest sentrale norske transport og samferdselsmiljøer besøkte vi internettsidene til tre forskningsinstitutt og ett konsulentfirma. De fire aktuelle miljøene er ført inn i Tabell 1-1.

Tabell 1-1: Norske forskningsinstitutt/konsulentfirma.

<table>
<thead>
<tr>
<th>Navn</th>
<th>Internettadresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON Analyse</td>
<td>www.econ.no</td>
</tr>
<tr>
<td>Møreforskning</td>
<td>www.mfm.no</td>
</tr>
<tr>
<td>Stiftelsen for industriell og teknisk forskning</td>
<td>www.sintef.no</td>
</tr>
<tr>
<td>Transportøkonomisk institutt</td>
<td>www.toi.no</td>
</tr>
</tbody>
</table>

På hjemmesidene til de fire miljøene benyttet vi følgende søkeord for å finne rapporter/artikler som berører næringslivets avstandskostnader:

- Forsikring
- Forsinkelse
- Fraktrate
- Godstransport
- Næringslivet
- Skadekostnader
- Tidskostnader
- Transportkostnader
- Transporttid

Ved gjennomgangen av arbeidene som var gjort ved de fire institusjonene begrenset vi oss til å studere de arbeidene som var gjort fra og med 1997.

Forskningsmiljø i Sverige og Danmark
De svenske forskningsmiljøene der vi har søkt etter kunnskap om næringslivets avstandskostnader er listet opp i Tabell 1-2.

Tabell 1-2: Forskningsmiljø i Sverige.

<table>
<thead>
<tr>
<th>Navn</th>
<th>Internettadresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalmers Tekniske Høgskola, Institut for transportteknik</td>
<td>www.chalmers.se/tme</td>
</tr>
<tr>
<td>Institutet for transportforskning</td>
<td>www.tfk.se</td>
</tr>
<tr>
<td>Statens institut for kommunikationsanalys</td>
<td>www.sika-institute.se</td>
</tr>
<tr>
<td>Våg- och transportforskningsinstitut</td>
<td>www.vti.se</td>
</tr>
</tbody>
</table>
De danske forskningsmiljøene der vi har søkt etter kunnskap om næringslivets avstandskostnader er listet opp i Tabell 1-3.

Tabell 1-3: Forskningsmiljø i Danmark.

<table>
<thead>
<tr>
<th>Navn</th>
<th>Internettadresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aalborg Universitet–Center for Industrial Produktion</td>
<td>www.cip.auc.dk</td>
</tr>
<tr>
<td>CALT-Center for Anvendt Logistikk og Transportforskning</td>
<td>www.calt.dk</td>
</tr>
<tr>
<td>Danmarks transportforskning</td>
<td>www.dtf.dk</td>
</tr>
<tr>
<td>FLUX–Center for transportforskning</td>
<td>www.ruc.dk/teksam</td>
</tr>
<tr>
<td>Institut for transportstudier</td>
<td>www.transportstudier.dk</td>
</tr>
<tr>
<td>Syddansk Universitet</td>
<td>www.sdu.dk</td>
</tr>
</tbody>
</table>

Ved de danske og svenske forskningsmiljøene vi har søkt etter kunnskap, gikk vi gjennom rapporter som var tilgjengelige på instituttenes hjemmesider, og som var publisert fra og med 1997.

Internasjonale transport- og logistikktidsskrift

De internasjonale transport- og logistikktidsskriftene vi har gjennomgått er:

- Transportation.
- Transportation & Distribution.
- Transportation journal.
- Transportation Research, Part A (General).
- Transportation Research, Part B (Methodological).
- Transportation Research, Part E (Logistics and Transport).
- Transportation Science.

Søkeordene vi benyttet ved gjennomgangen av de engelskspråklige tidsskriftene var:

- Freight rate.
- Freight transport and distance.
- Inconvenience costs.
- Insurance and goods.
- Logistics and distance.
- Punctuality.
- Time costs and goods.
- Transport and distance.
- Transportation costs.
- Transport time.
- Uncertainty and transport.
Norske transport- og logistikktidsskrifter

2. NÆRINGSLIVETS AVSTANDSKOSTNADER – EN PRINSIPIELL DISKUSJON

I dette kapitlet vil vi introdusere en enkel modell som kan benyttes for å beregne avstandskostnadr knyttet til transport av forskjellige typer gods over ulike avstander og med forskjellige fremføringsmåter. Modellen er også utvidet for å kunne drøfte næringslivets avstandskostnader i et verdikjedeperspektiv. Vi vil i hovedsak fokusere på transport på vei, bane og sjø, og vil kun i spesielle tilfeller trekke inn flytransport. Modellene vil benyttes som et teoretisk rammeverk for gjennomgangen av kunnskapsstatus når det gjelder næringslivets avstandskostnader i kapittel 3.

- **Gjennomsnittlig transporttid er lengre ved godstransporter enn ved persontransporter.**
 Dette skyldes både lengre gjennomsnittlig transportavstand og lavere gjennomsnittlige fremføringshastigheter for godstransport sammenlignet med passasjertransport.

- **Beslutningsprosessen knyttet til gjennomføringen av transporten/reisen er forskjellig.**
 Ved passasjertransport er det normalt den reisende alene, eller i samråd med reisefølget, som tar beslutningene knyttet til sentrale valg rundt reisen (avreisetidspunkt, transportmiddelvalg, valg av reiserute etc.). Ved godstransport kan naturlig nok ikke varene selv fatte slike beslutninger. Her tas beslutningene enten av vareieierne eller varemottakerne (ved egentransport), av transportfirma (ved leietransport) eller i dialog mellom vareieier, transportør og varemottaker.

1 Et godt eksempel på dette er de norske og svenske nasjonale transportstøtteordningene som gir en bedriftsøkonomisk stimulas til nasjonale transporter nord-sør, selv om en grenseoverskridende transportløsning øst-vest samfunnsøkonomisk kunne ha vært bedre. Dette vises ved regneeexemplar i Solvoll m.fl. (2007).
Transportenes mangfold er forskjellig. Selv om persontransport kjennetegnes av stor heterogenitet (reiseformål, type transportmiddel, rutevalg etc.), er transportens mangfold enda større ved godstransport. Sendingsstørrelser kan variere fra små pakker levert av et bud, til store oljelaster levert av et tankskip eller containertransporter levert av båter med kapasiteter på over 12 000 TEU.\(^2\) Verdien av godset kan være svært forskjellig; et lastebillass med sand er verdimessig svært forskjellig fra en transport av gullbarrer med samme vekt.

Bruken av transportmidlet er forskjellig. På- og avstigning ved passasjertransportordnes av den enkelte passasjer\(^3\), mens lasting og lossing av gods er avhengig av tekniske hjelpemidler. Dette innebærer blant annet at terminalkostnadene knyttet til godstransport normalt sett vil være høyere enn terminalkostnadene knyttet til persontransport.

Informasjonstilgangen er ulik. Informasjon om transportkostnader, transportpriser og logistikknadar er i mange tilfeller selskapsintern informasjon, som ikke er offentlig tilgjengelig. Ved persontransport er informasjoner om takster, kjøretøykostnader etc. lett tilgjengelig. Det er i tillegg generelt forsket mer på eksempelvis transportmiddel- og rutevalg innenfor persontransport enn innenfor godstransport, noe som blant annet henger sammen med beslutningsprosessen (individuelle vs. kollektive beslutninger) nevnt ovenfor.

På bakgrunn av det ovenstående kan vi si at beregninger av generaliserte transportkostnader knyttet til godstransport på mange måter er vanskeligere enn tilsvarende beregninger innenfor persontransport. Dette innebærer igjen at eksempelvis konsekvenser for næringstransportene av ulike transportinfrastrukturtiltak, vil være vanskeligere å kvantifisere enn konsekvensene for persontransportene.

2.1 GENERALISERTE TRANSPORTKOSTNADER

Kostnadene for en vareier ved å forflytte goods fra et sted til et annet kan vi omtale som generaliserte transportkostnader (G). Dette vil da være de direkte betalbare kostnader (transportpris ved leietransport og bildriftskostnader dersom transportene utføres med lastbil i egenregi) pluss vareeiers verdsetting av den tiden som transporten tar samt den usikkerheten som ligger i at varen ikke kommer fram til avtalt tid og usikkerheten knyttet til om varen kommer frem uskadet.

\(^2\) Containerkapasitet måltes i “twenty-foot equivalent units” (TEU). Dvs. at alle typer containere omregnes til denne enheten.

\(^3\) Unntaket er personer med funksjonshemninger (spesielt rullestolbrukere), der på og avstigning må skje ved hjelp av sjåfør/annen person eller ved bruk av tekniske hjelpemidler (rullestolheis), dersom terminalen og transportmidlet ikke er spesielt tilrettelagt for direkte på- og avstigning for rullestolbrukere.
La oss kalle transportlengden målt i km for A, transportprisen per tonn for F, tidskostnadene pr. tidsenhet for godset for k, transporttiden for T, kostnader ved eventuell skade på godset for Q og sannsynligheten for skade på godset for q. La oss videre anta at F = F(A), T = T(A), q = q(A) hvor både F, T og q øker med avstanden (A). Videre er \((k\cdot T(A))\) og \((q(A)\cdot Q)\) henholdsvis totale tidskostnader og forventete skadekostnader ved å transportere ett tonn av en vare A km. Sammenhengen mellom de generaliserte transportkostnadene og transportavstanden, G(A), for en transport, der kun ett transportmiddel benyttes for eksempelvis å transportere varen mellom to terminaler, kan da skrives som:

\[
(2.1) \quad G(A) = F(A) + k\cdot T(A) + q(A)\cdot Q
\]

Uttrykket i formel (2.1) er anskueliggjort i Figur 2-1. Her har vi antatt svakt konkavt stigende sammenhenger mellom transportkostnader og forventede skadekostnader på den ene siden og transportavstand på den andre siden. Videre forutsetter vi at det er en lineær sammenheng mellom totale tidskostnader og transportavstand.

\[
\begin{align*}
\text{Kostnader} & \\
\Delta G & \\
\Delta A & \\
F & \\
kT & \\
qQ & \\
G & \\
F & \\
kT & \\
qQ & \\
\end{align*}
\]

\[
\Delta G = F(A) + k\cdot T(A) + q(A)\cdot Q
\]

\[
\begin{align*}
G^0 & \\
F^0 & \\
kT^0 & \\
qQ^0 & \\
\Delta A & \\
\end{align*}
\]

\[
\text{Avstand}
\]

Figur 2-1: Mulige sammenhenger mellom sentrale kostnader ved godstransport og transportavstand.
Punktene hvor kurvene skjærer den vertikale aksen, \((qQ^0, kT^0, F^0\text{ og } G^0)\), kan betraktes som henholdsvis avstandsuavhengige skadekostnader, tidskostnader, transportpris og generaliserte transportkostnader. Dette vil være terminalrelaterte kostnader knyttet forventede skadekostnader ved lasting og lossing, tidskostnader mens varene befinner seg på terminal, grunntakst (fastledd) i en transportkalkyle, eller faste transportkostnader ved egentransport samt summen av de ovenfor nevnte kostnader.

Jo brattere kurvene er, desto mer påvirkes alle kostnadskomponentene av transportavstanden. Stigningen på G-kurven er et sammelt mål på avstandsulempene ved å transportere gods over ulike avstander; øker avstanden med \(\Delta A\) øker generaliserte transportkostnader med \(\Delta G\) i figuren.

2.1.1 Transportkostnader og transportpris

I modell (2.1) benytter vi begrepet transportpris \((F)\) om vareeiens kostnader knyttet til å få transportert gods mellom to steder. Ofte benyttes begrepet transportkostnader når en egentlig mener transportpriser, altså det som en kunde må betale for en transporttjeneste\(^4\). Når vi i kapittel 3.1 gjennomgår aktuell kunnskap om næringslivets betalbare transportkostnader, altså transportprisen \((F)\), er noe av kunnskapen knyttet til bildriftskostnader som da eksempelvis kan omregnes til kostnader per tonnkm alt etter hva som transporteres. Ved en ren kostnadsbasert prissetting vil det være likhet mellom transportkostnader per tonn og transportprisen per tonn (korrigert for et på slag for fortjeneste). Prissettingen i mange markeder er imidlertid lang mer kompleks enn dette.

Transportprisen for å sende et bestemt vareparti på en gitt destinasjon, vil variere fra transportmiddel til transportmiddel. Normalt sett vil det for innenlandske transporter, på lange avstander, være slik at \(F_{båt} < F_{tog} < F_{bil}\). Se for øvrig Figur 2-2 for en prinsippsskisse av sammenhengen mellom transportpris per tonn og transportavstand for båt-, tog- og biltransport. Transportprisen for en bestemt type og mengde gods vil, ved gitt framføringsmåte, variere mellom ulike destinasjoner ikke bare i forhold til transportavstand, men også i forhold til konkurransesituasjonen på den aktuelle strekningen, transportørenes muligheter til samlasting samt godsvolumet på strekningen og retningsbalansen i dette volumet. Jo sterkere konkurranse på tilbydersiden, jo større godsvolum og jo bedre retningsbalanse, desto lavere transportpriser.

\(^4\) Flere av kunnskapskildene som presenteres i kapittel 3 benytter kostnads- og prisbegrepene om hverandre. I gjennomgangen vi gjør i kapittel 3 gjengir vi de begrep forfatterne benytter.
I Figur 2-2 har vi antatt en konkavt stigende sammenheng mellom transportpris per tonn og avstand for alle de aktuelle transportmidler. Linjenes krysningspunkter med den vertikale aksen (F_{bil}^0, F_{log}^0 og $F_{båt}^0$) kan tolkes som et avstandsuavhengig takstledd (grunntakst) som er uavhengig av transportavstand. Ved kostnadsbasert prissetting, eller egentransport med lastebil, vil dette være den delen av transportprisen som skal dekke faste kostnader og kostnader knyttet til terminalarbeid (lasting og lossing). Slik sammenhengen mellom transportpris og avstand er tegnet i figuren, har biltransport lavest transportpris per tonn for transportavstander opp til A_1, mens båt gir den laveste transportprisen per tonn for avstander over A_2. For transportavstander mellom A_1 og A_2 gir bruk av tog den laveste transportprisen per tonn.

I kapittel 3.1 vil vi redegjøre for aktuell kunnskap om hvordan transportkostnadene varierer med avstand for ulike transportmidler.
2.1.2 Transporttid

Transporttiden vil for et gitt transportmiddel være sterkt korrelert med transportavstanden. I forhold til bruk av bil vil imidlertid vegstandard, trafikkforhold samt kjøre- og hviletidsreglene gjøre at tiden for å kjøre et vogntog X km vil variere en del fra område til område. En "normal" sammenheng mellom transporttid og avstand ved bruk av ulike transportmidler vil, for lange innenlandske transporter, være slik at $T_{båt} > T_{bil} > T_{tog}$. Her vil det naturlig nok være betydelige geografiske forskjeller. Se for øvrig Figur 2-3 for en prinsippskisse av disse sammenhengene.

Figur 2-3: Prinsippskisse av sammenhengen mellom tidsbruk og avstand for ulike transportmidler.
5 Linjenes krysningspunkter med den vertikale aksen \((T_{båt}^0, T_{tog}^0 \text{ og } T_{bil}^0) \) kan tolkes som avstandsuavhengig tidsbruk; i praksis terminaltiden. Vi har antatt at tidsbruken ved båttransport er lengre enn for de andre transportmidlene uavhengig av avstand. Videre viser figuren at transporten utføres raskest ved bruk av bil opp til avstand \(A_1 \) ved bruk av kun én sjåfør og til \(A_2 \), ved bruk av to sjåfører. På de lengste avstandene innebærer bruk av tog den raskeste fremføringen av godset.

I kapittel 3.3 har vi sett på sentral kunnskap om sammenhengen mellom transporttid og avstand for ulike transportmidler.

2.1.3 Tidskostnader

Totale tidskostnader ved å sende et godsparti fra A til B, avhenger av godsets tidskostnader per tidsenhet (k) og transporttiden (T). De viktigste faktorene som bestemmer verdien på k er rentenivået, godsets verdi og godsets verdiforringelse per tidsenhet under transport. Rentenivået og godsets verdi er rimelig greit å kvantifisere. Verre vil det være med verdiforringelsen når godset er under transport. Generelt kan vi si at jo raskere transportmiddel som benyttes og jo lavere verdi på godset, desto mindre vil de totale tidskostnadene være og desto mindre vil de øke med transportlengden. Vi har antatt kontinuerlig verdiforringelse per tidsenhet. Dette vil i mange tilfeller være en forenkling av virkeligheten, eksempelvis vil ”best før” og ”siste forbruksdag” medføre diskontinuitet i verdiforringelsen. Se for øvrig Figur 2-4.
Figur 2-4: Prinsippskisse av sammenhenger mellom ulike kostnadselementer og avstand for båt og bil.

Formel (2.1) er visualisert i Figur 2-4 når det gjelder transport med båt og bil. For at figuren ikke skal bli for overlesset med linjer, har vi for enkelhets skyld utelatt forventete skadekostnader. Ut fra hvor kurvene skjærer den vertikale aksen, ser vi at så vel de avstands-uavhengige transportkostnadene og tidskostnadene er lavere med bil enn med båt. Dette er en rimelig antakelse. Transportkostnadene stiger imidlertid raskere med transportavstanden for bil enn for båt noe som fører til at de pengemessige utleggene blir mindre ved båt for transportavstander over \(A_0 \). På grunn av at båt har lavere hastighet enn bil, vil derimot totale tidskostnader øke mer med transportavstanden når en bruker båt enn når en benytter bil. Det fører til at transportavstanden må være lengre enn \(A_1 \) (\(A_1 > A_0 \)) for at generaliserte transportkostnader skal bli lavere for båt enn for bil; dvs. for at båt skal foretrekkes som transportmiddel. Jo høyere tidskostnader godset har per time (jf. fotnote 6), desto mer betyr hastigheten for sammenhengene mellom totale tidskostnader og avstand og desto mer konkurransedyktig blir bilen sammenlignet med båten.

I kapittel 3.2 har vi gjennomgått aktuell kunnskap om tidskostnadene ved godstransport.
2.1.4 Usikkerhet i transporttiden

En viktig kvalitetsfaktor ved godstransport er i hvor stor grad varene leveres som planlagt. Jo strengere krav vareeier stiller til leveringsservice, desto større blir vareeiers tap av goodwill og øvrige kostnader ved forsinkelser.\(^7\) Uforutsette forsinkelser kan eksempelvis skyldes dårlig regularitet på fergene, stengte fjelloverganger, ras, køproblemer og andre uhell. Konsekvenser for avtalte leveringstidspunkt av dårlig punktlighet er anskueliggjort i Figur 2-5.

Figur 2-5: Eksempel på virkninger av usikkerhet i leveringstiden – en prinsippskisse.

Anta kurve 1 er sannsynlighetsfordelingen på ankomsttid til bestemmelsesstedet hvis en starter transporten på tidspunkt \(t_1\).\(^8\) Forventet ankomsttid er \(t_2\). Hvis avtalt leveringstidspunkt er \(t_3\), blir forventet ventetid før en kan levere varene lik \((t_3-t_2)\) og sannsynligheten for at en ikke skal få levert godset til avtalte tid blir lik hele det skraverte arealet, \((s^*+s^{**})\). Dersom dette ikke er et akseptabelt servicenivå (målt ved sannsynligheten for ikke å levere til avtalte tid), må transporten starte tidligere. Alle tidspunktene unntatt \(t_3\) skyves da til venstre. Det fører til høyere forventet ventetid før godset kan leveres, men lavere sannsynlighet for at en ikke skal kunne levere i tide. Usikkerhet i transporttiden kan således føre til lavere servicenivå og/eller lang transporttid siden en må starte transporten tidligere for å være sikker på å nå frem før avtalt leveringstidspunkt.

Dersom usikkerheten i transporttiden kan reduseres, for eksempel gjennom forbedringer i transportinfrastrukturen, slik at kurve 2 er sannsynlighetsfordelingen for ankomsttidspunktet, ser vi at sannsynligheten for at en ikke skal overholde leveringstidspunktet er redusert til \(s^{**}\). Ettersom intermodale transporter innbærer omlastinger, jf. kapittel 2.2, kan i mange tilfeller

\(^7\) Begrepet leveringsservice kan omfatte flere elementer (ledetid, tidspålitelighet, mengdepålitelighet etc.). Her fokuserer vi på tidspåliteligheten; i hvor stor grad varene leveres på avtalte tidspunkt.

\(^8\) “Ankomstkurvene” er tegnet normalfordelt, men i mange tilfeller vil fordelingen være mer lognormal. Dette har imidlertid ingen betydning for drøftingen.
usikkerheten ved slike transportopplegg være større enn ved direkte transporter der kun ett transportmiddel benyttes. Dette vil imidlertid ikke gjelde i områder med dårlig vegstandard, hyppige vegstengninger, regelmessige kodannelser etc., der lange transporter med bil kan være utsatt for mange tilfeldige forsinkelser, i motsetning til et vel fungerende og driftssikkert intermodalt transportsystem (med båt eller tog) med godt integrerte transportmidler og effektive omlastingsterminaler.

Kunnskaper om usikkerhet i transporttiden, og hvordan denne varierer med avstanden, har vi redegjort for i kapittel 0.

2.1.5 Skadekostnader

Skadekostnader er kostnader som skyldes skade på godset på terminal eller under transport. Forventede skadekostnader vil da være sannsynligheten for at skade skal skje (q) multiplisert med de økonomiske konsekvensene av skaden (Q). Det er rimelig å anta at sannsynligheten for skade på godset, og dermed skadekostnadene øker med avstanden godset skal transporteres, men det er usikkert hvordan sammenhengen mellom q·Q og A er. Vi har i skissen i Figur 2-1 lagt til grunn en konkav stigende sammenheng mellom q·Q og A. De direkte økonomiske konsekvensene for en transportør eller vareeier av at godset blir skadet – størrelsen på Q og fordelingen av denne mellom vareeier og transportør – vil kunne variere alt etter hvor skaden oppstår og hvordan varene er forsikret. En del større transportører, eksempelvis Posten AS, opererer med en betydelig del egenforsikring. I Figur 2-6 har vi laget en prinsippskisse av en rimelig sammenheng mellom transportavstand og sannsynligheten for at det skal oppstå skade på godset.

Figur 2-6 antyder en konkavt stigende sammenheng mellom q og A. Det er rimelig at skadesannsynligheten øker med transportavstanden, da tiden varene er under transport øker med avstanden. Det er imidlertid usikkert hvordan sammenhengen mellom q og A er for et gitt transportmiddel, og ikke minst mellom ulike transportformer. Linjen i figuren starter i punktet q0. Dette vil da være sannsynligheten for skade på godset under lasting og lossing på terminal. Slik skadesannsynlighetslinjen er tegnet, ser vi at sannsynligheten for skade på godset er q1 og q2 for transportavstander på henholdsvis A1 og A2. Det er rimelig å anta at skadesannsynligheten går mot 1,0 etter hvert som avstanden øker. Når A går mot uendelig, godset er under kontinuerlig transport, vil det før eller senere skje et uhell som påfører godset skade.
I kapittel 3.5 vil vi gjennomgå kunnskaper om skadesannsynlighet og skadekostnader ved godstransport, med særskilt fokus på hvordan denne varierer med avstand.

2.1.6 Ulempeskostnader ved frekvensbaserte transportmidler

Kunnskaper om ulempeskostnader ved avhengighet av frekvensbaserte transportmidler, er gjennomgått i kapittel 0.

