Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

av

Tor Malvin Nysæter Jahren
Stian Kristiansen

Hovedoppgave til mastergraden i informasjons- og kommunikasjonsteknologi

Høgskolen i Agder
Grimstad, mai 2003
Sammendrag

Maskin-til-maskin (M2M) kommunikasjon mellom mobile, flyttbare eller stasjonære enheter er forventet å øke eksponentielt i de kommende årene. Mulighetene for M2M kommunikasjon er mange, enheter kan bli brukt til fjernkontroll, lokalisering, overvåkning, sporing og telemetri.

Den konseptuelle enheten som er utviklet krever en minimal hardware design, den er kun sammensatt med en enkel kabel mellom modulene. Programmet som kjøres på enheten vil være i stand til å sende og motta forskjellige meldinger fra hjemmeserver, og kan oppdateres over GSM nettet.

Systemet vil egne seg som en plattform for andre tenkelige M2M applikasjoner uten at det kreves forandring av hardware arkitektur. Software oppbygningen bør endres slik den er mer fleksibel for tilpassing til andre løsninger.

Rapporten inneholder en vurdering av de forskjellige resultatene som er oppnådd etter analyse av de forskjellige modulene, og av sammensetting til et totalsystem.
Forord

Vi vil takke våre veiledere, Jon Mjellekås og Magne Stormo, for deres hjelp og inspirasjon. Vi vil også takke Stein Bergsmark for hans kommentarer gjennom vårt arbeid.

Tor M. Jahren Stian Kristiansen

Grimstad, mai 2003
1	Innledning ...	1
1.1	Bakgrunn ...	1
1.2	Oppgaveformulering ...	1
1.3	Dagens situasjon og muligheter ...	2
1.4	Tolkning av oppgavedefinisjonen og begrensninger ..	2
1.5	Litteratur ...	3
1.6	Fremgangs metode ..	3
1.7	Rapport struktur (eller organisering) ..	3
2	Flåtestyring og M2M teknologi ...	4
2.1	M2M kommunikasjon ..	4
2.2	Flåtestyring ..	5
2.3	Global System for Mobile communication (GSM) ...	6
2.4	General Packet Radio System (GPRS) ..	8
2.5	Universal Mobile Telecommunications System (UMTS) ..	10
2.6	Tjenester i GSM og GPRS ...	11
2.7	Global Positioning System (GPS) ..	13
2.8	Antenne ...	18
2.9	Over The Air (OTA) ..	21
2.10	Control Area Network (CAN) ..	21
3	Metoder for å designe en M2M enhet ...	22
3.1	Kommunikasjon mellom GSM/GPRS modulen og GPS modulen ..	22
3.2	AT – kommandoer ..	23
3.3	Java Micro Edition (J2ME) ..	23
3.4	Unified Modeling Language (UML) ..	24
4	GSM/GPRS og GPS moduler ..	26
4.1	Moduler i det norske markedet ..	26
4.2	Gjenomgåelse og sammenlikning av GSM/GPRS moduler ...	26
4.3	Gjenomgåelse og sammenligning av GPS modulene ..	31
4.4	Gjenomgåelse og sammenligning av mikrokontrollerne ..	34
5	Design av M2M enheten ..	36
5.1	Hardware design av systemet	36
5.2	Software design av systemet	39
5.3	Hjemmeserver	54
6	Gjennomgåelse av designen	55
6.1	Diskusjon av softwaredesign	55
6.2	Betraktninger angående systemet	60
7	Resultater	62
7.1	GSM/GPRS modul	62
7.2	GPS modul	62
7.3	Mikrokontroller	62
7.4	Hardware design	63
7.5	Software design	63
8	Drøftning	65
8.1	Diskusjon av GSM/GPRS modulene	65
8.2	Diskusjon av GPS modulene	66
8.3	Diskusjon av mikrokontroller	66
8.4	Dette systemet i forhold til eksisterende systemer	68
8.5	Systemets struktur og modularitet	69
8.6	Antenne og mottak	70
8.7	Posisjons nøyaktighet	70
8.8	Bruk av GPS fremfor posisjonering med hjelp av GSM teknologi	70
8.9	Minne forbruk	71
8.10	Bæretjeneste for oversending av data	72
8.11	Mulige forbedringer (og svakheter) med designen	74
9	Konklusjon	76
Referanser	77	
Forkortingsliste	79	
Vedleggs oversikt	82	
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Figurliste

<table>
<thead>
<tr>
<th>Figur</th>
<th>Beskrivelse</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figur 1</td>
<td>Trådløs M2M kommunikasjon fra terminal til server.</td>
<td>5</td>
</tr>
<tr>
<td>Figur 2</td>
<td>GSM arkkitektur [5]</td>
<td>7</td>
</tr>
<tr>
<td>Figur 3</td>
<td>GPRS system arkkitektur [6]</td>
<td>9</td>
</tr>
<tr>
<td>Figur 4</td>
<td>Protokollstruktur i GPRS [6]</td>
<td>10</td>
</tr>
<tr>
<td>Figur 5</td>
<td>GPS satellitter og mottakere</td>
<td>14</td>
</tr>
<tr>
<td>Figur 6</td>
<td>Et skjematisk geografisk bilde av GPS statisk posisjons problem</td>
<td>16</td>
</tr>
<tr>
<td>Figur 7</td>
<td>Elektromagnetisk bølge og forplantingsretning i rommet [20]</td>
<td>19</td>
</tr>
<tr>
<td>Figur 8</td>
<td>En halvbolgedipol i GSM 900 er 15,83 cm lang</td>
<td>20</td>
</tr>
<tr>
<td>Figur 9</td>
<td>Helix antenne og helixparametere [20]</td>
<td>20</td>
</tr>
<tr>
<td>Figur 10</td>
<td>Oversikt over mikrokontroller i systemet</td>
<td>22</td>
</tr>
<tr>
<td>Figur 11</td>
<td>Oversikt over Java Mikro Edition (J2ME)</td>
<td>23</td>
</tr>
<tr>
<td>Figur 12</td>
<td>Hardware design av flåtestyringsenheten</td>
<td>36</td>
</tr>
<tr>
<td>Figur 13</td>
<td>Siemens TC45 GSM modul</td>
<td>39</td>
</tr>
<tr>
<td>Figur 15</td>
<td>Use case diagram for administrator</td>
<td>41</td>
</tr>
<tr>
<td>Figur 16</td>
<td>Oppstartstilstand for hjemmeserver</td>
<td>42</td>
</tr>
<tr>
<td>Figur 17</td>
<td>Status forespørsel til flåtestyringsenhet</td>
<td>42</td>
</tr>
<tr>
<td>Figur 18</td>
<td>Alarm mottas fra flåtestyringsenhet</td>
<td>43</td>
</tr>
<tr>
<td>Figur 19</td>
<td>Periodisk oppdatering mottas fra flåtestyringsenhet</td>
<td>44</td>
</tr>
<tr>
<td>Figur 20</td>
<td>Oppdatert venneliste sendes til flåtestyringsenhet</td>
<td>44</td>
</tr>
<tr>
<td>Figur 21</td>
<td>Administrator oppdatere software</td>
<td>45</td>
</tr>
<tr>
<td>Figur 22</td>
<td>Oppstartstilstand for flåtestyringsenhet</td>
<td>46</td>
</tr>
<tr>
<td>Figur 23</td>
<td>Flåtestyringsenhet i tilstand Status</td>
<td>47</td>
</tr>
<tr>
<td>Figur 24</td>
<td>Flåtestyringsenhet i tilstand Alarm</td>
<td>48</td>
</tr>
<tr>
<td>Figur 25</td>
<td>Flåtestyringsenhet i tilstand Periodic Update</td>
<td>49</td>
</tr>
<tr>
<td>Figur 26</td>
<td>Software oppdatering på flåtestyringsenhet</td>
<td>50</td>
</tr>
<tr>
<td>Figur 27</td>
<td>Typediagram for hjemmeserver</td>
<td>51</td>
</tr>
<tr>
<td>Figur 28</td>
<td>Typediagram for flåtestyringsenhet</td>
<td>52</td>
</tr>
<tr>
<td>Figur 29</td>
<td>Klasse diagram for flåtestyringsenhet</td>
<td>53</td>
</tr>
<tr>
<td>Figur 30</td>
<td>Oversikt over system med hjemmeserver</td>
<td>54</td>
</tr>
<tr>
<td>Figur 31</td>
<td>Intet GPS signal mottas på flåtestyringsenhet</td>
<td>58</td>
</tr>
<tr>
<td>Figur 32</td>
<td>Intet GSM signal mottas på flåtestyringsenheten</td>
<td>59</td>
</tr>
<tr>
<td>Figur 34</td>
<td>Utviklings pyramide ved utvikling av ”embedded” systemer [36]</td>
<td>68</td>
</tr>
<tr>
<td>Figur 35</td>
<td>Modell for framtidige software applikasjoner</td>
<td>75</td>
</tr>
</tbody>
</table>
Tabelliste

Tabell 1. Kanalkode skjema for GPRS... 10
Tabell 2. Oversikt over multislot klasser i GPRS.. 11
Tabell 3. Kriterier til GSM modulene... 27
Tabell 4. Kriterier til GSM/GPRS modulene.. 29
Tabell 5. Kriterier til GPS modulene... 32
Tabell 6. Tilkobling i en RS232 kontakt ... 37
Tabell 7. Antall tegn i en GPS posisjon.. 55
Tabell 8. Viser avstanden et kjøretøy tilbakelegger i løpet av 1 minutt ved forskjellig hastighet............. 55
Tabell 9. Kostnader for egenutviklet system og et ferdig system.................. 69
Tabell 10. Antall posisjoner som kan mellomlagres i systemet....................... 71
Tabell 11. Antall meldinger som kan mellomlagres i systemet......................... 71
Tabell 12. Nøkkel faktorer for SMS... 73
Tabell 13. Nøkkel faktorer for CSD og HSCDS.. 73
Tabell 14. Nøkkel faktorer for GPRS... 74
1 Innledning

1.1 Bakgrunn

I dag er det et voksende marked for mobile kommunikasjonsapparater som er basert på GSM/GPRS og GPS. Integreerte kretser/plattformer med GSM, GPRS og GPS er blitt tilgjengelige til en lav pris. Som medfører at for eksempel mobile systemer for kontroll og sporing, basert på satellitt posisjonering og med kommunikasjon basert på GSM eller GPRS, kan bli produsert til lav pris. Det er også en trend å innlemme nye funksjoner som geografisk lokasjon av mobiltelefonen, nyheter, annonser som passer til den geografiske lokalisasjonen av mobiltelefonen. Maskin-til-maskin (M2M) kommunikasjon mellom mobile, flyttbare eller stasjonære enheter (klienter) og sentraliserte servere er forventet å vokse eksponentielt i de kommende årene. Studier av vekstrate viser at stigningsmuligheten er enda høyere for dette enn samtalemarkedet [1]. Mulighetene for M2M kommunikasjon er mange, enheter kan bli brukt til fjernkontroll, overvåkning, sporing, lokaliserings- og telemetri. En applikasjon kan bli brukt til mobil M2M enhet i et transportselskap. For å få en automatisk og på forespørsel oppdatering av posisjonen og status av den mobile enheten, rapportert til hjemmeserver. Posisjon informasjonen kan bli brukt som et hjelpemiddel for last og transport, og statusinformasjonen kan for eksempel bli brukt som en sikkerhetsmelding for sjåføren til tilfelle en kapring eller en annen type krise (alarm rapportert til hjemmeserver).

1.2 Oppgaveformulering

Oppgaveformuleringen slik den er gitt på engelsk:

A mobile M2M unit shall be designed. It will be a conceptual design, realisation is not required. The unit shall be based upon commercially available circuits (or modules) for GSM or GPRS for the data communication part and GPS for the positioning part. The system must be able to periodically extract satellite position data from the GPS module and automatically send this information using SMS or mobile data-com to a central home server (Personal Computer). Further, the system must be able to automatically respond to requests received from the home server. Such requests can be:

- Un-scheduled requests for GPS position
- Request on status information from the mobile unit (status can be for instance ALARM or OK)
- The mobile unit shall only answer requests from calls received from “Friends” which are to be pre-defined.
- The task is to use as much as possible available modules/platforms with as little H/W design as possible.

Main issues:

- Identify which modules/circuits are available for GSM, GPRS and GPS (ex. Wavecom, Siemens, Nokia,…).
- Based upon the findings, select 3-4 different available circuits/modules for GSM/GPRS and GPS suitable for use in this project.
- Analyse and compare the modules/circuits with respect to functionality offered (e.g. which standards do they follow? GSM 900, 1800, 1900, etc.). Discuss issues such as:
o Flexibility with respect to programming interfaces. Do they all use standard AT commands? Which programming languages are to be used?

o Is there any software supporting the modules/circuits for programming?

o Are they ready modules with I/O, power, etc. or just ASICs/components?

o Etc.

Based upon the analyse performed, choose the “best” technology for the task. The argumentation should consider arguments such as: cost, size, flexibility for adding new features, power consumption, need for H/W design, etc.

1.3 Dagens situasjon og muligheter

I dag finnes det allerede ferdige flåtestyringssystemer løsninger med GSM/GPRS fra flere leverandører. Disse systemene er ferdig skreddersydd for spesifikke applikasjoner og tjenester.

Ved å designe en helt ny enhet med hardware og software, er muligheten større for at enheten blir tilpasset applikasjonen den er tiltenkt. Samtidig er det viktig at designet blir en plattform som kan brukes til en mengde applikasjoner og tjenester uten for store forandringer. Selve om teknologien utvikler seg svært raskt, må den være tilpasset til den enhver tid gjeldende standard og teknologi. Dette for å kunne ha et potensial til å heve seg i et vanskelig marked.

Utviklingen av GSM/GPRS og GPS moduler i markedet vokser. Det fører til at mange løsninger på modulene er forandret for å forenkle utviklingen og designet av et produkt, og for å forbedre sluttproduktet. Dette betyr at utvikling av et nytt produkt kan gjøres både enklere og bedre enn det som allerede finnes av kommersielle fabrikater på markedet. Potensialet ligger i å kunne utnytte det forspranget som ligger i teknologien i de nye modulene til å designe et system som er billigere, mindre og mer tilpasningsdyktig til potensielle applikasjoner, tjenester og miljøer som kan benyttes til et slikt system.

1.4 Tolkning av oppgavedefinisjonen og begrensninger

Vår oppgave går ut på å finne moduler til et flåtestyringssystem basert på GSM/GPRS og GPS moduler. For å velge de modulene som er anvendelig og best egnet til systemet, vil vi se nærmere på tre problemstillinger:

• Hva er kravet til design ved valgte moduler og teknologi?

• Er fleksibiliteten til å forandre applikasjoner og tjenester stor ved valgte moduler og teknologi?

• Hva er kostnaden ved å benytte valgte moduler og teknologi?

Etter at avgjørelsen er tatt på valget av GSM/GPRS og GPS modul, skal det designes en konseptuel M2M enhet. Den konseptuelle enheten vil inneholde en hardware og en software del. Enheten skal kunne utføre forhåndss definerte oppgaver som oppgaven stiller, det dreier seg blant annet om å kunne levere posisjoner og status informasjon til kjørekontor eller hjemmeserver. Det er også lagt vekt på hvordan enheten vil oppføre seg under bestemte vilkår og feilsituasjoner. Det er også et ønske at enheten kan fungere som en plattform for andre mulige M2M applikasjoner.

For å begrense oppgavens størrelse, er det noen begrensninger som er satt på forhånd.

Designet av flåtestyrringsenheten er en konseptuel design, det er derfor ikke laget en komplett prototyp.
Vi tenker at hjemmeserver finnes, og all informasjon til og fra hjemmeserver går uproblematisk ut og inn av GSM nettverket. Hvordan data behandles i hjemmeserver, er ikke en aktuell problemstilling, og vil derfor ikke bli gått nærmere inn på i rapporten.

Vi har ikke satt krav til eksternt tilkoblet utstyr som strømforsyning, kabler eller antenne plassering. I praksis kan det vise seg at disse momentene er like avgjørende for at systemet skal fungere bra som en god design.

1.5 Litteratur

Det er skrevet flere vitenskapelige avhandlinger som omhandler flere av problemene som stilles i denne oppgaven.

[1] omhandler telemetri og kontroll systemer med GSM kommunikasjon
[2] omhandler M2M kommunikasjon
[3] omhandler GPS posisjonsproblemer
[4] omhandler flåtestyringssystemer i transportnæringen ved bruk av mobile kommunikasjonsteknologier

1.6 Fremgangs metode
For å løse oppgaven gikk vi fram på følgende måte:

- Utførte litteratur søk for GSM og GPRS datakommunikasjons – protokoller, GPS posisjonerings, konsept og GPS data struktur.
- Plukket ut kretser/moduler for GSM/GPRS og GPS som er tilgjengelig på markedet, valgte ut 3 – 4 av de best anvendbare modulene for GSM/GPRS og GPS.
- Evalueret og analyserte modulene med hensyn på funksjonalitet, modularitet, inn/ut porter og valgte ut de best anvendbare.
- Designet en mobil enhet som kan sende enkle meldinger med GPS data til en sentral server. Denne mobile enheten er også i stand til å motta meldinger fra serveren.

1.7 Rapport struktur (eller organisering)
I de følgende kapitlene vil vi prøve å belyse problemstillingene som er gitt i denne oppgaven. Innledningsvis omhandles grunnleggende teori og litteratur for de forskjellige teknologiene som GSM, GPRS og GPS for å gi leseren en innføring i de viktigste fagområdene som rapporten omhandler.

Metoder som er benyttet for å besvare de spørsmål og problemstillinger som er gitt i oppgaven, nevnes deretter i kapittel 3. Så følger de forskjellige modulene. Disse gjennomgås med utvalgskriterier som ligger til grunn for å velge de forskjellige kretsen.

I kapittel 5 vil design av den mobile enheten være fokus. Det neste kapittelet (kapittel 6) er viet til diskusjon av designet. Det hele avsluttes med resultat, drøfting og konklusjon i de tre siste kapitlene.
2 Flåtestyring og M2M teknologi

2.1 M2M kommunikasjon

M2M markedet er et av de segmenter innenfor telekommunikasjon, data og Internett som ventes å ha et enormt potensial. "Prognoser räknar med att det skall finnas 5 miljoner kommunikationsmoduler installerade i olika typer av maskiner i Sverige under de närmsta fem åren" [2]. På sikt bedømmes M2M kommunikasjon til å bidra med større gevinster til mobioperatørene enn vanlig talekommunikasjon [9].

M2M løsninger kan kombineres med andre kommunikasjons teknologier som GPS posisjonering, GSM, GPRS, Bluethooth, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Network (WLAN) og InfraRed(IR).

M2M har mange tilnæringsområder. Noen eksempler er:

- fjernavlesning av målere
- fjernregulering av utrustning
- lokaliserings av utrustning og enheter
- tilgang til sentrallagret informasjon ute i felten
- produksjonsplanering i stedet for prognoser
- overvåking av alarmstyring
- feilrapportering

M2M motiveres ofte ut ifra kostnadsbesparelse og tilrettelegging for nye tjenester. Potensielle forretningsfordeler kan være:

- senkede kostnader
- nye tjenester, høyere servicegrad
- hurtighet og fleksibilitet
- styrkede relasjoner
- samle verdifull informasjon

2.1.1 Trådløs M2M kommunikasjon

Den alminnelige oppfatningen av M2M konseptet er at den tillater maskiner eller enheter å transportere data fra en avsidesliggende lokasjon over GSM nettverket. Et M2M system kan bestå av en terminal som kommuniserer med server via GSM og Internett, se Figur 1).
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Figur 1) Trådløs M2M kommunikasjon fra terminal til server.

Terminalen kan tilkobles eller styre eksterne maskiner, følere, alarmer, GPS etc. og formidle data via GSM og Internett til en server hvor det kan sitte en operatør som behandler mottatte data. Operatoren kan således sende kontrollmeldinger tilbake til terminalen hvor disse så behandles.

