Effects of climate change on the fish stocks in the high north seas

ScanBalt Academy Meeting 2010, Svalbard
Recent Ecological, Biological and Medical Challenges in the High North

Geir Odd Johansen

INSTITUTE OF MARINE RESEARCH
HAVFORSKNINGSINSTITUTTET
Overview

• Focus on the Barents Sea
• Climate variation on different time scales
• Important fish species
• Effects of climate variation
 – Geographical distribution
 – Biological production
• Climate variation and the marine ecosystem
• Possible consequences for the fisheries
Where two climate regimes meet

- In the Arctic, warm and cold waters meet.
- Cold waters are ice-covered during winter.
- Climate change impacts differently on these regions.
- The biological communities differ between these regions.
- Boreal fish species versus arctic fish species.
Climate variation at different time scales

The Barents Sea climate

Year-to-year variation
Decadal variation
Multi-decadal variation
Human Influence?
Heating of the Barents Sea

- Marine organisms have the same body temperature as their environment (except mammals).
- Temperature influences several processes in the ecosystem:
 - Direct effects on metabolism and body functions.
 - Indirect effects through food availability.
 - May also serve as an indicator of other factors, such as intensity of transport by ocean currents.

The Barents Sea climate

Winter

Summer

Change from present to 2050-2065
Fish species in the Barents Sea

- More than 200 species from 70 families have been registered
- Boreal vs. Arctic species
- Pelagic vs. benthic species
- Several of them have parts of their life cycle outside the Barents Sea
Boreal species

• Northeast Arctic cod (*Gadus morhua* L.)
• Important predator in the system
• Benthic to bentho-pelagic
Boreal species

- Northeast Arctic haddock (*Melanogrammus aeglefinus* L.)
- Benthic to benthopelagic
Boreal species

- Norwegian spring-spawning herring (*Clupea harengus* L.)
- Barents Sea only as nursery area
Arctic species

- Capelin (*Mallotus villosus* Müller, 1776)
- Important forage fish for several predators
- Pelagic
Arctic species

- Polar cod (*Boreogadus saida* Lepechin, 1774)
- Pelagic fish
- Important at the ice edge
Other interesting species

• Blue whiting (*Micromesistius poutassou* Risso, 1827)
• Entering the BS from south-west
• High abundance in 2001-2007
• Interact with other species
Other interesting species

- Atlantic mackerel (*Scomber scombrus* L.)
 - Observed at least as north as 74°N
 - Recently caught off the Murman coast
- Several fish species related to benthic habitats (e.g. eelpouts (*Zoarcidae*) and sculpins (*Cottidae*)
 - Habitat specific
 - Sensitive to temperature variation
Factors influencing geographical distribution

Effects on geographical distribution

- geographical attachment
- density dependent habitat selection
- spatial dependency
- demographic structure
- species interactions
- persistence
- environmental conditions

Planque et al. 2010
Effects on geographical distribution

Distribution of NEA cod

[Map showing distribution of cod in 1994]

[Graph showing changes in centre of gravity and southern limit of ice cover from 1980 to 2010]
In the Barents Sea, cod appeared in large quantities on Bear Island Bank in response to the warming of the early 20th century, resulting in the reestablishment of a cod fishery there after an absence of almost 40 years (Blacker, 1957). Cod also penetrated farther east to Novaya Zemlya and north of West Svalbard, during the 1920s (Beverton and Lee, 1965). Similar effects at west Greenland and Iceland.

Drinkwater 2005
Effects on geographical distribution

Spawning sites of NEA cod

Hot periods:
- Northwards displacement
- Increasing spawning biomass

Cold periods:
- Southwards displacement
- Decreasing spawning biomass

Sundby and Nakken (2008) IJMS
NEA cod the first year of life

Effects on geographical distribution

- Easterly shift in centre of distribution during the period 1980–2007
- Magnitude of shift:
 - Cod: 120 km
 - Herring: 160 km
 - Haddock: 90 km
 - Capelin: 220 km

Centre of distribution (east) of 0-group cod, haddock, herring, and capelin
Marine organisms are ectothermic

- Marine organisms are embedded within the physical environment.
- Bio-physical coupling: the organisms interact with the physical environment.
- Marine organisms have the same body temperature as their environment (except marine mammals).
- Direct effects of environmental temperature on metabolism and body functions.
Effects on biological production

Stock abundance and production

• High abundance of cod, haddock and herring
Stock abundance and production

- Increased production in northeastern seas
- High stock biomass is due to a combination of low mortality and high growth rate
- Note that high growth rate depends on sufficient food!
- Lack of food at high temperatures can seriously affect the stocks
 - Energy allocated to metabolism and digestion
A complex interplay

- Direct effects of temperature
 - Modified through the complex interplay in the ecosystem
 - Between organisms and physics
 - Between different species

- Food availability and recruitment of fish
 - Vertical distribution of copepods
 - Timing important for transport
 - Important for the geographical distribution
 - Availability to juvenile fish
 - Spatial coherence between fish and copepods
Fisheries and global warming

• The ecosystem is dynamic
 – It is not given that a temperature increase leads to the expected movement of the fish or increased production
• What is the relationship between geographical distribution of fish and fishermen?
• Do they follow each other tightly?
Consequences for the fisheries

Fisheries and global warming

- Centre of gravity, Norw cod trawl fishery
- Cod stock
- Cod trawl fishery
Fisheries and global warming

• The fishery is influenced also by other parameters than just availability of fish
 – Distance to landing sites and home port
 – Traditional fishing grounds
 • Bottom type must be suitable for trawling
 – Size and species available in the area
 • Avoiding by-catches
 – Distribution of other stocks
 • Trawlers may shift between different target species, e.g. cod and saithe
 – Fuel expenses, time spent travelling and catching
Future challenges

Temperature in the Kola hydrographic section

“Prediction is very difficult, especially of the future”

Niels Bohr, Danish physicist (1885 - 1962)