2.1.7 Generaliserte transportkostnader – et regneeksempel

La oss til avslutningsvis se på et regneeksempel som kan illustrere noen av de sammenhenger vi så langt har drøftet. Anta at ett tonn av en vare med verdi \(v \) på 100 000 kr skal transporteres fra Bodø til Oslo. Den valgte transportøren krever 2 000 kr for transporten, dvs. \(F= 2 000 \) kr. Vareeier opererer med en lagerrente \(r \) for varer under transport på 10 % p.a. Verdiforringelse pr. tonn pr. time \((u) \) er 50 kr og transporttiden \((T) \) er 20 timer. Ut fra tidligere erfaringer med tilsvarende transporter anslås skadesannsynligheten \((q) \) til 10 % (0,10) mens skadekostnadene \((Q) \) (egenandelen på vareforsikringen) er 10 000 kr.

Med utgangspunkt i forutsetningene ovenfor, og formel (2.1), blir generaliserte transportkostnader \((G) \) for denne transporten:

\[
(2.2) \quad G = 2000 + \left(100000 \cdot \frac{0,10}{(365 \cdot 24)} + 50 \right) \cdot 20 + (0,10 \cdot 10000) = 2000 + 1023 + 1000 = 4023
\]

Som det fremgår av (2.2) er generaliserte transportkostnader for den tenkte transporten 4 023 kr, fordelt på 2 000 kr i transportpris \((F) \), 1 023 kr i tidskostnader \((k \cdot T) \) og 1 000 kr i forventede skadekostnader \((q \cdot Q) \). I regneeksempel utgjør altså transportprisen om lag 50 % av generaliserte transportkostnader.

2.2 GENERALISERTE TRANSPORTKOSTNADER VED INTERMODALE TRANSPORTER

I kapittel 2.1 har vi drøftet sammenhengen mellom sentrale elementer i generaliserte transportkostnader og avstand for transporter der ett transportmiddel benyttes ved fremføringen av godset. Dette er da typisk transporter mellom sentrale logistikkknutepunkt eller mellom terminaler og lagerpunkter. Det vanlige ved transporter, ut over ren distribusjon, er at det benyttes flere transportmidler i en transportkjede. Dette omtales som intermodale transportløsninger eller kombinerte transporter. Formel (2.1) kan også anvendes til analyser av intermodale transportkjeder. Et prinsielt eksempel på sammenhengen mellom generalisere transportkostnader og avstand for en transport der det benyttes flere transportmidler er vist i Figur 2-7.

I Figur 2-7 antar vi at en container skal transporteres fra en terminal direkte til en kunde. Dette innebærer en total transportavstand lik \(A^* \). Hvis containeren settes på en trekkvogn som kjører den helt fram til kunden, er sammenhengen mellom generaliserte transportkostnader og
avstand vist ved linjen G_{bil} og totale transportkostnader blir G^*_{bil}. Hvis en derimot etter en viss avstand kjørt med lastebil (A_1), har muligheter til å sette containeren på toget som transporterer den til A_2 hvor containeren igjen må omlastes og transporteres med bil til kunden, vil sammenhengen mellom generaliserte transportkostnader og avstand bli en ”trappetrinnsfunksjon”, G_{Int}.

Omlastingskostnadene – som i hovedsak er tidskostnader ved at containeren blir stående en tid på terminalen samt kostnader ved å flytte containeren mellom transportmidlene, betegnes i Figur 2-7 med O på begge omlastingsstedene. O vil ofte variere mellom ulike terminaler, alt etter hvor tids- og kostnadseffektivt omlastingen kan skje. Ettersom jernbanetransport normalt er raskere enn biltransport, samt at transportkostnadene øker mindre med avstanden for jernbane enn for bil, vil sammenhengen mellom generaliserte transportkostnader normalt sett være mindre bratt for jernbane enn for bil.

9 Fra varene må leveres på avsenderterminal til de er tilgjengelig for varemottaker på destinasjonsterritorial, kan total tidsbruk bli relativt lang ved bruk av tog, jf. kapittel 3.3.
Totale transportkostnader ved omlasting blir da G^*_{int} - altså høyere enn G^*_{bil}. I dette tilfellet vil således omlasting ikke være lønnsomt. Hvis det skal lønne seg å bruke det intermodale transportopplegget i stedet for bare bil, ser vi av Figur 2-7 at containeren minst må transporteres til terminal A3 med jernbanen eller minst ($A3-A1$) km med jernbane.

Kunnskaper om næringslivets avstandskostnader og intermodale transportløsninger, er behandlet i kapittel 3.7.

2.3 GENERALISERTE TRANSPORTKOSTNADER I ET VERDIKJEDE-PERSPEKTIV

Både i kapittel 2.1 og 2.2, har vi betraktet generaliserte transportkostnader (G) med utgangspunkt i kostnader knyttet til selve transporten av godset mellom to steder. Dvs. at vi analyserer G med fokus på kun en del av godsets verdikjede. De fleste varene som transporteres skal inn i en ny verdikjede, enten som ferdigvarer som skal selges eller som komponenter og råvarer som skal inn i en produksjonskjede. I forhold til næringslivets avstandskostnader, vil det derfor være svært relevant å "utvide" begrepet generaliserte transportkostnader til å også inkludere aktiviteter lenger frem i verdikjeden. Vi kan da innføre begrepet generaliserte transportkostnader i et verdikjedeperspektiv (G_V), der vi utvider formel (2.1) slik at det tas hensyn til "usikkerhetskostnader" (følgekostnad) til mottakerne av godset dersom dette blir forsinket. Dette kan uttrykkes som følger:

\[
G_V(A) = F(A) + k\cdot T(A) + q(A)\cdot Q + w\cdot Z(A)
\]

Siste ledd i formel (2.3) er ment å gi et uttrykk for "usikkerhetskostnadene", der w er usikkerhetskostnadene per tidsenhet forsinkelse og Z er forventet tidsforsinkelser. Dersom w er 2 000 kr per time, vil en forsinket levering på 12 timer innebære "usikkerhetskostnader" på 24 000 kr. "Usikkerhetskostnader" vil typisk være kostnader knyttet til økt sikkerhetslager samt kostnader ved at ikke å kunne levere i tide (detaljister og grossister) eller kostnader ved forsinket produksjonsstart (produksjonsbedrifter). Slike effekter vil igjen kunne forplante seg videre i verdikjeden og påføre aktørene her økte logistikkostnader. Slike virkninger omtales ofte som "bullwhip" effekter, se for eksempel Simchi-Levi et.al. (2003).

Når en legger et verdikjedeperspektiv til grunn, kunne en i og for seg også tatt hensyn til fordeler for vareier ved at transportmidlet kan benyttes som varelager ("rolling stock"). Forbedret transportinfrastruktur og mer effektive transportmidler fører isolert sett til reduserte generaliserte transportenhetskostnader, og medfører at den bedriftsøkonomiske lønnsomheten av mer sentralisert produksjon og lagring øker. Beslutninger knyttet til lokalisering av
produksjonsanlegg, lagerstrukturer og nivå på sikkerhetslagre i verdikjeden, er imidlertid strategiske beslutninger og således vanskelig å implementere i begrepet generaliserte transportkostnader. Det er imidlertid et faktum at de strukturendringer vi ser innenfor mange godsgenererende næringer innebærer behov for mer transport og således økte totale transportkostnader. Endringene skjer allikevel fordi økte kostnader til godstransport mer enn oppveies av kostnadsreduksjoner knyttet til produksjon og lagring av råvarer, komponenter og ferdigvarer.

Kunnskaper om generaliserte transportkostnader i et verdikjedeperspektiv, er behandlet i kapittel 3.8.
3. NÆRINGSLIVETS AVSTANDSKOSTNADER – KUNNSKAPSS-STATUS

I dette kapittelet vil vi gjøre rede for aktuell kunnskap om næringslivets avstandskostnader. Ved gjennomgangen tar vi utgangspunkt i formel (2.1) og de prinsipielle drøftingene som er foretatt i kapittel 2. Dvs. at vi strukturerer dette kapittelet på samme måte som kapittel 2.

3.1 TRANSPORTKOSTNADER

I dette avsnittet blir det først gitt en generell innføring i transportkostnader. Videre vil vi skille ut kunnskap som er samlet inn om transportkostnader knyttet til fisketransporter ettersom dette er et område som skiller seg ut med særlig mye kunnskap. Deretter presenteres transportkostnader for; veg, sjø og bane før avsnittet blir avsluttet med å presentere resultater fra undersøkelser som har sammenlignet transportkostnadene ved ulike framføringsmåter for gods.

3.1.1 Innledning

<table>
<thead>
<tr>
<th>Fra Oslo til:</th>
<th>Avstand (km)</th>
<th>Pris per pall (kr)</th>
<th>Pris (kr) per pall per km</th>
<th>Frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trondheim</td>
<td>540</td>
<td>846</td>
<td>1,57</td>
<td>Daglig</td>
</tr>
<tr>
<td>Trysil</td>
<td>210</td>
<td>950</td>
<td>4,52</td>
<td>2 per uke</td>
</tr>
<tr>
<td>Fagernes</td>
<td>174</td>
<td>1 006</td>
<td>5,78</td>
<td>1 per uke</td>
</tr>
</tbody>
</table>

Tallene i tabellen viser at den prisen transportkjøperen i dette tilfellet må betale er omvendt proporsjonal med avstanden godset skal transporteres. Jo større avstand, desto billigere transport, og i tillegg høyere frekvens.

10 Transportprisene er innhentet fra et større norsk transportfirma i januar 2007.

Uavhengig av konkurransesituasjonen må en transportør over tid prissette sine tjenester slik at virksomheten går med overskudd. Som et hjelpemiddel for transportnæringen er det i denne sammenheng utarbeidet et regneark som gjør at en transportør relativt raskt kan utarbeide en selvkostkalkyle basert på egendefinerte forutsetninger om biltyper, årlig kjørelengde, drivstoffforbruk, sjåførlønn, forsikrings- og administrative kostnader m.m. Dette verktøyet er gratis tilgjengelig for alle interesserte på: http://www.logistikkledeledelse.no/ download/bildriftskalkyler.xls. Modellen er nærmere beskrevet i Lien (2002b).

La oss som et eksempel benytte det omtalte regnearket, og ta utgangspunkt i følgende sentrale forutsetninger:

- Pris på bil/henger inkl. utstyr: 800 000 kr.
- Rente: 6 %.
- Diesel pris: 10 kr per liter.
- Drivstoff forbruk: 0,3 liter per km.
- Sjåførlønn: 130 kr per time.

Med disse forutsetningene, og de standardsatser som ellers ligger inne i regnearket, gir en årlig kjørelengde på 60 000 km, 80 000 km og 100 000 km totale bildriftskostnader per km på henholdsvis 15,19 kr, 12,63 kr og 11,10 kr. Med våre forutsetninger blir sammenhengen mellom årlig kjørelengde og totale kostnader per km som vist i figuren ovenfor. Når bedriftsspesifikke forutsetninger legges inn i regnearket, gir dette transportører et godt verktøy for å kunne beregne transportpriser på ulike transportoppdrag. Prisberegnings basert på rene selvkostkalkyler, gir således en fallende transportpris i forhold til avstand, da økt
transportavstand gir økt årlig kjørelengde, og således flere km å fordele de faste kostnadene på.

3.1.2 Transportkostnader - fisk

I dette avsnittet presenteres kunnskap om kostnader og priser ved transport av fisk.

I rapporten "Verdiskaping ved fisketransporter" (Larsen, 2003) presenterer forfatteren tall for transportkostnader ved transport av fisk som han har hentet inn gjennom samtaler med eksportører og transportører av fisk. Transportkostnadene (per kg) ved transport av fersk fisk er presentert i Tabell 3-2.

Tabell 3-2: Transportkostnader ved transport av fersk fisk (2003 kr). (Larsen, 2003).

<table>
<thead>
<tr>
<th>Til</th>
<th>Fra Vestlandet</th>
<th>Fra Trondheim</th>
<th>Fra Nordland</th>
<th>Fra Troms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oslo</td>
<td>0,45</td>
<td>0,40</td>
<td>0,90</td>
<td>1,30</td>
</tr>
<tr>
<td>Padborg</td>
<td>1,10</td>
<td>1,05</td>
<td>1,55</td>
<td>1,95</td>
</tr>
<tr>
<td>Benelux</td>
<td>1,40</td>
<td>1,35</td>
<td>1,85</td>
<td>2,25</td>
</tr>
<tr>
<td>Nord-Frankrike</td>
<td>1,60</td>
<td>1,55</td>
<td>2,05</td>
<td>2,45</td>
</tr>
<tr>
<td>Madrid</td>
<td>2,30</td>
<td>2,25</td>
<td>2,75</td>
<td>3,15</td>
</tr>
</tbody>
</table>

I den samme rapporten (Larsen, 2003) presenteres også priser for fly- og skipstransport til noen utvalgte markeder. Typiske flyrater til Japan og andre land i Østen blir oppgitt til å ligge på mellom 16 kr og 19 kr per kg netto fisk. Blir fisken transportert med skip i frossen tilstand til Sør-Europa, er transportkostnaden per kg på i overkant av én krone. Transporteres fisken sjøveien til Asia er transportkostnaden på mellom 1,50 kr og 2 kr per kg frossen fisk.

Larsen (2003) betegner forskjellene i transportpris, gjengitt i Tabell 3-3, som "ikke store". Han antyder videre at de forholdsvis lave transportkostnadene fra de norske produksjonsstedene i Nordland og Troms, som begge har lang avstand til destinasjonen, indikerer at transporten av fisk mellom Norge og kontinentet er effektivt organisert.
Norsk Utenrikspolitisk Institutt (NUPI) presenterer i rapporten "Learning, Networks and Sunk Costs in International Trade" (NUPI, 2002) en oversikt over transportkostnadene for fisk fra Norge til fire eksportmarkeder, sammen med hvor stor andel av eksportprisen transportkostnadene utgjør. I hvert enkelt tilfelle gjelder prisen transport med det framføringsmiddel NUPI anser mest relevant på den aktuelle relasjon. Transportprisene er gjengitt i Tabell 3-4. Prisene i tabellen som er uthevet gjelder for transport med fly, og prisene som er understreket gjelder for fisketransport med skip.

Transportratene i Tabell 3-4 gjelder for standardkvantum som for eksempel 40 fots containere og for transport fra Vest-Norge til "standard destinations" med utviklet infrastruktur i det enkelte land. En aktør som eksporterer fra Nord-Norge må legge til omtrent det det koster å transportere fisk til Danmark (NUPI, 2002). Skal godset transporteres til "non-standard destinations" vil prisøkningen avhenge av hvor godt utviklet infrastruktur det er ved den aktuelle destinasjon.

Tabell 3-4: Transportkostnad i kr og prosent av eksportpris, tall fra 2000 (NUPI, 2002).

<table>
<thead>
<tr>
<th>Pris (NOK/kg)</th>
<th>Danmark</th>
<th>Italia</th>
<th>USA</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fersk torsk</td>
<td>21,27</td>
<td>0,79 (3,7 %)</td>
<td>1,57 (7,4 %)</td>
<td>9,00 (42,3 %)</td>
</tr>
<tr>
<td>Frossen ørret</td>
<td>35,05</td>
<td>0,67 (1,9 %)</td>
<td>1,20 (3,7 %)</td>
<td>1,26 (3,6 %)</td>
</tr>
<tr>
<td>Frossen sild</td>
<td>3,46</td>
<td>0,67 (19,3 %)</td>
<td>1,28 (37 %)</td>
<td>1,26 (36,4 %)</td>
</tr>
<tr>
<td>Frossen makrell</td>
<td>6,62</td>
<td>0,67 (10,1 %)</td>
<td>1,28 (19,3 %)</td>
<td>1,26 (19,0 %)</td>
</tr>
<tr>
<td>Fersk laksefilet</td>
<td>54,57</td>
<td>0,76 (1,4 %)</td>
<td>1,58 (2,9 %)</td>
<td>9,00 (16,5 %)</td>
</tr>
<tr>
<td>Frossen laksefilet</td>
<td>64,16</td>
<td>0,64 (1,0 %)</td>
<td>1,28 (2 %)</td>
<td>1,28 (2,0 %)</td>
</tr>
<tr>
<td>Frossen torskefilet</td>
<td>37,77</td>
<td>0,68 (1,8 %)</td>
<td>1,28 (3,4 %)</td>
<td>1,25 (3,3 %)</td>
</tr>
<tr>
<td>Røkt laks</td>
<td>91,32</td>
<td>0,82 (0,9 %)</td>
<td>1,55 (1,7 %)</td>
<td>9,04 (9,9 %)</td>
</tr>
<tr>
<td>Tørrfisk av torsk</td>
<td>144,06</td>
<td>0,72 (0,5 %)</td>
<td>0,93 (0,9 %)</td>
<td>0,93 (0,9 %)</td>
</tr>
<tr>
<td>Klippfisk av torsk</td>
<td>55,31</td>
<td>0,66 (1,2 %)</td>
<td>1,27 (2,3 %)</td>
<td>1,27 (2,3 %)</td>
</tr>
<tr>
<td>Klippfisk av sei</td>
<td>21,36</td>
<td>0,66 (3,1 %)</td>
<td>1,28 (6,0 %)</td>
<td>1,26 (5,9 %)</td>
</tr>
<tr>
<td>Saltet torsk</td>
<td>35,17</td>
<td>0,67 (1,9 %)</td>
<td>1,27 (3,6 %)</td>
<td>1,27 (3,6 %)</td>
</tr>
</tbody>
</table>

11 På de ulike strekningene benyttes ulike typer transportmidler noe som gjør en direkte sammenligning av prisene problematisk.
Et eksempel NUPI trekker frem er fra Japan, der transport til mindre havner medfører økning i transportkostnadene på 25 % i forhold til det som er ført opp i Tabell 3-4. Grunnet forholdsvis gode veier til Kroatia, Slovenia og Serbia er ikke transportkostnadene til disse destinasjonene stort høyere enn transportkostnadene til Italia. Til destinasjoner med dårligere infrastruktur oppgav et transportfirma at transportkostnadene kunne øke med mellom 200 % og 300 %.

Produksjonsområdene er delt inn i følgende fire grupper:

\begin{itemize}
 \item Nord-Norge: Nordland, Troms og Finnmark.
 \item Midt-Norge: Møre og Romsdal, Sør-Trøndelag og Nord-Trøndelag.
 \item Vest-Norge: Rogaland, Hordaland og Sogn og Fjordane.
 \item Øst- Norge: Resten av fylkene.
\end{itemize}

\textbf{Tabell 3-5: Transportkostnader for fisk etter transportmiddel ved grensepassering og produksjonsområde. (Larsen, 2003).}

<table>
<thead>
<tr>
<th>Produksjonsområde</th>
<th>Transportmiddel</th>
<th>Transportkostnad (kr/km) 1999 kr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nord-Norge</td>
<td>Lastebil</td>
<td>2,50</td>
</tr>
<tr>
<td></td>
<td>Skip</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Fly</td>
<td>18,00</td>
</tr>
<tr>
<td>Midt-Norge</td>
<td>Lastebil</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Skip</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Fly</td>
<td>17,00</td>
</tr>
<tr>
<td>Vest-Norge</td>
<td>Lastebil</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Skip</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Fly</td>
<td>17,00</td>
</tr>
<tr>
<td>Øst-Norge</td>
<td>Lastebil</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Skip</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>Fly</td>
<td>17,00</td>
</tr>
</tbody>
</table>

Hvilket transportmiddel som benyttes vil i stor grad avhenge av hvor langt fisken skal transporteres (NUPI, 2002). Skal fisken transporteres til et land i nærområdene til Vest-Europa er biltransport dominerende. Fersk fisk som transporteres til Sør-, og Øst-Europa

12 Flere av fisketransportene gjennomføres med ulike typer transportmidler. Dette innebærer at f.eks en fisketransport fra Troms som transporteres med bil til Oslo og videre med skip ut av landet, i Tabell 3-5 er plassert under transportmiddelet skip (ettersom dette var transportmiddelet som fraktet fisken ut av landet).
transporteres også hovedsakelig med bil mens frossenfisk blir transportert av både bil og skip, eller en kombinasjon av de to. Er det store kvantum er sjøtransport billigst til Sør-, og Øst-Europa. Fersk fisk transporteres til Asia og Nord Amerika med fly, men når fisken er frossen eller tørket benyttes skip.

Tabell 3-6: Transportkostnader til Paris (Lien, 2000).

<table>
<thead>
<tr>
<th>Fra</th>
<th>Til</th>
<th>Distanse(^{13}) km</th>
<th>Indeks</th>
<th>Kr pr km</th>
<th>Turkostnad kr</th>
<th>Last kg(^{14})</th>
<th>Kr pr kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen</td>
<td>Paris</td>
<td>1 315</td>
<td>100</td>
<td>13,00</td>
<td>17 095</td>
<td>15 000</td>
<td>1,14</td>
</tr>
<tr>
<td>Bergen</td>
<td>Paris</td>
<td>1 823</td>
<td>139</td>
<td>13,00</td>
<td>23 699</td>
<td>15 000</td>
<td>1,58</td>
</tr>
<tr>
<td>Ålesund</td>
<td>Paris</td>
<td>2 202</td>
<td>167</td>
<td>13,00</td>
<td>28 626</td>
<td>15 000</td>
<td>1,91</td>
</tr>
<tr>
<td>Trondheim</td>
<td>Paris</td>
<td>2 269</td>
<td>173</td>
<td>13,00</td>
<td>29 497</td>
<td>15 000</td>
<td>1,97</td>
</tr>
<tr>
<td>Sandnessjøen</td>
<td>Paris</td>
<td>2 712</td>
<td>206</td>
<td>13,00</td>
<td>35 256</td>
<td>15 000</td>
<td>2,35</td>
</tr>
<tr>
<td>Bodø</td>
<td>Paris</td>
<td>2 965</td>
<td>225</td>
<td>13,00</td>
<td>38 565</td>
<td>15 000</td>
<td>2,57</td>
</tr>
<tr>
<td>Narvik</td>
<td>Paris</td>
<td>3 135</td>
<td>238</td>
<td>13,00</td>
<td>40 755</td>
<td>15 000</td>
<td>2,72</td>
</tr>
<tr>
<td>Tromsø(^{15})</td>
<td>Paris</td>
<td>3 346</td>
<td>254</td>
<td>13,00</td>
<td>43 498</td>
<td>15 000</td>
<td>2,90</td>
</tr>
</tbody>
</table>

\(^{13}\) Raskeste trasé valgt av et kartprogram.

\(^{14}\) Nettolast fisk. Vekt av is og emballasje kommer i tillegg.

\(^{15}\) Ut via Kilipisjarvi.
3.1.3 Transportkostnader - veg

I dette avsnittet presenteres kunnskap om kostnader og priser ved transport av gods på veg.

Tabell 3-7: Distanseavhengige kostnader\(^\text{16}\) i Norge i 1988 og 1993 (kr pr km). (Hagen, 1995).

<table>
<thead>
<tr>
<th>Nyttelast</th>
<th>Trekkvogn</th>
<th></th>
<th></th>
<th>Vogntog</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5-4,9 t</td>
<td>2,00</td>
<td>2,34</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5-7,9 t</td>
<td>3,00</td>
<td>3,51</td>
<td>3,30</td>
<td>3,86</td>
<td></td>
</tr>
<tr>
<td>8-9,9 t</td>
<td>3,30</td>
<td>3,86</td>
<td>3,70</td>
<td>4,33</td>
<td></td>
</tr>
<tr>
<td>10-11,9 t</td>
<td>3,50</td>
<td>4,10</td>
<td>4,00</td>
<td>4,68</td>
<td></td>
</tr>
<tr>
<td>12 t og over</td>
<td>4,00</td>
<td>4,68</td>
<td>4,50</td>
<td>5,22</td>
<td></td>
</tr>
</tbody>
</table>

Inkludert i de distanseavhengige kostnadene er kostnader knyttet til reparasjoner og vedlikehold, bilgummi, drivstoff og kilometeravgift.