2.1.2 M2M applikasjoner
Det finnes forskjellige typer M2M applikasjoner innenfor telematikk og telemetri. Noen eksempler på forskjellige applikasjoner er:

- nyttemåling (vann, gass, elektrisitet)
- landbruks- (vannkraft, luftfuktighet, lufttemperatur, nedbør)
- trafikkovervåking (jernbaneoverganger, trafikklys, tollstasjoner)
- industriell maskineri
- helseomsorg (overvåkning av kroppsfunksjoner, militære førstehjelpsstasjoner)
- flåtestyring (sporing, varer, trimutstyr, overvåking, alarm)
- selvevegene kjøretøy (bildagnostikk, posisjonering)
- salgssteder (mobile kredittkortterminaler, salgsautomater, lotterimaskiner, logistikk prisoppdatering)
- overvåkning (alarm, sporingsenheter, intelligente hjem, video og bildeovervåking)

2.1.3 M2M og framtidsvisjoner
M2M er i dag bare i startfasen. Den japanske mobiloperatøren NTT DoCoMo regner med at i år 2010 kommer bare en tredjedel av deres brukere til å være mennesker, resten vil være biler, kameraer, PC-er, salgsautomater, nyttemålere etc. [10].

2.2 Flåtestyring
leveringstider. Løsningen bidrar til en bedre utnyttelse og lønnsomhet av hvert kjøretøy, og er et ypperlig verktøy for sporing av viktig last.

2.2.1 Flåtestyringssystemet

2.2.2 De viktigste og mest vanlige funksjonene i et flåtestyringssystem

For en flåtestyringsenhet er det noen funksjoner som er viktigere og mer vanlig enn andre, her følger noen av de viktigste og vanligste.

Posisjonsfølging/sporing: Et flåtestyringssystem kan vise hvor kjøretøyene til enhver tid befinner seg og hvor de er på vei, samtidig som det kartlegger ledige kjøretøy.

Kostnader: Det finnes funksjoner for beregning av kostnader og lønnsomhet for de ulike oppdragene og statistikker.

Alarm: En alarmfunksjon kan være svært nyttig hvis en nødssituasjon skulle oppstå. For eksempel ved ran, tyveri eller kapring kan alarmfunksjon gi melding til kjørekontoret, som igjen kan varsle politiet. Alarmen kan også sperre drivstofftilførselen og sørge for rask posisjonering av kjøretøyet.

Kommunikasjon: En sentral del av flåtestyringssystemer er informasjonsflyten mellom kjørekontor og kjøretøy. Den innebærer informasjon om nye oppdrag, stengte veier, bekreftelser og annen informasjon som kan hjelpe sjåføren med å utføre oppdrag på en mest mulig effektiv måte.

Tilstandsovervåkning: Enkelte flåtestyringssystemer overvåker kjøretøyenes tekniske tilstand og varsler om uregelmessigheter, nødvendig service og vedlikehold.

Farlig gods: For håndtering av farlig gods er det spesielt viktig å følge kjøretøyets bevegelser og varsle om hindringer eller lignende. Dermed er flåtestyringssystemer også med på å øke sikkerheten ved varetransport.

2.3 Global System for Mobile communication (GSM)

2.3.1 Innledning

GSM er andre generasjons standard for digital mobiltelefoni, og ble introdusert i det europeiske markedet i 1992.
2.3.2 GSM systemet

GSM er et digitalt cellebasert system, og er utbredt over store deler av verden. Frekvensområde ligger rundt 900 MHz (933-960 MHz for å sende og 890-915 MHz for å motta) for GSM 900 og rundt 1800 MHz (1710-1785MHz for å sende og 1805-1880MHz for å motta) for GSM 1800. Hver celle har en gjennomsnittlig rekkevidde på 35 km, eller 70 km ved bruk av "extended cells". I tettbygde områder vil en benytte flere stasjoner med mindre rekkevidde for å få nok kapasitet for alle brukerne.

GSM er kompatibel med Integrated Service Digital Network (ISDN) og tilbyr dermed en del tilleggstjenester, som SMS og datakommunikasjon. I tillegg til vanlig telefoni har man i GSM også en datatjeneste som inkluderer end til ende kommunikasjon over et pakkesvitsjet nettverk. Dataratene ligger på fra 300 bps til 9,6 (14,4)kbps i vanlig GSM.

For å få tilstrekkelig kapasitet i mobilnettene til det store antall abonnenter, må flere brukere dele på samme radiokanal (frekvens). I GSM-systemet skjer det ved hjelp av Time Division Multiple Access (TDMA). Hver telefon kan i prinsippet bare bruke radiokanalen en 8-del av tiden. En slik 8-del kalles en tidsluke, og er tilfredsstillende for tale [5].

2.3.3 GSM arkitektur

GSM systemet består av en rekke nettleterner. Disse elementene er delt inn i en netterk- og svitsjedel (NSS), og en basestasjons del (BSS). For å få et funksjonelt system må abonnentene i tillegg ha egne apparater og abonnement.

2.3.3.1 Nettverks- og svitsjedelen (NSS)

NSS består av disse hovedelementene (se også Figur 2):

- HLR – Home Location Register
- AuC – Authentication Centre (som oftest integrert i HLR)
- VLR – Visitor Location Register (VLR og MSC er som oftest integrert i samme maskin)
- MSC – Mobile Services switching Centre
- EIR – Equipment Identity Register

NSS har som hovedoppgave å foreta all svitsjing i GSM-nettet og være et "bindeledd" til det offentlige telefonnettet eller andre GSM-nett. Den må også holde rede på lokasjon for de
forskjellige abonnentene. Dette innebærer hjemmelokasjonsdatabasen HLR og besøksdatabasen VLR. Ved hjelp av AUC overfører den krypteringsnøkler til basestasjonssystemet.

2.3.3.2 Basestasjonssystemet (BSS)

BSS består av disse hovedelementene (se også Figur 2):
- BSC – Base Station Controller
- BTS – Base Transceiver Station

Basestasjonssystemet har som hovedoppgave å styre radiosystemet. Dette inkluderer synkronisering, styring av radiokanalen og sendereffekten. Andre oppgaver er kanalkoding/dekoding, kryptering/dekryptering, hastighetstilpasning av datatrafikk, styre handover innenfor celler i samme basestasjonssystem og behandle data fra mobilstasjonen som overføringskvalitet og feltstyrke fra basestasjoner.

2.4 General Packet Radio System (GPRS)

2.4.1 Innledning

GPRS blir ofte kalt generasjon 2,5 i mobilkommunikasjon, fordi teknologien tar et langt skritt fra GSM (2. generasjon) mot UMTS (3. generasjon). GPRS kjennetegnes av kontinuerlig oppkobling (for eksempel Internett) og høyere overføringshastighet på data. GPRS - teknologien er bare en videreutvikling av GSM, fra linjesvitsjing til pakkesvitsjing. GPRS har grensesnitt mot Internett Protocol – datanettverk (IP – datanettverk).

2.4.2 GPRS systemet

GPRS er en teknologi som overfører data via pakkesvitsjet teknologi i hastigheter opp til 171,2 kbps. Hvilket er mer enn 17 ganger raskere enn dagens linjesvitsjet GSM teknologi, som overfører data med 9,6 kbps.

Slike hastigheter (i GPRS) gjør det mulig å få samtidig – videnskapelige opplysninger på mobil, samt overføring av datafiler med lyd. Samtidig er terminalen oppkoblet kontinuerlig. Hvilket betyr at brukere ikke behøver å vente på at forbindelse blir opprettet først, slik som med dagens GSM.

Terminalene i GPRS er delt opp i tre klasser:
- Klasse A: Knyttet mot både GSM og GPRS, samtidig trafikk fra begge nett
- Klasse B: Knyttet mot både GSM og GPRS, en tjeneste om gangen
- Klasse C: Terminaler bare knyttet til GPRS

2.4.3 GPRS arkitektur

Integrasjon av GPRS i den eksisterende GSM arkitekturen krever en ny klasse nettverksnoder, kalt GPRS Support Nodes (GSN). GSN er ansvarlige for ekspedisjonen og rutingen av datapakker mellom mobilstasjoner og eksterne Packet Data Networks (PDN). For å få GPRS må en operator oppgradere GSM-nettverket, samt installere to grunnmoduler (se Figur 3):
- Gateway GPRS Support Node (GGSN)
- Serving GPRS Support Node (SGSN)
SGSN tilsvarer MSC i GSM. GGSN er en gateway mellom GPRS - nettet og andre nett (PDN) som benytter IP. Denne enheten brukes også til å kommunisere med andre GPRS – nett. SGSN sender pakker til og fra brukeren i dekningsområdet.

Figur 3) GPRS system arkitektur [6]

Ved sending av datapakker vil dataflyten gå fra Terminal Equipment/ Mobile Terminal (TE/MT) til SGSN, via BSS, og så til slutt til GGSN og ut på for eksempel Internett.

2.4.4 Sesjonsstyring

Etter at konteksten er aktiv, vil kommunikasjonen fra terminalen til server foregå på IP (se slik ut for bruker), se Figur 4).

¹ IMSI – International Mobile Subscriber Identity, unikt identifikasjonsnummer for en GSM mobiltelefon bruker. Lagret på SIM.
2.4.5 Kodeskjema for GPRS

I GPRS er det fire forskjellige kodeskjemaer, CS-1, CS-2, CS-3 og CS-4, se Tabell 1. Valget på kodeskjema avhenger av tilstanden til kanalen gitt av det mobile nettverket (kvaliteten mellom mobiltelefonen og basestasjonen). Hvis kanalen er veldig støyete, vil nettverket muligens velge å bruke CS-1 for å sikre høyere pålitelighet. I det tilfelle vil datahastigheten bare være på 9,05 kbit/s per GSM tidsluke i bruk. Hvis kanalen tilbyr gode forhold, kan nettverket velge å bruke CS-3 eller CS-4 for å oppnå optimal hastighet, og vil dermed ha opptil 21,4 kbit/s per GSM tidsluke [6].

Tabell 1. Kanalkode skjema for GPRS

<table>
<thead>
<tr>
<th>Kanalkode skjema</th>
<th>CS-1</th>
<th>CS-2</th>
<th>CS-3</th>
<th>CS-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kode rate</td>
<td>(\frac{1}{2})</td>
<td>~2/3</td>
<td>~3/4</td>
<td>1</td>
</tr>
<tr>
<td>Data rate kbit/s</td>
<td>9,05</td>
<td>13,4</td>
<td>15,6</td>
<td>21,4</td>
</tr>
<tr>
<td>Maximum data hastighet med 8 tidsluker</td>
<td>72,4 kbit/s</td>
<td>107,2 kbit/s</td>
<td>124,8 kbit/s</td>
<td>171,2 kbit/s</td>
</tr>
</tbody>
</table>

2.5 Universal Mobile Telecommunications System (UMTS)

2.6 **Tjenester i GSM og GPRS**

2.6.1 **SMS**

Kortmeldingstjenestene: SMS gjør det mulig å sende tekstmeldinger med et begrenset informasjonsinnhold. Det finnes tre typer:

- Mobilterminert punkt til punkt
- Punkt til punkt
- Kringkastning i radiocelle

Slike meldinger kan sendes eller mottas selv om abonnenten er opptatt i en annen samtale, og kan ha lengde på 160 tegn (punkt til punkt) eller 93 tegn (kringkastet). Kortmeldingene kan være en mobilterminal eller en annen type terminal i et telefonnett eller datanett. Meldingene sendes som pakker over signaleringskanalene.

Kortmeldingene må mellomlagres i et tjenestesenter SC som ligger utenfor GSM – nettet. Meldingene sendes alltid via tjenestesenteret, og det er ikke mulig å sende direkte mellom to GSM – abonnenter (uten å gå via tjenestesenteret). Meldinger mellomlagres her når abonnenten ikke er tilgjengelig, men sendes automatisk når abonnenten igjen har radiokontakt.

2.6.2 **Linje svitsjet data (CSD)**

Ved hjelp av bæretjenestene i GSM er det mulig å overføre linjesvitsjet data (Circuit Switched Data – CSD) med hastigheter opp mot 9,6kbit/s over GSM nettverket. GSM tilbyr både transparent og ikke-transparent (feilretting) dataoverføring.

2.6.3 **Høyhastighetsdata (HSCSD)**

High Speed Circuit Switched Data (HSCSD) er en tjeneste for overføring av data i GSM-nettet som gir deg opp til 57,6kbit/s (klasse 10) nedlastingshastighet med GSM data – overføringer.

2.6.4 **GPRS multislot klasser**

Multislot klasser er produktavhengig, og vil avgjøre maksimalt oppnålig datarate i både opplink (fra mobilterminal til basestasjon) og nedlink (fra basestasjon til mobilterminal). Det skrives for eksempel 3+2 eller 2+2. Da vil det første nummeret indikere antall nedlink tidsluker, og det andre antall opplink tidsluker som enheten kan bruke. Samtidig er det et maksimalt antall tidsluker som kan være aktive samtidig. Selv om klassen støtter 3+2 tidsluker, er det ikke sikkert at det kan være mer enn fire tidsluker aktive samtidig (2+2).

Tabell 2 viser de forskjellige klassene og hvilke kombinasjoner med luker som fører til forskjellige hastigheter.

<table>
<thead>
<tr>
<th>Multislot klasse</th>
<th>Nedlink luke(r)</th>
<th>Opplink luke(r)</th>
<th>Maksimalt aktive tidsluker</th>
<th>Kombinasjoner tidsluker</th>
<th>Datahastighet mottak (kbit/s)</th>
<th>Datahastighet sending (kbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(1+1)</td>
<td>8-12</td>
<td>8-12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>(2+1)</td>
<td>16-24</td>
<td>8-12</td>
</tr>
</tbody>
</table>
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(2+1) eller (1+2)</td>
<td>16-24 eller 8-12</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>(3+1)</td>
<td>24-36</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>(2+2)</td>
<td>16-24</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>(3+1) eller (2+2)</td>
<td>24-36 eller 16-24</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>(3+1) eller (2+2) eller (1+3)</td>
<td>24-32 eller 16-24 eller 8-12</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>(4+1)</td>
<td>32-48</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>(3+2)</td>
<td>24-32</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>(4+1) eller (3+2)</td>
<td>32-48 eller 24-32</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>(4+1) eller (3+2) eller (2+3)</td>
<td>32-48 eller 24-32 eller 16-24</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>(4+1) eller (3+2) eller (2+3) eller (1+4)</td>
<td>32-48 eller 24-32 eller 16-24 eller 8-12</td>
</tr>
</tbody>
</table>

Eksempel på hastigheter:

Klasse 8
Fire ned, 1 opp (4+1)
32-48 Kbps mottak, 8-12 Kbps sending.

Klasse 10
Fire ned, en opp (4+1)
32-48 Kbps mottak, 8-12 Kbps sending.

eller
Tre ned, to opp (3+2)
24-32 Kbps mottak, 16-24 Kbps sending.

2.6.5 SMS over GPRS
Ved å konfigurere mobilterminalen, er det mulig å sende SMS over GPRS. Det forutsetter at terminalen støtter dette, samtidig som teleoperatørene åpner for denne muligheten.

2.6.6 Unstructured Supplementary Service Data (USSD)
USSD har mye til felles med SMS siden begge bruker GSM – nettets signalerings kanal. Med USSD er det mulig å sende meldinger til forskjellige steder i GSM – nettverket uten å forholde seg til en spesifikk meldingsstruktur. USSD er sesjonsorientert. Det medfører at hvis
en bruker aksesserer USSD, vil en sesjon bli etablert og radioforbindelsen holdes oppe helt til den frigis. Tekstmeldingene i USSD kan inneholde opp til 182 tegn.

2.6.7 Posisjonering ved bruk av GSM

Enkelte netteiere tilbyr sine kunder å kunne finne sin posisjon ved bruk av mobiterminalen. De bruker da nettverkets cellebaserte struktur til å bestemme posisjonen.

GSM-posisjonering vil fungere overalt i GSM nettet der det er dekning, og av alle mobiterminaler. Det finnes flere kategorier av tjenester som bruker telefonens geografiske posisjon. For eksempel sporing og sikringstjenester. Flåtestyring er en spesifikk tjeneste som kan være aktuelt.

2.6.7.1 Sikkerhet og personvern

For å kunne ta i bruk slike tjenester vil det være nødvendig og innhente opplysninger om brukeren, og da er personvernet viktig. Loven om behandling av personopplysninger omhandler dette [13]. Det er viktig at brukerne må godkjenne at de skal kunne bli posisjonert i forkant, slik at ingen vil føle seg overvåket eller krenket.

Sikkerhetmessig er det også viktig at ikke hvem som helst har tilgang til brukerens posisjon selv om han har godtatt at det kan gjøres. En predefinert liste over hvilke numre som kan spørre om posisjonen vil sikre at ingen uvedkommende får tak i den informasjonen.

2.6.7.2 Dekning, nøyaktighet og tilgjengelighet

Teknologien som benyttes til posisjonering i GSM, gjør at samtlige telefoner som befinner seg i et nett som tilbyr posisjonering, kan benytte seg av denne tjenesten. Det krever at brukeren har aktivert tjenesten.

Nøyaktigheten er avhengig av hvor brukeren befinner seg. Befinner brukeren seg i tettbygde strøk, vil feilmarginen være rundt 200 meter. Utenfor tettbebygde strøk kan det være en nøyaktighet på opptil flere kilometer [14].

Posisjonen leveres i form av lengde- og breddedegrad, postnummer, kommunenummer, stedsnavn, fylke og fylkesnummer.

2.7 Global Positioning System (GPS)

2.7.1 GPS teknisk

En GPS mottager (terminal) kan motta/lytte til et vist antall kanaler på samme tid. Det mest vanlige er 8 eller 12 kanalers GPS mottager, og det kan da mottas data fra henholdsvis 8 eller 12 satellitter samtidig. Hvis det mottas data fra flere satellitter, vil den utregnede posisjonen bli mer nøyaktig.

GPS inneholder to sett koder, C/A kode for sivilt bruk og P kode for militært bruk. GPS ble opprinnelig designet slik at den sivile koden ga 10 ganger mindre nøyaktighet enn den militære koden, omtrent 300 meter mot 30 meter. Det viste seg at den sivile koden ga omtrent samme nøyaktighet som den militære koden. For å bøte på dette problemet ble den såkalte ”Selective Availability” (SA) implementert for å forhindre nøyaktig posisjon til uautoriserte brukere. SA introduserer to typer feil. Den første er en såkalt delta feil som fører til en klokkefeil som virker over hele verden. Den andre er en såkalt epsilon feil, som er en ekstra variabel bane feil. Med SA skrudd på, kan normaliserte vertikale og horisontale feil kan være opp til 100 og 156 meter i 95 % av tilfellene. 1 mai 2000 ble SA skrudd av, noe som medførte at nøyaktigheten ble 22 meter vertikalt og 33 meter horisontalt i 95 % av tilfellene.

2.7.2 GPS posisjon

En GPS måler tiden som et signal benytter mellom satellitten og mottageren. Ved at tiden når signalet ble sendt fra satellitten er kjent, og tilsvarende når signalet ankommer så er det mulig ved hjelp av 3 satellitter å bestemme posisjonen i 2 dimensjoner. Satellittene benytter en svært nøyaktig intern klokke. GPS mottagerne derimot har ikke en tilsvarende nøyaktig klokke, så den tredje satellitten benyttes for å korrigere klokkefeilen. Mottager vil dermed gi en posisjonsbestemmelse i lengde-, og breddegrad samt høyde over havet hvis den mottar signaler fra minst 4 satellitter samtidig som vist i Figur 5).

![Figur 5) GPS satellitter og mottakere](image)

2.7.3 Differensiel GPS (DGPS)

DGPS bruker landbaserte referansestasjoner for å øke nøyaktigheten til terminalens GPS posisjon. Referansestasjonens sanne posisjon brukes til å kalkulere deviasjonen for hver satellitt. Korreksjonssignalene sendes til DGPS mottakeren som rekalkulerer, og gir en posisjon ned til en nøyaktighet på 1-3 meter [15].

