Ecosystem Approach to Fisheries Management in the Barents Sea

by

Å. Bjordal and A. Boltnev

10th Norwegian-Russian Symposium
Ecosystem Approach to Fisheries Management (EAFM)

- Nothing new!
- We don’t start from scratch!
- BUT: represents new direction and focus for marine research and fisheries management
Status for EAFM

• Long time series, environment/biology
• Multispecies
• Precautionary approach to harvest rates
• Numerous management measures (legal size, mesh size, gids, closed areas – for target species, but effect also on non t.dp.)
• Protected areas (e.g. deep water corals)
• Models (physical, plankton, single species, multispecies, ecosystem......)
• + + + + +
Northeast Arctic cod.

Models for management advice in the Barents Sea

• Cod, single-species models
 – XSA
 – Fleksibest

• Herring, single-species model
 – SeaStar, ISVPA

• Capelin, predation from cod taken into account
 – Bifrost

CHALLENGE: to link ”basic models” to ”operational models”
The road towards ecosystem based management:
Can be made very complicated – or relatively simple, but still demanding
Ecosystem based fisheries management: main elements

• A: improved knowledge and understanding of ecosystem dynamics - for controlled harvest levels of single species/stocks
• B: improved fish capture techniques for low adverse ecosystem effects
• C: indicators of ”ecosystem health” – to monitor effects of fishing and other human activities on the marine ecosystem
A: Improved knowledge and understanding of the ecosystem

- Improved management oriented, operational models – utilising multispecies and ecosystem dynamics data and information
- DEMAND for huge increase in ecosystem data (in time and space) and effective data handling systems
Increased data supply by use of improved and new ”platforms”

- Research vessels /state of the art technology
- The fishing fleet (catch and ecosystem data)
- Airborne and sattelite platforms
- Buoys
- Tags (DST, acoustic...)
- AUVs / ROVs /HUBs
- Ships, offshore installations
The fishing fleet as data platform

• Russia: long tradition for obtaining data from the fishing fleet

• Norway: developing, e.g. Reference fleet of different vessels in the demersal fisheries supplying electronic catch, effort and biological data
The reference fleet

UTFLESA
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>1. Quart</th>
<th>2. Quart</th>
<th>3. Quart</th>
<th>4. Quart</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENL. HALIB.</td>
<td>1216</td>
<td>9487</td>
<td>3638</td>
<td>1746</td>
<td>16087</td>
</tr>
<tr>
<td>BLUE LING</td>
<td>2</td>
<td>3608</td>
<td>435</td>
<td>81</td>
<td>4126</td>
</tr>
<tr>
<td>BL. WOLFFISH</td>
<td>2057</td>
<td>122</td>
<td>591</td>
<td>741</td>
<td>3511</td>
</tr>
<tr>
<td>MONKFISH</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUSK</td>
<td>2305</td>
<td>796</td>
<td>10822</td>
<td>2021</td>
<td>15944</td>
</tr>
<tr>
<td>SP. WOLFFISH</td>
<td>1357</td>
<td>82</td>
<td>380</td>
<td>206</td>
<td>2025</td>
</tr>
<tr>
<td>GR. WOLFFISH</td>
<td>172</td>
<td>161</td>
<td>14</td>
<td>5</td>
<td>352</td>
</tr>
<tr>
<td>HAVMUSER</td>
<td>600</td>
<td>0</td>
<td>0</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>HADDOCK</td>
<td>22451</td>
<td>7726</td>
<td>4787</td>
<td>11725</td>
<td>46689</td>
</tr>
<tr>
<td>ISGALT</td>
<td>160</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LING</td>
<td>932</td>
<td>546</td>
<td>2917</td>
<td>1196</td>
<td>5591</td>
</tr>
<tr>
<td>POLLOCK</td>
<td>964</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>1077</td>
</tr>
<tr>
<td>MORA</td>
<td>7348</td>
<td>1508</td>
<td>0</td>
<td></td>
<td>8856</td>
</tr>
<tr>
<td>PLAICE</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>SAITHE</td>
<td>20386</td>
<td>3892</td>
<td>2520</td>
<td>7837</td>
<td>34635</td>
</tr>
<tr>
<td>REDFISH (Ment)</td>
<td>1869</td>
<td>717</td>
<td>0</td>
<td>107</td>
<td>2693</td>
</tr>
<tr>
<td>COD</td>
<td>25296</td>
<td>10562</td>
<td>6720</td>
<td>15607</td>
<td>58185</td>
</tr>
<tr>
<td>REDFISH (Mar)</td>
<td>6207</td>
<td>2988</td>
<td>2835</td>
<td>2202</td>
<td>14232</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85214</td>
<td>48748</td>
<td>37408</td>
<td>43557</td>
<td>214927</td>
</tr>
</tbody>
</table>
Hub monitoring

Example: wintering NSSH

- Establish an acoustic fens
 - Transducer array
 - Horizontal looking sonar
 - Watch dog – AUV patrolling the fens

- Develop software for efficient and automatic handling of large data sources
- Develop software for assessing movement and fluxes
To ekkolodd med sild

Sonar med silderegistrering

Deler av ADCP-bilde
DST being attached to cod

Measure
- Temperature
- depth
- tilt angle
- time
North Cape - Bear Island in 90 days
LIDAR (lasedr) observations from airplanes

- Mackerel – migration and distribution
- Seal-capelin interactions in the Barents Sea
B: “ecosystem friendly” fish capture techniques

- Promote a shift to best practices regarding fishing methods – and further development for: species- and size selectivity, minimal effects on bottom habitats, low fuel consumption and pollution per unit catch, improved catch quality, low “hidden” mortality (e.g. “ghost fishing”)
Sorting grid: separating fish and shrimp

- Keep shrimp
- Release fish
- Improved catch quality
- Reduced labour/on deck sorting
- Compulsory use in shrimp fisheries worldwide
C: indicators of ”ecosyst. health”

• Indicator species?

• Indicator areas (e.g. In the Barents Sea): basic inventory of species/ abundance + regular monitoring of community changes – related to human and/or environmental effects
Ecosystem Approach to Fisheries Management

- The concept should imply management strategies for balanced harvest of living marine resources – including all trophic levels from plankton to top predators
Ecosystem organized research

- 2003 IMR-PINRO ecosystem surveys in the Barents Sea
- 2004 IMR from discipline - to ecosystem based organization
Ecosystem based fisheries management: challenge

• From slogan to operational reality
• From ”political talking point” as disguise of obvious unpopular actions (e.g. decommissioning of fleet capacity) – to real investment in ecosystem dynamics knowledge and understanding
• THE END – THANK YOU FOR LISTENING