I artikkelen "Statistikken lyver: "Gjennomsnittskostnaden” kan variere med mer enn 100 prosent!!” presenterer Lien (2002a) en kalkyle over transportkostnadene på fire strekninger i Norge. Kalkylene illustrerer forskjellen mellom de ulike strekninger i blant annet turkostnad, kostnad per km og kostnad per tonn.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km</td>
<td>Km</td>
<td>Timer</td>
<td>Km/t</td>
<td>Kr</td>
<td>Kr</td>
<td>Kr</td>
</tr>
<tr>
<td>Oslo-Ålesund</td>
<td>555</td>
<td>150 000</td>
<td>11,0</td>
<td>50,0</td>
<td>5 705</td>
<td>10,28</td>
<td>285,27</td>
</tr>
<tr>
<td>Ålesund-Bergen</td>
<td>390</td>
<td>110 000</td>
<td>10,7</td>
<td>36,7</td>
<td>5 698</td>
<td>14,61</td>
<td>284,90</td>
</tr>
<tr>
<td>Bergen-Stavanger</td>
<td>200</td>
<td>75 000</td>
<td>8,1</td>
<td>25,0</td>
<td>4 598</td>
<td>22,99</td>
<td>229,90</td>
</tr>
<tr>
<td>Bøde-Oslo</td>
<td>1220</td>
<td>170 000</td>
<td>21,0</td>
<td>56,7</td>
<td>11 688</td>
<td>9,58</td>
<td>584,38</td>
</tr>
</tbody>
</table>

\(^{16}\) Løpende priser.

\(^{17}\) Effektiv kjøretid + 2 ganger 1,5 t for lasting og lossing.
I beregningene til Lien (2002a) er det tatt utgangspunkt i at kjøretøyene har 3 000 disponible driftstimer. Rutene Oslo-Ålesund og Bodø-Oslo er uten fergeforbindelse og det fremkommer at det er disse rutene som har lengst ”årlig kjørt distanse” per kjøretøy. Dette skyldes at det på de to ”vestlandsrutene” er fergesamband som fungerer som ”fartsdempere”.

Størrelsen på ulike avgifter for tømmervogntog i Norge, Sverige og Finland er presentert i rapporten ”Sammenligning av transportkostnader med tømmerbil i Norge, Sverige og Finland” (Transportbrukernes Fellesorganisasjon, 1999). Størrelsen på avgiftene i de tre landene er presentert i Tabell 3-9.

<table>
<thead>
<tr>
<th>Avgiftstype</th>
<th>Sverige</th>
<th>Norge</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektårsavgift – trekkvog (NOK)</td>
<td>11 854</td>
<td>4 690</td>
<td>-</td>
</tr>
<tr>
<td>- henger (NOK)</td>
<td>13 374</td>
<td>7 038</td>
<td>-</td>
</tr>
<tr>
<td>Vegavgift - trekkvogn (NOK)</td>
<td>10 344</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diverse avgifter</td>
<td>1 402</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sum vei- og vektavgifter (NOK)</td>
<td>36 973</td>
<td>11 728</td>
<td>19 288</td>
</tr>
</tbody>
</table>

Det fremkommer av tabell Tabell 3-9 at summen av vektårs- og veiavgiften i Sverige er mer enn tre ganger så høy som tilsvarende avgifter i Norge. Avgiftene i Finland er på sin side 64 % høyere enn de norske avgiftene. Omregnes avgiftene til kr. per tonn totalvekt (60 tonn i Sverige og Finland, og 50 tonn i Norge) vil avgiftene i Sverige og Finland være henholdsvis 163 % og 37 % høyere enn i Norge.

En annen avgiftsgruppe, som har større innvirkning på tømmertransportkostnadene enn avgiftene som er presentert i Tabell 3-9, er drivstoffavgiftene. Transportbrukernes Fellesorganisasjon (1999) har hentet inn størrelsen på drivstoffavgiftene i Norge, Sverige og Finland i 1999, og disse er gjengitt i Tabell 3-10.

Det fremkommer av Tabell 3-10 at avgiftene per liter diesel i 1999 var like i Sverige og Finland (målt i NOK). Samme år var de norske dieselavgiftene 61,3 % høyere per liter enn de svenske og de finske.
Tabell 3-10: Dieselavgifter i NOK for Sverige, Norge og Finland i 1999 (Omregningen til NOK er basert på valutakurser fra Norges Bank 20. juli 1999), (Transportbrukernes Fellesorganisasjon, 1999).

<table>
<thead>
<tr>
<th>Dieselavgifter</th>
<th>Sverige</th>
<th>Norge</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>- generell sats</td>
<td>-</td>
<td>3,54</td>
<td>1,81</td>
</tr>
<tr>
<td>- energiskatt</td>
<td>1,60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- CO₂-avgift</td>
<td>1,05</td>
<td>0,46</td>
<td>-</td>
</tr>
<tr>
<td>- svovelavgift, 7 øre/l for hver 0,25% svovelinnh./l</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Sum dieselavgift egen valuta</td>
<td>2,65</td>
<td>4,00</td>
<td>1,81</td>
</tr>
<tr>
<td>Sum dieselavgift NOK/liter</td>
<td>2,48</td>
<td>4,00</td>
<td>2,48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieselpriser</th>
<th>Sverige</th>
<th>Norge</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>- egen valuta/ liter, eks. mva</td>
<td>5,38</td>
<td>6,46</td>
<td>3,36</td>
</tr>
<tr>
<td>- egen valuta/ liter, inkl. mva</td>
<td>6,73</td>
<td>7,95</td>
<td>4,10</td>
</tr>
<tr>
<td>- NOK/liter, eks. mva</td>
<td>5,03</td>
<td>6,46</td>
<td>4,62</td>
</tr>
<tr>
<td>- NOK/liter, eks. mva</td>
<td>6,29</td>
<td>7,95</td>
<td>5,63</td>
</tr>
<tr>
<td>- rabattpris NOK/ l eks. mva</td>
<td>3,88</td>
<td>5,96</td>
<td>3,92</td>
</tr>
</tbody>
</table>

Totale årlige variable kostnader pr tømmerbil i Norge blir av Transportbrukernes Fellesorganisasjon oppgitt til å være på NOK 5,27 pr km i Norge. Tilsvarende tall for Sverige er NOK 3,36 pr km og NOK 3,57 pr km i Finland (Transportbrukernes Fellesorganisasjon, 1999).

På oppdrag fra Norges Lastebileier-Forbund blir det av Statistisk sentralbyrå utarbeidet kostnadsindeks for lastebiltransport. Formålet med statistikken er å beskrive utviklingen i kostnadsstrukturen for ulike kjøretøygrupper innen lastebiltransport. Statistikken offentliggjøres på Internett rundt den 15. i hver måned (www.ssb.no). I tillegg presenteres detaljerte indekstall månedlig i heftet Lastebilstatistikk som blir utgitt av Norges Lastebileier-Forbund. Lastebilkostnadsindeksen beregnes på grunnlag av åtte delindekser:

1. Lønnskostnader; består av lønn og sosiale kostnader.
2. Reparasjons- og servicekostnader.
3. Drivstoffkostnader.
4. Dekkkostnader.
5. Administrasjonskostnader; husleie, porto, tele, papirrekvisita og lønn til administrasjon.
6. Forsikringskostnader.
7. Fergekostnader og bompenger.
8. Kapitalkostnader.

Tabell 3-12: Totalkostnadsindeks (1998=100), etter type lastebiltransport, tid og statistikkvariabel (www.ssb.no).

<table>
<thead>
<tr>
<th>Type lastebiltransport</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tømmertransport, 3-aksla bil m/henger</td>
<td>100,0</td>
<td>106,2</td>
<td>112,7</td>
<td>115,4</td>
<td>115,4</td>
<td>118,8</td>
<td>120,1</td>
<td>124,7</td>
<td>131,4</td>
<td>135,2</td>
</tr>
<tr>
<td>Trekkbil for semitrailer, 3-aksla bil u/henger</td>
<td>100,0</td>
<td>107,1</td>
<td>112,9</td>
<td>116,0</td>
<td>117,4</td>
<td>120,5</td>
<td>122,1</td>
<td>126,5</td>
<td>132,0</td>
<td>136,3</td>
</tr>
<tr>
<td>Tankbil, 3-aksla bil u/henger</td>
<td>100,0</td>
<td>107,3</td>
<td>112,6</td>
<td>115,2</td>
<td>116,0</td>
<td>119,1</td>
<td>120,8</td>
<td>125,2</td>
<td>130,9</td>
<td>135,0</td>
</tr>
<tr>
<td>Tankbil, 3-aksla bil m/henger</td>
<td>100,0</td>
<td>107,9</td>
<td>113,6</td>
<td>116,1</td>
<td>116,9</td>
<td>119,1</td>
<td>119,5</td>
<td>123,5</td>
<td>128,9</td>
<td>133,0</td>
</tr>
<tr>
<td>Renovasjonsbil, 2-aksla bil</td>
<td>100,0</td>
<td>109,8</td>
<td>112,5</td>
<td>117,2</td>
<td>119,5</td>
<td>122,1</td>
<td>124,9</td>
<td>129,3</td>
<td>134,5</td>
<td>140,5</td>
</tr>
<tr>
<td>Nærtransport, 2-aksla bil</td>
<td>100,0</td>
<td>107,4</td>
<td>111,6</td>
<td>115,0</td>
<td>116,5</td>
<td>120,7</td>
<td>123,5</td>
<td>128,0</td>
<td>133,3</td>
<td>138,1</td>
</tr>
<tr>
<td>Kranbil, 3-aksla bil</td>
<td>100,0</td>
<td>108,0</td>
<td>112,3</td>
<td>116,2</td>
<td>117,7</td>
<td>121,0</td>
<td>123,2</td>
<td>127,6</td>
<td>133,0</td>
<td>138,4</td>
</tr>
<tr>
<td>Anleggstransport, 3-aksla bil u/henger</td>
<td>100,0</td>
<td>108,0</td>
<td>111,7</td>
<td>116,3</td>
<td>118,8</td>
<td>121,1</td>
<td>123,1</td>
<td>127,3</td>
<td>133,0</td>
<td>138,0</td>
</tr>
<tr>
<td>Anleggstransport, 3-aksla bil m/henger</td>
<td>100,0</td>
<td>106,7</td>
<td>111,4</td>
<td>115,7</td>
<td>116,9</td>
<td>120,2</td>
<td>122,7</td>
<td>127,0</td>
<td>133,2</td>
<td>137,3</td>
</tr>
<tr>
<td>Langtransport, 3-aksla bil m/henger</td>
<td>100,0</td>
<td>106,9</td>
<td>112,5</td>
<td>115,5</td>
<td>115,5</td>
<td>118,1</td>
<td>119,0</td>
<td>123,1</td>
<td>129,1</td>
<td>133,4</td>
</tr>
</tbody>
</table>

I en studie av flaskehalsen for godstransport på vei blir det oppgitt av en transportør at kilometerkostnaden ved langtransport til kontinentet kan være på 13 kr/km (SWECO Grøner og Møreforskning, 2004). Samme kilde oppgir at ved transportør innad i Norge kan kostnadene ligge høyere. Forfatterne av rapporten understreker at tallene de presenterer kun indikerer hvor store de reelle kostnadene er ved transport langs veg.
En tommelfingerregel som blir gitt av Lien (2005) i tidsskriftet Logistikk & Ledelse er at årlige bildriftskostnader inklusiv lønn til sjåfør tilsvarer det bilen koster som ny. Har man investert i en lastbil til 900 000 kr kan man dermed, basert på tommelfingerregelen, forvente at de årlige kostnadene ved å drifte kjøretøyet blir på omkring 900 000 kr.

Skarstad (1996) har på grunnlag av lastebiltellinger gjennomført av Statistisk sentralbyrå studert nivået på godstransportpriser. Skarstad understreker at transportprisene i særlig grad er påvirket av kjørelengde (dvs. sendingsdistanse), lastvekt, (sendingsstørrelse), godstype, geografisk område, transportretning og eventuell parallell jernbanetransport. Gjennomsnittlig transportpris, lastvekt og turlengde for transport av stykksgods og ”annet gods” er sammen med antall observasjoner verdiene er basert på presentert i Tabell 3-13.

Tabell 3-13: Gjennomsnittlig transportpris pr tonn (eks moms), lastvekt og turlengde i lastebiltransport. Turlengde 150 km og over. 1993. Innenlands. (Skarstad, 1996).

<table>
<thead>
<tr>
<th>Godstype</th>
<th>Transportpris (kr)</th>
<th>Lastvekt (tonn)</th>
<th>Turlengde (km)</th>
<th>Antall observasjoner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stykksgods</td>
<td>377</td>
<td>18,8</td>
<td>363</td>
<td>1 036</td>
</tr>
<tr>
<td>Annet</td>
<td>180</td>
<td>30,3</td>
<td>243</td>
<td>302</td>
</tr>
<tr>
<td>Alt gods</td>
<td>312</td>
<td>22,6</td>
<td>324</td>
<td>1 338</td>
</tr>
</tbody>
</table>

De tidsavhengige kostnadene, slik disse er definert av Hagen (1995), omfatter kostnader til lønn, forsikring og kapitalkostnader.

Tabell 3-14: Tidsavhengige kostnader\(^{18}\) pr bil pr driftstime i 1988 og 1993. (NOK). (Hagen, 1995).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5-4,9 t</td>
<td>176</td>
<td>141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-7,9 t</td>
<td>175</td>
<td>192</td>
<td>197</td>
<td>216</td>
</tr>
<tr>
<td>8-9,9 t</td>
<td>185</td>
<td>193</td>
<td>207</td>
<td>216</td>
</tr>
<tr>
<td>10-11,9 t</td>
<td>165</td>
<td>180</td>
<td>185</td>
<td>202</td>
</tr>
<tr>
<td>12 t og over</td>
<td>187</td>
<td>199</td>
<td>210</td>
<td>223</td>
</tr>
</tbody>
</table>

\(^{18}\) Løpende priser.

I artikkelen “Betydelige køkostnader i Oslobregionen” (Aas, 2003) anslår Erling Sæther at lastebilene til Linjegods gjennomsnittlig står i kø i mellom en halv time og tre kvarter hver dag i Oslo-området. Kostnaden ved denne køkjøringen oppgir Sæther til å være på ca. 100 000 kr per bil per år.

Personalkostnadene per arbeidet time ved å drifte en tømmerbil i Norge i 1999 er av Transportbrukernes Fellesorganisasjon (1999) oppgitt til å være på ca. NOK 162 / time. Personalkostnadene (lønn og sosiale utgifter) er de kommet frem til ved å ta utgangspunkt i 2 skift og 2 sjåfører pr bil. Kostnadene til lønn er basert på ordinær timelønn, timepris for skiftarbeid samt overtid. Sosiale utgifter er beregnet ut fra gjeldende satser og bestemmelser. Videre er det tatt utgangspunkt i at kjøretøyet er i drift 14,6 timer per dag, 220 dager i året.

På grunnlag av data hentet inn av Statistisk sentralbyrå, konkluderer det i rapporten ”Konkurranseflater i godstransport og intermodale transporter” med at lastevekt og transportdistanse har betydelig innvirkning på transportpris på vei (Hovim fl., 1999). Relativ prisutviklingen er på ca. 2/3 av relativ vekt- og distanseendring. Dette innebærer at dersom transportdistansen øker fra 200 til 400 kilometer vil transportprisen øke fra for eksempel 200 kr til ca. 310 kr per tonn transportert (alt annet holdt likt). Hvis lastevekten øker fra 15 til 30 tonn vil eksempelvis transportpris per tonn kunne gå ned fra 300 kr til ca. 185 kr.

3.1.4 Transportkostnader - sjø
I dette avsnittet presenteres kunnskap om kostnader ved transport av gods sjøveien.

Eidhammer (2004) har på oppdrag fra Norsk havneforbund gjennomført en studie av kostnadene knyttet til et skipsanløp og valgte å plassere kostnadene i fire kategorier:

- Statlige farledsgebyrer.
- Kommunale havneavgifter.
- Private terminalkostnader.
- Øvrige anløpskostnader.

Statlige farledsgebyrer består av kystgebyr, losgebyr, sikkerhetsgebyr og losingsgebyr. Gjennomsnittlig størrelse på farledsgebyrene for fem fartøysstørrelser er presentert i Tabell 3-15.

<table>
<thead>
<tr>
<th>Størrelse på fartøy</th>
<th>1 000-1 999 BT</th>
<th>2 000-2 999 BT</th>
<th>3 000-3 999 BT</th>
<th>4 000-4 999 BT</th>
<th>5 000-5 999 BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystgebyr</td>
<td>369</td>
<td>655</td>
<td>923</td>
<td>1128</td>
<td>1357</td>
</tr>
<tr>
<td>Losgebyr</td>
<td>1060</td>
<td>1882</td>
<td>2577</td>
<td>3102</td>
<td>3676</td>
</tr>
<tr>
<td>Sikkerhetsgebyr</td>
<td>707</td>
<td>1255</td>
<td>1769</td>
<td>2162</td>
<td>2602</td>
</tr>
<tr>
<td>Losingsgebyr</td>
<td>7130</td>
<td>8400</td>
<td>8400</td>
<td>9660</td>
<td>9660</td>
</tr>
<tr>
<td>Totalt</td>
<td>9266</td>
<td>12192</td>
<td>13699</td>
<td>16052</td>
<td>17295</td>
</tr>
</tbody>
</table>

De kommunale havneavgiftene innkreves med hjemmel i Lov om havner og farvann (Fiskeridepartementet, 1984) og består av anløpsavgift, kaiavgift og vareavgift. I perioder av året der det er is i havnen eller behov for passasjerfasiliteter som påfører kommunen kostnader kan det innkreves avgifter for dette på grunnlag av retningslinjer fastsatt av departementet. Gjennomsnittlige kommunale og private havneavgifter er presentert i Tabell 3-16.

<table>
<thead>
<tr>
<th>Avgiftskategori</th>
<th>Gjennomsnitt NOK/BT</th>
<th>Min-Maks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiavgift</td>
<td>0,33</td>
<td>0,15-0,60</td>
</tr>
<tr>
<td>Anløpsavgift</td>
<td>0,22</td>
<td>0,04-0,61</td>
</tr>
<tr>
<td>Sum kai- og anløpsavgifter</td>
<td>0,55</td>
<td>0,29-1,03</td>
</tr>
<tr>
<td>Andre avgifter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renovasjon</td>
<td>0,04</td>
<td>0,03-0,07</td>
</tr>
<tr>
<td>Isbryting</td>
<td>0,11</td>
<td>0,06-0,15</td>
</tr>
<tr>
<td>Fortøying</td>
<td>0,29</td>
<td>0,07-0,78</td>
</tr>
<tr>
<td>Havnelosing</td>
<td>0,63</td>
<td></td>
</tr>
</tbody>
</table>

De private terminalkostnadene skal gå til å dekke (Eidhammer, 2004):

- Kapitalkostnader knyttet til utstyr på terminalen.
- Driftskostnader på terminalutstyr.
- Vedlikeholdskostnader.
- Leie av terminalområde.
- Lønn til arbeidere.
- Fortjeneste.
En oppsummering av kostnadstypene som påløper ved et skipsanløp er gitt i Tabell 3-17. Havnekostnadene for skip med størrelse på mellom 3000 og 3 999 BT, og som går i utenriksfart, er presentert i Tabell 3-18.

Tabell 3-17: Gruppering av gebyrer og avgifter etter kostnadssted og obligatoriske og ikke obligatoriske gebyrer og avgifter (Eidhammer, 2004).

<table>
<thead>
<tr>
<th>Statlige farleds-gebyrer</th>
<th>Kommunale havneavgifter</th>
<th>Private terminalkostnader</th>
<th>Øvrige anløpskostnader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kystgebyr, losberedskapsgebyr, losingsgebyr og sikkerhetsgebyr</td>
<td>Kaiavgift, anløpsavgift og vareavgift</td>
<td>Lasting/lossing</td>
<td>Megling, fortøyning/løskast, havnelosing</td>
</tr>
</tbody>
</table>

Tabell 3-18: Fordeling av kostnader på kostnadsbærere, ”myndighetspålagte” og ”ikke myndighetspålagte” gebyrer, avgifter, private terminalkostnader og øvrige kostnader ved et havneanløp. Skipsstørrelse 3 000 – 3 999 BT i utenriksfart. Kr per anløp i 2003. (Eidhammer, 2004).

<table>
<thead>
<tr>
<th>Kostnadsbærere</th>
<th>Myndighetspålagte gebyrer og avgifter (Kr per anløp)</th>
<th>Alle avgifter og gebyrer inkl. andre kostnader (Kr per anløp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statlige farledsgebyrer</td>
<td>13 669</td>
<td>13 669</td>
</tr>
<tr>
<td>Kommunale havneavgifter</td>
<td>6 235</td>
<td>6 812</td>
</tr>
<tr>
<td>Private terminalkostnader</td>
<td>14 575</td>
<td>14 575</td>
</tr>
<tr>
<td>Øvrige anløpskostnader</td>
<td>3 115</td>
<td>3 115</td>
</tr>
<tr>
<td>Totalt</td>
<td>19 904</td>
<td>19 904</td>
</tr>
</tbody>
</table>

Det fremkommer av Tabell 3-18 at den største kostnaden ved et havneanløp for et skip på mellom 3 000 og 3 999 BT, som går i utenriksfart, er relatert til de private terminalkostnadene. Et skip av denne størrelse må gjennomsnittlig betale ca. 14 500 kr ved et havneanløp, noe som utgjør i underkant av 40 % av de totale ”skipsanløpskostnadene”. Totale ”skipsanløpskostnader” for et skip av denne type er på i overkant av 38 000 kr per anløp.

ECON gjennomførte i 2003 en utredning av konsekvensene ved en eventuell etablering av en internasjonal knutepunktshavn i Risavika ved Stavanger (ECON, 2003b). I beregningene ble det benyttet en modell der det ble tatt utgangspunkt i kostnadene for et skip med kapasitet til å
transportere 500 TEU. Kostnadene knyttet til å drifte et skip av denne typen ble av forfatterne delt inn i fire kategorier:

- Kapitalkostnader: Kostnadene til selve fartøyet har forfatterne funnet ved å ta utgangspunkt i ratene i chartermarkedet for skip med kapasitet på 500 TEU. Ratene var på det tidspunkt rapporten ble skrevet (2003) på ca. €5 000 per dag.

- Driftskostnader: Driftskostnadene er i ECON sin modell begrenset til å omfatte kostnader til drivstoff. Drivstoffforbruket er beregnet på grunnlag av standard satser, bl.a. avhengig av motorstørrelse (nærmere beskrivelse av satsene er ikke gitt i rapporten). Dieselprisen som ble benyttet var: NOK 5/liter.

- Mannskapskostnader: Det er tatt utgangspunkt i et mannskap på 5 personer som har en gjennomsnittlig timelønn på 350 kr.

- Havnekostnader: Utredningen deler havnekostnadene inn i; a) havneavgifter for anløp samt bruk av kran og b) stevedore kostnader for håndtering av containere i havnen, for eksempel lagring, mottakt og utlevering, stuffing og stripping av LCL\(^{19}\) transporter. I Risavika var havnekostnadene i 2003 på ca. 575 kr per TEU. I følge forfatterne av rapporten er stevedorekostnadene normalt den største enkeltkostnaden i en havn.

3.1.5 Transportkostnader - bane
I dette avsnittet presenteres kunnskap om kostnader ved godstransport på jernbane.

I Jernbaneverket sin Metodehåndbok JD205 (Jernbaneverket, 2006) presenteres enhetssatser for godstrafikk på jernbane. Enhetssatsene blir brukt til å beregne bedriftsøkonomiske effekter for operatøren ved tiltak som har innvirkning på godstrafikken på jernbanen.