USA har et tilsvarende system som heter Wide Area Augmentation System (WAAS) og systemet er interoperativt med EGNOS.

Standardisert format for DGPS data er Radio Technical Commission For Maritime Services (RTCM) protokollen [16].

2.7.4 Problemer med GPS posisjonering

GPS har et problem når det gjelder den statiske posisjonering. Den er basert på en enkelt frekvens, med samtidige pseudotilfeldige målinger for mottakers posisjon og klokkens presisjon [3].

SA hadde som hensikt å redusere nøyaktigheten, og etter at SA ble slått av, har den statiske posisjoneringen forbedret seg betraktelig.

Løsningen for de fleste problemer med GPS posisjonering kalles ”static positioning solution”. Nøyaktigheten av GPS målingene er avhengig av type måling som er innhentet, målingens varighet og hvordan målingen blir behandlet. Denne posisjonering løsningen oppnås ved at et sett av GPS likninger som er forbindelsen til pseudorekke målingene som mottakeren har fått av posisjonen og av klokke tilbøyeligheten. En slik GPS likning kan være skrevet på denne formen:

\[
(P_i - b - \varepsilon_i)^2 = (\tilde{S}_i - \tilde{r})^T (\tilde{S}_i - \tilde{r}) \quad (1 \leq i \leq n),
\]

hvor \(n\) er antall GPS satellitter, \(P_i\) er pseudorekke til \(i\) satellitt, \(b\) er mottaker klokkens tilbøyelighets påvirkning av lengden, \(\varepsilon_i\) er tilleggs feil involvert i pseudorekken, \(\tilde{S}_i\) er \(i\) satellitt posisjons vektor i et ”Earth-Centered Earth-Fixed” (ECEF) koordinat system, \([x_i, y_i, z_i]^T\), og \(\tilde{r}\) er mottaker posisjonens vektor i et ECEF koordinat system, \([x_r, y_r, z_r]^T\). Siden antallet ukjente faktorer (for eksempel \(x_r, y_r, z_r, b\)) er fire, må minst fire satellitter til samtidig for å løse uttrykket ovenfor.

Vanligvis kommer det informasjon fra mer enn fire satellitter samtidig, men det er en øvre grense med åtte målinger. Det er sjeldent synlig mer enn åtte GPS satellitter for mottakers lokale horisont. Figur 6) viser et skjematisk bilde av et geometrisk GPS statisk posisjonerings problem.

\(^2\) Se kapittel 2.7.5
Det er utviklet flere algoritmer som skal hjelpe til å få en mer nøyaktig måling. Algoritmene heter Noe et al’s, Bancroft’s, Krause’s, Abel og Chaffe’s og Biton’s.
Disse algoritmene vil ikke kommenteres nærmere, da de er meget omfattende og komplekse.

2.7.5 Andre satellitt navigasjons systemer
Det finnes andre globale navigasjons satellitt systemer (GNSS), som er tilgjengelig eller nærre forestående.

2.7.5.1 GLONASS
GLONASS er et globalt navigasjons satellittsystem, og er utviklet av Russland. Dette systemet har mye til felles med GPS systemet. Det består av 21 satellitter og disse går i en bane 19 100 km over jorda.
GPS og GLONASS systemet kan integreres for å øke nøyaktigheten til den geografiske og utregnede posisjonen, spesielt under dårlige forhold hvor få satellitter syntes (særlig i utenforsligger strøk).

2.7.5.2 Galileo
Galileo er et globalt navigasjons satellittsystem fremlagt av Europa [17]. Galileo er en sivil kontrollert satellittsystem, som skal leveres igjennom et offentlig privat samarbeid i Europa. Systemet vil bestå av 30 satellitter i en bane 23 616 km fra jorden, og vil benytte frekvensbånd i området 1,164 GHz til 1,610 GHz. Systemet skal være klart til bruk i 2008 [18]. Absolutt nøyaktigheten i Galileo vil være 2 - 10 meter.
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Galileo vil være kompatibelt med brukernivået fra GPS og GLONASS systemene. Det vil bli tilbydd et to nivås service system, en gratis basis tjeneste, og en betalbar tjeneste som tilbyr tilleggs egenskaper.

2.7.6 National Marine Electronics Association (NMEA)

NMEA – protokollen er basert på seriell kommunikasjon (4800 Baud, 8 databits, paritet NONE, 1 stoppbit, kun ASCII-tegn) [19].

2.7.7 NMEA formatet

Fra en GPS kan en for eksempel motta følgende setning på NMEA formatet:

$GPRMC,174813,A,5910.396,N,01102.093,E,002.3,233.4,280999,000.3,E*70

Alle linjer starter med $, etterfulgt at 2 tegn som angir hardware type-ID, tre tegn for setnings-ID. Deretter kommer de ulike datafelt separert med komma. En linje kan inneholde opptil 82 tegn inkludert ID:

- Hardware type-ID, GP for GPS
- Setnings-ID, RMC (kan være GLL, GGA, GSA, GSV eller, som her, RMC)
- Alt mellom ID og * er målingsdata
-Checksum er kalkulert til slutt, her 70 (hex).

Dataflyten kommer i linjer/setninger og avsluttets med linjeskift (CR/LF).

En posisjon kan leses ut fra setningen:

$GPGLL,ddmm.mmmm,n,dddmm.mmmm,e,hhmmss.ss,a*CC<CR><LF>

Breddegrader: [dd(grader 0-90) mm.mmmm(minutter),n(retning Nord eller syd)]

Lengdegrader: [ddd(grader 0-180) mm.mmmm(minutter),e(retning Øst eller vest)]

hhmmss.ss = UTC av posisjon

a = status: A = gyldig data

Det finnes forskjellige setnings-ID i NMEA formatet. De har forskjellige egenskaper avhengig av hvilken informasjon man er ute etter. De mest vanlige er listet i underkapitelen:

2.7.7.1 GLL - Geographic position - latitude / longitude

Latitude/Longitude of Geographic Position, viser kun posisjonen i breddegrad og lengdegrad.
2.7.7.2 GGA - Global positioning system fixed data
GGA viser posisjonen i breddegrad, lengdegrad og høyde over havet. Hvis GPS er koblet til en DGPS vil GGA inneholde den korrigerte posisjonen.

2.7.7.3 GSA - GNSS DOP and active satellites
GSA gir informasjon om aktive sattelitter som GPS mottar informasjon fra. Den gir også en pekepinn på hvor nøyaktig posisjonen som er utregnet er med DOP (dilution of precision). DOP gir et tall fra en og oppover, et tall under fem betyr en god utregning (ligger ofte rundt to).

2.7.7.4 GSV - GNSS satellites in view
GSV gir opplysninger om asimut, elevasjon, avstand og signalstyrke til de satellittene som GPS ser.

2.7.7.5 RMC - Recommended minimum specific GNSS data
RMC viser posisjonen i breddegrad, lengdegrad, retning og fart i knop. En setnings som inneholder den informasjonen som trengs ved ferdsel på sjøen.

2.7.7.6 VTG - Course over ground and ground speed
VTG viser retning i grader, og fart oppgitt i knop og km/t.

2.7.8 Nøyaktighets målinger
Det er mange forskjellige metoder for å beskrive nøyaktigheten av målingene for GPS. Den mest vanelige er CEP.

2.7.8.1 Circular Error Probability (CEP)
CEP er en illustrasjon av en sirkel hvor 50 % av målingene inntreffer. Hvis CEP er oppgitt til 100 meter er det en betegnelse for at 50 % av det absolutte horisontale punktet værer innen 100 meter fra den virkelige posisjonen. For de fleste offshore posisjoneringer applikasjoner er 50 % for liten sannsynlighet for å kunne være brukbar. Da er det behov for en høyere prosent sannsynlighet for riktig posisjon, da er det typisk 95 % som benyttes. Den blir som oftest betegnet som R95, og CEP blir regnet som 50 %.

2.8 Antenne
En antenne har til oppgave å sende ut eller motta elektromagnetisk stråling, og oppdeles derfor i sender og mottakerantenner [20].

Den enkleste senderantennen består av en rett metalltråd som får tilført vekselstrøm. Rundt den strømførende tråden skapes både et magnetisk felt (H felt) og et elektrisk felt (E felt). Begge disse feltene vil forplante seg ut fra tråden, og danner til sammen det man kaller en elektromagnetisk bølge (EM bølge) som også kalles radiobølge. Disse feltene står vinkelrett på hverandre og forplanter seg med lysets hastighet (C₀) framover, se Figur 7).
Bølgene vil bre seg tredimensjonalt utover, og har det karakteristiske uttrykket:

\[\lambda = \frac{k \cdot c_0}{f}, \]

hvor \(\lambda \) er bølgelengden, \(c_0 \) er lyshastigheten, \(f \) er frekvens (Hz) og \(k \) er en konstant.

Plassers en annen metalltråd ute i feltet fra en senderantenne vil det bli indusert strømmer og spenninger i tråden. Er denne tilsluttet en mottager kan dette kalles for en mottagerantenne.

Både sender og mottager er resiproke element, dvs. at om en senderantenne er laget for visse egenskaper, vil den også kunne brukes som mottagerantenne med samme egenskaper.

For at antennen skal kunne utstråle maksimal effekt må lengden av antennen stå i et visst forhold til den frekvensen (bølgelengde, \(\lambda \)) som antennen brukes ved. Når antennen har en viss lengde blir dens induktans og kapasitans eksakt like store, og en sier da at antennen er i elektrisk resonans. Både strømmen og spenningen i antennen vil bli maksimale, og for en senderantenne betyr dette at den utstrålte effekten blir størst. For en mottakerantenne blir det på samme måte, altså den blir mest effektiv ved den aktuelle frekvensen. Det er vanlig at antennen benevnes etter sin lengde i forhold til den frekvensen de er laget for, men utrykkes i bølgelengde. Som for eksempel kan nevnes kvartbølgeantener, halvbølgeantener og helbølgeantener.

Den fundamentale praktiske antennetypen er halvbølgedipolen som består av to metallstaver. Hver av de to stavene er en kvart bølgelengde lang slik at antennens sammenlagte lengde blir en halv bølgelengde (\(\lambda/2 \)).

Lengden til halvbølgedipolen er gitt av følgende uttrykk:

\[L = \frac{k \cdot c_0}{2 \cdot f}, \]

hvor \(k \) – faktoren (forkortningsfaktoren) er gitt av:

\[k = \frac{1}{\sqrt{\varepsilon_r}}, \]

\(\varepsilon_r \) er den relative permittiviteten i et medium (\(\varepsilon_r = 1 \) for luft). Dette bringer med at \(k \) – faktoren for metaller er ca 0,95, det vil si at EM bølger går med 5 % lavere hastighet i metall enn i luft.
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

(k = 0,95 er et gjennomsnittstall. I virkeligheten vil k – faktoren variere med forholdet lengde/tykkelse (l/d) for dipolstavene).

Hvis denne halvbølgedipolen skal brukes i GSM 900, er lengden da gitt:

\[
L = \frac{k \cdot c_0}{2 \cdot f} = \frac{0,95 \cdot 3 \cdot 10^8}{2 \cdot 900 \cdot 10^6} = 15,83 \text{ cm}
\]

Hver stav blir altså halvparten: 7,92 cm, slik Figur 8) viser:

Figur 8) En halvbølgedipol i GSM 900 er 15,83 cm lang

2.8.1 Antenner i mobile systemer og GPS

Tidligere var det vanlig å bruke monopol antenne (halvbølge, kvartbølgemonopol, også kalt pisk antenne) på mobiltelefonene. Monopol er dekkende for en antenne hvor det bare benyttes den ene delen av en dipol.

Disse har god utstråling langs bakken, er lette, og de kan foldes ned eller bli laget slik at en kan trekke den ut av mobilenheten ved bruk. Den senere tid er det blitt tatt i bruk en helt annen type antenne på mobiltelefoner, nemlig Helixsantennen.

Helixsantennen (eller spiralantenne) er en anvendt antenne blant annet i radiolinsje- og satellittsamband. Helixsantennen ser ut som en fjær, eller en utstrukket spole. Den er åpen i enden, det vil si den har bare et tilkoblingspunkt, og ved tilkoblingspunktet finnes jordplanet i form av en flatmetallskive. Inneleder i koaksialkabel knyttes til spiralviklingen, og ytterlederen til reflektoren.

Det er 8 parametere som beskriver en Helixsantennen (Helixsparametere), se Figur 9):

Figur 9) Helix antenne og helixparametere [20]

\[
D = \text{Diameter på antennen (sett ovenfra)}
\]

\[
C = \text{omkrets} = \pi D
\]
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

\[S = \text{Avstand mellom vindingene} \]
\[\alpha = \text{stigningsvinkel} = \arctan \frac{S}{\pi D} \]
\[L = \text{lengden på 1 vinding} \]
\[n = \text{antall vindinger} \]
\[A = \text{akse lengde} = nS \]
\[d = \text{diameter på lederen} \]

Lengden til en Helixsantenne i GSM 900 er gitt av følgende:

For utregningen er K – faktoren den samme som over 0,95. Frekvensen er 900 MHz for GSM. bølgelengden er da som følger:

\[\lambda = \frac{k \cdot c_0}{f} = \frac{0,95 \cdot 3 \cdot 10^8}{900 \cdot 10^6} = 0,03167 \text{ meter} \]

Ved følgende forutsetninger, \(S = \lambda/4 \) og \(n = 6 \), vil lengden på Helixsantennen være:

\[S = \lambda/4 = 0,00791 \]
\[A = nS = 6 \cdot 0,00791 = 4,746 \text{ cm} \]

For GSM/GPRS og GPS finnes det kombinert antenner som i prinsippet inneholder to avskilte antenner, men satt sammen til en antenne. Disse kan være praktisk å benytte fordi man ender opp med en antenne istedenfor to antenner. Disse antennene har to innganger, en for GSM/GPRS og en for GPS.

Man får både aktive og passive antenner. Fordelen med aktive antenn er at disse har et høyere signal nivå (i dB), men oppnår et bedre signal støy forhold.

2.9 Over The Air (OTA)
OTA er en protokoll for kommunikasjon over trådløse nettverk. Siemens benytter OTA protokollen for å laste ned applikasjoner over GMS nettet.

2.10 Control Area Network (CAN)
CAN er en lavnivås instrumenteringsprotokoll med egenskaper som er velegnet i instrumentering og enklere styring. Den ble utviklet av Bosch for bruk i biler, men har slått an i mange andre industrier. CAN er et serielt buss system som er spesielt tilpasset for å sammenkoble enheter.
3 Metoder for å designe en M2M enhet

3.1 Kommunikasjon mellom GSM/GPRS modulen og GPS modulen

For at GSM/GPRS modulen skal kunne kommunisere, trengs det en enhet imellom disse modulene som kan oversette signalene, samtidig som denne enheten styrer systemet. En slik enhet vil være en mikrokontroller.

3.1.1 Mikrokontroller

En mikrokontroller er en datamaskin på en brikke, og kan programmeres til å gjøre spesielle oppgaver. Hjernen i mikrokontrolleren er en mikroprosessor, kalles også Central Prosessing Unit (CPU).

Videre er det viktig at man skal kunne programmere mikroprosessoren til å utføre oppgaver som er hensiktsmessig for at systemet skal fungere. Programspråket som brukes er gitt av leverandøren kan for eksempel være C, C++, JAVA etc. Dette krever minne i mikrokontrolleren.

Mikrokontrolleren må kommunisere med GSM/GPRS og GPS modulene, dette gjøres via inn/ut portene, se Figur 10). Det er da viktig at disse portene har samme slags grensesnitt som de utenforliggende modulene, sik at man ikke trenger en mellom liggende enhet som konverterer om signalene [23].

3.1.2 Grensesnitt

Grensesnittene mellom de forskjellige modulene kan variere fra produsent til produsent, og til hvilke krav man stiller til systemet. Enhver GPS produsent har som regel sitt eget grensesnitt (protokoll) i tillegg til NMEA protokollen, RTCM etc. Hvilket grensesnitt som bør velges er avhengig av funksjoner som er ønskelig. Mikrokontrolleren må da være i stand til å kommunisere på det nivå som velges. Universal Asynocrine Receive Transmit (UART) grensesnittet er et generelt serielt grensesnitt, de fleste GSM/GPRS moduler benytter seg av dette formatet til kommunikasjon til og fra enhetene. Følgelig må da mikrokontrolleren ha innebygd dette grensesnittet. RS232 er et eksempel på et UART grensesnitt.

3.1.3 Programmering av mikrokontroller

For at mikrokontrolleren skal kunne utføre en oppgave, må det først skrives et program som lagres i programhukommelsen. Dette minnet kan være av ulike typer. Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM) og Flash. For fleksibilitet er det viktig at programminnet kan omprogrammeres, og kan da være av typen EPROM eller Flash.
Etter at programmet er ferdig skrevet på for eksempel en PC, må programmet lastes over til mikrokontrollerens minne. Dette kan gjøres med spesielle (E)ROM brennere, eller med et ”evaluation sett” tilkoblet en RS232 kabel fra PC-en.

3.2 AT – kommandoer

Mange modemer støtter standard og utvidede kommandosetet AT fra Hayes. AT etterfulgt av en kommando signaliserer til modemet at en eller flere kommandoer er på vei. Disse kommandoene er et industristandard språk brukt til å kommunisere med modemet. Kommandoene kan sendes fra terminal modus ved hjelp av de fleste kommunikasjons software pakkene. AT – kommandoene er spesifisert i ESTI GSM07.07 og ETSI GSM07.05 [24].

3.3 Java Micro Edition (J2ME)

J2ME-applikasjoner er Java program som bruker et bestemt subsett av de vanlige Java klassebibliotekene.

J2ME er en mindre utgave av standard Java språk (Java 2 Enterprise Edition), se Figur 11).

For å kunne støtte et bredt spekter av produkter med J2ME som plattform, har man introdusert to nye begreper i Java, *Configuration og Profiles*. Disse konfigurasjonene definerer et minimum av Java biblioteker, som utvikleren kan forvente er tilgjengelig på enhetene.
3.3.1 Configuration, CLDC og CDC
Configuration er sammensatt av en virtuell maskin, Java Virtual Machine (JVM), og et
minimalt sett av klassebibliotekene. De skaffer basis funksjonalitet for enkelte kjeder av
enheter som deler samme karakteristiske trekk som nettverkstilkobling og minne arkitektur.
Det er to forskjellige J2ME Configuration:

- Connected Limited Device Configuration (CLDC)
- Connected Device Configuration (CDC)

CLDC er den minste av disse to konfigurasjoner, og er spesielt designet for enheter med
periodevis nettverksforbindelse, trege prosessorer og begrenset minne, slik som
mobiltelefoner og PDA-er.

CDC er designet for enheter med mer minne, kjappere prosessorer og bedre nettverks –
bandbredde, som ”TV set-top bokser” og telematikk systemer [27].

3.3.2 Profiles - MIDP
For å skaffe komplett rutiner til spesifikke enhets kategorier, må Configuration bli
sammensatt med et sett av høyervå Application Program Interface – (API) er, eller Profiles,
som videre definerer applikasjonens syklusmodeller, brukergrensesnitt, og tilgang til enhets
спеsifikke egenskaper.

CLDC blir alltid etterfulgt av ”Mobile Information Device Profile” (MIDP) som er designet
for mobiltelefoner og PDA. Den tilbyr kjerne – applikasjonsfunksjonalitet som er forlangt av
mobil applikasjoner, inkludert bruker grensesnitt, nettverks forbindelse, lokal data lagring, og
applikasjon forvaltning. Kombinert med CLDC og MIDP forbedrer Java rutiner kapasiteten
på handholdte enheter, og minimaliserer både minne og strøm forbruk.

3.3.3 K Virtual Machine (KVM)
Java koden kjøres på en virtuell maskin som fungerer på alle plattformer
(plattformuavhengig), KVM er den virtuelle maskinen for J2ME. Designet for å være så liten
og så effektiv som mulig, men fortsatt trofast til kjernespråket Java. Med minne som typisk er
verdifull vare på små ressurs enheter, typisk på bare 60 kilobytes.

3.3.4 MIDlet
En Java applikasjon som er designet for å kjøre på en mobil enhet, kalles en MIDlet. En
MIDlet inneholder kjerne Java klassene CLDC og MIDP. Et MIDlet sett ombefatter en eller
flere MIDlet pakker som sammen bruker en Java Archive (JAR) fil.

3.4 Unified Modeling Language (UML)
UML [28] er et grafisk språk for visualisering, spesifisering, konstruering og dokumentasjon
av fakta i et software system. UML gir en standard framstilling for å beskrive et systems
oppbygning, dekke konseptuelle objekter som en forretnings prosess og system funksjoner.
Konkrete objekter som klasser i et spesifisert programmerings språk, database skjemaer og
gjenbrukbare software komponenter.

3.4.1 Use Case diagram
For å visualisere bruken av systemet kan et Use Case diagram benyttes. Man illustrerer
bruken og hvilke oppgaver brukeren kan utføre med konkrete strukturer, relasjoner og
beov. Use Case diagram er viktig for å visualisering, spesifisering og dokumentasjon av
oppførselen til et element.
3.4.2 Aktivitets diagram
Et aktivitets diagram viser flyten i et diagram. En aktivitet er en utgående utførelse innenfor en tilstands maskin. Det vil direkte resultere i aktiviteter som er skapt av beregninger, som en tilstand i et system, eller returnering av en verdi.

3.4.3 Type diagram
Type diagram spesifiserer en abstrakt klasse som bare brukes til å spesifisere strukturen og oppførselen til et sett av objekter.

3.4.4 Class diagram
Klasse diagram (class diagram) er det mest vanlige diagrammet som brukes i objekt orienterte systemer. Et klasse diagram viser et sett av klasser, tilkoblinger og samarbeidet mellom relasjonene. Man benytter klasse diagram for å modulere den statiske designen av et system. Klasse diagram er viktig for å kunne visualisere, spesifisere og dokumentere strukturelle modeller, og for å kunne konstruere kjørbare (for et test program) modeller.

3.4.5 Fra UML til Java
Når man har et ferdig designet UML diagram, er det nødvendig å oversette det til et programmerings språk, for eksempel Java. Ved å benytte seg av utviklings verktøyenes innebygde kompilerings program, vil man få ut Java filer med kildekode som innehar relasjoner, klasser, objekter, operasjoner og attributter. Disse Java filene er ikke ferdig skrevet med kode, men strukturen er fastlagt.
4 GSM/GPRS og GPS moduler

For å kunne designe en mobil flåtestyringsenhet fra starten av, må enheten settes sammen av noen viktige komponenter for å få systemet til å fungere. GSM/GPRS er valgt som bæretjeneste for overføringen av data. For å bestemme posisjon brukes GPS. For å kontrollere og styre disse modulene, vil det benyttes en mikrokontroller.

Det finnes en mengde leverandører av moduler, som igjen har et stort utvalg moduler i sitt varespekter. Noen leverer også ferdige flåtestyringsenheter. Oppgaven gir at det skal identifiseres forskjellige leverandører av disse modulene, og det skal finnes 3 – 4 moduler av GSM/GPRS og GPS for nærmere undersøkelse. Av leverandører kan det nevnes:

- EverMore
- Falcom
- Fujitsu
- Garmin
- Leadtek,
- Magellan
- Motorola
- Nokia
- ORCHID
- Oxford
- Panasonic
- Philips
- Siemens
- Sony Ericsson
- SPK electronics
- Wavecom

4.1 Moduler i det norske markedet

Modulene ble plukket ut ifra de forskjellige leverandørenes tilgjengelige modeller, og etter ønske å se nærmere på enkelte av modulene som virket mest interessante for denne oppgaven. Etter at enhetene var valgt ut, skulle de klassifiseres, undersøkes og sammenlignes for tekniske preferanser og ut ifra krav som en flåtestyringsenhet setter.

Det har også blitt satt opp egne kriterier for hver av modulene. Kriteriene er kost, størrelse, fleksibilitet, strømforbruk, behov for hardware design, legge til nye applikasjoner etc.

4.2 Gjennomgåelse og sammenlikning av GSM/GPRS moduler

Det finnes noen egenskaper som er felles for GSM og GPRS modulene. Oppgaven setter noen kriterier til hvordan systemet skal fungere og tenkt brukt. I tillegg vil det bli lagt vekt på muligheten for å benytte systemet til forskjellige anvendelser uten å forandre på hardware. Det er viktig at enheten støtter AT kommandoer. Hvilken innpakning modulene leveres i er ikke avgjørende for systemet virkmåte, men det vil bestemme hvor mye hardware design
som kreves. Pris vil være avgjørende dersom modulen har de grunnleggende egenskapene som systemet krever. Dersom det er snakk om volum produksjon, vil det være mye å hente på å velge den billigste. Størrelsen vil også være viktig, siden systemet kanskje må gjemmes for ikke å kunne lokaliseres av utenforstående. Tilkobling til ekstern antenne vil være et krav, dette for å sikre gode forhold for sending og mottak av data. Det må være en innebygd, eller tilkobling til en ekstern Subscriber Identity Module (SIM) – kortleser, hvorvidt den er innebygd er ikke et krav. Siden systemet skal kunne brukes til mange forskjellige formål, kan det være ønskelig at modulene også kan støtte andre dataoverføringer enn SMS og data over GPRS, slik som CSD, HSCSD og USSD for eksempel. For å forenkle utviklingen av systemet, er det en fordel om det finnes et utviklings sett som kan hjelpe til med igangsettingen av systemet.

Vi har valgt å se nærmere på moduler fra Motorola, Siemens, Ericsson, Nokia og Wavecom.

4.2.1 Kriterier til GSM modulene

I Tabell 3 er det satt opp en liste over kriterier som stilles til en GSM enhet. Her er de kritiske kriterier satt først, deretter de nest viktigste kriterier og til slutt er det også tatt med kriterier som ikke er vesentlige for bruken, men kjekt å ha.

<table>
<thead>
<tr>
<th>Tabell 3. Kriterier til GSM modulene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hovedemne</td>
</tr>
<tr>
<td>Kritiske kriterier</td>
</tr>
<tr>
<td>1. GSM 900/1800</td>
</tr>
<tr>
<td>2. Mottak/sending av SMS</td>
</tr>
<tr>
<td>3. AT kommandoer</td>
</tr>
<tr>
<td>4. RS232 port</td>
</tr>
<tr>
<td>Viktige kriterier</td>
</tr>
<tr>
<td>5. Innpakning</td>
</tr>
<tr>
<td>6. Kretskort</td>
</tr>
<tr>
<td>7. Ferdig bygd</td>
</tr>
<tr>
<td>8. Størrelse (med mer)</td>
</tr>
<tr>
<td>9. Vekt</td>
</tr>
<tr>
<td>10. Arbeidstemperatur</td>
</tr>
<tr>
<td>11. Effekt forbruk</td>
</tr>
<tr>
<td>12. CDS</td>
</tr>
<tr>
<td>13. Data</td>
</tr>
<tr>
<td>14. HSDCS</td>
</tr>
</tbody>
</table>
13. USSD - Ja
14. Andre tilkoblinger - -
15. Pris: 900,- 700,-

Mindre viktige kriterier

<table>
<thead>
<tr>
<th>Plassering av SIM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Intern</td>
<td>Ja</td>
</tr>
<tr>
<td>17. Ekstern</td>
<td>Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plassering av antenne</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Intern</td>
<td>-</td>
</tr>
<tr>
<td>19. Ekstern</td>
<td>Ja</td>
</tr>
<tr>
<td>20. Spenning</td>
<td>5 V 3.3-5.5 V</td>
</tr>
<tr>
<td>21. Tilgengelig utviklings sett</td>
<td>- Ja</td>
</tr>
<tr>
<td>22. GSM 1900</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2.2 Gjennomgåelse av GSM modulene

I dag blir de fleste GSM modulene levert med GPRS innebygd. Det finnes fortsatt flere moduler som kun har GSM. Modulene med GPRS vil fungere som en ren GSM modul såfremt de har klasse A eller B. For å kunne forsvare bruken av GSM moduler fremfor GPRS modulene, må de vise seg bedre eller like bra på samtlige krav samtidig som prisen bør være lavere. Ellers vil det være vanskelig å kunne forsvare bruken av GSM modulene fremfor GPRS modulene. De vil allikevel gjennomgås og drøftes.

4.2.2.1 Siemens TC35(T)

TC35 fra Siemens er en GSM modul som fæs i to forskjellige innpakninger, med og uten kapsel (TC35 uten innkapsling og TC35T med innkapsling). Med innpakning har den innebygd simkortleser, ellers må en ekstern simkortleser tilkobles. Uten innpakning må det designes en hardware bit for tilkobling til enheten (til 40 pins kontakt). Den er spesielt designet for POS terminaler [29], handholdte enheter (for eksempel PDA), mobil PC, trafikkkontroll og navigasjonssystemer, flåtestyring, alarmsystemer etc. Den tilfredsstiller det som er satt som tekniske krav, har tilkobling til RS232, en fysisk størrelse som er å betrakte som liten (54,5 x 36 x 6,85 mm og veier 18 gram uten innpakning). Den kan operere i omgivelse med temperatur fra -20 til + 55°C. Den kontrolleres via AT kommandoer og kan sende data via SMS og CSD. Strømforbruket er i standby mode <3,5 mA som kan karakterisert som lavt. TC35 har en pris på 700,- som gjør den til den rimeligste GSM modulen. Ved forandring av applikasjoner vil det ikke medføre noen begrensinger ovenfor TC35, såfremt det ikke krever forandringer av de tekniske spesifikasjonene. Siemens tilbyr support ved utvikling av applikasjoner på deres enhet (se vedlegg A).

3 Se kapittel 2.4 om GPRS
4 Se kapitel 3.2
5 Se kapittel 2.6.2
4.2.2.2 Motorola d10

d10 fra Motorola kjennetegnes som en nokså stor enhet, ferdig med inpakning og simkortleser, må kun tilkobles med RS232 porten til eksterne enheter. Størrelsen måler 85,6 x 53,66 x 10,3 mm og den veier 52 gram. Den har et strømforbruk i standby på 25mA. Operativ temperatur er fra -30 til 60˚C. Støtter AT kommandoer i henhold til GSM07.07 og GSM07.05. Pris er på ca 900,- pluss mva. Støtter det som kreves av GSM tjenester (se vedlegg B).

4.2.3 Kriterier for GSM/GPRS modulene

I Tabell 4 er det satt opp en liste over kriterier som stilles til en GSM/GPRS enhet. Her er de kritiske kriterier satt først, deretter de nest viktigste kriterier, og til slutt er det også tatt med kriterier som ikke er vesentlige for bruken, men kjekt å ha.

Tabell 4. Kriterier til GSM/GPRS modulene

<table>
<thead>
<tr>
<th>Kriteriske kriterier</th>
<th>Hovedemne</th>
<th>Ericsson Gm47</th>
<th>Nokia 30</th>
<th>Wavecom Q2300</th>
<th>Siemens TC45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GSM 900/1800</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>2. Mottak/sending av SMS</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>3. AT kommandoer</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>4. RS232 port</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Viktige kriterier

<table>
<thead>
<tr>
<th>Innpakning</th>
<th>Hovedemne</th>
<th>Ericsson Gm47</th>
<th>Nokia 30</th>
<th>Wavecom Q2300</th>
<th>Siemens TC45</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Kretskort</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>6. Ferdig bygd</td>
<td>-</td>
<td>Ja</td>
<td>Ja</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7. Størrelse (mm)</td>
<td>50337.2</td>
<td>845326</td>
<td>58326.5</td>
<td>53343.5</td>
<td></td>
</tr>
<tr>
<td>8. Vekt</td>
<td>18.5 g</td>
<td>65 g</td>
<td>20 g</td>
<td>10 g</td>
<td></td>
</tr>
<tr>
<td>9. Arbeids-temperatur ºC</td>
<td>-25 til +55</td>
<td>-10 til +55</td>
<td>Ikke oppgitt</td>
<td>-20 til +55</td>
<td></td>
</tr>
<tr>
<td>10. Effekt forbruk</td>
<td>5 mA/lytte 250 mA/tale 350 mA/data</td>
<td>150 mW lytte</td>
<td>3,5 mA/lytte 300 mA v/tale</td>
<td>25 mA lytte 300 mA v/tale 2.5 A topp</td>
<td></td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Hovedemne</th>
<th>Ericsson Gm47</th>
<th>Nokia 30</th>
<th>Wavecom Q2300</th>
<th>Siemens TC45</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. CDS</td>
<td>Ja</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>12. HSDCS</td>
<td>Ja</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13. USSD</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td></td>
</tr>
</tbody>
</table>

GPRS

29
4.2.4 Gjennomgåelse av GSM/GPRS modulene

4.2.4.1 Ericsson Gm47

4.2.4.2 Nokia 30
Fra Nokia kommer en ferdig innskapslet modul med innebygd simkortleser og antenne. Den har målene 84 x 53 x 26 mm og veier 65 gram. Den kan operere i temperaturer fra -10 til +55˚C. Data kan sendes med SMS, (HS)CSD og GPRS (klasse B, multislot klasse 6). Den har 8 inn/ut porter som kan fjernstyres og tilkobling til et RS232 grensesnitt. Ekstern antenne kan tilkobles istedenfor å benytte seg av den innebygde (vil føre til et bedre signal mottak i for eksempel et kjøretøy). Nokia 30 kan operere i tre forskjellige modus: M2M System Mode, AT

4.2.4.3 Siemens TC45

4.2.4.4 Wavecom Q2300

4.2.4.5 Valg av GSM/GPRS modul

Valget av GSM/GPRS modul for overføringen er Siemens TC45. Ut i fra de kravene som er satt og ønskede egenskaper for GSM/GPRS overføringen, har disse blitt oppfylt av denne modulen. TC45 viktigste egenskap er at den har en innebygd mikrokontroller som programmeres med J2ME, og dette er hovedargumentet for valget. Siemens modulen har ikke de beste toleransene for temperatur, men regnes som fullgodt for montering i et kjøretøy. Strømforbruket er forholdsvis høyt, men dette kommer av at den også fungerer som en mikrokontroller. Den leveres med utviklings sett for applikasjoner, og kan oversende data over GPRS i klasse 8. TC45 har også en lav pris, ca 700,- pluss mva. TC45 egenskaper analysert opp mot de andre modulenes egenskaper, blir drøftet nærmere i kapittel 8.1.

4.3 Gjennomgåelse og sammenligning av GPS modulene

Før utvalget av enheten ble det satt opp en del kriterier som var viktige at GPS hadde. Den måtte ha inngang til ekstern antenne da enheten skal kunne plasseres i et kjøretøy. Videre ville

6 OTA – Over The Air Protocol, se 2.9

Ut ifra de kravene som et flåtestyringssystem setter til en GPS enhet, er det valgt å studere tre moduler nærmere. Disse enhetene er produsert av EverMore, Falcom og SPK electronics.

4.3.1 Kriterier til GPS modulene

I Tabell 5 er det satt opp en liste over kriterier som stilles til en GPS enhet. Her er de kritiske kriterier satt først, deretter de nest viktigste kriterier. Til slutt er det også tatt med kriterier som ikke er vesentlige for bruken, men kjekt å ha.

Tabell 5. Kriterier til GPS modulene

<table>
<thead>
<tr>
<th>Hovedemne</th>
<th>EverMore Tistar25</th>
<th>SPK electronics MG10</th>
<th>Falcom JP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kritiske kriterier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>NMEA protokollen</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>2.</td>
<td>RS232</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Viktige kriterier</td>
<td>Innpakning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kretskort</td>
<td>Ja</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Ferdig bygd</td>
<td>-</td>
<td>Ja</td>
</tr>
<tr>
<td>5.</td>
<td>Størrelse (mm)</td>
<td>45315</td>
<td>1005924</td>
</tr>
<tr>
<td>6.</td>
<td>Vekt</td>
<td>8 g</td>
<td>185 g</td>
</tr>
<tr>
<td>7.</td>
<td>Arbeidstemperatur °C</td>
<td>-40 til +85</td>
<td>-40 til +85</td>
</tr>
<tr>
<td>8.</td>
<td>Effektforbruk</td>
<td>370 mW</td>
<td>Ikke oppgitt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppstart (i sek)</td>
<td>Kald</td>
<td>120 s</td>
<td>45 s</td>
</tr>
<tr>
<td></td>
<td>Varm</td>
<td>45 s</td>
<td>30 s</td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>15 s</td>
<td>8 s</td>
</tr>
</tbody>
</table>
4.3.2 Gjennomgåelse av GPS modulene

Mange modeller er ferdig kapslet inn med batteri, skjerm og antenne. Andre igjen er kun moduler hvor kabler, antenne og kapsling må etterinstalleres. Modulene gjennomgås nærmere i underkapitlene.

4.3.2.1 Tistar25 (EverMore)

Enheten fra EverMore har de ytre målene 45*31*5 mm og kommer som et kretskort for videre hardware utforming. Leverer data med RS232 tilkoling på NMEA-0183 formatet, og har DGPS. Den veier 8 gram og har flash minne for oppdatering av software på modulen. Den takler temperaturer fra -20 til +75 °C. Effektforbruket er oppgitt til 370 mW. Prisen ligger på 400,- pluss mva., og er forventet levert sommeren 2003 (se vedlegg G).

4.3.2.2 MG10 (SPK electronics)

Denne var den største av de tre enheten, målene er 100*59*24 mm, men den ble da også levert ferdig i et inkkapslet vannrett boks. Enheten tåler temperaturer fra -40 C til +85 °C. Enheten er den tyngste, og veier 185 gram. Data leveres på NMEA-0183 formatet med RS232 tilkobling. MG10 har innebygd batteri for at dataene skal leveres raskere enn ved en vanlig kaldstart. Leveres uten utviklings sett. Strømforbruket eller pris er ikke oppgitt (se vedlegg H).
4.3.2.3 JP4 (Falcom)

4.3.2.4 Valg av GPS modul

4.4 Gjennomgåelse og sammenligning av mikrokontrollerne

For å kunne koble sammen GPS og GSM modulen er det viktig at det finnes tilkoblinger som kan koble disse to enhetene sammen, og da av en type som er standardisert. Dette for å slippe eventuelle løsninger der annet hardware må lages eller kjøpes inn.

Det er ønskelig at systemet har mulighet for å kunne moderniseres ved å sende ny software over radiogrensesnittet. Systemet utvikles spesielt med tanke på et flåtestyringssystem, men hvis det lær seg gjøre å bruke den samme hardware plattformen for andre M2M applikasjoner, vil det være en åpenbar fordel for systemet.

4.4.1 Gjennomgåelse av mikrokontrollere

Vi har sett på tre forskjellige mikrokontrollere, og de er fra forskjellige produsenter. Det er SAF3100 fra Philips, MB90F549 fra Fujitsu og TC45 fra Siemens.

Felles for alle tre er at de har like krav når det gjelder strømforsyning, inn/ut portar, til dels minnekapasitet (avhengig av programmeringsspråk) og at de må bygges inn i et totalsystem. For en mer detaljert oversikt, refererer det til hver moduls respektive datablad, her er bare de funksjonene som har betydning for flåtestyringsenheten blitt betraktet.

4.4.1.1 Philips SAF3100

Denne modulen leveres av Philips og har blitt designet for telemetri systemer. Den er tilpasset for bruk i kjøretøy og for mobil kommunikasjon. Arkitekturen er åpen slik at den kan ta i mot
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

forskjellige applikasjoner. Dette systemet inneholder en prosessor (PR1900), Random Access Memory (RAM), GPS hardware og software, og en del andre tilkoblinger. Prosessoren kjører med en hastighet på 68 MHz. Den har en innebygd 12 kanalers GPS korrelater, og har Control Area Network (CAN) buss for tilkobling til bilens innebygde datasystem, slik som for eksempel hastighet og hjulsensorer, og om kjøretøyet beveger seg eller har stoppet.