Tabell 3-19: Enhetssatser for godstrafikk på jernbane. (Jernbaneverket, 2006).

<table>
<thead>
<tr>
<th>Enhetssatser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pris pr. lok (mill. kr)</td>
<td>40,0</td>
</tr>
<tr>
<td>Pris pr. vogn (mill. kr)</td>
<td>1,2</td>
</tr>
<tr>
<td>Maks. levetid (år)</td>
<td>25,0</td>
</tr>
<tr>
<td>Tonn last pr. vogn (2-akslet)</td>
<td>25,0</td>
</tr>
<tr>
<td>Energikostnader pr. lokkm</td>
<td>2,0</td>
</tr>
<tr>
<td>Energikostnader pr. vognkm</td>
<td>0,8</td>
</tr>
<tr>
<td>Vedlikeholdskostnader pr. lokkm</td>
<td>12,0</td>
</tr>
<tr>
<td>Vedlikeholdskostnader pr. vognkm</td>
<td>1,6</td>
</tr>
<tr>
<td>Klargjøringskostnader pr. lok pr. dag</td>
<td>800,0</td>
</tr>
<tr>
<td>Klargjøringskostnader pr. vogn pr. dag</td>
<td>100,0</td>
</tr>
</tbody>
</table>

\(^{19}\) LCL (Less than Container load) og FCL (Full container load) er internasjonale shipping begreper. FCL er således en fullastet container, mens LCL er en container der lastekapasiteten ikke er fullt ut utnyttet. LCL vil normalt kreve samlasting for å få en god pris.
En samfunnsøkonomisk analyse av syv trafikksvake jernbanestrekninger i Norge ble gjennomført av ECON i 2003 (ECON, 2003c). I rapporten der resultatene fra analysen ble presentert, er det inkludert en oversikt over verdier/kostnader knyttet til jernbanedrift. Verdiene som er aktuelle for godstransport er gjengitt i Tabell 3-20.

<table>
<thead>
<tr>
<th>Infrastruktur</th>
<th>Verdi</th>
<th>Kjøretøy-Gods:</th>
<th>Verdi</th>
<th>Trafikant</th>
<th>Verdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vu likehold-godstog (kr/togkm)</td>
<td>18,86</td>
<td>- Energibruk lokomotiv (kr/lokkm)</td>
<td>1,50</td>
<td>- Tidsverdi for gods (kr/tonn)</td>
<td>0,47</td>
</tr>
<tr>
<td>Vu likehold vogn (kr/vogkm)</td>
<td>0,60</td>
<td>- Energibruk vogn (kr/vognkm)</td>
<td>0,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vu likehold lokomotiv (kr/lokkm)</td>
<td>7,70</td>
<td>- Vu likehold vogn (kr/vognkm)</td>
<td>2,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vu likehold vogn (kr/vognkm)</td>
<td>2,10</td>
<td>- Klargjøring lokomotiv (kr/lokdag)</td>
<td>773,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klargjøring vogn (kr/vogndag)</td>
<td>103,00</td>
<td>- Klargjøring lokomotiv (kr/lokdag)</td>
<td>773,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.6 Transportkostnader - diverse
I dette avsnittet presenteres kunnskap om kostnader knyttet til transport av gods som ikke har en naturlig plass andre steder i kapittel 3.1.

Tabell 3-21: Kostnadselementer ved vei-, sjø- og jernbanetransport (Lindstad og Uthaug, 2002).

<table>
<thead>
<tr>
<th>Kostnader</th>
<th>Veitransport</th>
<th>Sjøtransport</th>
<th>Jernbanetransport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renter</td>
<td>T/C kostnad (inkl.)</td>
<td>Renter</td>
<td>Kostnadene for jernbanetransport bygger på sam-</td>
</tr>
<tr>
<td>Avskrivninger</td>
<td>- Renter</td>
<td>- Avskrivninger</td>
<td>lasterprisene, dvs. det de</td>
</tr>
<tr>
<td>Forsikring</td>
<td>- Forsikring</td>
<td>- Forsikring</td>
<td>store transportselskapene</td>
</tr>
<tr>
<td>Lønn</td>
<td>- Mannskap</td>
<td>- Mannskap</td>
<td>betaler til CargoNet.</td>
</tr>
<tr>
<td>Dieselforbruk</td>
<td>Bunkers</td>
<td>Bunkers</td>
<td></td>
</tr>
<tr>
<td>Vask</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dekk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I den samme rapporten er det også presentert en oversikt over gebyrer og avgifter som betales ved de samme tre transportformene, disse er gjengitt i Tabell 3-22.

Tabell 3-22: Gebyrer og avgifter ved vei-, sjø- og jernbanetransport (Lindstad og Uthaug, 2002).

<table>
<thead>
<tr>
<th>Avgifter</th>
<th>Veitransport</th>
<th>Sjøtransport</th>
<th>Jernbanetransport</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2-avgift</td>
<td>CO2-avgift</td>
<td>CO2-avgift</td>
<td>CO2-avgift</td>
</tr>
<tr>
<td>Vektårsavgift</td>
<td>Årsavgift</td>
<td>Investeringsavgift</td>
<td></td>
</tr>
<tr>
<td>Anløpsavgift</td>
<td>Kaiavgift</td>
<td>El-avgift</td>
<td></td>
</tr>
<tr>
<td>Kaiavgift</td>
<td>Vareavgift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vareavgift</td>
<td>Losberedskapsgebyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losningsgebyr</td>
<td>Alminnelig kystgebyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alminnelig kystgebyr</td>
<td>Sikkerhetsgebyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isavgift (i noen havner)</td>
<td>Slepebåt (i noen havner)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bjørnland og Lægreid (2001) har studert hvordan næringslivets transportkostnader har utviklet seg etter krigen. Til grunn for sin studie har de hatt transport som omsettes i et marked, noe som gir tilgang til markedspriser og størrelsen på gjennomført transportarbeid. Produksjonen utgjør en kostnad for kjøreren og er det de to forfatterne har lagt til grunn som transportkostnad. Sektorene det er tatt utgangspunkt i ved beregningen av transport-produksjonen på fastlandet er:

- Jernbanetransport.
- Rutebiltransport.
- Leiebiltransport.
- Innenriks sjøfart.
- Hjelpevirksomhet for sjøfart (havne-, fyr- og losvesen, skipsmegling og befraktning, lasting og lossing m.m.).
- Lufttransport.
- Hjelpevirksomhet for landtransport og tjenester i tilknytning til transport og lagring (transportcentraler, transportformidling, spedisjon og samlast, terminalvirksomhet, bomveger og parkeringsanlegg m.m.).

For å få frem hvor stor andel av transportsektorenes transportarbeid som er godstransport har forfatterne tatt utgangspunkt i ”samferdselsstatistikken” som de oppgir gjør det mulig å frembringe hvor stor andelen person- og godstransport er av det totale transportarbeidet. Produksjonen av godstjenester, for ”den enkelte transportsektor” er hentet frem ved hjelp av underliggende materiale fra nasjonalregnskapet. Prisindeksen Bjørnland og Lægreid (2001) har benyttet er også utarbeidet på grunnlag av nasjonalregnskapets underliggende materiale.
Resultatet av beregningene til Bjørnland og Lægreid (2001) er presentert i Tabell 3-23.

<table>
<thead>
<tr>
<th>År</th>
<th>Løpende priser</th>
<th>1990-priser</th>
<th>Prisindeks (1990=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>595</td>
<td>7 669</td>
<td>7,7600</td>
</tr>
<tr>
<td>1952</td>
<td>1 019</td>
<td>9 776</td>
<td>10,4183</td>
</tr>
<tr>
<td>1957</td>
<td>1 349</td>
<td>11 325</td>
<td>11,9100</td>
</tr>
<tr>
<td>1962</td>
<td>2 105</td>
<td>15 044</td>
<td>13,9900</td>
</tr>
<tr>
<td>1967</td>
<td>3 172</td>
<td>18 220</td>
<td>17,4100</td>
</tr>
<tr>
<td>1972</td>
<td>5 421</td>
<td>21 726</td>
<td>24,9500</td>
</tr>
<tr>
<td>1977</td>
<td>10 446</td>
<td>26 959</td>
<td>38,7500</td>
</tr>
<tr>
<td>1982</td>
<td>17 932</td>
<td>29 911</td>
<td>59,9500</td>
</tr>
<tr>
<td>1987</td>
<td>28 745</td>
<td>33 710</td>
<td>85,2700</td>
</tr>
<tr>
<td>1992</td>
<td>36 422</td>
<td>34 212</td>
<td>106,4600</td>
</tr>
<tr>
<td>1997</td>
<td>53 557</td>
<td>45 971</td>
<td>116,5000</td>
</tr>
</tbody>
</table>

Bertelsen (2004) har gjennomført en studie av i hvilken grad det er lønnsomt å benytte mer midler på vegformål. I rapporten presenterer han blant annet en oversikt over hvor store direkte kostnader (eks. avgifter og tilskudd) det er per år i Norge knyttet til godstransport på veg, langs jernbane, i luften og på sjøen.

Ulykkeskostnader er inkludert i de tallene som presenteres i Tabell 3-24, men rentekostnader for gods under transport er utelatt (godset skal ha svært høy verdi for at rentekostnadene skal gjøre markant utslag i de direkte transportkostnadene).

20 Statistisk sentralbyrå sin Årbok for 2002 er tilgjengelig på: www.ssb.no.

<table>
<thead>
<tr>
<th>Transportform</th>
<th>Direkte transportkostnader (Mill kr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegtransport</td>
<td>22 961</td>
</tr>
<tr>
<td>Jernbanetransport</td>
<td>1 518</td>
</tr>
<tr>
<td>Lufttransport</td>
<td>1 623</td>
</tr>
<tr>
<td>Sjøtransport</td>
<td>9 890</td>
</tr>
</tbody>
</table>

I en rapport skrevet av Hovi m. fl. (1999) blir de regionale prisforskjellene ved transport av gods trukket frem. Forfatterne viser til at transportprisen innad i og til/fra Nordland, Troms og Finnmark er ca. 19 % høyere enn ved tilsvarende transporter på Østlandet. Transportprisen ved transporter utenom Østlandet ligger ca. 11 % høyere enn transporter innad på Østlandet når alle andre faktorer holdes likt. Grunnet skjev retningsbalanse er det også forskjeller i transportprisene for gods som transporteres til, og gods som transporteres fra Oslo. Transportprisen i retning Oslo er ca. 10 % lavere enn ved transportene som går i motsatt retning. En studie foretatt noen år tidligere enn studien til Hovi m. fl. kom frem til at transportprisen i Nord-Norge var 25-30 % høyere enn på Østlandet (Skarstad, 1996). Transportprisene i resten av Norge ble i studien funnet å være mellom 7 % og 15 % høyere enn på Østlandet. Når en sammenholder studien til Hovi m. fl. som ble gjennomført i 1999 og Skarstad sin fra 1996 kan det synes som at de geografiske forskjellene i transportpriser mellom regionene i Norge har blitt redusert.

Hovi m. fl. (1999) har også funnet at ved sjøtransport er det relative prisutslaget ved endring av transportavstand på 21 %. En økning i transportdistansen fra 200 km til 400 km vil dermed øke transportprisen fra 200 til ca. 230 kr. I den samme rapporten fant forfatterne at den relative prisutvikling ved transport på veg er på ca. 2/3 av relativ vekt- og distanseendring, noe som innebærer at dersom transportdistansen øker fra 200 km til 400 km vil transportprisen øke fra f. eks. 200 kr til ca. 310 kr per tonn transportert (alt annet holdt likt). At sammenhengen mellom transportavstand og transportpris er svakere for sjøtransport enn for veitransport illustrerer at sjøtransport blir mer konkurranseedyktig på pris jo lenger varene skal transporteres.

3.2 TIDSKOSTNADER

I kapittel 2.1.3 diskuterte vi tidskostnader ved godstransport. Totale tidskostnader ved å sende gods fra A til B kan kvantifiseres ved å multiplisere godsetts tidskostnader per tidsenhet (k) med transporttiden (T). Kunnskaper om k er for eksempel sentrale når det skal utarbeides nytte-kostnadsanalyser (NKA) av samferdselstiltak. For veitransport er det utarbeidet en egen håndbok (Håndbok 140). Den praktiske gjennomføringen av NKA gjøres i programmet
EFFEKT. I Håndbok 140 til Statens vegvesen gis det ingen anbefalte verdier for k ved gods-transport. Det gis imidlertid anbefalinger knyttet til beregning av transporttiden (T).

Transporttid

Tidskostnader per tidsenhet

Tidskostnader er ofte noe upresist behandlet. Dette er også tilfelle i Håndbok 140. I håndboken omtales detaljert hvilke tidskostnader per tidsenhet som anbefales benyttet ved persontransport, differensiert på reiseformål. Tidskostnadene oppgis per person i kjøretøyet, og per kjøretøy basert på gjennomsnittlig personbelegg i kjøretøyetene.

Når det gjelder tidskostnader per tidsenhet (k) for selve godset som transporteres, finnes det en del undersøkelser der disse er forskøkt estimert. Spesielt viktig blir k når produktet er av en slik art at det har en høy verdiforringelse per tidsenhet. Dette vil gjelde alle ferskvarer i større eller mindre grad (blomster, fersk fisk, frukt og grønsaker, aviser m.m.). Fisk er et godt
eksempel på et produkt som har en verdiutvikling som er negativt korrelert med tiden det tar å få produktet til kunden.

<table>
<thead>
<tr>
<th>År</th>
<th>Løpende priser</th>
<th>1990-priser</th>
<th>Prisindeks (1990=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>47</td>
<td>520</td>
<td>9,0200</td>
</tr>
<tr>
<td>1952</td>
<td>87</td>
<td>678</td>
<td>12,7600</td>
</tr>
<tr>
<td>1957</td>
<td>128</td>
<td>863</td>
<td>14,8400</td>
</tr>
<tr>
<td>1962</td>
<td>194</td>
<td>1180</td>
<td>16,4200</td>
</tr>
<tr>
<td>1967</td>
<td>339</td>
<td>1700</td>
<td>19,9400</td>
</tr>
<tr>
<td>1972</td>
<td>641</td>
<td>2336</td>
<td>27,4300</td>
</tr>
<tr>
<td>1977</td>
<td>961</td>
<td>2238</td>
<td>42,9600</td>
</tr>
<tr>
<td>1982</td>
<td>1493</td>
<td>2162</td>
<td>69,0700</td>
</tr>
<tr>
<td>1987</td>
<td>2 127</td>
<td>2459</td>
<td>86,4900</td>
</tr>
<tr>
<td>1992</td>
<td>3 211</td>
<td>3 148</td>
<td>101,9956</td>
</tr>
<tr>
<td>1997</td>
<td>4 843</td>
<td>4 202</td>
<td>115,2421</td>
</tr>
</tbody>
</table>
Den gjennomsnittlige tidskostnaden på 19 øre per tonn per time som ble presentert ovenfor (Madslien m. fl., 2000) er beregnet på grunnlag av tidsverdier for 6 ulike varegrupper. Varegruppene er av Madslien m. fl. (2000) som følger:

A. Bulk: Høy tetthet (>1 tonn/kubikkmeter), men lav verdi (<25 kr/kg).
B. Bulk: Lav tetthet (<1 tonn/kubikkmeter) og lav verdi (<25 kr/kg).
C. Stykkgods: Høy tetthet (>0,6 tonn/kubikkmeter) og høy verdi (>25 kr/kg).
D. Stykkgods: Høy tetthet (>0,6 tonn/kubikkmeter), men lav verdi (<25 kr/kg).
E. Stykkgods: Lav tetthet (<0,6 tonn/kubikkmeter), men høy verdi (>25 kr/kg).
F. Stykkgods: Lav tetthet (<0,6 tonn/kubikkmeter) og lav verdi (<25 kr/kg).

Tidsverdien for de seks varegruppene er presentert i Tabell 3-26.

<table>
<thead>
<tr>
<th>Vareverdi (kr/kg)</th>
<th>Bulk</th>
<th>Stykkgods</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,47</td>
<td>10,35</td>
<td>2,23</td>
</tr>
<tr>
<td>B</td>
<td>1,00</td>
<td>64,53</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>76,31</td>
<td>4,16</td>
<td></td>
</tr>
<tr>
<td>Vareverdi (kr/kg)</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Tidsverdi (kr/tonn/time)</td>
<td>0,21</td>
<td>0,89</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>0,09</td>
<td>5,55</td>
<td>0,19</td>
</tr>
</tbody>
</table>

3.3 TRANSPORTTID

Tabell 3-27: Transporttider ved transport av fersk fisk med bil. (Larsen, 2003)

<table>
<thead>
<tr>
<th>Till</th>
<th>Fra Vestlandet</th>
<th>Transporttid i antall døgn</th>
<th>Fra Troms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oslo</td>
<td>0,5</td>
<td>0,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Padborg</td>
<td>1,5</td>
<td>1,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Benelux</td>
<td>2,0</td>
<td>2,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Nord-Frankrike</td>
<td>2,5</td>
<td>2,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Madrid</td>
<td>3,5</td>
<td>3,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Transporttidene Larsen (2003) presenterer har han hentet inn gjennom samtaler med eksportører og transportselskaper.
Transportutvikling (Nerdal, 2003) har i likhet med Larsen (2003) hentet inn transporttider ved transport av fersk fisk. Transporttidene gjelder strekningen Fauske-Danmark (Padborg) og er differensiert på grunnlag av hvilken transportform transportøren benytter. De fire transportalternativene er:

- Transport med bil hele veien med én sjåfør.
- Transport med bil hele veien med to sjåfører.
- Transport til Fauske med bil, togtransport fra Fauske til Oslo der fisken igjen overføres til bil som med én sjåfør transporterer fisken til destinasjonen i Danmark.
- Transport til Fauske med bil, togtransport fra Fauske til Oslo der fisken igjen overføres til bil som med to sjåfører transporterer fisken til destinasjonen i Danmark.

Transporttidene Transportutvikling kom frem til er presentert i Tabell 3-28.

<table>
<thead>
<tr>
<th>Transportform</th>
<th>Transporttid i antall timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bil med én sjåfør</td>
<td>60,1</td>
</tr>
<tr>
<td>Bil med to sjåfører</td>
<td>38,1</td>
</tr>
<tr>
<td>Tog / bil med én sjåfør</td>
<td>53,9</td>
</tr>
<tr>
<td>Tog / bil med to sjåfører</td>
<td>42,2</td>
</tr>
</tbody>
</table>

Det fremkommer av Tabell 3-28 at den av de fire framføringsmåtene som gir kortest transporttid, er den der transportøren benytter seg av en bil med to sjåfører til å transportere fisken hele strekningen. Differansen i transporttid mellom de to transportformene "bil med to sjåfører" og "bil med én sjåfør" vil i stor grad kunne knyttes til kjøre- og hviletidsbestemmelsene som begrenser hvor lenge en sjåfør kan kjøre sammenhengende uten stopp/hvile.

Variasjonen i transporttid ved transport av gods med jernbane kan hentes ut på hjemmesidene til CargoNet (www.cargonet.no). Cargonet opererer 12 terminaler i Norge og kan gjennom sitt samarbeid med utenlandske jernbaneselskap tilby transport av gods også til kontinentet. Eksempler på hvor lang tid det går fra lasteslutt til lossestart på utvalgte strekninger CargoNet trafikkerer, er presentert i Tabell 3-29.
Tabell 3-29: Transporttid21 med jernbane på utvalgte strekninger (www.cargonet.no).

<table>
<thead>
<tr>
<th>Strekning</th>
<th>Maksimal</th>
<th>Minimal</th>
<th>Gjennomsnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristiansand-Oslo</td>
<td>12 t</td>
<td>7 t</td>
<td>9 t 30 min</td>
</tr>
<tr>
<td>Stavanger-Oslo</td>
<td>20 t</td>
<td>10 t 55 min</td>
<td>14 t</td>
</tr>
<tr>
<td>Bergen-Oslo</td>
<td>20 t 10 min</td>
<td>8 t 05 min</td>
<td>13 t 03 min</td>
</tr>
</tbody>
</table>

Transporttidene i Tabell 3-29 viser hvor lang tid det går fra det ikke lenger er mulig å levere godset, og til lossing av toget/vognene kan starte ved destinasjonen.

I Jernbaneverket sin metodehåndbok for samfunnsøkonomiske analyser (Jernbaneverket, 2006) blir tid (fra ordre til levering) omtalt som en faktor som i hovedsak har betydning gjennom at transporttiden bidrar til økt kapitalbinding. Det blir videre i håndboken påpekt at kapitalkostnadene kun når "et vesentlig nivå for varer av meget høy verdi" (Jernbaneverket, 2006:60) og at transporttiden er av langt mindre betydning som konkurranseparameter enn pris og punktlighet.

Østfoldforskning (Hanssen m.fl., 2006) gjennomførte i 2006 en strategisk analyse av emballering og distribusjon av fersk hvitfisk fra Norge. I analysen ble det tatt utgangspunkt i tre filetanlegg og to destinasjoner. En oversikt over avstanden mellom disse, tidsbruk ved transport mellom filetanlegg og destinasjon, samt antall omlastinger per tur er presentert i Tabell 3-30.

Tabell 3-30: Avstander og tidsbruk mellom filetanlegg og destinasjon. (Hansen m.fl. 2006).

<table>
<thead>
<tr>
<th>Distribusjon fra/til</th>
<th>Avstand (km)</th>
<th>Tidsbruk i distribusjonen (timer)</th>
<th>Antall omlastinger per tur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finnmark-Oslo</td>
<td>2 000</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Finnmark-Bolougne sur mer</td>
<td>3 300</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>Vesterålen-Oslo</td>
<td>1 800</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Vesterålen-Bolougne sur mer</td>
<td>3 100</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Ålesund-Oslo</td>
<td>510</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ålesund-Bolougne sur mer</td>
<td>1 800</td>
<td>48</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Av tabellen fremkommer det at det er til dels store forskjeller i hvor lang tid det tar å transportere fisken fra henholdsvis Finnm ark og Ålesund til Oslo og Nord-Frankrike. Fiskelaster som skal til Nord-Frankrike blir i de fleste tilfeller omlastet i Oslo, men som det fremkommer at Tabell 3-30 blir ikke dette alltid gjort på transportene fra Ålesund.

Det har de senere år kommet stadig flere ruteplanleggere på Internett som gjør det mulig å beregne avstander og reisetid med bil. Internettadressene til noen tilfeldig utvalgte ruteplanleggere er:

- www.visveg.no
- www.mappy.com
- www.viamichelin.com
- http://kart.gulesider.no/kart/index.c

Eksempler på transporttiden med skip på fire ”feeder” ruter22 i Middelhavet er presentert i Tabell 3-31.

<table>
<thead>
<tr>
<th>”Feeder” rute</th>
<th>Distanse (km)</th>
<th>Transporttid (timer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gioia Tauro-Algeciras23</td>
<td>4 380</td>
<td>218</td>
</tr>
<tr>
<td>Gioia Tauro-Malta</td>
<td>1 940</td>
<td>139</td>
</tr>
<tr>
<td>Gioia Tauro-Trieste</td>
<td>3 030</td>
<td>156</td>
</tr>
<tr>
<td>Gioia Tauro-Alexandria</td>
<td>4 830</td>
<td>228</td>
</tr>
</tbody>
</table>

\textbf{3.4 USIKKERHET I TRANSPORTTIDEN}

I hvilken grad punktlighet er et viktig konkurranseparameter for en transportør av gods varierer sterkt fra kunde til kunde og mellom ulike godstyper (Jernbaneverket, 2006). Kunder som sitter på små lagre og baserer sin produksjon på ”just in time” vil i større grad legge vekt på punktlighet ved valg av transportør enn en kunde med lagre som kan fungere som en buffer ved forsinkede leveranser (Jernbaneverket, 2006).