4.4.1.2 Fujitsu MB90F549

4.4.1.3 Siemens TC45

4.4.1.4 Valg av mikrokontroller
Mikrokontrolleren som velges til flåtestyringsenheten er Siemens TC45. Som nevnt, har modulen en innebygd mikrokontroller. Bruk av denne modulen vil lette hardware designen, og behovet for å konstruere kretskortutlegg minimaliseres. Strømforbruket reduseres, totalkostnaden for systemet holdes nede, og sjansen for feil på systemet minskes (færre enheter forminsker sjansen for feil på totalsystemet).

For programmering finnes det også et bredt utvalg av utviklingsverktøy, Siemens leverer med et eget utviklingssystem. Modulen er i produksjon fra begynnelsen av juni, men den finnes allerede hos leverandørene, som testprodukter. TC45 egenskaper som mikrokontroller drøftes nærmer i kapittel 8.3.
5 Design av M2M enheten

Designet av flåtestyringsenheten er det delt opp i en hardware del, som tar for seg de enkelte enhetene og sammenkoblingen av dem. Den andre delen er en software design, som vil være programmet som kjører på mikrokontrolleren.

5.1 Hardware design av systemet

Av de modulene det har blitt sett på, vil det være nødvendig med hardware design for å sette sammen systemet. Modulene leveres som braketter eller som kretskort, og må tilkobles og tilordnes slik at systemet kan fungere på en funksjonell måte. Det vil også være behov for å bygge inn modulene i en kapslet enhet, slik at den både er innbydende og praktisk (beskyttelse av systemet). Hvis systemet er tenkt å fungere også som en sikkerhet for lasten og sjåføren, er det viktig at systemet ikke er for lett synelig for uvedkommende. Siden modulene som er valgt er forholdsvis små, er det ingen fysiske problemer med å kunne gjenne systemet på en enkel og god måte. Et slik system vil ha en GPS modul for posisjonering, GSM/GPRS for dataoverføringen til hjemmeserveren, og en mikrokontroller for å behandle data fra GPS modulen og kontrollere systemet. Designet av hardware vil da se ut som i Figur 12).

![Diagram av systemet](image)

Figur 12) Hardware design av flåtestyringsenheten

5.1.1 SIM – kortleser

Hvis ikke GSM modulen har en innebygd SIM – kortleser, må en ekstern leser benyttes. Denne kobles enkelt til modulene, da leverandørene av de forskjellige GSM modulene har sine egne tilpassede lesere. Den tilkobles med en medfølgende kabel til modulen, kabelen vil også være strømkabelen til leseren.

5.1.2 SIM – kort

GSM/GPRS modulene trenger et SIM – kort for å fungere, på dette kortet ligger abonnementet for å kunne koble seg opp i GSM nettet. Dette gjelder selv om det bare er en
modul (ikke en telefon). Abonnementet som ligger lagret på SIM – kortet utstedes av teleoperatørene.

Kortene kan kundespesifiseres fra leverandøren, det kan være med og uten produktløsninger som Public Key Infrastructure (PKI) \[33\]. Da blir kortet kun et kontaktpunkt som en trenger for å få tilgang til nettet og at en kan få fakturert kunden.

Når så systemet blir skrudd på vil det ikke behøves å taste Personal Identification Number – kode (PIN) for å få tilgang til GSM – nettet, det er valgt for at det ikke skal være behøves tastatur til systemet. Systemet vil bli autentisert i nettet, og få tilgang til avtalte tjenester mellom kunde og mobiloperatøren.

5.1.3 Antenne

For å sikre gode nok signaler, slik at systemet kan operere i områder med dårlig dekning, vil det være nødvendig å bruke en ekstern antenne. Det finnes mange forskjellige antenner, men det enkleste er å benytte kombinertantenne som har tilkobling til GSM og GPS.

5.1.4 RS232

Tabell 6. Tilkobling i en RS232 kontakt

<table>
<thead>
<tr>
<th>D-Type-9 Pin nummer</th>
<th>Forkortelse</th>
<th>Navn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>Carrier Detect</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TD</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request To Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>

5.1.5 Inn/ut porter

37
Hvis alarmknappen blir trykket inn, vil systemet øyeblikkelig sende ut alarmmeldingen til hjemmeserveren med alarma, beskjed og posisjonen til kjøretøyet. Er ikke systemet påskrudd når alarmknapp trykkes inn, vil systemet først skrus på og alarm sendes.

Spennings vil typisk ligge rundt 3.3 volt ved aktivering, og 0 volt ved standby. Dette for å spare strøm og for å være sikker på at det har vært en aktivering. Det må også kobles til en Av/På bryter til systemet. Denne kobles til inngangen på styringsenheten, hvis systemet skrus av vil alle enhetene kobles ned så lenge det ikke er en alarm situasjon.

5.1.6 Lamper for system og feilidentifikasjon
Lampene som vises på Figur 12) og i Figur 13) er til for å sjåføren skal kunne se om systemet er på, ute av drift eller om alarm er aktivert. Dersom ingen av lampene lyser vil det bety at systemet ikke påskrudd. Lampe nummer 1 vil indicere at systemet er skrudd på, at det er koblet opp mot GSM nettet og mottar signaler fra GPS. Dersom det ikke er dekning eller at det ikke mottas data fra satellittene, vil systemet tenne lampe nummer 2. Det indikerer at systemet er skrudd på, men at det er en eller annen feil. Dersom alarm knappen er trykket ned, vil lampe nummer 3 tennes. Når alarm situasjonen er under kontroll (mottatt "alarm slutt" fra hjemmeserver), vil systemet slukke lampe nummer 3.

5.1.7 Strømforsyning
For å drive enhetene, må det tilkobles en strømforsyning som er nøyaktige og konstant uten store variasjoner i spenningen.

For å drive GPS enheten og GSM modulen må strømforsyningen levere 3,3 volt, se Tabell 4 og Tabell 5.

Når GSM modulen er i drift har den et gjennomsnittlig strømforbruk på 25 mA i hvile modus, opp til 360 mA under data sending. GPS vil ha et maksimalt forbruk på 40 mA. Strømforsyningen må kunne tilkobles 12 eller 24 volt og levere en utspenning på 3,3 volt. Den må også kunne takle strømtopper på over 400 mA.

For at systemet skal fungere i en alarm eller krisesituasjon hvor strømtilførselen fra batteriet forsvinner, er det ønskelig at et reserve batteri skal kobles inn. Ved en eventuell alarm vil systemet fortsatt bestemme posisjonen og sende den ifra seg. For batteriet gjelder de samme kravene til spenning og strøm som for den ordinære strømforsyningen. Batteriet må også kunne motta ladning eller vedlikeholdsstrøm under normale omstendigheter.

5.1.8 Spesielt for Siemens TC45
Hvis GSM modulen fra Siemens blir brukt sammen med en GPS, vil koblingene og hardware designen bli som vist i Figur 13).
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Også dette systemet vil måtte bygges inn i en kapsel, og kunne gjemmes/plasseres slik som beskrevet for de vanlige modulene i starten av dette kapittelet.

Systemet vil få samme brukergrensesnitt og funksjonalitet som er nevnt ovenfor. Forskjellen er at ikke behøves å tilkoble en ekstern mikrokontroller mellom GSM og GPS modulene. Dette forenkler den fysiske tilkoblingen. Siden det er færre tilkoblinger reduseres også muligheten for at det skal oppstå feil, og systemet vil få en mindre fysisk størrelse.

For denne hardware designen vil det være en RS232 kabel mellom GPS og GSM enheten, tilkobling til ekstern antenne og til inn/ut portene for følere og brytere.

5.2 Software design av systemet

For å kunne benytte tjenester og oppgaver som er ønskelig for modulen, må det designes og programmeres først. For å designe et system må systemet analysere ved å identifisere forskjellige oppgaver som skal utføres. Et verktøy som kan benyttes er UML.

5.2.1.1 Bruker diagram (Use Case Diagram)

Det er flere mulige scenarier som er mulige ved bruken av systemet. To forskjellige brukere er synlig fra et overordnet blikk:

1) Sjåfør
2) Administrator

1) Sjåføren vil ha to oppgaver han kan utføre i systemet. Dette er:
 - Skru av/på systemet
 - Trykke alarm

![Figur 13) Siemens TC45 GSM modul](image-url)
Disse oppgavene vil etterfølges av flere, som er definert og utføres av systemet. Det er vist i Figur 14).

![Use Case: Alarm](image)

Figur 14) Use case diagram for sjåfør

2) For administrator vil det kunne være flere ulike scenarier:

- Håndtere en alaramstasjon
- Oppdatere ”venner”
- Sende status forespørsel
- Motta periodiske posisjoner fra flåtestyringsenhet
- Oppdatere software
- Feilsøking på flåtestyringsenhet

Her vil også en oppgave medfølge flere, som løses av systemet. Dette er vist i Figur 15).
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Use Case: Alarm situation

Main success scenario:
1. Mottar alarm melding
2. Kontakt sjåfør og for å avklare situasjonen, eventuelt kontaktar polis med GPS posisjon
3. Situasjon avklart og last. Sender "alarm slutt" til FSE

Use Case: Update SW

Main success scenario:
1. Ny SW ligger i system i server
2. Ny SW oversendes til FSE
3. Ny SW legges inn i FSE
4. FSE starter opp med ny SW
5. Gammel SW slettes i FSE

Use Case: Status

Main success scenario:
1. Melingen "status" sendes FSE
2. FSE spør GPS om posisjon
3. FSE sender posisjon til server

Use Case: Update Friends

Main success scenario:
1. Admin sletter venn
2. Admin registrerer ny venn

Extensions:
1. Delete Friend
 a. Admin sletter venn fra database
 b. Sender oppdatert database til FSE
 c. FSE oppdaterer ny database i systemet
2. Reg Friend
 a. Admin legger inn ny venn i database
 b. Sender oppdatert database til FSE
 c. FSE oppdaterer ny database i systemet

Use Case: Failure

Main success scenario:
1. Kobler FSE til server for feildiagnose
2. Retter feil
 a. Oppdaterer software
 b. Bytter eventuelle defekte komponenter

Use Case: Alarm situation

Main success scenario:
1. Mottar alarm melding
2. Kontakt sjåfør og for å avklare situasjonen, eventuelt kontaktar polis med GPS posisjon
3. Situasjon avklart og last. Sender "alarm slutt" til FSE

Use Case: Update Friends

Main success scenario:
1. Admin sletter venn
2. Admin registrerer ny venn

Extensions:
1. Delete Friend
 a. Admin sletter venn fra database
 b. Sender oppdatert database til FSE
 c. FSE oppdaterer ny database i systemet
2. Reg Friend
 a. Admin legger inn ny venn i database
 b. Sender oppdatert database til FSE
 c. FSE oppdaterer ny database i systemet

Følgelig vil det kunne være aktuelt med flere ulike scenarier, men dette er hovedmomentene som er lagt til grunn for videre design av systemet.

5.2.2 Aktivitets diagram

Aktiviteten i systemet foregår som to forskjellige aktiviteter, en på hjemmeserver og en på flåtestyringsenheten. Hver av aktivitetene har flere tilstander.

5.2.2.1 Software på hjemmeserver

Oppstart for hjemmeserver

Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Start Systemet skrus på

Klar

Når systemet er i tilstand "Klar" vil den være klar til å motta periodisk oppdatering og alarm fra flåtestyringsenheten.

Figur 16) Oppstartstilstand for hjemmeserver

Statusforespørsel til flåtestyringsenheten

Figur 17) Statusforespørsel til flåtestyringsenhet
Alarm fra flåtestyringsenhet

Figur 18) Alarm mottas fra flåtestyringsenhet

Periodisk oppdatering

Flåtestyringsenheten vil sende periodisk oppdatering til hjemmeserver, dette for å holde hjemmeserver oppdatert om kjøreruten, og for å kunne forvisse hjemmeserver om at flåtestyringsenheten er på og aktiv. Flåtestyringsenheten sender en SMS med meldingen
"periodic update” med de siste lagrede posisjoner, se Figur 19). Disse data blir så lagret på hjemmeserveren for å kunne brukes i forskjellige applikasjoner på et senere tidspunkt. Et eksempel er å skrive ut kjøreruten til kjøretøyet. Hjemmeserver går så tilbake til tilstand "Klar".

Figur 19) Periodisk oppdatering mottas fra flåtestyringsenhet

Oppdatering av venneliste
Flåtestyringsenheten skal kun svare på statusforespørsel fra en forhåndsdefinert vennegruppe. Denne vennegruppen må kunne oppdateres dersom "venner" legges til eller slettes. Etter at administrator har oppdatert listen, sender han den over til flåtestyringsenheten med en SMS, se Figur 20). Deretter går hjemmeserver tilbake tilstand "Klar".

Figur 20) Oppdatert venneliste sendes til flåtestyringsenhet
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Oppdatering av software
Administrator skal ha mulighet til å oppdatere software, enten at flåtestyringsenheten tilkobles hjemmeserver med en kabel, eller over radiogrensesnitt med GSM. Når ny software ligger klar, benytter administrator en av to foreskrevne metoder for kontakt med enheten. Hvis den tilkobles kabel vil administrator ha mulighet til å sjekke om oppdatering foreløp ok. Men oppdatering over GSM benyttes OTA protokollen\(^7\) for oversending av ny software. Administrator får da bare en kvittering på at oppdateringen foreløp ok.

![Diagram](image.png)

Figur 21) Administrator oppdatere software

5.2.2.2 Software på flåtestyringsenheten

Oppstartstilstand for flåtestyringsenheten

\(^7\) OTA – Over The Air Protocol, se kapittel 2.9
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Start

Systemet skrus på

FSE laster inn SW

GSM modulen kobler seg til nettet

GPS beregner posisjon og sender over til FSE forløpende

GPS starter opp

Ventemodus /Idle

FSE klar til og motta kommando fra hjemmeserver, samtidig som den lagrer fortløpende posisjoner den får fra GPS.

Sjåfør skrur på system eller starter bilen

Sjekker om simkortet sitter i og er gyldig

SW ferdig lagret i modul

Status forespørsel

Når flåtestyringsenheten mottar meldingen "Status" fra hjemmeserver, betyr det at den ønsker å vite status og posisjon til flåtestyringsenheten (denne meldingen kan også komme fra en annen mobilenhet, men vi har valgt å definere disse som hjemmeserver). Flåtestyringsenheten går da i tilstand "Status", se Figur 23). Før statusrapport kan sendes tilbake til avsender, må flåtestyringsenheten kontrollere om forespører tilhører den forhåndsdefinerte vennelisten. Hvis det viser seg at den har et nummer som ikke kan identifiseres i vennelisten, vil forespørselen ignoreres og flåtestyringsenheten går tilbake til tilstand "Ventemodus/Idle". Finner flåtestyringsenheten igjen telefonnummeret i "venner" – listen, vil siste lagret posisjon hentes og sendes sammen med status tilbake til hjemmeserver. Normal status til flåtestyringsenhet vil være "Ok". Når meldinger er sendt eller ignorert, går den tilbake i tilstand "Ventemodus/Idle".

Figur 22) Oppstartstilstand for flåtestyringsenhet

46
Alarmsituasjon
Hvis sjåfør kommer ut for en situasjon hvor han ønsker assistanse, for eksempel ran, ulykke etc., kan sjåføren melde fra ved å trykke alarmknapp. Systemet registrer dette (selv hvis det er avskrudd), og går fra tilstand ”Ventemodus/Idle” eller ”Av” til tilstand ”Alarm”, se Figur 24). Hvis systemet er avskrudd idet alarmknapp trykkes, vil systemet først startes opp, deretter går systemet direkte i tilstand ”Alarm”. Flåtestyringsenheten vil da hente frem siste lagrede posisjon, og vil sende ut posisjonen sammen med beskjeden ”alarm” til hjemmeserver. Flåtestyringsenheten vil fortsette å sende alarm meldinger med siste lagrede posisjon (flåtestyringsenheten oppdaterer og lagrer nye posisjoner kontinuerlig) helt til den mottar meldingen ”alarm slutt” fra hjemmeserver.

Figur 23) Flåtestyringsenhet i tilstand Status
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Ventemodus
eller Av

Alarm utløses

Alarm

FSE sender meldingen alarm og siste mottatte posisjon

Systemet skrus på

Hjemmeserver stopper alarmen

Ventemodus
eller Idle

Alarm melding sendes med posisjon til hjemmeserver. Posisjonen vil alltid være den siste mottatte, GPS oppdaterer kontinuerlig.

Sjekker om systemet er påslutt. Hvis ikke, slettes systemet på.

System påslatt?

Ja

Nei

Sjåfør trykker alarm knapp

Alarm

Situasjon er løst, administrator sender meldingen alarm slutt.

Figur 24) Flåtestyringsenhet i tilstand Alarm

Periodisk oppdatering

Flåtestyringsenheten vil periodisk oppdatere hjemmeserver med de siste posisjoner. Dette gjøres regelmessig, hvor ofte er avhengig av tid, kjørerute, antall posisjoner det er plass i en SMS melding etc. Når det er tid for periodisk oppdatering, vil flåtestyringsenheten gå fra tilstand ”Ventemodus/Idle” til tilstand ”Periodic Update”, se Figur 25). Den vil så pakke inn de siste lagrede posisjoner og beskjeden ”periodic update” for oversending til hjemmeserver. Deretter går den tilbake i tilstand ”Hvilemodus/Idle”.

8 Se kapittel 6.1.1
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Ventemodus /Idle

Vil hente de siste GPS posisjonene som er lagret, legger dette i SMS melding med status Periodic Update.

Tid for periodisk update

Den periodiske oppdateringen er styrt av en klokke.

Periodic Update

Henter de siste mottatte GPS posisjonene.

Sender over meldingen

Sender over til hjemmeserver med en SMS.

Ventemodus /Idle

Figur 25 Flåtestyringsenhet i tilstand Periodic Update

Software oppdatering

\(^9\) OTA – Over The Air Protocol, se kapittel 2.9
Ventemodus /Idle

Mottar ny SW med OTA

Ny SW oppdatert

Oppstart med ny SW

Ventemodus /Idle

Administrator sender ut ny SW med Over The Air (OTA) protokoll, det er egne rutiner i OTA for å oppdatere SW

Flåtestyringsenheten restartes med ny SW

SW er ferdig testet hos administrator og vil fungere umiddelbart.

Figur 26) Software oppdatering på flåtestyringsenhett

5.2.3 Type diagram
For å spesifisere strukturen og oppførselen til et sett av objekter brukes type diagram. Det viser attributter, men ikke operasjoner. Alle handlinger og tilstander fra aktivitetsdiagrammet bør behandles i dette diagrammet.

5.2.3.1 Hjemmeserver
Figur 27) viser et typediagram for hjemmeserver. Diagrammet inneholder flere klasser, deriblant venner, venneregister, GPS, GPS-register, og klasser for å sende og motta data med SMS eller GPRS. Klassen Server_Controller er selve kontrollklassen i systemet.
5.2.3.2 Flåtestyringsenhet

Figur 28) viser typediagram for flåtestyringsenheten. Diagrammet viser klasser for venner og venneregister, GPS og GPS-register, alarm og klasser for å sende data med SMS og GPRS. Kontrollklassen heter FSE. I avsnitt 5.2.4 gjennomgås et mer utviklet diagram nærmere.
5.2.4 Klasse diagram (Class diagram)

Klasse diagrammet er et konseptuelt diagram for flåtestyringsenheten (FSE), og inneholder ni forskjellige klasser (se Figur 29). Hver av disse klassene har relasjoner til andre klassen, ulike operasjoner (kall) og attributter. De forskjellige klassene er:

1) Main
2) FSE_Controller
3) Friends
4) GPS_Register
5) GPS
6) Send_Recive_Data
7) SMS
8) Status
9) Alarm

Figur 28) Typediagram for flåtestyringsenhet
1) **Main** har oppgave å starte selve Java programmet, kaller konstruktøren for sin egen klasse.