En viktig faktor som påvirker punktligheten/usikkerhet i transporttid er hvor stort behovet er for omlastinger under transporten, hvordan transporten er organisert og hvor god kapasitet det er på den infrastruktur transportmiddelet benytter (Jernbaneverket, 2006).

22 Skipene går dermed innom flere havner på ruten.

23 Algeciras ligger sør i Spania like ved Gibralter, Gioia Tauro ligger sør i Italia, Alexandria ligger i Egypt.
Madslien m. fl. (2000) viser i rapporten ”Modellverktøy for transporter i norsk utenriks-handel” til en svensk undersøkelse (som ikke er nærmere identifisert) som har forsøkt å verdsette forsinkelsesrisikoen ved godstransporter. Verdiene den svenske rapporten kom frem til, omregnet til NOK, er for seks varegrupper presentert i Tabell 3-32.

<table>
<thead>
<tr>
<th></th>
<th>Bulk</th>
<th>Stykk gods</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Kr pr tonn og</td>
<td>0,95</td>
<td>2,67</td>
<td>3,15</td>
</tr>
<tr>
<td>promille redusert forsinkelsesrisiko</td>
<td>1,43</td>
<td>1,34</td>
<td></td>
</tr>
<tr>
<td>promille redusert forsinkelsesrisiko</td>
<td>2,67</td>
<td>8,78</td>
<td></td>
</tr>
<tr>
<td>promille redusert forsinkelsesrisiko</td>
<td>1,34</td>
<td>1,34</td>
<td></td>
</tr>
</tbody>
</table>

I ”Modellverktøy for transporter i norsk utenrikshandel” blir kostnaden ved forsinkelser beregnet som produktet av forventet risiko for forsinkelse (som varierer med transportmiddel) og kostnaden for denne risikoen for det produkt som transporteres (presentert i Tabell 3-32).

3.5 SKADEKOSTNADER

I EFFEKТ beregnes kostnadene ved trafikkulykker med utgangspunkt i velferdstapet for personskadeulykker av ulik alvorighetsgrad (dødsfall, meget alvorlig, alvorlig og lettere skade samt materielle skader). Dette er da beregnede kostnader for samfunnet av dødsfall og personskader forårsaket i trafikken.

I forhold til kostnader ved godstransport, er det imidlertid kostnader for bedriftene i forhold til skader på transportmidler og godset som er viktig å gi et godt anslag på. I ”materielle skader” skal det imidlertid tas med alle kostnader til reparasjon eller erstatning av skadde kjøretøy eller andre gjenstander som blir skadet eller ødelagt ved trafikkulykker. Kostnadene beregnes med utgangspunkt i opplysninger fra forsikringsselskapene. Det skal også være tatt hensyn til at ikke alle skader på kjøretøy meldes til forsikringsselskapene samt at eierne må dekke en egenandel ved skader. Materielle skader er i Håndbok 140 anbefalt satt til 49 000 2005-kr per skadetilfelle. Det foretas ingen form for differensiering i forhold til hvilket kjøretøy som er utsatt for skade, og naturlig nok heller ikke i forhold til hva som transporteres.

I notatet ”Transport, miljø og kostnader” presenterer Vestlandsforskning en oversikt over ulykkeskostnadsfaktorer ved godstransport (Andersen, 2001).

24 En beskrivelse av varegruppene er gjort i tilknytning til Tabell 3-26.
Tabell 3-33: Eksterne ulykkeskostnadsfaktorer for godstransport. (Andersen, 2001).

<table>
<thead>
<tr>
<th>Godstransportalternativ</th>
<th>Ulykkeskostnadsfaktor (kr/tonnkilometer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lastebil:</td>
<td></td>
</tr>
<tr>
<td>Lett varebil (<2,7 tonn totalvekt)</td>
<td>3,992</td>
</tr>
<tr>
<td>Tung varebil (2,7-3,5 tonn totalvekt)</td>
<td>3,992</td>
</tr>
<tr>
<td>Lett godsbil (3,5-10 tonn totalvekt)</td>
<td>0,940</td>
</tr>
<tr>
<td>Medium godsbil (10-20 tonn totalvekt)</td>
<td>0,105</td>
</tr>
<tr>
<td>Tung godsbil (>20 tonn totalvekt)</td>
<td>0,045</td>
</tr>
<tr>
<td>Tog</td>
<td>0,025</td>
</tr>
</tbody>
</table>

Da rapporten (Andersen, 2001) ikke oppgir hvilket årstall kroneverdiene gjelder, antaes det her at ulykkeskostnadsfaktoren er oppgitt i 2001-kr. Årsaken til at det ikke er ført opp faktorer for ulykkeskostnader for godstransport med stykkgodsskip, rutefly og bilferge er i følge Andersen (2001) at disse verdiene ikke var tilgjengelig på det tidspunkt rapporten ble skrevet.

Det fremkommer av Tabell 3-34 at vareforsikringskostnadene i perioden 1947 til 1997 har vært gjennom en kraftig vekst, også målt i faste 1990-priser.

<table>
<thead>
<tr>
<th>År</th>
<th>Løpende priser</th>
<th>1990-priser</th>
<th>Prisindeks (1990=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>74</td>
<td>734</td>
<td>10,0686</td>
</tr>
<tr>
<td>1952</td>
<td>131</td>
<td>780</td>
<td>16,8079</td>
</tr>
<tr>
<td>1957</td>
<td>171</td>
<td>930</td>
<td>18,3885</td>
</tr>
<tr>
<td>1962</td>
<td>223</td>
<td>1 111</td>
<td>20,0361</td>
</tr>
<tr>
<td>1967</td>
<td>331</td>
<td>1 414</td>
<td>23,4007</td>
</tr>
<tr>
<td>1972</td>
<td>503</td>
<td>1 689</td>
<td>29,7822</td>
</tr>
<tr>
<td>1977</td>
<td>972</td>
<td>2 042</td>
<td>47,5925</td>
</tr>
<tr>
<td>1982</td>
<td>1 502</td>
<td>2 161</td>
<td>69,4756</td>
</tr>
<tr>
<td>1987</td>
<td>2 272</td>
<td>2 526</td>
<td>89,9183</td>
</tr>
<tr>
<td>1992</td>
<td>2 525</td>
<td>2 570</td>
<td>98,2497</td>
</tr>
<tr>
<td>1997</td>
<td>3 464</td>
<td>3 320</td>
<td>104,3407</td>
</tr>
</tbody>
</table>

Det presenteres i rapporten ”Eksterne marginale kostnader ved transport” (ECON, 2003) resultat fra tre rapporter over hvor store de marginale ulykkeskostnadene er for henholdsvis lett og tung godsbil.

<table>
<thead>
<tr>
<th></th>
<th>Lett godsbil</th>
<th>Tung godsbil</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITE (2003)</td>
<td>0,11</td>
<td>0,12</td>
</tr>
<tr>
<td>SIKA (2001)</td>
<td>0,11</td>
<td>0,35</td>
</tr>
<tr>
<td>TØI (1999)</td>
<td>0,33</td>
<td>0,38</td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>0,22</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Transportøkonomisk institutt gjennomførte i 2003 en samfunnsøkonomisk analyse av en eventuell etablering av en trafikksentral for skipstrafikken i Nord-Norge (Eriksen og Hansen, 2003). I rapporten stod kostnader ved skipsulykker sentralt og det ble skilt mellom 4 forskjellige skadeområder:

- Skader på skip og last.
- Personskader.
- Redningskostnader.
- Natur og miljøkostnader herunder skader på eiendom hos tredje part.

Tabell 3-37: Skadekostnader på skip og last for ulike fartøy styper. Ulykkeskostnader i 1 000 kr per ulykke (Eriksen og Hansen, 2003).

<table>
<thead>
<tr>
<th></th>
<th>Tankskip</th>
<th>Stykk gods og bulk</th>
<th>Passasjerskip og ferg</th>
<th>Fiskefartøy</th>
<th>”Typisk ulykke”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skader på skip og last</td>
<td>25 270</td>
<td>7 220</td>
<td>2 527</td>
<td>361</td>
<td>3 610</td>
</tr>
<tr>
<td>Skip</td>
<td>17 500</td>
<td>5 000</td>
<td>1 750</td>
<td>250</td>
<td>2 500</td>
</tr>
<tr>
<td>Last</td>
<td>1 890</td>
<td>1 40</td>
<td>189</td>
<td>27</td>
<td>270</td>
</tr>
<tr>
<td>Tidstap</td>
<td>5 880</td>
<td>1 680</td>
<td>588</td>
<td>84</td>
<td>840</td>
</tr>
</tbody>
</table>

25 Med ”typisk ulykke” mener forfatterne ikke å gi uttrykk for en gjennomsnittsulykke, men at det er en hensiktsmessig vekting av ulike fartøy styper.
For å finne personkostnadene ved skipsulykker har det tatt utgangspunkt i enhetskostnader ved ulykker (drepte eller skadde) en verdi som er multiplisert med sannsynligheten for personskade (drepte eller skadde). Eriksen og Hansen (2003) har på denne måten kommet frem til en forventet kostnad ved skipsulykker. Ettersom det er større sannsynlighet for personskade og – død ved passasjertransport enn ved godstransport er det høyere forventet personskadekostnad ved en ulykke innenfor passasjertransport enn det er i en ”typisk” skipsulykke.

Tabell 3-38: Personskader i skipsulykker. Kostnader per ulykke etter fartøystype. 1 000 kr (Eriksen og Hansen, 2003).

<table>
<thead>
<tr>
<th></th>
<th>Tankskip</th>
<th>Stykkgods og bulk</th>
<th>Passasjerskip og bilferger</th>
<th>Fiskefartøy</th>
<th>"Typisk ulykke"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personskader</td>
<td>845</td>
<td>169</td>
<td>1 689</td>
<td>84</td>
<td>845</td>
</tr>
<tr>
<td>Drepte</td>
<td>605</td>
<td>121</td>
<td>1 209</td>
<td>60</td>
<td>605</td>
</tr>
<tr>
<td>Skadde</td>
<td>240</td>
<td>48</td>
<td>480</td>
<td>24</td>
<td>240</td>
</tr>
</tbody>
</table>

Når et skip er involvert i en ulykke påløper som regel både utgifter til redning av mannskap og skip, samt til opprenskning av eventuelle utslipp. Opprenskningskostnadene er høyest ved utslipp av råolje og tungolje, mens utgiftene er betraktelig lavere for bunkerolje og –diesel fordi disse har større fordampning og er lettere å fjerne fra strender. En oversikt over størrelsens på kostnadene ved redning og opprenskning etter skipsulykker er, for ulike fartøystyper, vist i Tabell 3-39.

Tabell 3-39: Kostnader til redning og opprenskning per ulykke etter fartøystype. 1 000 kr (Eriksen og Hansen, 2003).

<table>
<thead>
<tr>
<th></th>
<th>Tankskip</th>
<th>Stykkgods og bulk</th>
<th>Passasjerskip og bilferger</th>
<th>Fiskefartøy</th>
<th>"Typisk ulykke"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redning</td>
<td>9 036</td>
<td>645</td>
<td>1 291</td>
<td>129</td>
<td>1 291</td>
</tr>
<tr>
<td>Redningstjeneste</td>
<td>504</td>
<td>36</td>
<td>72</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>Opprenskning av olje</td>
<td>8 532</td>
<td>609</td>
<td>1 219</td>
<td>122</td>
<td>1 219</td>
</tr>
</tbody>
</table>

Tabell 3-40: Skadekostnader på natur og miljø for ulike fartøystyper. Ulykkeskostnader i 1 000 kr per ulykke (Eriksen og Hansen, 2003).

<table>
<thead>
<tr>
<th></th>
<th>Tankskip</th>
<th>Stykkgods og bulk</th>
<th>Passasjerskip og bilferger</th>
<th>Fiskefartøy</th>
<th>"Typisk ulykke"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natur og miljø</td>
<td>16 962</td>
<td>4 846</td>
<td>1 212</td>
<td>242</td>
<td>2 423</td>
</tr>
<tr>
<td>Tap av rekreasjon</td>
<td>4 660</td>
<td>1 331</td>
<td>333</td>
<td>67</td>
<td>666</td>
</tr>
<tr>
<td>Eiendomsførringelse</td>
<td>6 834</td>
<td>1 953</td>
<td>488</td>
<td>98</td>
<td>976</td>
</tr>
<tr>
<td>Dyreliv</td>
<td>5 467</td>
<td>1 562</td>
<td>391</td>
<td>78</td>
<td>781</td>
</tr>
</tbody>
</table>

Ved å summere skadekostnadene som er presentert i Tabell 3-37, Tabell 3-38, Tabell 3-39 og Tabell 3-40 fremkommer totale skadekostnader som vist i Tabell 3-41.

Tabell 3-41: "Totale” skadekostnader ved skipsulykker.

<table>
<thead>
<tr>
<th></th>
<th>Tankskip</th>
<th>Stykkgods og bulk</th>
<th>Passasjerskip og bilferger</th>
<th>Fiskefartøy</th>
<th>"Typisk ulykke"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skader på skip og last</td>
<td>25 270</td>
<td>7 220</td>
<td>2 527</td>
<td>361</td>
<td>3 610</td>
</tr>
<tr>
<td>Personskader</td>
<td>845</td>
<td>169</td>
<td>1 689</td>
<td>84</td>
<td>845</td>
</tr>
<tr>
<td>Redning</td>
<td>9 036</td>
<td>645</td>
<td>1 291</td>
<td>129</td>
<td>1 291</td>
</tr>
<tr>
<td>Natur og miljø</td>
<td>16 962</td>
<td>4 846</td>
<td>1 212</td>
<td>242</td>
<td>2 423</td>
</tr>
<tr>
<td>Totalt</td>
<td>52 113</td>
<td>12 880</td>
<td>6 719</td>
<td>816</td>
<td>8 169</td>
</tr>
</tbody>
</table>

Tabell 3-42: Gjennomsnittlig % -andel av gods som blir tapt eller skadet ved transport (García-Menendez, 2004).

<table>
<thead>
<tr>
<th>Sektor</th>
<th>Skade-/tapsprosent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sjø</td>
</tr>
<tr>
<td>Bearbeidet tømmer og møbler</td>
<td>2,90 %</td>
</tr>
<tr>
<td>Keramikk</td>
<td>3,50 %</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>2,61 %</td>
</tr>
<tr>
<td>Næringsmiddelindustri</td>
<td>3,28 %</td>
</tr>
</tbody>
</table>
3.6 ULEMPESKOSTNADER VED FREKVENSBASERTE TRANSPORTMIDLER

Ulempeskostnader er spesielt knyttet til ulempe ved å være avhengig av fergetransport. Ulempeskostnader er inkludert i EFFEKT. En undersøkelse fra 2002, gjennomført av Bråthen og Lyche (2002) danner grunnlaget for fastsettelsen av trafikanter betalingsvillighet for å unngå slike ulemper. For tunge kjøretøy benyttes det en ulempeskostnad per person i kjøretøyet på 54 kr i bynære samband og 65 kr i andre samband (alle tall i 2005-kr). For samband med svært lav avgangsfrekvens (vesentlig lavere enn én rundtur i timen) og der ferjesambandet utgjør eneste reelle alternativ, anbefales det at ulenempeskostnadene oppjusteres med en faktor på 1,5 i forhold til tallene ovenfor. Dette kan synes som svært lave ulenempeskostnader, i hvert fall for en del næringer, jf. følgende eksempel:

Amundsveen og Øines (2002), har undersøkt ulenempene for lakseslakteriet på Lovund i Nordland av å være avhengig av ferge med lav frekvens og kapasitetsproblemer. Begrensninger i slaktevolum og mangel på fleksibilitet i valg av slaktedager er to eksempler på ikke-optimale driftstilpasninger som forårsakes av lav frekvens og spesielt begrenset ferjekapasitet. Dette påfører bedriftene langsiktige kostnader i forhold til en situasjon der ferjekapasiteten ikke er en begrensning faktor. De viktigste kostnadene ved den enkelte forsinkelse oppsummeres i følgende punkter:

- Forsinkelser som følge av full ferje innebærer at det er nødvendig med en ekstra sjåfør for å ta igjen forsinkelsen. Dette koster mellom 5 000 kr og 7 000 kr per gang.
- Forsinkelser som følge av full ferje kan innebære at kunden krever prisavslag for å ta i mot den forsinkede lasten, eller at lasten må selges på nytt. Størrelsen på prisavslaget vil variere med markedsituasjonen, men det kan dreie seg om gjennomsnittlig ca. 2,50 kr per kg eller rundt 50 000 kr per vogntog.
- Interne merkostnader hos produsent, salgsselskap og/eller transportør antas å være på rundt 20 000 kr per forsinkelse.

Alle disse kostnadene påløper ikke ved hver forsinkelse. I noen tilfeller vil en ekstra sjåfør sørge for at laksen blir levert til rett tid, og dermed slipper man kostnader med reklamasjoner. Tenker vi oss et tilfelle der man forsøker med ekstra sjåfør uten å greie å utlike forsinkelsen, kan heften på ferjekaien i verste fall innebære kortsetige merkostnader på vel 75 000 kr. Antar vi at verdien på en last er 500 000 kr, utgjør merkostnadene 15 % av verdien på lasten.
3.7 GENERALISERTE TRANSPORTKOSTNADER VED INTERMODALE TRANSPORTER

Når en benytter seg av flere transportmidler i en transportkjede har en tatt i bruk det som er gitt betegnelsen intermodale transporter. I Figur 2-7 er det presentert en prinsippskisse som viser sammenhengen mellom generaliserte transportkostnader og avstand ved intermodale transportløsninger. I figuren er omlastningskostnadene illustrert gjennom at de generaliserte transportkostnadene gjør et vertikalt skift tilsvarende avstanden O. I en rapport fra Transportøkonomisk institutt (Larsen, 2003) er omlastningskostnadene per parti fersk fisk oppgitt til å være på mellom 1 000 og 2 000 kr. Omlastningskostnaden utgjør ifølge Larsen (2003) 5 % av de totale transportkostnader og 0,5 % av eksportprisen.

I en studie av terminalstrukturen i Norge (Eidhammer m. fl., 2005) er det understretket at kostnader knyttet til lasting og lossing i en terminal skal gå til å dekke:

- Kapitalkostnader for utstyr på terminalen (f.eks. kraner, trucker, andre transportredskap og lagerutrustning).
- Driftskostnader for utstyr på terminalen.
- Vedlikeholdskostnader.
- Leie av terminalområde.
- Lønn til ansatte på terminalen (laste- og lossearbeidere og administrasjon).
- Fortjeneste.

I rapporten blir det oppgitt at den transportenhet som har lavest omlastningskostnad per tonn er semitrailere. Videre er omlastningskostnadene lavere i trafikkhavner enn i samlastterminaler26, noe som skyldes at det er mer arbeidsintensive tjenester inkludert i omlastningskostnadene i samlastterminaler enn i havnene (Eidhammer m.fl., 2005).

Omlastningskostnadene (i kr pr tonn) viser ifølge rapportskriverne (Eidhammer m.fl., 2005) en tendens til å avta med størrelsen på terminalen, opp til en størrelse på 100 000 tonn godsomslag pr år. Omlastningskostnadene er høyest ved de største samlastterminalene, noe som tyder på at det er stordriftsforderer opp til en viss størrelse, og at når denne størrelsen er nådd så er det ikke lenger mulig å hente ut ytterligere stordriftsforderer. Trafikkhavnene har heller ikke et klart mønster mht stordriftsforderer. For trafikkhavnene er det de som har et årlig godsomslag på mellom 100 000 og 500 000 tonn som har lavest omlastningskostnader.

I en "proceeding" til den niende "World Conference on Transport Research" med tittelen "Cost functions for freight transport in multimodal networks" presenterer forfatterne (Torrieri

26 Samlastterminaler er eid av transportoperatører med nasjonalt dekkende nettverk.
en tabell som viser gjennomsnittsverdier for vente- og håndteringstid i den italienske havnen Gioia Tauro. Verdiene er gjengitt i Tabell 3-43.

Tabell 3-43: Gjennomsnittsverdier for ventetid og håndteringstid av containere ved "modal overføring" (Torrieri m. fl., 2001).

<table>
<thead>
<tr>
<th>"Modal overføring"</th>
<th>Ventetid (timer)</th>
<th>Håndteringstid (timer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skip til skip</td>
<td>146</td>
<td>0,42</td>
</tr>
<tr>
<td>Skip til tog</td>
<td>12</td>
<td>0,36</td>
</tr>
<tr>
<td>Tog til skip</td>
<td>36</td>
<td>0,71</td>
</tr>
<tr>
<td>Skip til vei</td>
<td>12</td>
<td>0,55</td>
</tr>
<tr>
<td>Vei til skip</td>
<td>24</td>
<td>0,83</td>
</tr>
</tbody>
</table>

Årsaken til at overføringen fra et skip til et annet er den som genererer lengst ventetid ved terminalen er de strikte rutetabellene som avgjør når et skip ankommer terminalen for å plukke opp containerne.

Tidsbruken i samlastterminaler ved lasting og lossing av ulike typer kjøretøy er presentert i Tabell 3-44.

Tabell 3-44: Laste- og lossetider i samlastterminaler (Eidhammer m. fl., 2005).

<table>
<thead>
<tr>
<th></th>
<th>Laste-/lossetid (antall minutter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribusjonsbil</td>
<td>35</td>
</tr>
<tr>
<td>Containere</td>
<td>100</td>
</tr>
<tr>
<td>Semitrailer</td>
<td>129</td>
</tr>
<tr>
<td>Vogntog</td>
<td>141</td>
</tr>
</tbody>
</table>

Av Tabell 3-44 fremkommer det at det gjennomsnittlig tar 35 minutter å laste eller losse en distribusjonsbil på en samlastterminal. Å laste eller losse en container, i samme type havn, tar gjennomsnittlig 100 minutter, noe som er nesten tre ganger så lang tid som for en distribusjonsbil. Semitrailere og vogntog tar det henholdsvis 129 og 141 minutter å laste eller losse.

Mange transporter går i dag innom terminaler der de lastes om fra én transportbærer til en annen. Eidhammer m. fl. (2005) har gjennomført en studie der de presenterer tall for hvor lang tid det tar fra gods ankommer en terminal til det sendes videre fra terminalen. Forfatterne deler godset inn i stykkgods og partilast, terminalene deler de inn i samlastterminaler og trafikkhavner. I rapporten fremkommer det at stykkgods i samlastterminaler gjennomgående har en kortere gjennomløpstid i terminalen enn partilast. Gjennomløpstiden for stykkgods er på under 10 timer for stykkgods og på mellom 10 og 18 timer for partilast. Gjennom-
løpstidene i samlaster-terminalene innebærer dermed at godset i stor grad blir videresendt samme dag som det ankommer terminalen, eventuelt at det ligger over en natt. Stykksgod har en gjennomløpstime i trafikkhavnene som varierer med størrelsen på havnen; i små havner ligger gjennomløpstiden på ca. ett døgn, og i de største havnene ligger den opp mot 84 timer (tilsvarende 3,5 døgn). Eidhammer m. fl. (2005) forklarer den lange liggetiden for containere med kundeønsker og at det er lav lagerleie.

I Tabell 3-45 er det presentert resultater fra tre undersøkelser av laste- og lossekostnader som er gjennomført ved TØI (Eidhammer, 2004), SINTEF (Lervåg m.fl., 2003) og SAMPLAN (Ljungstrøm, 2001). TØI og SINTEF har hentet sine tall fra norske havner mens tallene fra SAMPLAN er fra et utvalg svenske havner. Tallene TØI presenterte i sin rapport omhandler omlasting og er hentet inn fra rederier og samlastere.