2) **FSE_Controller** er kontroll klassen i systemet. Her blir alle hovedoperasjoner startet, som oppstart av GSM og GPS. Det er også her SMS meldinger som kommer inn blir behandlet, her håndteres alarm signal, periodisk oppdaterings frekvens, og inkommente GPS data blir behandlet for bruk.

3) **Friends** er en klasse med objekter "venner" som er en liste som inneholder telefonnumre over de som har tilgang til status og informasjon fra flåtestyringsenhenden.

4) **GPS_Register** er et register som håndterer GPS data. Registeret bestemmer antall posisjoner som blir lagret i systemet. Oversikt over siste posisjon, og oppdateringsfrekvens for systemet blir håndtert (hvor ofte en ny posisjon skal lagres i systemet). Data fra GPS kommer på NMEA formatet, dataene må da endres til et håndterlig format som systemet kan anvende. Dette foretas i registeret, og de nye data er GPS objekter. Her satt til 50, men må settes etter størrelsen på tilgjengelig minne\(^\text{10}\).

5) **GPS** er en klasse som inneholder objekter med navn GPS, og inneholder informasjon som lengdegrad, breddegrad, fart, retning og tid.

6) **Send_Recive_Data** er klassen som håndterer all data som blir sendt ut og inn av flåtestyringshenenden. Den lytter etter inkommente meldinger, GPS data og alarm signaler. Ved innkommende data, meldinger eller alarmsignal blir disse signalene videresendt til **FSE_Controller** for håndtering og behandling av data.

\(^{10}\) Se egen utregning i kapittel 8.9
7) SMS inneholder objekt med den redigerte siste mottatte SMS, hvor informasjon som telefonnummer (avsenders), tid, kommando og innholdet er i klartekst.

8) Status er registeret som har oversikten over venner, og tillater at godkjente venner får oppdatert status og posisjon til flåtestyringsenheten. Ved periodisk oppdatering vil status klassen sørge for at siste posisjon blir oversendt til hjemmeserver.

9) Alarm håndterer et innkommende alarmsignal. Så lenge alarmsignalet er aktivt vil siste posisjon automatisk blir oversendt hjemmeserver.

5.3 Hjemmeserver

Flåtestyring ved hjelp av mobile teknologier dreier seg for det meste om posisjonering, som blir brukt for å kunne legge opp en så effektiv kjørerute som mulig. Ved siden av posisjonering, kan det legges til andre type tjenester som for eksempel alarm, kommunikasjon, sporing etc. Dette er også en god sikkerhet for både sjåfør og kjøretøyet. For at de dataene som kommer fra en mobil – enhet skal kunne brukes, er det nødvendig med et program og en server som tolker de innkommende data. En slik server får inn data regelmessig etter en ferdig oppsatt oppdateringsfrekvens for hver enkelt av enhetene. Serveren kan også sende ut en status forespørsel for å kunne korrigerere, eller for å bestemme posisjonen mer nøyaktig. De dataene som kommer inn, vil bli behandlet av et program for å bli visualisert i form av et kart og lignende som viser posisjon til kjøretøyet og dens status på en skjerm/monitor. Vi kommer ikke her til å gå i detalj på virkemåte og databehandlingen som foregår i serveren, men konsentrere oss teknologien som benyttes for oversending av data til serveren.

Systemet skal kunne kommunisere med de mobile enhetene, og dermed er det viktig at serveren kan sende ut forespørsler. Som nevnt, vil flåtestyringsenhet bare svare på forespørselen dersom nummeret er lagret i venne listen til enheten, hvis ikke ignoreres forespørselen. En tegning over systemet er vist i Figur 30).

For at hjemmeserver skal kunne kommunisere med flåtestyringsenheten, må den tilkoples til GSM nettet. Dette gjøres med en terminal eller GSM gateway. Dette er i prinsippet en mobilterminal med tilkoblinger til PC og telefon. Det er også mulig med en tilkobling direkte mot Telenor og Netcom sine MSC – er\(^{11}\) via TCP/IP [34]. Da det vil være mulig å fakturere meldingene fra hjemmeserver som en tjeneste man kjøper. Hvis eksterne personer lurer på hvor et kjøretøy befinner seg, og hjemmeserver tilbyr denne informasjonen som en betalbar tjeneste, kan hjemmeserver selge denne informasjonen videre til forespørre.

\(^{11}\) Se kapittel 2.3.3
6 Gjennomgang av designen

6.1 Diskusjon av softwaredesign

For软体designen er det noen dilemmer som må diskuteres nærmere. Blant annet parametere som må settes under programmering av modulen.

6.1.1 Periodisk oppdatering

Flåtestyringsenheten mottar GPS posisjoner kontinuerlig, og skal periodisk oppdatere hjemmeserver med de siste posisjonene. Denne informasjonen skal sendes med SMS eller annen datakommunikasjon, som GPRS. Hvor ofte periodisk oppdatering skal sendes til hjemmeserver, og antall posisjoner som skal oversendes samtidig, må vurderes etter problemstillingene.

Hvis det velges å sende den periodiske oppdateringen med SMS (mest aktuellt), må det tas hensyn til begrensning i kapasiteten som ligger i en melding. En SMS melding kan maksimalt inneholde 160 tegn. Dette gjør at hver SMS kun kan inneholde et vist antall posisjoner (se utregning under i Tabell 7). Det vil da være mer hensiktsmessig å sende en melding for eksempel hvert minutt enn å sende to meldinger (for å få plass til alle posisjonene i en SMS melding) hvert andre minutt. Det vil medføre at hjemmeserver mottar posisjoner som er mer nøyaktige i forhold til virkeligheten, og administrator vil være oppdatert om de siste bevegelsene til kjøretøyet. Kostnadsmessig vil prisen være den samme.

Tabell 7 viser hvor mange tegn en GPS posisjon vil inneholde med informasjon som breddegrad, lengdegrad, fart, retning og tid.

<table>
<thead>
<tr>
<th>Innhold</th>
<th>Antall tegn</th>
<th>Skilletegn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breddegrad</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Lengdegrad</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Fart</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Retning</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Tid</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Totalt</td>
<td>37</td>
<td>5</td>
</tr>
<tr>
<td>Sum totalt</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

I tillegg kommer kodeordet foran posisjonen som vil inneholde flere tegn, for eksempel ordet "periodic" med skilletegn vil inneholde 9 tegn, som gjør at hver SMS melding maksimalt kan inneholde 3 posisjoner.

Tabell 8. Viser avstanden et kjøretøy tilbakelegger i løpet av 1 minutt ved forskjellig hastigheter

<table>
<thead>
<tr>
<th>Km/t</th>
<th>m/s</th>
<th>Ant. km per min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>11,11</td>
<td>0,67</td>
</tr>
<tr>
<td>50</td>
<td>13,89</td>
<td>0,83</td>
</tr>
<tr>
<td>60</td>
<td>16,67</td>
<td>1,00</td>
</tr>
<tr>
<td>70</td>
<td>19,44</td>
<td>1,17</td>
</tr>
<tr>
<td>80</td>
<td>22,22</td>
<td>1,33</td>
</tr>
<tr>
<td>90</td>
<td>25,00</td>
<td>1,50</td>
</tr>
</tbody>
</table>
Budbil virksomhet

Langtransport virksomhet
Et system for en langtransport sjåfør som kjører fra by til by, eller land til land, vil det kanskje holde med bare noen få oppdateringer i døgnet. Med en gjennomsnittlig hastighet på 80 km/t vil en oppdatering annen hver time gi en posisjon hver 53 km. På en strekning fra Oslo til Kristiansand hvor et kjøretøy vil tilbakelegge 330 km, vil det medføre minst 7 oppdateringer. Dette vil være bra nok for å få en god kjørerute og en god antagelse på hvor sjåføren befinner seg. Det vil sendes 3 posisjoner med hver SMS melding, slik at hjemmeserver ikke vil få en oppdatering på hver annen posisjon. Det betyr at strekningen Oslo - Kristiansand som har en ca kjørertid på 5 ¼ time vil det kanskje bare sendes tre til fire SMS meldinger med posisjoner (en posisjon hvert 40 minutt, men sendes bare til hjemmeserver hver annen time).

GPRS oversending
Ved å benytte seg av GPRS som bæretjeneste for oversending av informasjon, vil oppdateringsfrekvensen være gunstig å ha på samme måte som oppdatering ved SMS. Forskjellen her vil være at stedtenfor å ha 3 posisjoner annen hver time, som i en SMS melding, vil det sendes en posisjon hvert 40. minutt. Dette fordi man betaler for oversendt informasjon i kilobyte, og ikke for hver oversendt melding som med SMS i GSM. Det vil medføre at hjemmeserver vil få en oppdatering på posisjon mye oftere ved å benytte seg av GPRS som bæretjeneste. Forutsetningene for å sende en SMS melding er at den er fylt mest mulig opp med posisjoner. Noe som vil være gunstig tatt i betraktning av kostnader ved å sende en SMS melding.

6.1.2 Alarm situasjon
I en situasjon hvor alarmknappen er trykket, skal flåtestyringsenheten kontinuerlig sende meldinger til hjemmeserver med status og posisjonen. Denne informasjonen sendes med SMS meldinger eller GPRS. Hvor ofte meldingene skal sendes må vurderes.

En alarm melding har som oppgave å gi informasjon til hjemmeserver. Den skal alarmere om situasjonen og gi posisjonen. Hvis det velges å sende informasjonen med SMS, vil maksimalt antall posisjoner som kan sendes med i meldingen være begrenset til tre GPS posisjoner, se utregning i Tabell 7. Ved å benytte seg av GPRS vil posisjonene sendes fortløpende, eller så ofte det er nødvendig.

Hvis sjåføren blir utsatt for noe kriminelt og utløser alarmen, er det ønskelig for sjåførens sikkerhet at det relativt ofte blir rapportert tilbake til hjemmeserver. Hvis det blir sendt en posisjon hvert minutt til hjemmeserver, vil denne ha en god orientering på hvor kjøretøyet befinner seg. Det vil si at det sendes en posisjon med GPRS hvert minutt, eller en SMS melding hvert tredje minutt med tre posisjoner. Med en gjennomsnittlig fart på 80 km/t, vil et kjøretøy bevege seg 1,33 km per minutt. Ved en gjennomsnittlig hastighet på 60 km/t, vil
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

kjøretøyet beveger seg 1,0 km i minuttet. Dette bør være mer enn godt nok når man i tillegg mottar posisjon med retning.

Ved å benytte seg av GPRS fremfor SMS levering til hjemmeserver, vil hjemmeserver holde seg mer oppdatert. Kostnadsmessig vil det være omtrent det samme å sende tre korte GPRS beskjeder som en SMS melding.

6.1.3 Venneliste

Flåtestyringsenheten innehar en liste med forhåndsgodkjente telefonnumre, disse numrene er å anse som "venner". De skal kunne forespørre enheten om status og posisjon. Andre forespørslar skal ignoreres. Denne listen må holdes oppdatert hvis nye "venner" kommer til, eller hvis gamle "venner" slettes.

En måte å holde listen oppdatert på er å oversende hele listen hver gang det er forandringer, eller kun å oversende det telefonnummeret som skal legges til eller slettes. Hvis listen er veldig stor, vil det være mest hensiktsmessige å kun oversende det ene telefonnummeret som skal endres. Løsningen med SMS blir å sende listen over flere meldinger.

For ikke å lagre vennelisten på flåtestyringsenheten, kunne listen vært lagret på hjemmeserveren. Ved en status forespørsel kunne enheten forespurt hjemmeserver om den eksterne forespørselen skal besvares med informasjon, eller om den skal ignoreres. Hjemmeserver kunne da sjekket vennelisten sin, og besvart flåtestyringsenheten med "ok" eller "ikke ok". Dette vil føre til at det blir prosessert mer trafikk over GSM systemet, som igjen fører til økte kostnader. Forutsetningen er da at selve listen forandres mye sjeldnere enn flåtestyringsenheten får status forespørslar.

6.1.4 Status meldinger

Hjemmeserver eller andre enheter som er registrert i vennelisten på enheten, skal til alle tider kunne forespørre flåtestyringsenheten om posisjon, status og andre gjenstander som kan tenkes tilkoblet enheten.

Hvis flåtestyringsenheten får en forespørsel om status fra et telefonnummer som ikke finnes i vennelisten, skal den ignoreres. Dette fordi utenforstående ikke skal få opplysninger om hvor kjøretøyet befinner seg, og benytte seg av slik informasjon til illegal virksomhet.

6.1.5 Sikkerhet i en alarmsituasjon

I en alarmsituasjon er det viktig for sjåførens sikkerhet at alarmmeldingene blir oversendt hjemmeserver på minst mulig tid. I gjennomsnitt tar det ca 20 sekunder fra en SMS melding blir sendt til den mottas hos mottaker. Det er ingen garanti for at meldingen blir levert til mottaker i den nærmeste tiden etter at den er sendt. Hvis for eksempel meldingen blir sendt på nyttårstøften hvor det er veldig stor trafikk i netverket, blir meldingen kansje ikke levert før etter mange timer i verste fall dag(er). Dette er ikke tilfredsstillende hvis sjåføren kjører i et utsatt yrke, som for eksempel pengetransport.

Ved å benytte seg av GPRS som bæretjeneste for alarm meldingen, vil informasjonen kunne leveres umiddelbart fra de blir sendt. I GPRS vil det kunne sendes så sant det er nettverkstilgang.
6.1.6 Feilsituasjoner

I et flåtestyringssystem er det flere feilsituasjoner som kan oppstå på grunn av uforutsigbare forhold, for eksempel ingen GSM dekning i en tunnel. Uansett vil det være nødvendig at disse feilsituasjonene er gjennomtenkt på forhånd, for og fortsatt ha kontroll over situasjonen når den oppstår. De mest aktuelle situasjonene er belyst under.

6.1.6.1 Intet GPS signal

![Diagram](image)

Figur 31) Intet GPS signal mottas på flåtestyringsenhet
6.1.6.2 Intet GSM signal

Figur 32) Intet GSM signal mottas på flåtestyringsenheten

12 Se kapittel 8.9
6.1.6.3 Andre situasjoner
Andre uventet situasjoner kan også oppstå, i tillegg til de to som er nevnt ovenfor. Hvis det oppstår uventede forhold, vil lampe L2 som indikerer feil tennes for å markere at systemet ikke fungerer som det skal. Systemet må da gå i en tilstand som setter enheten i standby. Enheten må således overlates til administrator for feilsøking. Det kan skje ved at administrator oppdaterer software over lufta, eller at enheten fysisk kobles til hjemmeserver med en kabel.

6.2 Betraktninger angående systemet
For at et flåtestyringsystem skal kunne fungere og være pålitelig, er det noen faktorer som er avgjørende.

Det er først og fremst viktig å forutse kundenes behov for systemet, og hva slags bruksmøte som ønskes. Noen har kanskje behov for oppdateringer noen få ganger i døgnet, mens andre vil ha et ønske om at posisjonen til enhver tid skal være oppdatert. For eksempel budtjenester, som vil vise mer nøyaktig hvor hver enkelt bil befinner deg. Antall kjøretøy som systemet skal overvåke varierer også fra bruker til bruker, og er igjen med på å forme oppbygningen av flåtestyringskontrollen.

Oppdateringer fra kjøretyvne kan komme ofte for at de kan utnytte kapasiteten på en best mulig måte ovenfor selskapet, sjåføren og kunden. Det er særlig viktig om de skal fakturere veksel i døgnet, mens andre vil ha et ønske om at posisjonen skal tilgjengelig i alle tidspunkter. Systemet lages slik at det regner ut hvor lang tid hver levering og stopp tar. Det kan igjen brukes for å få kontroll over kjøre og hvilket felt som kjøre og hvilket felt som utføres det.

Hvis kjørekontoret ønsker en høy frekvens på posisjonsoppdatering, stiller dette krav til for eksempel prosessorkraft og overføringskapasitet, samt på hvor databehandlingen skal foregå. Hvis det er store datamengder vil ikke SMS være kostnadseffektiv, siden den bare kan sende 160 karakterer hver melding. Når det gjelder bedrifter som bare trenger oppdateringer av posisjonen noen få ganger i døgnet, stilles det få krav. Der kan som regel posisjonene sendes som SMS noen få ganger daglig der hver SMS inneholder en viss antall posisjoner.

Hvis systemet er tenkt benyttet i utlandet og det er programmert slik at den bare svarer på forespørsler fra lagrede numre, kan enkelte problem oppstå. For når enheten befinner seg utenlands vil enkelte av nettopp oppstår som det nummer som enheten sjekker oppimot før den svarer. I de tilfelle vil den ikke svare, og serveren vil reagere med å sende flere. For å ikke komme i en slik situasjon, kan det åpne et sms med serveren at kommuniseres med en venn.

Hvis kjøretøyet skal brukes i utlandet, kan det være ønskelig å spesifisere hvilke operatører som skal benyttes. Noen operatører kan ha priset tjenestene sine dyrt, mens andre er rimeligere.

Det er viktig at flåtestyringsenheten ikke skal foreta for mye databehandling, den har begrenset lagringskapasitet og prosessorkraft. Dersom hjemmeserveren skal foreta mesteparten av databehandlingen, vil overføringskostnadene stige. Det er derfor ønskelig at flåtestyringsenheten foretar noe databehandling og lagring av data.

13 Se kapittel 8.10
Dersom en ny software eller liste over godkjente venner skal oversendes, må denne sendingen kvalitetssikres. En slik sikring kan løses ved at det gjøres en Cyclic Redundancy Code (CRC) sjekksum. Flåtestyringsenheten vil sammenligne beregnet sjekksum med mottatt sjekksum. Dersom de er like, er det trolig ingen feil under overføringen, og de nye dataene kan implementeres.

Et annet aspekt er dersom systemet mister forbindelsen til en satellitt, og hvordan det påvirker nøyaktigheten av posisjonen. En mottager må ha minst tre satellitter for å utregne posisjonen, og som regel tar den ikke inn flere satellitter enn åtte. Hvis systemet kommer inn i områder der dekningen ikke er så god, vil nøyaktigheten av målingen forandres. Som kapitel 2.7 viser, er nøyaktigheten når vi har inn fire satellitter på 0 – 15 meter, og 0 – 10 meter hvis vi har inn åtte satellitter.
7 Resultater

7.1 GSM/GPRS modul

Det ble valgt å se nærmere på to GSM moduler og fire GPRS moduler som er egnet for prosjektet. Disse er:

- Motorola d10
- Siemens TC35(T)
- Ericsson Gm47
- Nokia 30
- Wavecom Q2300
- Siemens TC45

7.2 GPS modul

Det ble utpekt tre forskjellige GPS moduler fra tre forskjellige leverandører som det ble sett nærmere på. Disse er:

- EverMore Tistar25
- SPK Electronics MG10
- Falcom JP4

Ut ifra de modulene er det EverMore Tistar25 som er blitt valgt som posisjonerings – enhet i flåtestyringssystemet.

EverMore Tistar25 tilfredsstiller de kriteriene som er stilt til GPS modulen, se Tabell 5. Enheten har en beskjeden størrelse og behovet for hardware design er minimal. Det eneste som behoves, er en kabel til GSM modulen, en tilkobling til strømforsyningen og antenne. Kostnadsmessig er EverMore sin modell rimelig. Den kan sende ut posisjonen på NMEA formatet og på EverMore sitt eget format. Den har i tillegg mulighet for å forbedre nøyaktigheten ved hjelp av DGPS, da vil nøyaktigheten komme ned mot 2 meter CEP.\(^\text{14}\)

7.3 Mikrokontroller

TC45 fra Siemens har innebygd mikrokontroller og kan kjøre applikasjoner direkte på modulen. TC45 er valgt som mikrokontroller i flåtestyringssystemet fordi den tilfredsstiller de krav som er stilt til en slik enhet, og det vil minimalisere behovet til hardware design. Den har

\(^{14}\) CEP – Circular Error Probability, se kapittel 2.7.8.1
tilstrekkelig minne til å kjøre applikasjonen for flåtestyringssystemet, har tilstrekkelig med inn/ut porter, RS 232 tilkobling og vil være godt egnet for programmet som er utviklet for flåtestyringssystemet. Det er også en fordel at den kan programmeres i et språk som er utbredt, og som ikke krever for stor prosessorkraft og minne for å kjøre.