Tabell 3-45: Laste/lossekostnader i kr per tonn og kr per container i 2003 (Eidhammer, 2004).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stykkgods/partilast</td>
<td>Gj. snitt (kr/tonn)</td>
<td>Min-maks (kr/tonn)</td>
<td>Gj snitt (kr/tonn)</td>
</tr>
<tr>
<td>Container 20 fot</td>
<td>53</td>
<td>21-55</td>
<td>-</td>
</tr>
<tr>
<td>Container 40 fot</td>
<td>417</td>
<td>328-500</td>
<td>-</td>
</tr>
</tbody>
</table>

Transportutvikling i Narvik (Nerdal, 2003) har på grunnlag av bilpriser hentet fra Larsen (2003) beregnet pris for transport av fersk fisk mellom Fauske og Danmark i fire scenarier:

1. Transport med bil, hele veien med én sjåfør.
2. Transport med bil, hele veien med to sjåfører.
3. Transport til Fauske med bil, togtransport fra Fauske til Oslo der fisken igjen overføres til bil som med én sjåfør transporterer fisken til destinasjonen i Danmark.
4. Transport til Fauske med bil, togtransport fra Fauske til Oslo der fisken igjen overføres til bil som med to sjåfører transporterer fisken til destinasjonen i Danmark.

Årsaken til at rapportens forfattere foretok beregning av priser ved så vel én som to sjåfører på distansen Oslo-Danmark, er at hviletidsbestemmelsene legger begrensninger på hvor lenge en sjåfør kan kjøre sammenhengende. Bruk av to sjåfører medfører således at transporttiden reduseres, gjennom at én sjåfør hviler mens den andre kjører, men to sjåfører påfører også transportøren økete lønnskostnader.

27 Håndteringskostnader på dagtid.
28 Omregnet fra Euro basert på en omregningskurs på 8,65 NOK/EURO.
Prisene Transportutvikling beregnet seg frem til for fisketransporter mellom Fauske og Danmark er presentert i Tabell 3-46.

<table>
<thead>
<tr>
<th>Transportform</th>
<th>Pris (kr per kg fisk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bil med én sjåfør</td>
<td>1,62</td>
</tr>
<tr>
<td>Bil med to sjåfører</td>
<td>1,88</td>
</tr>
<tr>
<td>Tog / bil med én sjåfør</td>
<td>1,34</td>
</tr>
<tr>
<td>Tog / bil med to sjåfører</td>
<td>1,46</td>
</tr>
</tbody>
</table>

Ut fra beregningene til Transportutvikling (Nerdal, 2003) fremkommer det at på strekningen Fauske-Danmark er prisen på fisketransport lavest (målt i kr per kg fisk) ved bruk av det intermodale transportalternativet som involverer både bil og tog. Tabellen viser også at transportprisen blir høyere når bilen er bemannet av to sjåfører enn når det kun blir benyttet én, men en transportør vil ved valg av transportform også måtte ta hensyn til at transporttiden, på grunn kjøre- og hviletidsbestemmelser, blir høyere ved bruk av kun én sjåfør. Dette i sin tur bidrar til å øke godseier sine tidskostnader i forbindelse med transporten. Aktuell kunnskap om tidskostnader er presentert i avsnitt 3.2.

3.7.1 Spesielt om forflytning av containere

Siden containeren er den sentrale transportbæreren med unntak av transport av tørr- og våtbulk samt ulike spesialtransporter, gis her en særskilt omtale av containerbaserte transporter. Kapitlet er i sin helhet hentet fra Nerdal (2007).

Innledning

Containeren representerer mange fordeler i forhold til tidligere ”break bulk” transportmetoder. Bl.a. forenkler den omlasting, beskytter godset, fungerer som lager, kan enkelt spores med moderne teknologi m.v. Containeren reduserer kostnadene ved diskontinuitet i logistikkjeder (for eksempel omlasting) og er den sentrale enhet i intermodale transportkjeder. Etter hvert er også investeringskostnadene ved kjøp av containere redusert ved at produksjonen er overført til land med lavere arbeidskraftkostnader. I 2006 ble det håndtert mer enn 300 millioner TEU på de 100 største containerhavnene i verden.

Fremtiden og internasjonal utvikling

Containertransporter er den raskest voksende transportform og flere analytikere forventer en 2,5-3 dobbling i antall containere i løpet av de neste 20 år. Figuren nedenfor viser et anslag over fremtidig utvikling i det globale containermarkedet. Basistallene/prognosene er hentet
fra Global Insight og Transportutvikling AS har foretatt beregninger og laget grafikk. Figuren viser de nevnte 300 millioner containere. Dette tallet er imidlertid havnestatistikk, og denne avvikler betydelig fra de reelle transportvolumene som følge av beregningsmetodikken ved havnene. Figuren viser også containernes ”omløpshastighet” i forhold til havnestatistikk og reelle transportvolumer.

Internasjonalt, og spesielt i USA, viser det seg også at bruk av den tradisjonelle 20 fots containeren reduseres til fordel for større containere. I mange tilfeller er transportkostnaden for en 40 fot container tilnærmet den samme som en 20 fot container. En 40 fot container har omtrent det dobbelte innvendige volum som en 20 fot container, og transportkostnaden per volumenhet eller vektenhet inn i containeren blir derfor dramatisk redusert. Utviklingen mot enda større containere vises i figuren til venstre.

Infrastrukturmessig stilles det imidlertid helt andre krav til slike gigantcontainere enn det som kreves for en 20 fot container. Dette gjelder ikke bare løfte- og forflytningsutstyr, men også en annen veginfrastruktur enn det vi har de fleste steder i Norge.

En annen utviklingstrend som har revolusjonert utviklingen av bl.a. containertransporter på land (bane) er "double-stacking", dvs. at containere forflyttes i 2 høyer. Dette har dramatisk redusert kostnadene ved containertransporter i USA og bidratt til en betydelig vekst i containertransporter på jernbane i USA.

I de fleste land er det infrastrukturfordringer ved "double-stack" transporter på bane. Disse fordringene gjelder først og fremst begrensninger knyttet til fri høyde som følge av tunneler, broer og strømføringsanlegg, -men også vektbegrensninger.

Den overveiende del av verdens containertransporter transporteres sjøveien og mellom de store markede i Asia, Nord-Amerika og Sentral-Europa. En viktig internasjonal trend er at skipenes størrelse øker og det introduseres såkalte "mega-carrières". For få år tilbake hadde de største "ocean carriers" en kapasitet på 4 000-5 000 TEU. For et par år tilbake lanserte man skip som kunne transportere mer enn 8 000 TEU og i slutten av 2006 ble Emma Maersk levert til AP Møller (Maersk). Bildet nedenfor viser Emma Maersk. Skipet er nesten 100 meter lengre enn Eiffeltårnet er høyt og har teoretisk plass til over 14 000 TEU. Maersk regner imidlertid med en kapasitet på noe over 11 000 TEU som følge av vektbegrensninger og rederiets egen beregningsmetodikk.

Kilde: Maersk/AP Møller (billedmanipulasjon Transportutvikling AS).
Økningen i størrelsen på skipene har i betydelig grad redusert reders transportkostnader pr. container og sammenligner man et skip på 1 000 TEU og 7 000–8 000 TEU så halveres enhetskostnaden ved en gitt kapasitetsutnyttelse. I dag er 28 % av verdens skipsordrer knyttet til skip med en større kapasitet enn 8 000 TEU (Drewry Container Market Quarterly, Desember 2006)

Slike ”mega-carriere” kan imidlertid bare (per i dag) anløpe et fåtall havner i verden og de vil møte begrensninger i enkelte kanaler (for eksempel i Panama). De kan imidlertid trafikkere mellom USA og Europa (Transatlantisk) og mellom Europa og Asia (Suez og Malakka). Teoretisk vil de derfor kunne øke forskjellen i transportpris mellom disse største transportrutene og mer perifere containermarkeder som for eksempel feedertransporter langs norskekysten og ned til kontinentet.

Containertransporter i Norge

Norge ligger fortsatt etter mange andre land hvis man måler andelen av containertransporter som andel av det totale transportarbeidet eller per capita. Dette skyldes bl.a. forhold knyttet til næringsstruktur (bl.a. oljeprodukter som ikke er egnet til å transportere i container), men også at vellykkede containertransporter krever at infrastrukturen er tilrettelagt og at det er et tilbud av containere og transportmidler som kan transportere disse og at samlingsfunksjoner er tilrettelagt (mange aktører har små volum og en LCL-transport har ofte samme pris som en FCL transport).

I Nord-Norge er for eksempel mange havner ikke godt nok tilpasset containertransporter ved at de har liten plass, bygningsmasse/lager for nær kai (tilpasset stykk gods/gaffel-truck til/fra Hurtigruta), at de mangler utstyr for rasjonell håndtering m.v. Selv med små volumer er containertransporter relativt plasskrevende og for å gi størst mulig fleksibilitet m.h.t. skips typer er det ofte en fordel å ha nødvendig kran- og forflytningsutstyr. I dag har stort sett alle containerførende fartøyer som besøker havner i Nord-Norge egne ”gear” (skipskraner). Dette er fleksible fartøy og de er tilpasset små volumer. Fartøyene er også i mindre grad spesialfartøyer slik at de kan håndtere flere typer last (Multi-purpose = MPP) Større investeringer på land er imidlertid sjelden mulig ved små volumer, og mange steder i Norge krever slike investeringer at det utvikles intermodale knutepunkter som kan tiltrekke seg større mengder gods.
Norge er ikke tilknyttet de store "trade-lanes" med containere og transportene må normalt koples opp mot de større rutene for å kunne foreta transporter til for eksempel USA eller Asia. Den normale transportveien for en norsk bedrift som ønsker å benytte containere, er derfor å tilknytte seg de kontinentale havnene (for eksempel Rotterdam, Hamburg eller lignende) ved hjelp av mindre fartøyer. For norske bedrifter, og spesielt bedrifter i Nord-Norge, er ofte tilknytingskostnaden like stor eller større enn for eksempel en transatlantisk transport. De atlantiske transportprisene er markedsstyrt, de varierer og de påvirkes i betydelig grad av retningsbalansen. En transport fra Asia til Europa er for eksempel vesentlig dyrere enn en transport til Asia fra Europa.

Lave "deep-sea" priser vs. høyere tilknytingspriser (kundepriser ikke kostnader) langs kysten av Norge har lite med avstand å gjøre, siden tilknytingsavstanden kan være for eksempel 1/3 del av "deep-sea" avstanden. Årsaken er knyttet til forhold som konkurrancesituasjonen, store vs. små volumer, store vs. små båter, retningsbalanse og operasjonell organisering (for eksempel utnyttelse av utstyr, tilgang på containere og management).

Denne "avstandsulempen" knyttet til pris på transport av containere kan neppe løses fullt ut for norske bedrifter på en slik måte at kostnaden per container-km blir de samme langs kysten av Norge som mellom de store havnene. Transportene kan imidlertid forbedres ved flere virkemidler, bl.a. samordning av transportene, utvikling av intermodale knutepunkter (bl.a. med felles investeringer og utstyr), og gode regionale feedersystemer, utvikling av alternative transportruter (for eksempel alternative langbaserede ruter fra Norge mot øst) og gradvis tilpasning av infrastruktur og lastbærere.

3.8 GENERALISERTE TRANSPORTKOSTNADER I ET VERDIKJEDEPERSPEKTIV

I kapittel 2.3, innførte vi begrepet "generaliserte transportkostnader i et verdikjedeperspektiv" (G_V), der vi utvist formel (2.3) slik at det tas hensyn til "usikkerhetskostnader" (følgekostnader) til mottakerne av godset dersom dette blir forsinket. Slike problemstillinger diskuteres i Minken og Samstad (2006).

I rapporten "Verdien av raskere og mer pålitelig godstransport", (Minken og Samstad, 2006), har formålet vært å nærme seg beregninger av pålitelige kalkyleverdier for tid og forsinkelse i godstransporten gjennom å kvantifisere og verdsette effekten på sikkerhetslagre av redusert transporttid og mindre variasjon i denne. Dette innebærer at en analyserer, og forsøker å verdsette, hva redusert transporttid og mindre standardavvik i transporttiden er verdt ut over reduserte tidsavhengige transportkostnader og den sparte kapitalen ved å ha varer under transport. Det legges altså et verdikjedeperspektiv til grunn.

Tidsverdien består av tre ledd. Første ledd er de forventede tidsavhengige transportkostnadene. Andre ledd er den tidsavhengige verdiforringelsen og kostnaden ved å binde opp kapital i varer under transport (omtalt i avsnitt 2.1.3 som tidskostnader (k)). Tredje ledd er den marginale økningen i usikkerhetskostnadene når transporttiden øker med en time (omtalt i avsnitt 2.3 som usikkerhetskostnader (w)). Usikkerhetskostnadene er kostnadene ved å holde sikkerhetslager og kostnaden ved ikke å kunne levere i tide.

Størrelsen på det tredje leddet i tidsverdien og størrelsen på pålitelighetsverdien vurderer forfatterne i forhold til verdien på det andre leddet i tidsverdien. De viser med regneeksempler at verdien av å redusere standardavviket til transporttiden med en time, vil kunne være mellom 1 og 8 ganger kostnaden ved å ha varene under transport i en time, med de høyeste verdiene når ledetiden er som mest usikker, og de laveste verdiene når etterspørselen er usikker og ledetiden er relativt sikker, og med høye relative verdier når godset har lav verdi. Regneeksemplene antys at tillegget til tidsverdien på grunn av usikkerhet er relativt moderat.

I tillegg til å behandle lagerordrestyrt anskaffelse, behandles også kundeordrestyrt anskaffelse, dvs. anskaffelse og inntransport som først utløses når kunden har plassert en bestilling med avtalt leveringstidspunkt. Da oppstår det merkostnader først når leveringstidspunktet overskrides. Disse forsinkelseskostnadene kommer da i stedet for kostnadene ved å holde sikkerhetslager og kostnaden som oppstår når et kjøp ikke kan effektueres fra lager.

Rapporten berører disse problemstillingsene relativt overflatisk, og behandler primært biltransport langs hovedveg som er utsatt for kortvarige hendelser med mindre alvorlige
konsekvenser når det gjelder trafikkflyt og fremkommelighet. I et regneeksempel viser forfatterne at et tiltak som reduserer opprydningstiden etter en ulykke med 25 %, reduserer forventet forsinkelse per km med 44 %, og mer enn halverer variansen til forsinkelsen per km. I et annet regneeksempel fremkommer det at et tiltak som halverer sannsynligheten for at kjøreheftigheten må reduseres fra 80 km/t til 60 km/t (for eksempel ved bedre brøyteberedskap), reduserer forventet forsinkelse på en vegstrekning på 10 km med om lag 3 %.

3.9 MODELLVERKTØY

I dette avsnittet blir det gitt en presentasjon av de tre modellverktøyene NEMO, SAMGODS og LEFT. Dette er modeller for beregning av transportkostnader ved bruk av ulike transportmidler.

3.9.1 NEMO

Transportøkonomisk institutt presenterte i 2002 en ny versjon av Nettverksmodell for godstransport innen Norge og mellom Norge og utlandet (Vold m.fl., 2002). Nettverksmodellen tar utgangspunkt i at transportkjøpers transportkostnader består av to komponenter:

- Operative kostnader: transportørens tids- og distanseavhengige kostnader samt kostnader i forbindelse med lasting, lossing og omlasting.

- Kvalitative kostnader: vareeiers ikke-operative kostnader knyttet til forsinkelser, transporttid, ventetid ved frekvensavgang, degradering for ferskvare og faktorer som representerer de ulike transportmidlenes egnethet for ulike varegrupper.

Operative kostnader innenlandsk vegtransport

I utarbeidelsen av de operative kostnadene ved innenlandsk vegtransport har forfatterne tatt utgangspunkt bl.a. i en dieselpris på 5,37 kr pr liter sammen med bakgrunnsopplysninger fra SSBs Lastebiltellinger fra 1998 til 2000. For å finne årlige tidsavhengige kostnader har de benyttet SSBs kostnadsindeks kombinert med gjennomsnittlig driftstid pr kjøretøy som ble hentet fra SSBs Lastebiltelling (Vold m.fl., 2002).

Innenlandske distanse-, og tidsavhengige kostnader (operative kostnader) ved transport av ti varegrupper med lastebil er vist i Tabell 3-47.
Tabell 3-47: Innenlandske distanseavhengige (kr pr tonn og km) og tidsavhengige kostnader (kr pr tonn og time) for lastebil 1999.* (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th>Kostnad per tonnkm</th>
<th>Mat</th>
<th>Fisk</th>
<th>Termo</th>
<th>Maskin</th>
<th>Stykk</th>
<th>Tre</th>
<th>Masse</th>
<th>Kjemi</th>
<th>Malm</th>
<th>Olje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,362</td>
<td>0,252</td>
<td>0,300</td>
<td>0,485</td>
<td>0,422</td>
<td>0,318</td>
<td>0,264</td>
<td>0,301</td>
<td>0,263</td>
<td>0,299</td>
</tr>
<tr>
<td>Total kostnad per tonn og time</td>
<td>88,43</td>
<td>74,54</td>
<td>57,98</td>
<td>229,66</td>
<td>177,3</td>
<td>34,17</td>
<td>34,85</td>
<td>71,07</td>
<td>56,62</td>
<td>40,19</td>
</tr>
</tbody>
</table>

* I tidskostnadene inngår lønnskostnader, reparasjon og service, dekk/slanger, administrasjonskostnader, forsikring og andre drifts- og kapitalkostnader.

Operative kostnader utenlandsk vegtransport
Operative kostnader ved utenlandstransporter er beregnet på grunnlag av turdata hentet fra lastebiltellingen som refereres til utenlandskjøring (Vold m.fl., 2002) og presenteres i Tabell 3-48.

<table>
<thead>
<tr>
<th>Distanseavhengig kostnad</th>
<th>Mat</th>
<th>Fisk</th>
<th>Termo</th>
<th>Maskin</th>
<th>Stykk</th>
<th>Tre</th>
<th>Masse</th>
<th>Kjemi</th>
<th>Malm</th>
<th>Olje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,330</td>
<td>0,230</td>
<td>0,274</td>
<td>0,442</td>
<td>0,385</td>
<td>0,290</td>
<td>0,241</td>
<td>0,274</td>
<td>0,240</td>
<td>0,273</td>
</tr>
<tr>
<td>Tidsavhengig kostnad</td>
<td>23,20</td>
<td>20,30</td>
<td>20,53</td>
<td>42,59</td>
<td>25,00</td>
<td>11,40</td>
<td>10,96</td>
<td>16,77</td>
<td>17,00</td>
<td>15,07</td>
</tr>
</tbody>
</table>

Av Tabell 3-47 og Tabell 3-48 fremkommer det store forskjeller i de tidsavhengige kostnadene ved henholdsvis innenlandsk transport og ved transporter som går ut av landet. Som forklaring på dette blir høyere driftstid, høyere gjennomsnittslast per tur og høyere gjennomsnittshastighet trukket frem (Vold m.fl., 2002).

Operative kostnader innenriks sjøfart
Operative kostnader ved innenriks sjøfart er beregnet på grunnlag av sjøfartstellingen i 1993, som viser hvor stor andel av hver varegruppe som ble transportert med hver skipstype i 1993, som prosentandel av det totale transportarbeidet med skip (Vold m.fl., 2002). Det er også benyttet gjennomsnittspriser, hentet fra Hovi og Andersen (2001), på 3,20 kr for marin gassolje, 3,15 kr for spesialdestilat og 3,00 kr for tungolje.

For å finne den avstandsavhengige kostnaden for hver varegruppe er gjennomsnittlig drivstoffkostnad pr tonnkilometer for hver fartøysgruppe vektet i forhold til den andel av transportarbeidet som tilsvarende fartøysskåret kategorisiert av det samlede transportarbeidet for denne varegruppen.
Den tidsavhengige kostnaden har fremkommet ved å ta utgangspunkt i følgende forutsetninger (Vold m.fl., 2002):

– De tidsavhengige kostnadene fordeles over 10 timer per dag.
– De tidsavhengige kostnadene fordeles på mellom 253 og 317 dager per år avhengig av skipstype.
– Vareslagene fordeler seg på ulike skipstyper og størrelser etter mønster fra sjøfartstellingen i 1993, pr. transportert tonn.
– Kostnader er framskrevet fra 1996 til 1999 på grunnlag av Nasjonalregnskapsstatistikk for sjøfart i alt, og fordelingen av kostnadskomponenter.

Den tidsavhengige kostnaden er beregnet på grunnlag av årlige regnskapstall for innenriks leietransport i Norge som SSB publiserte i NOS 1998 Sjøfart.

Distanse- og tidsavhengig kostnad for skip i innenriksfart, fordelt på ti varegrupper, er presentert i Tabell 3-49.

Tabell 3-49: Distanseavhengig kostnad (kr pr tonnkilometer) og tidskostnader (kr pr tonn og time) for innenlandsk sjøtransport. 1999-kroner. (Vold m. fl., 2002).

<table>
<thead>
<tr>
<th></th>
<th>Mat</th>
<th>Fisk</th>
<th>Termo</th>
<th>Maskin</th>
<th>Stykk</th>
<th>Tre</th>
<th>Masse</th>
<th>Kjemi</th>
<th>Malm</th>
<th>Olje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanseavhengig</td>
<td>0,069</td>
<td>0,063</td>
<td>0,069</td>
<td>0,098</td>
<td>0,069</td>
<td>0,086</td>
<td>0,052</td>
<td>0,083</td>
<td>0,062</td>
<td>0,022</td>
</tr>
<tr>
<td>Tidsavhengig kostnader</td>
<td>10,58</td>
<td>13,80</td>
<td>4,34</td>
<td>18,08</td>
<td>14,88</td>
<td>1,27</td>
<td>3,32</td>
<td>2,52</td>
<td>3,63</td>
<td>7,87</td>
</tr>
</tbody>
</table>

Vi ser at de distanseavhengige kostnadene for innenriks sjøtransport, ikke overraskende, ligger betydelig lavere enn tilsvarende kostnader for biltransport.

Operative kostnader for riksvegferger
De operative kostnadene for riksvegferger er beregnet på grunnlag av riksregulativet for ferjetaksjer. Sammen med tilgjengelige rabatter og gjennomsnittlig transportmenge per lastebiltur gir det en kostnad pr tonn og kilometer for riksvegferger som vist i Tabell 3-50.
Table 3-50: Costs per ton and kilometer for national ferries. 1999-kroner. (Vold m. fl., 2002).

<table>
<thead>
<tr>
<th>Varegrupper</th>
<th>Gjennomsnittlig lastevekt pr tur(tonn)</th>
<th>Konstantledd pr tonn</th>
<th>Distanseavhengig ledd pr tonn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matvarer</td>
<td>5,06</td>
<td>20</td>
<td>1,64</td>
</tr>
<tr>
<td>Fisk</td>
<td>5,71</td>
<td>18</td>
<td>1,45</td>
</tr>
<tr>
<td>Termovarer</td>
<td>7,57</td>
<td>14</td>
<td>1,09</td>
</tr>
<tr>
<td>Transportmidler og maskiner</td>
<td>2,28</td>
<td>45</td>
<td>3,63</td>
</tr>
<tr>
<td>Diverse stykkgods</td>
<td>2,92</td>
<td>35</td>
<td>2,83</td>
</tr>
<tr>
<td>Tømmer og trelast</td>
<td>14,25</td>
<td>7</td>
<td>0,58</td>
</tr>
<tr>
<td>Mineraler i steinprodukter</td>
<td>14,38</td>
<td>7</td>
<td>0,58</td>
</tr>
<tr>
<td>Kjemiske produkter</td>
<td>6,50</td>
<td>16</td>
<td>1,27</td>
</tr>
<tr>
<td>Malmer og metallavfall</td>
<td>8,55</td>
<td>12</td>
<td>0,97</td>
</tr>
<tr>
<td>Flytende bulk</td>
<td>12,64</td>
<td>8</td>
<td>0,65</td>
</tr>
<tr>
<td>Snitt</td>
<td>6,08</td>
<td>17</td>
<td>1,36</td>
</tr>
</tbody>
</table>

In addition to the distance-dependent costs, there are also time-dependent costs associated with the vehicle, which also apply when the vehicle is on the ferry.