7.4 Hardware design

Mellom GSM modulen fra Siemens og GPS modulen fra EverMore, må det tilkobles en RS232 kabel hvor all kommunikasjonen mellom enhetene foregår. De forskjellige enhetene må også tilkobles strømforsyningen og hver sin antenne, men det er i tillegg en del andre tilkoblinger og utstyr som må tilordnes, se Figur 12).

På Figur 12) er det tegnet inn at systemet trenger en strømforsyning for begge modulene. Den vil omforme 12/24 V, som er spenningen på batteriet i kjøretøyet, til 3.3 V, noe som både Tistar25 og TC45 kan drives med. Den må levere en konstant spenning, siden modulene ikke vil tåle å bli utsatt for store spenningsvariasjoner. I tillegg skal systemet drives av et batteri dersom det skulle bli strømbrudd fra kjøretøyets batteri. Dette er tenkt løst ved at batteriet integreres i spenningsomformen. Batteriet vil lades (eller vedlikeholdsstrøm) under normale forhold, og ved et eventuelt strømbrudd kobles inn.

For å sikre et så godt signal som mulig, er det en fordel å benytte en aktiv antenne for GSM og GPS. Det kan også være en fordel å benytte en kombinert antenne som inneholder en GSM antenne og GPS antenne i samme enhet. Dette vil gjøre det vanskeligere å blokkere eller ødelegge antennene av uvedkommende, hvis den i tillegg gjemmes på kjøretøyet. Dette vil bedre sikkerheten for sjåføren og bilen.

For å sikkerheten skal være ivaretatt, er en alarm bryter tilkoblet, denne vil kunne utløse alarm og varsle kjørekontoret. En slik bryter vil realiseres med at den vil sende en spenning på 3.3 V inn på mikrokontrolleren når den blir aktivert. Mikrokontrolleren vil da registrere at alarm inngangen er satt aktiv, og utløser alarm.

For å visualisere tilstanden til systemet for brukeren, er det valgt å koble til tre indikator eller lamper. Disse vil indikere om systemet er slått på og klar tilbruk, feil eller at alarm er aktivert.

Abonnementet for GSM er et vanlig SIM – kort, som utstedes av mobiloperatørene. SIM – kortet må settes opp slik at det ikke kreves en PIN kode for å koble seg opp mot nettet. Systemet startes ved å trykke på ”På”, og systemet vil da selv igangsette oppkobling og kjøring av den allerede programmerede applikasjonen.

I tillegg er det et ønske å pakke alt sammen inn i en liten innkapsling. Dette for å kunne ha muligheten for å gjemme enheten i kjøretøyet, og samtidig ha en innbydende enhet. Med innkapsling vil også problemer med støv, fukt og mekanisk påvirkning reduseres.

7.5 Software design

Det benyttes J2ME som programmeringsspråk til enheten fordi GSM modulen som er valgt krever det.

For å kommunisere mellom GSM og GPS modulene er det valgt å benytte NMEA protokollen. Dette er en standard som benytter seg av RS232 seriell kommunikasjon, og som benyttes av alle leverandører som produserer GPS. Som setnings-ID for NMEA protokollen, er det flere setninger som kan benyttes for å lese ut den informasjon som er ønskelig. GLL setningen inneholder posisjonen i bredde og lengde – grader, mens VTG setningen kan

\[15\] Se kapittel 2.7.7
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

benyttes til å lese ut fart og retning. Ved å kombinere disse to setnings-ID, vil all informasjon som er ønskelig i et flåtestyringssystem leses ut.

Den konseptuelle designen av flåtestyringssystemet er basert på at det benyttes SMS som bæretjeneste for oversending av data, men det er intet krav. Hvorvidt det er lønnsomt å benytte GPRS istedenfor SMS over GSM, vil drøftes nærmere i kapittel 8.10.

GPS posisjonene som oversendes til hjemmeserver vil være redigert i flåtestyringsenheten, og inneholder lengdegrad, breddegrad, fart, retning og tid.

Hvis det oppstår en alarm situasjon, vil en SMS melding sendes til hjemmeserver med status Alarm og tre GPS posisjoner. Det er valgt å anvende en rapporterings frekvens hvert minutt ved en alarm situasjon, posisjonene som da oversendes til hjemmeserver vil ha 20 sekunders intervall.

Ved periodisk oppdatering vil det sendes over en SMS melding med status Periodic update og tre GPS posisjoner. Hvis flåtestyringsenheten skal benyttes i budbil virksomhet vil periodisk oppdatering sendes hvert 10 minutt, og hvis flåtestyringsenheten skal benyttes til langtransport virksomhet vil periodisk oppdatering sendes annen hver time. GPS posisjonene vil da ha et tidsintervall på henholdsvis 3 minutter og 20 sekunder for budbil, og 40 minutter for langtransport.

8 Drøftning

8.1 Diskusjon av GSM/GPRS modulene

Alle modulene skal kunne brukes i GSM nettverket uavhengig om utstyret som benyttes i nettverket er levert fra den ene eller andre leverandøren. De må også tilfredsstille spesifikasjonene fra ETSI (GSM 03.60) [7]. Dette gjør at det er lite som skiller de forskjellige modulene fra hverandre. Modulene tilfredsstiller også de kritiske krav (se Tabell 3 og Tabell 4), som sending og mottak av SMS, AT kommandoer og innebygd RS232 tilkobling.

d10 fra Motorola og TC35 fra Siemens leveres uten GPRS. Det må betraktes som en begrensning for framtidig bruk. Disse modulene har også større strømforbruk og er fysisk større. De er heller ikke vesentlig rimeligere enn GPRS modulene. Dette gjør at det ikke kan forsvares å benytte seg av disse.

Hvis modulen skal benyttes i USA eller andre områder, hvor det benyttes GSM 1900, vil det være fordel ha denne egenskapen innebygd. Det har modulen fra Ericsson og Wavecom.

Stromforbruket til de forskjellige modulene varier lite. Modulen fra Siemens har det høyeste forbruket i standby, mens de andre modulene ligger noe lavere. I en alarm situasjon hvor tilførselsstrømmen blir kuttet og et batteri blir koblet inn, vil det være en fordel med et lavt forbruk.

Når det gjelder GPRS klasse, er det TC45 fra Siemens og Gm47 fra Ericsson som har de beste egenskapene. De tilbyr GPRS klasse 8 som gir opptil 48 kbit/s nedlastningshastighet, og opptil 12 kbit/s sendehastighet (se Tabell 2). Modellen fra Nokia støtter klasse 6, mens modulen fra Wavecom støtter kun klasse 2. Ellers støtter alle modulene kodeskjema CS1-CS4 for GPRS, se Tabell 1.

For eksterne tilkoblinger tilbyr Ericsson 10 inn/ut porter på sin modul, Nokia 30 har 8 inn/ut porter, mens Siemens tilbyr 9 forskjellige inn/ut porter (ikke tilgjengelig data for Wavecom). Alle modulene har det som kreves av flåtestyringssystemet, samtidig at de har tilkobling for framtidig løsninger.

Modulene fra Ericsson, Nokia og Siemens kan leveres med utviklings utstyr, som er en fordel ved utvikling av hardware og software applikasjoner til enheten. Dette vil gjøre at utviklingsarbeidet forenkles.

Prismessig er Siemens modulen den rimeligste av GPRS modulene, men modulen fra Ericsson kan også betraktes som rimelig. Modulene fra Wavecom og Nokia er de dyreste, men de levers ferdig innkapslet og med simkortleser. For å kunne holde kostnadene på totalsystemet nede, vil det være et pluss at enheten er rimelig.

TC45 fra Siemens har muligheten til å programmere direkte på enheten, uten å gå veien om en mikrokontroller. Dette minimaliserer behovet for hardware design. De andre enhetene kan kun programmeres med AT kommandoer.

Totalt tilbyr TC45 fra Siemens en GSM/GPRS modul som har den nødvendige funksjonalitet og de beste spesifikasjonene. TC45 støtter GPRS klasse 8, er liten og lett, og er den rimeligste modulen. Den har et litt høyt strømforbruk, men det kan forsvares med at den også fungerer.
som en mikrokontroller. Da TC45 også har innebygd mikrocontroller med J2ME og mulighet til å oppdatere software direkte over radiogrensesnittet ved hjelp av OTA protokollen, har den det lille ekstra som skiller den fra de andre modulene.

8.2 Diskusjon av GPS modulene

GPS modulene som vi drøfter tilfredsstiller alle de kriteriene som er kritiske (se Tabell 3), som NMEA protokollen og RS232 tilkobling.

EverMore sin GPS enhet er den som har det laveste effektforbruket (ved bruk), som er en fordel i en alarmsituasjon hvor stromkablene kan bli kuttet. Falcom sin modul har høyt effektforbruk ved bruk (nesten dobbelt av EverMore), som kan betegnes som et minus. (Det er ikke oppgitt stromforbruk til SPK Electronics sin GPS enhet, som gjør at dens effektforbruk ikke kan vurderes nærmere.)

Både Falcom og EverMore leverer GPS modulene med utviklings utstyr, noe som er en fordel for utviklingen av applikasjoner. Falcom sin modul innholder også 8 MB minne som gjør at applikasjoner kan kjøres direkte på modulen, mens EverMore leverer modulen med oppgradert programminne (flash minne) for å kunne oppgradere software.

Falcom sin enhet leverer den mest nøyaktige posisjonen med 10 meter (CEP), men kan sammen med EverMore benytte DGPS, og få en nøyaktighet ned til under 5 meter (CEP). Hvorvidt det er ønskelig med en så god nøyaktighet må vurderes ut ifra hvor kjøretøyet skal benyttes (i by eller landevei).

Kostnadmessig er det modulen fra EverMore som er den rimeligste, med en pris på rundt 400,- (det er ikke vært mulig å innhente pris på enheten fra SPK Electronics), mens modulen fra Falcom har en pris på 700,-.

8.3 Diskusjon av mikrokontroller

Ved bruk av TC45 vil behovet for hardware design og kabling minimaliseres, dette ved å unngå ekstern mikrokontroller. Det vil føre til en mindre størrelse på totalsystemet, og en forenklet implantasjon av de forskjellige modulene. Siemens TC45 har ni inn/ut porter som er
tilfredsstillende for det designede flåtestyringssystemet. Dette burde også være nok til framtidige tilkoblinger av for eksempel temperatur føler etc. Den har 300 kilobyte ledig minne til applikasjonen, som dekker behovet for programmet, og nødvendig mellomlagring av posisjoner og meldinger16. Den tilbyr også oppgradering av software over GSM nettet med OTA protokollen som gjør modulen fleksibel med hensyn på variasjoner i miljøet modulen kan tenkes å benyttes.

Programmering av TC45 gjøres med J2ME. J2ME er spesielt egnet som programmeringsspråk i små enheter, og betraktes som framtidens programmeringsspråk for terminaler i trådløs sektor [35]. I følge Seamus McAteer, ”Java will be the dominant terminal platform in the wireless sector. Support for the technology will be found in over 450 million handsets sold in 2007, corresponding to 74\% of all wireless phones that ship that year”, se Figur 33).

![Diagram](image)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Handsets (Mil.)</td>
<td>401.8</td>
<td>450.8</td>
<td>509.1</td>
<td>550.4</td>
<td>584.7</td>
<td>613.7</td>
</tr>
<tr>
<td>Java Handsets (Mil.)</td>
<td>44.9</td>
<td>86.4</td>
<td>151.8</td>
<td>242.6</td>
<td>354.4</td>
<td>456.0</td>
</tr>
<tr>
<td>Java Handset Percent</td>
<td>11%</td>
<td>19%</td>
<td>30%</td>
<td>44%</td>
<td>61%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Figur 33) Globalt salg av Java håndsett i perioden 2002 – 2007 ifølge prognoser [36]

Hvis den innebygde mikrokontrolleren i TC45 kan tilby de spesifikasjonene og funksjonaliteten som er ønskelig for systemet, og ha muligheter for tilkobling til eksterne enheter i en framtidig løsning, vil det kunne forsvares å benytte mikrokontrolleren på TC45. Sammen med forenklet hardware design, mulighet for å oppdatere software over GSM nettet, reduserte kostnader og benytte J2ME som programmeringsspråk, anses den innebygde mikrokontrolleren på TC45 fra Siemens til å være den beste løsningen.

16 Se kapittel 8.9
8.4 **Dette systemet i forhold til eksisterende systemer**

Det totale systemet som er blitt designet er et komplett flåtestyringssystem, hvor det kommuniseres til og fra hjemmeserver. Hvor godt dette systemet er i forhold til ferdig eksisterende systemer må vurderes ut ifra de gitte problemstillinger.

Figur 34) gitt fra Falcom [36] illustrerer tids aspekt ved utviklingen av et ”embedded” system, og kravet til ekspertise og investering. Ved sammensetting av ferdige moduler (beskrevet som *Embedded OEM modules with Full Type Approval* i Figur 34), er kravet til ekspertise og investering på et mediums nivå, mens det gjennomsnittlig tar minst 6 måneder fra utviklingen starter til produktet er klart for markedet. Ved å benytte et ferdig designet produkt som Falcom F35-XXL-SI (se vedlegg L) som er et komplett GSM/GPRS/GPS system, vil kravet til ekspertise og investering være lav samtidig som produktet kan være på markedet i løpet av kanskje en måned tid. Fordelen med et slikt ferdig produkt vil være:

- utviklingskostnader holdes på et minimums nivå
- ”time to market” perioden er kortest mulig, fra design start til produktet er klart for markedet
- tilbakebetalingen av investeringer i et nytt produkt skjer raskest mulig

Ulempen med å benytte seg av et ferdig sammensatt system, vil være at applikasjonen må tilpasses systemet og ikke motsatt som er mest gunstig.

Som plattform for mulige framtidlige applikasjoner, vil det være vanskelig å vurdere et ferdig sammensatt system vil være mer tilpassningsdyktig enn et eget designet system.

Kostnadene ved et egenutviklet system kan ofte bli store, derfor må investeringene forsvares med et tilsvarende bedre og billigere produkt. Desto flere ferdig produkter som selges, jo større vil fortjenesten være dersom produktet er egenutviklet. Ved små volumsalg og stadige forandringer på applikasjoner vil det være mest gunstig med et ferdig system.
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

<table>
<thead>
<tr>
<th>Pris egenutviklet system</th>
<th>Falcom F35-XXL-SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens TC45</td>
<td>900</td>
</tr>
<tr>
<td>EverMore EB-x305</td>
<td>450</td>
</tr>
<tr>
<td>Simkort leser</td>
<td>100</td>
</tr>
<tr>
<td>Diverse kostander</td>
<td>100</td>
</tr>
<tr>
<td>Total pris</td>
<td>1550</td>
</tr>
<tr>
<td></td>
<td>3511</td>
</tr>
</tbody>
</table>

Totalprisen for et ferdig system i forhold til et modulbasert system er under halvparten (med eksempel på Falcom F35-XXL-SI). Det må påplusses kostnader til utvikling, produksjon, salg og logistikk på det egenutviklete systemet. I diverse kostnader ligger kabling mellom GSM og GPS modulene og innkapsling av enheten (er en ca pris). I tillegg kommer antenne, antennekabel og strømforsyning (felles kostnader for egenutviklet og ferdig system).

For den fysiske designen kan det være en stor fordel å utvikle et system selv, det gjør det mulig å tilpasse de forskjellige enhetene som skal være med til et kompakt og enkelt design. Det gjør det letter å finne de komponentene som gir systemet den karakteristikk som er ønskelig, samtidig som det fysiske ytre får de størrelsene som er forventet.

8.5 Systemets struktur og modularitet

Andre eksempler kan være strømstyring på for eksempel en hytte. Ved å utelate GPS modulen fra den designede enheten samtidig som det tas i bruk flere av inn/portene for å koble til strømbrytere (releer), vil systemet kunne benyttes til å skru panelovner på/av. Det kan også kobles inn et termometer som kan fortelle om temperaturen i hytten.

Som en plattform for slike systemer, vil den designede enheten kunne fungere godt. Det kunne vært ønskelig om GPS modulen kunne utelates fra totalsystemet uten at det vil oppstå problemer i programmet. I slikt framtidig system må ta hensyn til dette ved software designen. For hvis systemet skal benyttes til applikasjoner hvor GPS posisjoner ikke har noen hensikt, vil det beste være om GPS modulen lett kunne utelates. Ellers vil modulene som er valgt være egnet til alle tenkelige M2M applikasjoner, uten noen form for forandring i hardware arkitekturen.

Begrensingene til den designede enheten for å få den til å fungere som en plattform, vil være at programmet er for spesifikk til sitt bruk. Hvis systemet skal brukes til andre applikasjoner, må programmet skrives om og få en mer generell struktur. Slik det er i dag, vil systemet kun kunne brukes i et flåtestyringssystem og i et alarmsystem.

J2ME som brukes som programmeringsspråk, har en begrensning i minnekapasiteten. Dette krever at applikasjonen som utvikles legger minimalt beslag på minneresursene. Fordelen er at programmet vil ta liten plass og lett kan oppdateres over GSM nettet uten at det krever stor båndbredde (hvis det tas hensyn til minnebegrensningen).
8.6 **Antenne og mottak**
Det vil være mange forskjellige forhold som vil kunne påvirke hvor godt et signal kan mottas, det kan være forsterkning, plassering, type etc. Disse forholdene må det tas hensyn til under en installasjon av et slikt system. For best mulig signal vil en aktiv kombinert antenne (for eksempel en Helixantenne) være det som kan være mest hensiktmessig å installere (aktiv for GPS). Denne vil da ha mottak og sending av GSM og GPS, dette vil forenkle både montering og kabling.

For at utstyret skal kunne være skjult for eventuelle kapere eller tyver, er det en forutsetting at antennen og kablingen skjules. Dette stiller igjen et problem med skjuling av antennen, den må som nevnt tidligere fri sikt for GPS mottak. Den må derfor være montert skjult, samtidig som den har fri sikt til satellittene.

8.7 **Posisjons nøyaktighet**
GPS modulene som ble plukket ut for nærmere undersøkelse, har en variasjon på nøyaktigheten av posisjonene, se Tabell 5. Hvor stor nøyaktighet som det er ønskelig at systemet skal ha, må utredes ut ifra hvilket miljø systemet kan tenkes brukt. Skal systemet benyttes til langtransport vil kravet til nøyaktighet være lavere enn hvis systemet skal benyttes i et bymiljø.

Nøyaktigheten vil kunne forbedres betraktelig ved bruk av DGPS\(^\text{17}\) og det europeiske systemet EGNOS, ofte ned til 1 – 3 meter. En annen posisjonings mulighet er det fremtidige europeiske posisjonering systemet Galileo, hvor nøyaktigheten typisk vil ligge mellom 2 – 10 meter.

GPS kan ha problemer med å få regnet ut korrekt statisk posisjon\(^\text{18}\), da kan det være en fordel å benytte seg DGPS for å motta en korrekt posisjon.

8.8 **Bruk av GPS fremfor posisjonering med hjelp av GSM teknologi**
Å bruke GPS til posisjonering, vil medføre en betydelig bedre nøyaktighet i forhold til å bruke de metodene som er tilgjengelig med GSM teknologi. I GPS er det i dag en nøyaktig på +/- 15 meter, mens med bruk av GSM til posisjonering er det mulig å oppnå en nøyaktighet fra 200 meter til opptil flere kilometer utenfor tettbygde strøk. Det er viktig å nevne at posisjonering med GSM er en tjeneste som tilbys av mobiltelefon operatorene, og er ikke en global tjeneste slik som GPS.

Hvorvidt det er nødvendig med en bedre nøyaktighet enn det posisjonering med GSM tilbyr, må vurderes ut ifra hvor systemet kan tenkes å benyttes, og til hvilken næring det skal brukes (for eksempel langtransport eller budbil). I en alarmsgisjon er det en vesentlig fordel å kunne vite nøyaktig hvor kjøretøyet befinner seg, med hensyn til sjåførens sikkerhet. Hvis kjøretøyet befinner seg innenfor en radius på ett par kilometer, kan det være vanskelig å finne det igjen ved for eksempel en kapring.