Operative costs for international ferries

To find the operative costs for international ferries, Vold m.fl. (2002) took as their starting point distance- and time-dependent costs from the first version of the international delversion of NEMO (Madslien m.fl., 2000), corrected for the fact that different goods use the vehicle’s capacity differently. The reasonableness of the ferry costs was checked against transport tariffs obtained from the 1999 route book for Norway. Operative costs for international ferries are presented in Table 3-51.

Table 3-51: Distance- (kr pr. tonn og km) and time-dependent costs (kr pr. tonn og time) for ferry transport to and from abroad. 1999-kroner. (Vold m. fl., 2002).

<table>
<thead>
<tr>
<th></th>
<th>Mat</th>
<th>Fisk</th>
<th>Termo</th>
<th>Maskin</th>
<th>Stykks</th>
<th>Tre</th>
<th>Masse</th>
<th>Kjemi</th>
<th>Malm</th>
<th>Olje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance-dependent costs</td>
<td>0,025</td>
<td>0,020</td>
<td>0,020</td>
<td>0,033</td>
<td>0,024</td>
<td>0,015</td>
<td>0,019</td>
<td>0,025</td>
<td>0,023</td>
<td>0,019</td>
</tr>
<tr>
<td>Time-dependent costs</td>
<td>14,78</td>
<td>11,85</td>
<td>11,62</td>
<td>19,40</td>
<td>13,83</td>
<td>8,98</td>
<td>11,10</td>
<td>14,82</td>
<td>13,63</td>
<td>11,05</td>
</tr>
</tbody>
</table>

Operative costs for railway transport

In the work to calculate the operative costs for railway transport, a diesel price of 1,90 kr in 1999 and an electricity price of 0,30 kr per kWh. From different goods groups, the railway transport was treated as the distance-dependent costs for inland and international

66
togtransport beregnet på grunnlag av totalt energi- og dieselforbruk for godstog i 1999, fra NSBs miljøregnskap (NSB BA, 2000). Avgifter på til sammen 0,012 kr/tkm er også tatt med i de distanseavhengige kostnadene ved jernbanetransport. Den tidsavhengige kostnaden er beregnet på grunnlag av transporttariffene, ved å trekke den distanseavhengige kostnaden ut av transporttariffen minus maksimal rabatt (Vold m.fl., 2002). Det er videre tatt utgangspunkt i en gjennomsnittlig vekt per container på 12 tonn, og differansen mellom transporttariff og distanseavhengig kostnad er for hver relasjon dividert med transporttiden, for å få et anslag på tidsavhengig kostnad på den enkelte relasjon. For å finne gjennomsnittlig tidskostnad på alle relasjoner er det benyttet et vektet gjennomsnitt av tidsavhengig kostnad på den enkelte relasjon, der transportert mengde på den enkelte relasjon er benyttet som vekt. Den tidsavhengige kostnad per varegruppe er deretter funnet ved å korrigere verdiene med det relative forholdstallet mellom gjennomsnittlig kapasitetsutnyttelse for hver varegruppe og gjennomsnittlig kapasitetsutnyttelse for alle transporter. En oversikt over distanse- og tidsavhengige kostnader for ti ulike vareslag ved jernbanetransport innenlands og utenlands er presentert i Tabell 3-52.

Tabell 3-52: Distanseavhengige (kr pr tonn og km) og tidsavhengige (kr pr tonn og time) kostnader etter varegruppe for jernbanetransport. 1999-kroner. (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th></th>
<th>Mat</th>
<th>Fisk</th>
<th>Termo</th>
<th>Maskin</th>
<th>Stykk</th>
<th>Tre</th>
<th>Masse</th>
<th>Kjemi</th>
<th>Malm</th>
<th>Olje</th>
<th>Snitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distanseavhengig kostnad innland</td>
<td>0,034</td>
<td>0,035</td>
<td>0,032</td>
<td>0,040</td>
<td>0,038</td>
<td>0,028</td>
<td>0,026</td>
<td>0,034</td>
<td>0,036</td>
<td>0,028</td>
<td>0,033</td>
</tr>
<tr>
<td>Distanseavhengig kostnad utland</td>
<td>0,034</td>
<td>0,032</td>
<td>0,032</td>
<td>0,045</td>
<td>0,036</td>
<td>0,027</td>
<td>0,026</td>
<td>0,031</td>
<td>0,030</td>
<td>0,026</td>
<td>0,033</td>
</tr>
<tr>
<td>Tidsavhengig kostnad innland</td>
<td>10,15</td>
<td>10,72</td>
<td>9,29</td>
<td>12,99</td>
<td>12,29</td>
<td>7,65</td>
<td>6,52</td>
<td>10,31</td>
<td>11,23</td>
<td>7,40</td>
<td></td>
</tr>
<tr>
<td>Tidsavhengig kostnad utland</td>
<td>11,86</td>
<td>9,51</td>
<td>9,32</td>
<td>15,57</td>
<td>11,10</td>
<td>7,21</td>
<td>6,70</td>
<td>8,94</td>
<td>8,22</td>
<td>6,67</td>
<td></td>
</tr>
</tbody>
</table>

Operative kostnader ved omlasting mellom transportmidler

Ved beregning av omlastningskostnader er det foretatt et skille mellom fersk og frossen fisk, der frossen fisk er plassert i varegruppe 11. De ti øvrige gruppende er fra 1 til 10; mat, fersk fisk, termo, maskiner, styrkkgods, tre, masse, kjemi, malm og olje.

Omlastningskostnaden (kr per tonn) har Vold m.fl. (2002) beregnet på grunnlag av en terminalundersøkelse gjennomført av SINTEF (Lervåg m.fl., 2001) der forfatterne estimerer omlastningskostnaden for styrkkgods og partilaster.

Verdiene SINTEF kom frem til ble i NEMO benyttet ved å klassifisere verdiene for partilast (slik SINTEF estimerte disse) som bulkvarer og ved å klassifisere et gjennomsnitt av
omlastingskostnadene for partilast og stykkegods som stykkgodsvarer. Ved i tillegg å benytte korreksjonsfaktorer blant annet på grunnlag av andel farlig gods i de enkelte varegrupper beregnet Vold m.fl. (2002) seg frem til de omlastningskostnader som er presentert i Tabell 3-53.

Tabell 3-53: Beregnet omlastningskostnad (kr pr. tonn). (Vold m. fl., 2002).

<table>
<thead>
<tr>
<th>Varegruppe</th>
<th>Lastebil-Tog</th>
<th>Lastebil-Sjø</th>
<th>Tog-Sjø</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6 og 11</td>
<td>133</td>
<td>149</td>
<td>169</td>
</tr>
<tr>
<td>7-10</td>
<td>20</td>
<td>53</td>
<td>73</td>
</tr>
<tr>
<td>Korreksjonsfaktor</td>
<td>6,6</td>
<td>2,8</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Tidsavhengig kostnad ved omlasting er beregnet ved å ta utgangspunkt i de tidsavhengige kostnadene (som er presentert i Tabell 3-47, Tabell 3-48, Tabell 3-49, Tabell 3-51 og Tabell 3-52). Det er videre tatt som en forutsetning at det går med like lang tid lasting som til lossing, noe som innebærer at gjennomsnittlig tidsavhengig kostnad ved omlasting fremkommer ved å benytte et gjennomsnitt av tidskostnaden for det transportmiddel det losses av og det transportmiddel det lastes på. Det er kun beregnet gjennomsnittsverdier som er felles for alle varegrupper. Kostnadene presenteres i Tabell 3-54.

Tabell 3-54: Beregnet tidsavhengig kostnad ved transportmidler bundet i terminal (kr pr tonntime). (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th>Transportmidler</th>
<th>Innenriks</th>
<th>Utenriks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lastebil-tog</td>
<td>47</td>
<td>15</td>
</tr>
<tr>
<td>Lastebil-innenriks sjø</td>
<td>46</td>
<td>14</td>
</tr>
<tr>
<td>Tog-innenriks sjø</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Lastebil-bilferge</td>
<td>Inngår ikke</td>
<td>18</td>
</tr>
<tr>
<td>Lastebil-bulk</td>
<td>Inngår ikke</td>
<td>8</td>
</tr>
<tr>
<td>Lastebil-linjefart</td>
<td>Inngår ikke</td>
<td>12</td>
</tr>
<tr>
<td>Tog-jernbaneferge</td>
<td>Inngår ikke</td>
<td>13</td>
</tr>
<tr>
<td>Tog-bulk</td>
<td>Inngår ikke</td>
<td>4</td>
</tr>
<tr>
<td>Tog-linjefart</td>
<td>Inngår ikke</td>
<td>6</td>
</tr>
<tr>
<td>Innenriks sjøfart-bulk</td>
<td>Inngår ikke</td>
<td>2</td>
</tr>
<tr>
<td>Innenriks sjøfart-linjefart</td>
<td>Inngår ikke</td>
<td>6</td>
</tr>
</tbody>
</table>

Lervåg m.fl. (2001) presenterer estimerte verdier for hvor lang tid omlasting tar ved en terminal ut fra en antagelse om at terminalbehandlingstiden representerer laste-/lossetid. Vold m.fl (2002) har benyttet gjennomsnittet av gods- og partilastverdiene for omlastnings-

Tabell 3-55: Estimert laste- og lossetid (antall timer) på varegruppenivå (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th>Vare</th>
<th>Lastebil-tog</th>
<th>Lastebil-sjø</th>
<th>Tog-sjø</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6 og 11</td>
<td>0,21</td>
<td>0,18</td>
<td>0,23</td>
</tr>
<tr>
<td>7-10</td>
<td>0,06</td>
<td>0,20</td>
<td>0,26</td>
</tr>
<tr>
<td>Korreksjonsfaktor</td>
<td>3,40</td>
<td>0,90</td>
<td>0,87</td>
</tr>
</tbody>
</table>

Tabell 3-56: Håndteringskostnad og laste/lossetid i en senteroide (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th>Vare</th>
<th>Håndteringskostnad (kr/tonn)</th>
<th>Laste-/lossetid (timer/tonn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat</td>
<td>5,37</td>
<td>0,37</td>
</tr>
<tr>
<td>Fersk og flokket fisk</td>
<td>5,37</td>
<td>0,20</td>
</tr>
<tr>
<td>Termo</td>
<td>5,37</td>
<td>0,27</td>
</tr>
<tr>
<td>Maskin</td>
<td>13,96</td>
<td>0,35</td>
</tr>
<tr>
<td>Stykk</td>
<td>11,38</td>
<td>0,38</td>
</tr>
<tr>
<td>Tre</td>
<td>6,52</td>
<td>0,08</td>
</tr>
<tr>
<td>Masse</td>
<td>5,72</td>
<td>0,03</td>
</tr>
<tr>
<td>Kjemi</td>
<td>5,72</td>
<td>0,28</td>
</tr>
<tr>
<td>Malm</td>
<td>5,72</td>
<td>0,32</td>
</tr>
<tr>
<td>Olje</td>
<td>4,58</td>
<td>0,15</td>
</tr>
</tbody>
</table>
Kvalitative kostnader

Vi har tidligere i kapittelet sett at nettverksmodellen (NEMO) tar utgangspunkt i at transport-kjøpers transportkostnader består av operative og kvalitative kostnader. De kvalitative kostnadene består av vareeiers ikke-operative kostnader knyttet til forsinkelser, transporttid, ventetid ved frekvensavgang, forringelse av ferskvarer og faktorer som representerer de ulike transportmidlenes egenthet for ulike varegrupper.

Tabell 3-57: Vareverdi og tidsverdi for ulike varegrupper. Kr pr kg og kr pr tonn og time (Vold m.fl., 2002).

<table>
<thead>
<tr>
<th>Vareverdi (kr pr kg)</th>
<th>Kapitalkostnad (kr pr tonn og time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
<td>Eksport</td>
</tr>
<tr>
<td>Mat</td>
<td>6,89</td>
</tr>
<tr>
<td>Fisk</td>
<td>10,29</td>
</tr>
<tr>
<td>Termo</td>
<td>9,00</td>
</tr>
<tr>
<td>Maskin</td>
<td>99,86</td>
</tr>
<tr>
<td>Stykk</td>
<td>17,45</td>
</tr>
<tr>
<td>Tre</td>
<td>1,05</td>
</tr>
<tr>
<td>Masse</td>
<td>0,68</td>
</tr>
<tr>
<td>Kjemi</td>
<td>3,55</td>
</tr>
<tr>
<td>Malm</td>
<td>3,39</td>
</tr>
<tr>
<td>Olje</td>
<td>1,18</td>
</tr>
<tr>
<td>Sum</td>
<td>7,97</td>
</tr>
</tbody>
</table>

3.9.2 SAMGODS

I Tabell 3-58 er gjennomsnittsverdiene for STAN-systemets ”operative lenkekostnader” presentert.

Tabell 3-58: Kalkyleparametre i STAN-systemet for operative lenkekostnader. Pris i SEK per 1. jan 2001

<table>
<thead>
<tr>
<th>Transportmiddel</th>
<th>Kr/tonnkm (a)</th>
<th>Kr/tonntime (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veg-lastebil med slep</td>
<td>0,1379</td>
<td>11,0774</td>
</tr>
<tr>
<td>Veg-lastebil uten slep</td>
<td>0,4070</td>
<td>41,7546</td>
</tr>
<tr>
<td>Jernbane-standard</td>
<td>0,1070</td>
<td>4,7400</td>
</tr>
<tr>
<td>Jernbane-fjerntog</td>
<td>0,0740</td>
<td>2,4300</td>
</tr>
<tr>
<td>Jernbane-kombi</td>
<td>0,0970</td>
<td>3,7900</td>
</tr>
<tr>
<td>Sjøfart-innenriks</td>
<td>0,0085</td>
<td>0,8010</td>
</tr>
<tr>
<td>Sjøfart-Europa</td>
<td>0,0120</td>
<td>1,0500</td>
</tr>
<tr>
<td>Sjøfart-Over sea</td>
<td>0,0185</td>
<td>2,0270</td>
</tr>
<tr>
<td>Sjøfart-”lastebilferge”</td>
<td>0,0513</td>
<td>7,1230</td>
</tr>
<tr>
<td>Sjøfart-”jernbaneferge”</td>
<td>0,0427</td>
<td>6,8490</td>
</tr>
<tr>
<td>Sjøfart-”innre vatten”</td>
<td>0,0455</td>
<td>2,9760</td>
</tr>
<tr>
<td>Fly-Airbus A300B4-200F</td>
<td>0,7421</td>
<td>1 095</td>
</tr>
<tr>
<td>Fly-Boeing 747-400F</td>
<td>0,5593</td>
<td>1 126</td>
</tr>
</tbody>
</table>

I STAN-systemet, som er en idealisert modellverden, er prisen for en transport, utenom kostnader til lasting, lossing og omlasting, gitt ved formelen:

Operativ lenkekostnad (=transportpris) = (a*d)+(b* \(\frac{d}{v} \))

Hvor:

a: hentes fra Tabell 3-58
b: hentes fra Tabell 3-58
d: transportens distanse
v: transportens gjennomsnittshastighet

29 Prisene er uten skattefaktor I, men inklusive skatter og avgifter. Skattefaktoren er utelatt fordi en eventuell inkludering ville forstyrret balansen mellom transporttypene ettersom transporttypenes skatteandeler varierer (SIKA, 2002).
Verdiene for kostnader knyttet til omlastning som benyttes i STAN er gjengitt i Tabell 3-59.

Tabell 3-59: Omlastningskostnad for ulike transportmiddelkombinasjoner, kr/tonn. (Eks. skattefaktor I) (SIKA, 2002).

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
<th>y</th>
<th>k</th>
<th>s</th>
<th>e</th>
<th>o</th>
<th>m</th>
<th>i</th>
<th>v</th>
<th>f</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veg-lastebil (i)</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>70</td>
<td>70</td>
<td>25</td>
<td>70</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jernbane-standard (j)</td>
<td>5</td>
<td>2,5</td>
<td>5</td>
<td>70</td>
<td>70</td>
<td>40</td>
<td>70</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jernbane-fjern (y)</td>
<td>2,5</td>
<td>2,5</td>
<td>70</td>
<td>70</td>
<td>40</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jernbane-kombi (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjøfart-innenriks (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjøfart-Europa (e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjøfart-Over sea (o)</td>
<td></td>
</tr>
<tr>
<td>Sjøfart-"lastebilferge” (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjøfart-"jernbaneferge” (i)</td>
<td></td>
</tr>
<tr>
<td>Sjøfart-"innre vatten” (v)</td>
<td></td>
</tr>
<tr>
<td>Fly-Airbus A300B4-200F (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Fly-Boeing 747-400F (x)</td>
<td></td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

For å beregne de operative kostnadene innenfor luftfarten, blir det i STAN, i tillegg til verdiene i Tabell 3-58, tatt hensyn til kostnadene ved start og landing på lufthavnene. SIKA har presentert en oversikt over disse kostnadene og kostnadene ved et utvalg lufthavner er gjengitt i Tabell 3-60.

Tabell 3-60: Gjennomsnittlige kalkyleparametre i SAMGODS for flytraffikkens start- og landingskostnad i kr/tonn. Pris i SEK per 2. juli 2001. (Eks skattefaktor I). (SIKA, 2002).

<table>
<thead>
<tr>
<th>Lufthavn</th>
<th>Airbus A300B4-200F</th>
<th>Boeing 747-400F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athen</td>
<td>316</td>
<td>31<sup>30</sup></td>
</tr>
<tr>
<td>Amsterdam</td>
<td>463</td>
<td>463</td>
</tr>
<tr>
<td>Stockholm, Arlanda</td>
<td>377</td>
<td>358</td>
</tr>
<tr>
<td>Bryssel</td>
<td>122</td>
<td>226</td>
</tr>
<tr>
<td>Paris</td>
<td>315</td>
<td>294</td>
</tr>
<tr>
<td>Køln</td>
<td>282</td>
<td>350</td>
</tr>
<tr>
<td>Moskva, Domodedovo</td>
<td>398</td>
<td>356</td>
</tr>
<tr>
<td>Dublin</td>
<td>521</td>
<td>466</td>
</tr>
<tr>
<td>Dubai</td>
<td>192</td>
<td>179</td>
</tr>
<tr>
<td>Roma</td>
<td>348</td>
<td>312</td>
</tr>
</tbody>
</table>

³⁰ Verdiene avviker såpass mye fra tilsvarende verdi på de øvrige lufthavner at verdien kan være feil.
Ved beregning av kostnader knyttet ved flytransport i SAMGODS skal verdiene fra Tabell 3-60 settes inn på siste lenke i hver separat flygning fra opprinnelsesflyplassen. Dette innebærer at flyene kun avgiftsbelegges i en retning.

Til bruk i STAN er det det for lastebiler presentert tall, for avstandskostnader (UV1) og tidskostnader (UV2), som er brutt ned på hva slags varer lastebilene transporterer.

\[
UV1 = \frac{\text{Bevegelseskostnad per år}}{Kjørestrekning per år} * \frac{\text{gjennomsnittslast per kjøretøy}}{\text{Kjørestrekning per år}}
\]

\[
UV2 = \frac{\text{Fast kostnad per år}}{Kjørestrekning per år} * \frac{\text{Gjennomsnittslast per kjøretøy}}{\text{Kjørestrekning per år}}
\]

Tabell 3-61: Kalkyleparametre i STAN-systemet for avstands- og tidsavhengige kostnader for ulike varegrupper ved transport med lastebil med slep. Pris i SEK per 1. januar 2001 (eks. skattefaktor I). (SIKA, 2002).

<table>
<thead>
<tr>
<th></th>
<th>UV1 (kr/tonnkm)</th>
<th>UV2 (kr/tonntime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordbruksvarer</td>
<td>0,1426</td>
<td>9,1496</td>
</tr>
<tr>
<td>Rundvirke</td>
<td>0,1544</td>
<td>19,4492</td>
</tr>
<tr>
<td>Trevarer</td>
<td>0,1268</td>
<td>14,2695</td>
</tr>
<tr>
<td>Næringsmidler</td>
<td>0,1326</td>
<td>8,5214</td>
</tr>
<tr>
<td>Råolje/kull</td>
<td>0,1528</td>
<td>18,8851</td>
</tr>
<tr>
<td>Oljeprodukter/tjære</td>
<td>0,1651</td>
<td>14,3161</td>
</tr>
<tr>
<td>Jernmalm/skrot</td>
<td>0,1105</td>
<td>11,0077</td>
</tr>
<tr>
<td>Stålprodukter</td>
<td>0,1268</td>
<td>8,6527</td>
</tr>
<tr>
<td>Papir/masse</td>
<td>0,1209</td>
<td>8,8937</td>
</tr>
<tr>
<td>Jord/sten/bygg</td>
<td>0,1420</td>
<td>21,1278</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>0,1302</td>
<td>10,2923</td>
</tr>
<tr>
<td>Ferdige produkter</td>
<td>0,1381</td>
<td>7,8120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varegruppe</th>
<th>UV1 (kr/tonnkilometer)</th>
<th>UV2 (kr/tonntime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordbruk</td>
<td>0,6924</td>
<td>60,29</td>
</tr>
<tr>
<td>Rundvirke</td>
<td>0,8713</td>
<td>98,50</td>
</tr>
<tr>
<td>Trevarer</td>
<td>0,3523</td>
<td>42,97</td>
</tr>
<tr>
<td>Næringsmidler</td>
<td>0,8099</td>
<td>49,51</td>
</tr>
<tr>
<td>Råolje/kull</td>
<td>0,5907</td>
<td>12,03</td>
</tr>
<tr>
<td>Oljeprodusker/tjære</td>
<td>0,8713</td>
<td>111,78</td>
</tr>
<tr>
<td>Jernmalm/skrot</td>
<td>0,9673</td>
<td>111,25</td>
</tr>
<tr>
<td>Stålprodukter</td>
<td>0,8047</td>
<td>83,27</td>
</tr>
<tr>
<td>Papir/masse</td>
<td>0,6659</td>
<td>57,01</td>
</tr>
<tr>
<td>Jord/sten/bygg</td>
<td>0,7641</td>
<td>115,78</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>0,4384</td>
<td>35,35</td>
</tr>
<tr>
<td>Ferdige produkter</td>
<td>0,2809</td>
<td>20,14</td>
</tr>
</tbody>
</table>

Kostnader sjøtransport

For godstransport sjøveien er kostnadene i SAMGODS delt inn i 6 forskjellige fartøystyper og 13 varegrupper.

De seks fartøyskategoriene er:
- Innenriks kystfart (s): Solid bulk, Lo/Lo og flytende bulk
- Europeisk nærjøfart (e): Solid bulk, Lo/Lo, flytende bulk, containerfartøy og R0/Ro
- Utenriks ”oceansjøfart” (o): Solid bulk, Lo/Lo, flytende bulk og containerfartøy
- Indre sjøveg (v): Indre sjøveg
- Lastebilferge (m): Ro/Ro-ferge
- Jernbaneferge (i): Jernbaneferge

Formlene som er brukt for avstandskostnader (UV1) og tidskostnader (UV2) er:

\[
UV1 = \frac{Bunker forbruk (tonn / døgn) \times Bunker pris (kr / tonn)}{Fart (knop) \times 1,85 km \times Driftstimer (timer / døgn) \times Gjennomsnittlast (tonn)}
\]

\[
UV2 = \frac{Rater(kr / døgn)}{Driftstimer(timer / døgn) \times Gjennomsnittlast(tonn)}
\]

Avstandskostnadene og tidskostnadene som benyttes i SAMGODS er presentert i Tabell 3-63 og Tabell 3-64.
Tabell 3-63: Avstandskostnader (UV1) i SAMGODS systemet, i SEK/tonnm. Priser i SEK per 2001. (Eks. skattefaktor I). (SIKA, 2002).

<table>
<thead>
<tr>
<th></th>
<th>Innenriks kystfart</th>
<th>Europeisk nærsjøfart</th>
<th>Utenriks oceansjøfart</th>
<th>Indre sjoveg</th>
<th>Lastebilferge</th>
<th>Jernbaneferge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordbruk</td>
<td>0,0092</td>
<td>0,0124</td>
<td>0,0155</td>
<td>-</td>
<td>-</td>
<td>0,0455</td>
</tr>
<tr>
<td>Rundvirke</td>
<td>0,0103</td>
<td>0,0124</td>
<td>0,0155</td>
<td>-</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Trevarer</td>
<td>0,0116</td>
<td>0,0166</td>
<td>0,0214</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Næringsmidler</td>
<td>0,0116</td>
<td>0,0158</td>
<td>0,0284</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Råolje/kull</td>
<td>0,0038</td>
<td>0,0041</td>
<td>0,0088</td>
<td>-</td>
<td>-</td>
<td>0,0455</td>
</tr>
<tr>
<td>Oljeprodukter/tjære</td>
<td>0,0047</td>
<td>0,0045</td>
<td>0,0088</td>
<td>-</td>
<td>-</td>
<td>0,0455</td>
</tr>
<tr>
<td>Jernmalm/skrot</td>
<td>0,0038</td>
<td>0,0041</td>
<td>0,0067</td>
<td>-</td>
<td>-</td>
<td>0,0455</td>
</tr>
<tr>
<td>Stålprodukter</td>
<td>0,0116</td>
<td>0,0165</td>
<td>0,0284</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Papir/masse</td>
<td>0,0116</td>
<td>0,0164</td>
<td>0,0252</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Jord/sten/bygg</td>
<td>0,0057</td>
<td>0,0082</td>
<td>0,0089</td>
<td>-</td>
<td>-</td>
<td>0,0455</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>0,0071</td>
<td>0,0141</td>
<td>0,0171</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Ferdige produkter</td>
<td>0,0116</td>
<td>0,0157</td>
<td>0,0272</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
<tr>
<td>Transit</td>
<td>0,0077</td>
<td>0,0151</td>
<td>0,0284</td>
<td>0,0513</td>
<td>0,0427</td>
<td>0,0455</td>
</tr>
</tbody>
</table>

Tabell 3-64: Tidsavhengig kostnad (UV2) i SAMGODS systemet, i SEK/tonntime. Priser i SEK per 2001. (Eks. skattefaktor I). (SIKA, 2002).

<table>
<thead>
<tr>
<th></th>
<th>Innenriks kystfart</th>
<th>Europeisk nærsjøfart</th>
<th>Utenriks oceansjøfart</th>
<th>Indre sjoveg</th>
<th>Lastebilferge</th>
<th>Jernbaneferge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordbruk</td>
<td>0,8588</td>
<td>1,0714</td>
<td>1,2500</td>
<td>-</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Rundvirke</td>
<td>0,9481</td>
<td>1,0714</td>
<td>1,2500</td>
<td>-</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Trevarer</td>
<td>1,0714</td>
<td>1,4509</td>
<td>2,2600</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Næringsmidler</td>
<td>1,0714</td>
<td>1,3465</td>
<td>3,4722</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Råolje/kull</td>
<td>0,3401</td>
<td>0,3571</td>
<td>0,9352</td>
<td>-</td>
<td>-</td>
<td>2,9762</td>
</tr>
<tr>
<td>Oljeprodukter/tjære</td>
<td>0,5952</td>
<td>0,5357</td>
<td>0,9444</td>
<td>-</td>
<td>-</td>
<td>2,9762</td>
</tr>
<tr>
<td>Jernmalm/skrot</td>
<td>0,3401</td>
<td>0,3571</td>
<td>0,5000</td>
<td>-</td>
<td>-</td>
<td>2,9762</td>
</tr>
<tr>
<td>Stålprodukter</td>
<td>1,0714</td>
<td>1,3799</td>
<td>3,4722</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Papir/masse</td>
<td>1,0714</td>
<td>1,3919</td>
<td>2,9167</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Jord/sten/bygg</td>
<td>0,5189</td>
<td>0,7044</td>
<td>0,6875</td>
<td>-</td>
<td>-</td>
<td>2,9762</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>0,7452</td>
<td>1,2811</td>
<td>1,9216</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Ferdige produkter</td>
<td>1,0714</td>
<td>1,3711</td>
<td>3,2702</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
<tr>
<td>Transit</td>
<td>0,7058</td>
<td>1,3333</td>
<td>3,4722</td>
<td>7,1225</td>
<td>6,8493</td>
<td>2,9762</td>
</tr>
</tbody>
</table>

Kostnader jernbanetransporter
Gjennomsnittlige avstands- og tidsavhengige kostnader som benyttes ved jernbanetransporter i SAMGODS er presentert i Tabell 3-65.
Tabell 3-65: Gjennomsnittlige avstands- og tidsavhengige kostnader i SAMGODS systemet. SEK per tonnkilometer og tonntime. Priser per 1. januar 2001 (Eks. skattefaktor 1). (SIKA, 2002).

<table>
<thead>
<tr>
<th>Transportmiddel</th>
<th>Avstandsavhengig kostnad Kr/tonnkm</th>
<th>Tidsavhengig kostnad Kr/tonntime</th>
</tr>
</thead>
<tbody>
<tr>
<td>”Vagnslast“</td>
<td>0,107</td>
<td>4,74</td>
</tr>
<tr>
<td>”Systemtåg“</td>
<td>0,074</td>
<td>2,43</td>
</tr>
<tr>
<td>”Kombitåg“</td>
<td>0,097</td>
<td>3,79</td>
</tr>
</tbody>
</table>

Kostnader flytransporter

I kostnadene for flytransporter er det i SAMGODS tatt utgangspunkt i fire kostnadskategorier:

Avstandsavhengig kostnad, UV1, fremkommer gjennom:

\[
UV1 = \frac{"Befegelseskostnad"}{Fløyet strekning per år * Nettolast per avgang}
\]

Tidsavhengig kostnad, UV2, fremkommer gjennom:

\[
UV2 = \frac{Fast kostnad}{Driftstimer per år * Nettolast per avgang}
\]

Godshåndteringskostnad, nodekostnad UT1, fremkommer gjennom:

\[
UT1 = \frac{Godshåndteringskostnad}{Nettolast per år}
\]

Start og landingskostnad (flyplassavgift), fremkommer gjennom (ex Arlanda):

\[
Arlanda = \frac{Start – og landsavgift per flyplass (f.eks. Arlanda)}{Nettolast per fly}
\]

For SAMGODS er det utarbeidet gjennomsnittskostnader for UV1, UV2 og UT1. Verdiene er gjengitt i Tabell 3-66.
3.9.3 LEFT

Introduction
The aim of this paper is to review studies pertaining to the estimation of generalised costs for freight transportation in the UK. Very few studies address this issue and the few that do, for example, the Department for Transport’s models, are not openly available. An exception is the work done at the Institute for Transport Studies at the University of Leeds in the development of their freight transport model.

This paper gives a brief description of the Leeds Freight Transport model (LEFT). The LEFT model was developed by the Institute for Transport Studies at the University of Leeds as part of its contribution to the ITeLS project (Lalwani et al, 2004). ITeLS (Integrating Transport and e-Commerce in Logistics Supply Chains) was a 3 year collaborative research programme concerned with sustainable freight distribution, which was sponsored by the Engineering and Physical Science Research Council (EPSRC) and the Department for Transport (DfT) of the UK. The project’s main objectives were to document logistics, transport and management practices involved in supply chains and to assess the utilisation of vehicles, taking into account public policy and infrastructure. This included the modelling, simulation and evaluation of particular supply chains to compare their performance in terms of effectiveness and efficiency. LEFT is a forecasting model constructed to evaluate the impact of different policy scenarios. LEFT1 is a simple modal split model between road and rail. A further development of the model, LEFT2 (Fawkes et al, 2004), also forecasts the size of the market in terms of tonne-kms transported by road and rail. LEFT2 permitted the analysis of various scenarios on total market size, average length of haul and split between road and rail, while being neutral in macroeconomic terms (i.e. total tonnes transported are constant).

31 Avsnittet er gjengitt på engelsk da vi har valgt ikke å bruke ressurser på oversettelse.
Structure of the LEFT model
LEFT3 is the latest version of the model. In common with LEFT2, it has no geography and uses Logit models to perform mode split. The major difference is the mechanism through which the market size can vary (Fowkes, et al., 2007).

Disaggregation within LEFT3 (and LEFT2) is by 3 dimensions:

a) The base total market is split according to whether it is favourable for rail operations, i.e. train-friendly (TF), or train-unfriendly (TU). For Bulks, ‘train-friendly’ traffic is that traffic we deem suitable for trainload movement from origin to destination. For Non-bulks (Food etc, and Miscellaneous), ‘train-friendly’ traffic is that to which we have assigned the need for collection and delivery (at most) at one end.

b) The base data is split over 7 commodity groups, consistent with Continuing Survey of Road Goods Transport (CSRGT):
 1. Food, Drink and Agricultural Products
 2. Coal, Coke and related items
 3. Petroleum and Petroleum Products
 4. Metals and Ores
 5. Aggregates and Construction
 6. Chemicals and Fertilisers
 7. Other (manufactures, miscellaneous, containerised, international)

c) The base data is split over 9 distance bands, consistent with the CSRGT: 1-25 km, 25-50 km, 50-100 km, 100-150 km, 150-200 km, 200-300 km, 300-400 km, 400-500 km and Over 500 km. The midpoint of the 500+ distance band is assumed to be 550 km.

There are thus 2*7*9 = 126 cells in LEFT3. The primary data sources are: the Continuing Survey of Road Goods Transport (DfT) and Transport Statistics Great Britain (DfT).

Transport Cost Functions
There are various versions of the LEFT3 model. The following description is based on LEFT3.9, described in Fowkes et al. (2007).

Road transport
The road transport monetary cost functions are based on standing and operating costs. Lorry standing costs are purely time related and are taken to consist of overheads, licence costs, insurance, depreciation, finance and wages. Lorry operating costs are assumed to be directly related to the mileage of vehicles and include: fuel, engine oil and lubricants, tyres, repairs and maintenance costs. The cost functions are based on 9 vehicle types using DFF cost data.
for 1998 (DFF International, 1998), with additional larger vehicle types as future policy options.

At a one-way journey distance 40km, cost is assumed to be equal to half a day’s standing cost plus 40km of operating cost. For unscheduled journeys less than 40 kms there is no reduction in standing cost. For scheduled journeys, the intercept is set at one quarter of a day’s standing cost, with the remaining cost related linearly to distance. For non-stopping journeys of over 40km, the daily cost will be made up of the remaining share of standing cost, from a minimum of half day’s standing cost up to a full day’s standing cost, depending on the distance travelled in kilometres, and the day’s running cost, which is also related to distance.

Using information on ‘half day’ and ‘full day’ costs and assumptions about the form of non-linearity, a cost function for each type of vehicle for journeys over 40km is calibrated:

\[
C(D) = \frac{k_1D}{\ln(k_2D)}
\]

(1)

where \(C \) is transport cost, in £, for a one-way movement assuming no backloads, \(D \) is one way distance in kilometres and \(k_1 \) and \(k_2 \) are parameters which can be derived by using two cost estimates at 40km and at a full day’s distance. The cost functions for representative vehicles are shown in Table 1.

Table 1: Cost functions for representative vehicles by one-way distance (D).

<table>
<thead>
<tr>
<th>One way distance D km</th>
<th>17T Rigid</th>
<th>32T Tipper</th>
<th>44T Artic</th>
<th>44T Tipper/Tanker</th>
</tr>
</thead>
<tbody>
<tr>
<td>D>40</td>
<td>5.4D/ln(0.54D)</td>
<td>6.5D/ln(0.54D)</td>
<td>3.2D/ln(0.08D)</td>
<td>3.5D/ln(0.08D)</td>
</tr>
<tr>
<td>D<=40 Unscheduled</td>
<td>70</td>
<td>85</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>D<=40 Scheduled</td>
<td>40+0.75D</td>
<td>45+D</td>
<td>50+1.5D</td>
<td>60+1.5D</td>
</tr>
</tbody>
</table>

Source: Fowkes et al. (2004)

Rail transport

As mentioned above, LEFT3 splits traffic according to whether or not it is suitable for trainload rail or wagon loads. Trainload rail has low movement costs with quick turnaround times, but requires high volumes, while wagon loads have higher costs and longer waiting times but are suitable for lower volumes. The latter are generally multimodal operations with higher costs associated with the road collection and delivery legs.

For each type of commodity, LEFT3 uses up to five wagon types combined with different types of locomotives, track access costs, journey times, collection and delivery legs and rail tripping legs. A typical rail journey consists of some or all of the following components:
- Road collection and delivery.
- Transfer to/from rail wagon.
- Rail trip between rail terminal and rail marshalling yard.
- Marshalling at rail yard/hub.
- Trunk rail journey.

The rail cost functions assume that rail costs are comprised of fixed costs and variable time and distance related costs. Costs were derived from GBFM (Newton and Wright, 2003), other industry sources and ITS calculations.

The monetary cost of a rail movement of one tonne of a given commodity over a given distance using given wagon and locomotive type is calculated as the sum of:

Traction cost per tonne, Locomotive access cost per tonne and Wagon access cost per tonne, which are the distance related costs by wagon and locomotive types;

Marshalling cost per tonne, which is the based on the cost of marshalling a wagon converted into a cost per tonne using the proportion of the wagon taken up by one tonne;

Collection and delivery cost per tonne, which is the road transport cost for collection and delivery based on the road generalised costs for the largest vehicle allocated to that commodity over a given distance;

Lifting cost per tonne, which is the cost of transhipment between road and rail and is based on the cost of a lift and proportion of the payload taken up by one tonne of the commodity being moved;

Traction cost per hour and wagon cost per hour, which are the time related costs for locomotives and wagons based on annual standing costs, multiplied by Locomotive hours and wagon hours, respectively, which relate to the hours worked by locomotives and wagons for a particular distance band and wagon type, and by the proportion of a locomotive power and wagon taken up by one tonne for an hour movement, which is dependent on the capacity of the wagon type.

Generalised cost functions

In addition to the monetary cost of road and rail transport, time costs need also to be taken into consideration. LEFT3 includes both time and delay costs. Average journey times are derived using typical rail and road speeds which vary by distance, and for rail also according to wagon type. Delay costs include time spent waiting, loading and unloading. Delays times are based on Leeds Adaptive Stated Preference (LASP) interviews undertaken by Tony Whiteing and Geoff Tweddle in 2003-2004. These are shown in Table 2.
Both scheduled journey times and average delay are converted into monetary terms using the commodity specific values of time shown in Table 3.

For each commodity and distance band, costs are determined by assigning a representative road vehicle and rail wagon type. The payload is dependent on the commodity and vehicle/wagon type. The resulting journey time costs by distance for various commodities are shown in Table 4 for road and Table 5 for rail.
Table 5: Rail journey time costs by distance/commodity (£/tonne)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>0-25 km</th>
<th>26-50 km</th>
<th>51-100 km</th>
<th>101-150 km</th>
<th>151-200 km</th>
<th>201-300 km</th>
<th>301-400 km</th>
<th>401-500 km</th>
<th>>500 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food, Drink & Agric.</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>1.6</td>
<td>2.2</td>
<td>3.1</td>
<td>3.7</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Coal & Coke</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Petroleum</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>2.6</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Metals & Ores</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Construction</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>2.6</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Others</td>
<td>0.3</td>
<td>0.9</td>
<td>1.9</td>
<td>3.1</td>
<td>4.3</td>
<td>6.2</td>
<td>7.5</td>
<td>8.4</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Using the delay times in Table 2 and the values of delay time in Table 3, results in the cost of delay shown in Table 6 for road and Table 7 for rail.

Table 6: Road delay costs by distance/commodity (£/tonne)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>0-150 km</th>
<th>151-300 km</th>
<th>301-500 km</th>
<th>500+ km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food, Drink & Agriculture</td>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Coal & Coke</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Petroleum</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Metals & Ores</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Construction</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Others</td>
<td>0.6</td>
<td>1.2</td>
<td>1.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 7: Rail delay costs by distance/commodity (£/tonne)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Trainload</th>
<th>Wagonload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-500 km</td>
<td>500+ km</td>
</tr>
<tr>
<td>Food, Drink & Agriculture</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Coal & Coke</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Petroleum</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Metals & Ores</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Construction</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Others</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Generalised costs are calculated as the sum of monetary costs, journey time costs and delay costs, adjusted for backload. The estimation of the backload factors are described in Fowkes et al (2004).
4. OPPSUMMERING

I denne rapporten har vi forsøkt å gi en oversikt over relevant kunnskap om det som kan omtales som norsk næringslivs avstandskostnader. Begrepet kan operasjonaliseres gjennom det vi har betegnet generaliserte transportkostnader, jf. kapittel 2.1. Dette vil da være de direkte betalbare kostnader (transportpris ved leietransport og bildriftskostnader dersom transportene utføres med lastebil i egenregi) pluss vareeiers verdsetting av den tiden som transporten tar samt den usikkerheten som ligger i at varen ikke kommer fram til avtalt tid og usikkerheten knyttet til om varen kommer frem uskadet. I Tabell 4-1 har vi forsøkt å knytte aktuelle referanser til de ulike elementer som er med på å bestemme næringslivets generaliserte transportkostnader eller avstandskostnader.

Tabell 4-1: Oversikt over aktuelle arbeider knyttet til næringslivets avstandskostnader.

<table>
<thead>
<tr>
<th>Tema</th>
<th>Aktuelle referanser</th>
<th>Kapittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>− Generaliserte transportkostnader i et verdikjedeperspektiv</td>
<td>Minken og Samstad (2006)</td>
<td>3.8</td>
</tr>
</tbody>
</table>
4.1 **KUNNSKAPSSSTATUS OG AKTUELLE FORSKNINGSUTFORDRINGER**

Ovenfor knyttet vi aktuelle arbeider om næringslivets avstandskostnader til sentrale elementer i det vi i kapittel 2 omtalte som generaliserte transportkostnader. Referansene til de aktuelle arbeidene er oppsummet i Tabell 4-1. I Tabell 4-2 har vi gitt en stikkordsmessig gjennomgang av hvilke kunnskaper vi mener en, gjennom de arbeidene vi tidligere har referert til, har om næringslivets generaliserte transportkostnader.

Tabell 4-2 Stikkordsmessig oversikt over kunnskap om næringslivets avstandskostnader.

<table>
<thead>
<tr>
<th>Tema</th>
<th>Aktuell kunnskap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportkostnader og transportpriser</td>
<td>Kostnader ved lastebiltransport og spesielt kostnader ved frakt av fersk fisk med bil fra ulike regioner i Norge.</td>
</tr>
<tr>
<td></td>
<td>Kostnader ved å sette opp godstog.</td>
</tr>
<tr>
<td></td>
<td>Kostnader ved bruk av fraktfly.</td>
</tr>
<tr>
<td></td>
<td>Sentrale kostnadselmenter ved vei-, sjø- og jernbanetransport, og spesielt avgifter knyttet til sjøtransport.</td>
</tr>
<tr>
<td>Transporttid</td>
<td>Transport av fisk med bil til ulike destinasjoner. Regneeksempler viser også transporttider ved bruk av bil og tog.</td>
</tr>
<tr>
<td></td>
<td>Transportører kan oppgi transporttider på forespørsel samt at det hos mange er mulig å beregne transporttiden på deres hjemmesider.</td>
</tr>
<tr>
<td></td>
<td>Flere fritt tilgjengelige ruteplanleggere på Internett kan beregne både transporttid og avstander.</td>
</tr>
<tr>
<td>Tidskostnader per tidsenhet</td>
<td>Verdiforringelse per tidsenhet for fersk fisk.</td>
</tr>
<tr>
<td></td>
<td>Beregninger for ulike varegrupper etter verdi og tetthet.</td>
</tr>
<tr>
<td>Usikkerhet i transporttiden</td>
<td>Verdsettelse av redusert forsinkelsesrisiko for 6 varegrupper.</td>
</tr>
<tr>
<td>Skadekostnader</td>
<td>Ulykkeskostnadsfaktorer (kr/tonnkm) ved bruk av lett og tung lastebil.</td>
</tr>
<tr>
<td></td>
<td>Skadekostnader på skip og last per ulykke ved båttransport (ulike fartøytyper).</td>
</tr>
<tr>
<td></td>
<td>Anslag på materielle skader per ulykke på vei. Ingen differensiering av type ulykke eller type gods.</td>
</tr>
<tr>
<td></td>
<td>Anslag på eksterne kostnader ved ulykker ved bruk av bil (lett og tung), tog og båt.</td>
</tr>
<tr>
<td>Ulempeskostnader ved frekvensbaserte transportmidler</td>
<td>Noe kunnskap knyttet til transport av fersk laks.</td>
</tr>
<tr>
<td></td>
<td>Svært usikre anslag ved fergeavhengighet.</td>
</tr>
<tr>
<td>Generaliserte transportkostnader ved intermodale transporter</td>
<td>Gjennomsnittstall for omlastingskostnader inkl. ventetider mellom ulike transportmidler.</td>
</tr>
<tr>
<td></td>
<td>Laste- og lossetider samt tilsvarende kostnader ved samlasting.</td>
</tr>
<tr>
<td></td>
<td>Regneeksempler for fisketransporter fra Nordland til Danmark.</td>
</tr>
<tr>
<td>Generaliserte transportkostnader i et verdikkjedeperspektiv</td>
<td>Formler for verdien av å redusere usikkerheten til transporttiden samt virkningen av tiltak som påvirker forventet transporttid og variasjonene i denne.</td>
</tr>
</tbody>
</table>
Ut fra tabell 4.2, og gjennomgangen av kunnskapsstatus i kapittel 3, vil vi spesielt fremheve 4 forskningsområder der det foreligger relativt lite kunnskap. Dette er:

1. Pålitelige anslag på tidskostnader per tidsenhet for ulike typer gods.
2. Betydningen av økt frekvens (nytten av å ha muligheten til å sende eller motta gods oftere).
4. Skadekostnader ved ulykker.
5. Hvordan punktene 2-4 avhenger av transportavstand.

Bedre kunnskaper om alle 5 punkter nevnt ovenfor, vil være svært nyttig når effektene av ulike tiltak knyttet til transportinfrastrukturen skal anslås. Således vil økte kunnskaper på de omtalte områdene være nyttig i tilknytning til framtidige revisjoner av Håndbok 140 Konsekvensanalyser. Her trengs det mer kunnskap når det gjelder å forbedre beregningsmetodikken knyttet til nytten for transportsektoren og næringslivet av ulike transportinfrastrukturtiltak.
REFERANSEN

Department for Transport, (annual), Transport Statistics Great Britain. London, TSO.

ECON (2003c). Trafikksvake jernbanestrekninger - En samfunnssøkonomisk analyse. ECON-rapport nr. 02/03. ECON analyse AS, Oslo.