Ved å benytte GPS fremfor GSM teknologi til posisjonering, vil systemet være mer fleksibelt uansett hvilken tjeneste eller applikasjon som kan tenkes å benyttes. Hvis enheten skal være et system som dekker alle markedssegmenter innenfor flåtestyring, vil GPS være et foretrukket valg.

\(^\text{17}\) Se kapittel 2.7.3
\(^\text{18}\) Se kapittel 2.7.4
Posisjonering med GSM teknologi vil medføre en kostnad per mottatte posisjon, og hvor oftere posisjonen skal mottas (periodisk oppdatering), jo høyere blir dags kostnaden for systemet. Med GPS posisjonering vil systemet få en større utviklingskostnad samtidig som systemet blir dyrere i innkjøp (GSM modul og GPS modul).

8.9 Minne forbruk

Totalt er det 300 kilobyte ledig minne til applikasjon på GSM modulen TC45. Hvis 100 kilobyte settes av til programmet (som er veldig mye, ofte er et enkelt program under 50 kilobyte [37]), vil det være igjen 200 kilobyte ledig minne til å lagre inngående GPS data på. Det må være tilgjengelig minne til å lagre posisjoner, og minne til å mellomlagre meldinger hvis systemet er utenfor dekning når det skal foretas periodisk oppdatering.

En posisjon inneholder 42 tegn\(^19\).

Et tegn (type ascii) tar opp 1 byte i minnet under lagring på mikrokontrolleren. Dette vil senere kodes før oversending med SMS over GSM nettet, men det vil ikke forandre på plassen det opptar i minnet. En tekststreng med en posisjon og 42 tegn vil kunne lagres antall ganger hvis 100 kilobyte minne settes av til dette formålet:

<table>
<thead>
<tr>
<th>Posisjon</th>
<th>Antall tegn</th>
<th>Antall Byte</th>
<th>Ledig minne til posisjoner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall posisjoner</td>
<td>42</td>
<td>42</td>
<td>100kB</td>
</tr>
</tbody>
</table>

Totalt vil da flåtestyringsenheten kunne lagre rundt 2400 posisjoner (det vil være noe minne som opptråd av vennelisten). Hvis kjøretøyet er bruk 12 timer i døgnet, vil det tilsvarer 200 posisjoner i timen. Eller 3 posisjoner i minuttet.

Med denne minnekapasiteten vil alle posisjoner kunne lagres hos kjøretøyet for så å oversendes til hjemmeserver på slutten av dagen. For sikkerhets skyld bør posisjoner oversendes hver andre eller tredje time (periodisk oppdatering), for at hjemmeserver skal kunne holdes oppdatert om hvor kjøretøyet befinner seg. Etter at en periodisk oppdatering er sendt, må minnet frigjøres (gamle posisjoner som er sendt slettes).

For mellomlagring av usendte meldinger er det 100 kilobyte ledig minne. Dette vil utgjøre antall meldinger hvis en tekststreng som en melding består av inneholder 160 tegn og lagres i minnet før sending:

<table>
<thead>
<tr>
<th>Melding</th>
<th>Antall tegn</th>
<th>Antall Byte</th>
<th>Ledig minne til meldinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall meldinger</td>
<td>160</td>
<td>160</td>
<td>100kB</td>
</tr>
</tbody>
</table>

\(^19\) Se kapittel 6.1.1

71
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

Over 600 meldinger vil kunne lagres på systemet hvis 100 kilobyte av minne settes av til å mellomlagre usendte meldinger.

Med en periodisk oppdaterings frekvens på 10 minutter vil det si at systemet kan være utenfor dekning (til GSM nettet) bortimot fire døgn og fortsatt mellomlagre meldinger. Dette vil være tilfredsstillende for systemet. Så fort en melding er sendt, vil minnet frigjøres.

8.10 Bæretjeneste for oversending av data

For oversending av data fra flåtestyringsenheten til hjemmeserver og tilbake er det flere mulige teknologier å velge mellom\(^20\).

For å vurdere hvilken av disse bæretjenestene som er mest hensiktsmessig å benytte i systemet, må hver enkelt teknikk vurderes opp mot problemstillingene.

8.10.1 SMS

Flåtestyringssystemet skal kun sende korte meldinger til hjemmeserver og motta korte meldinger. Til et slikt formål er SMS ypperlig egnet med den strukturen den innehar. SMS meldingene sendes direkte ut på kontrollkanalen ved sending, deretter sendes de til SC. Ved normale tilstander går det svært kort tid fra meldingen blir sendt til den mottas hos mottaker (via SC). Problem med SMS er at det ikke er noen garanti for at meldingen blir levert, og i en alarmsituasjon, vil ikke bruker av et flåtestyringssystem være sikker på hjemmeserver har mottatt alarmmeldingen. Dette er spesielt et problem på for eksempel nyttårs aften hvor sjansen for å få sendt og levert meldingen innen rimelig tid er særdeles liten. En løsning kunne vært å hvile den hjemmeserver kvitterte ved mottatt alarm melding tilbake til flåtestyringsenheten.

Et annet problem med SMS er hvis datamengden som skal oversendes er stor, vil det ikke være plass til all data i en melding\(^21\). Dette kan være en ulempe ved en periodisk oppdatering hvor det er ønskelig å få oversendt flest mulig av den siste posisjonene hvor flåtestyringsenheten har befunnnet seg.

Ved forandring av en applikasjon, vil det ikke være så nøye om det benyttes SMS eller andre tjenester for oversending av data. Det vil selvfølgelig avhenge av mengden data som skal overføres med den nye applikasjonen. Med mindre datamengden øker, vil det ikke være noe problem å benytte SMS.

Dagens prissetning på SMS meldinger\(^22\) er synkende, men det betales fortsatt mye per melding i forhold til hvor mye data som oversendes, i og med at hver melding kun inneholder maksimalt 160 tegn. Med en høy frekvens på periodisk oppdatering fra flåtestyringsenheten, vil kostnaden ved å benytte SMS være store. Med en lavere frekvens på periodisk oppdatering vil det derimot kunne forsvares å bruke SMS, da vil kostnadene være små sammenlignet med andre tjenester for å overføre data.

I følge [4] vil det være mest hensiktsmessig å benytte SMS som bæretjeneste for flåtestyringsystemer i transportnæringen.

\(^20\) Se kapittel 2.6
\(^21\) Se utregning i kapittel 6.1.1
\(^22\) Varierer i dag mellom 48 til 89 øre per SMS melding hos de forskjellige mobiloperatørene i Norge
Det er også mulig å sende SMS over GPRS23, det vil da føre til lavere leveringskostnad per oversendt melding.

Tabell 12. Nøkkel faktorer for SMS

<table>
<thead>
<tr>
<th>Oppstarts tid</th>
<th>Alle SMS meldinger sendes over kontroll kanalen (direkte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanntids aspekt</td>
<td>Dårlig sanntids egenskaper</td>
</tr>
<tr>
<td>Kapasitet</td>
<td>160 tegn maksimalt per melding</td>
</tr>
<tr>
<td>Kostnad</td>
<td>Fast pris per melding</td>
</tr>
</tbody>
</table>

8.10.2 Linjesvitsjet (CSD) og høyhastighets data (HSCSD)

Fordelen av å benytte seg av linjesvitsjet data i forhold til SMS, er at det ikke er begrensninger på hvor mye data som skal overføres per sending. Dette er en klar fordel med tanke på en periodisk oppdatering hvor det kan være mange posisjoner som skal oversendes til hjemmeserver.

Endring av applikasjoner vil ikke føre til noen problemer tilknyttet bruk av tjenesten, den vil fortsatt kunne benyttes uten noen forandring av oppsett.

Kostnaden ved å benytte linjesvitsjet teknologi for oversending av data er priset etter hvor lenge systemet er tilkoblet GSM nettet. I og med at det tar tid å koble seg opp mot nettverket til linjen er klar til bruk, kan kostnaden bli stor ved oversending av kun korte meldinger. Hvis det er større datamengder som skal oversendes, er det mulig å benytte flere tidsluker i HSCSD. Dette fører til at prisen dobles, noe som er lite gunstig ved høy frekvens på meldingene som sendes mellom flåtestyringsenheten og hjemmeserver. Men med lav frekvens og store datamengder kan det være gunstig å benytte linjesvitsjet teknologi for oversending av data.

Tabell 13. Nøkkel faktorer for CSD og HSCDS

<table>
<thead>
<tr>
<th>Oppstarts tid</th>
<th>Varierer fra 5 til 20 sekunder avhengig av tjenesten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanntids aspekt</td>
<td>Gode sanntids egenskaper i de fleste situasjoner</td>
</tr>
<tr>
<td>Kapasitet</td>
<td>CSD – En tidsluke: 9,6 eller 14,4 kbps</td>
</tr>
<tr>
<td></td>
<td>HSCSD – 2 til 4 tidsluker: 28,8 – 57,6 kbps</td>
</tr>
<tr>
<td>Kostnad</td>
<td>Pris per tidsenhet (sekund) + antall tidsluker</td>
</tr>
</tbody>
</table>

23 Ingen norsk mobil operatør støtter dette i dag, men det er teknisk mulig
8.10.3 GPRS
Etter at en PDP kontekst er aktivert24, vil GPRS modulen være i stand til kommunisere direkte. Fra forsøket på å koble seg opp mot nettet til det er opprettet forbindelse (med aktiv PDP kontekst) tar det mindre enn et sekund. Dette er fordelaktig i en alarmssituasjon hvor det er ønskelig å sende alarm meldingen til hjemmeserver hurtigst mulig for sjåførens sikkerhet. Avhengig av QoS valget i PDP konteksten, vil dataene leveres hos mottakere forholdsvis rett etter at de er sendt (under et sekund). Det medfører at hjemmeserver kan være oppdatert til en hver tid om hvor kjøretøyet befinner seg.

GPRS er en tilnærming mot UMTS, som er fremtidens mobilnettverk. Ved å benytte seg av GPRS vil det være en tilnærming mot morgendagens teknologi, og det vil medføre at en forandring på applikasjonen ikke vil føre til et problem i fremtiden.

Kostnadene ved å benytte seg av GPRS avhenger av hvor stor datatrafikk det går, det faktureres for hver nedlastet mengde data i kilobyte. Ved oversending av en kort melding vil det medføre en liten kostnad. Ved oversending av stor datamengde vil GPRS være relativt rimeligere enn bruk av linjesvitsjet teknologi hvor det faktureres etter antall aktive tidsluker.

\begin{tabular}{|l|l|}
\hline
Oppstarts tid & Mindre enn 1 sekund \\
\hline
Sannitids aspekt & Avhenger av QoS nivået, men ikke så gode egenskaper som (HS)CSD \\
\hline
Kapasitet & \textasciicircum{0} – 171,2 kbps25 \\
\hline
Kostnad & Pris per kilobyte data \\
\hline
\end{tabular}

8.11 Mulige forbedringer (og svakheter) med designen
Designen er konstruert for å være tilpasset de krav som er stilt i oppgaven, men det er en del momenter som kunne være forbedret.

Det kunne med fordel vært tilkoblet en skjerm, som kunne visualisere den geografiske posisjonen på et kart med status for flåtestyringsenheten. Videre kunne det vært lagt inn kjøreoppdrag som markerte hvor neste stoppested vil være for kjøretøyet. Det hadde medført at det måtte vært lagret Ferdige kartdatabaser på flåtestyringsenheten, som hentes opp for å visualisere den geografiske posisjonen.

Det hadde vært en fordel at systemet også benyttes til tale, spesielt i en alarm situasjon hvor sjåføren burde kunne fortelle kjørekontoret hva som foregår. Dette kreves at det installeres høytalere og mikrofoner i tillegg.

Å koble systemet opp mot kjøretøyets eget system, slik som CAN26 bussen, vil kunne gi tilgang til mange data fra kjøretøyets eget nettverk. Det vil være data som forteller om kjøretøyet er startet, om kjøretøyet forflytter seg, om dørene på kjøretøyet er åpnet, temperaturen på motoren, om det er noen feil på kjøretøyet, kjørelengde, hastighet etc. Dette kan være verdifull informasjon for kjørekontoret for å bestemme tilstanden og for å kunne gi en statusrapport angående kjøretøyet. Og i en eventuell alarmssituasjon kan drivstofftilforselen stenges.

24 Se kapittel 2.4.4
25 Teoretisk, i praksis er det ingen moduler som støtter mer enn klasse 10 (maksimalt 48 kbps)
26 CAN - Control Area Network, se kapittel 2.10
Systemets software er i dag veldig spesifikk til sitt bruk. I framtiden vil det være en fordel at programmet var bygget opp etter moduler. En felles plattform som ligger i bunn, mens valgfrie moduler settes inn etter ønske, se Figur 35). Dette vil øke anvendbarheten til systemet som en felles plattform for M2M applikasjoner.

Figur 35) Modell for framtidige software applikasjoner

GPS applikasjon

Alarm applikasjon

Hovedprogram, fel
9 Konklusjon

Siemens modulen er den nyeste av de GSM enhetene som ble undersøkt, og er den som er teknisk overlegen. Den har en innebygd mikrokontroller, noe som medfører at totalsystemet blir fysisk mindre. Det er lettere å legge til nye funksjoner samtidig som det blir mindre hardware design og en forbedret kostpris. Den leveres med utviklingssett og kan oppdatere software over GSM nettet ved hjelp av OTA protokollen. Modulen kan programmeres ved bruk av J2ME, som er antatt å være fremtidens programmeringsspråk på små enheter.

EverMore sin GPS enhet er ikke den raskeste med å levere posisjonsdata ved en kaldstart, men den har lavt strømforbruk og har mulighet for bruk av DGPS. Denne GPS modulen har også en lav pris, er liten og lett og har mulighet for å oppgradere software, som gjør den til et foretrukket valg.

Kravet til designet av flåtestyringsenheten vil være sammenkobling av GSM og GPS modulene med en RS232 kabel. Systemet må bygges inn i en liten enhet med lamper og tilkobling til eksterne brytere, strømforsyning og antenner. Flåtestyringsprogrammet må også tilpasses det miljøet det kan tenkes å bli benyttet.

Flåtestyringsenheten vil bruke SMS for oversending og mottak av data til og fra hjemmeserver, og mottak av venneliste. Denne løsningen bidrar til den mest effektive og billigste løsningen per dags dato.

Systemet vil egne seg som en plattform for andre tenkelige M2M applikasjoner uten at det kreves forandring av hardware arkitektur. Software oppbygningen bør endres slik den er mer fleksibel for tilpassing til andre løsninger.

Vi kan konkludere med at den konseptuelle prototypen som er utviklet, tilfredsstiller de krav som oppgaven har satt til et slikt system. Imidlertid bør prototypen videreutvikles noe før den kan regnes som et ferdig produkt som kan være kommersielt interessant å markedsføre. Dette gjelder først og fremst på følgende områder:

- En skjerm som kan visualiser den geografiske posisjonen og statusen for sjåføren.
- At systemet også kan brukes til tale.
- Benytte SMS over GPRS når denne tjenesten er tilgjengelig.
- Tilkobling til CAN bussen for å benytte kjøretøyets interne data til rapportering av kjøretøyets tilstand.
- Software programmet bør bygges opp etter moduler, slik at fleksibiliteten og anvendbarheten for systemet økes.
Referanser

[1] L. Boquete, I. Bravo, R. Barea, M.A. Garcia. Telemetry and control system with GSM communications, Department of Electronics, Alcala University, Spain, 2002

[10] Pär Ström, M2M – De 8 affärsnyttorna med ”snackande” prylar, Atom och bitar AB, 2001

Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

[33] Telenor Mobil. *Informasjon om SIM – kort* http://telenormobil.no/partner/tjenester/simkort [Besøkt 22. mai, 2003]

[34] Content Provider Access (Telenor). *Informasjon ang tjenester og fakturering*. http://cpa.telenor.no/Index.jsp

Forkortingsliste

API Application Program Interface
ASIC Application Specific Integrated Circuit
AT commands Attention commands
AuC Authentication Center
BSC Base Station Controller
BSS Base Station Subsystem
BTS Base Transceiver Station
CAN Control Area Network
CDC Connected Device Configuration CDC
CEP Circular Error Probability
CLDC Connected Limited Device Configuration
CPU Central Processing Unit
CRC Cyclic Redundancy Code
CSD Circuit switched Data
DGPS Differential GPS
ECEF Earth Centered Earth Fixed
EGNOS European Geostationary Navigation Overlay System
EIR Equipment Identity Register
EM Elektro Magnetisk
EPROM Erasable Programmable Read Only Memory
FSE Flåte Styrings Enhet
GGSN Gateway GPRS Support Node
GMSC Gateway MSC
GPRS General Packet Radio System
GPS Global Position Systems
GSM Global System for Mobile
GSN GPRS Support Nodes
HLR Home Location Register
HSCSD High Speed Circuit switched Data
HW Hardware
IMSI International Mobile Subscriber Identity
I/O Inn/Ut
IP Internett Protocol
IR InfraRed
Sporing av kjøretøy med M2M kommunikasjon basert på GPS og GSM/GPRS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISDN</td>
<td>Integrated Service Digital Network</td>
</tr>
<tr>
<td>J2ME</td>
<td>Java 2 Micro Edition</td>
</tr>
<tr>
<td>JVM</td>
<td>JAVA Virtual Machine</td>
</tr>
<tr>
<td>Kbit/s</td>
<td>Kilo bit per second</td>
</tr>
<tr>
<td>KBPS</td>
<td>Kilo Byte per Second</td>
</tr>
<tr>
<td>KVM</td>
<td>K Virtual Machine</td>
</tr>
<tr>
<td>M2M</td>
<td>Machine to Machine</td>
</tr>
<tr>
<td>Mbps</td>
<td>Mega byte pr second</td>
</tr>
<tr>
<td>MIDP</td>
<td>Mobile Information Device Profile</td>
</tr>
<tr>
<td>MPS</td>
<td>Mobile Positioning System</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Station</td>
</tr>
<tr>
<td>MSC</td>
<td>Mobile Services switching Center</td>
</tr>
<tr>
<td>MT</td>
<td>Mobile Terminal</td>
</tr>
<tr>
<td>NAVSTAR</td>
<td>NAVigation System with Timing And Ranging</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>NSS</td>
<td>Network Station Subsystem</td>
</tr>
<tr>
<td>OTA</td>
<td>Over The air Protocol</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PDN</td>
<td>Public Data Network or Packet Data Network</td>
</tr>
<tr>
<td>PDP</td>
<td>Packet Data Protocol Address</td>
</tr>
<tr>
<td>PIN</td>
<td>Personal Identification Number</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PMS</td>
<td>Positioning Middleware System</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RTCM</td>
<td>Radio Technical Commission For Maritime Services</td>
</tr>
<tr>
<td>SA</td>
<td>Selective Ability</td>
</tr>
<tr>
<td>SC</td>
<td>Service Center</td>
</tr>
<tr>
<td>SGSN</td>
<td>Serving GPRS Support Node</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internett Protocol</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>TE</td>
<td>Terminal Equipment</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchrony Receive Transmit</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>USSD</td>
<td>Unstructured Supplementary Service Data</td>
</tr>
<tr>
<td>VLR</td>
<td>Visitor Location Register</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
</tbody>
</table>
Vedleggs oversikt

Vedlegg A – Siemens TC35(T)
Vedlegg B – Motorola d10
Vedlegg C – Ericsson Gm47
Vedlegg D – Nokia 30
Vedlegg E – Siemens TC45
Vedlegg F – Wavecom Q2300
Vedlegg G – EverMore Tistar25
Vedlegg H – SPK Electronics MG10
Vedlegg I – Falcom JP4
Vedlegg J – Philips SAF3100
Vedlegg K – Fujitsu MB90F549
Vedlegg L – F35-XXL-SI